VolkswagenStiftung
Nanoscale imaging of magnetic and electric fields: Ultrasensitive magnetic resonance and bioimaging
Zusammenfassung:
Ein negativ geladenes Nitrogen-Vacancy (NV) Zentrum in Diamant ist ein Festkörpersystem, welches als optisch-auslesbarer, atomarer Messfühler für magnetische und elektrische Felder verwendet werden kann. Im Rahmen dieses Projektes soll ein vielseitiges Instrument zur Detektion und Darstellung von schwachen magnetischen und elektrischen Feldern, hervorgerufen von kleinen molekularen Bestandteilen bis zu komplexen Zellverbänden, entwickelt werden. Die Zielsetzung ist es, eine Magnetfeldempfindlichkeit von einigen nano-Tesla zu erreichen. Diese Empfindlichkeit ist hoch genug, um die Kernspins einzelner Moleküle zu messen. Außerdem soll eine Ortsauflösung von einigen Nanometern erreicht werden, die z. B. die Messung von Aktionspotentialen und Ionenflüssen an einzelnen Ionenkanälen in der Zellmembran ermöglichen würde. Eine visionäre Leistung würde z. B. die Integrierung von hochempfindlicher Kernspinmessung in mikrofluidische Bauteile, oder die Darstellung neuronaler Aktivität in einem größeren Bereich auf Einzelzellniveau darstellen.
Projektbeteiligte:
Professor Fedor Jelezko, Universität Ulm, Institut für Quantenoptik
Professor Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut
Coupling color centers into macroscopic quantum systems with an atomic nano-assembler
Abstract:
In the previous funding period the teamhas proved that atomic nano-assembler can be realized and is capable of loading nitrogen atoms, delivering single ions deterministically with nanometer resolution. The consortium has proved that nitrogen vacancy color centers can efficiently generated, coupled and read out with nano meter resolution on the quantum level. In this funding period it is planned to consequently combine the techniques for the first realization of a scalable quantum simulation and computation architecture realized with solid state systems. The atomic nano-assembler will be modified to realize real-time detection of generated spinspin interaction. This will enable spin bath design on the single particle level. Furthermore, it is planned to integrate implanted defects into control- as well as readout periphery such that a solid state spin quantum simulator with tailored solid state devices can be realized on a single diamond crystal. Extended by addational control electrodes, the device will be the perfect platform for the realization of a scalable architecture for solid state quantum information processing.
Projektbeteiligte:
PD Dr. Kilian Singer, Universität Mainz, Prof. Dr. Ferdinand Schmidt-Kaler, Universität Mainz, Prof. Dr. Dr. h. c. Stefan W. Hell, MPI für biophysikalische Chemie, Göttingen, Prof. Dr. Jan Meijer, Universität Leizig, Prof. Dr. Jörg Wrachtrup, Universität Stuttgart, Prof. Dr. Fedor Jelezko, Universität Ulm, Dr. Boris Naydenov, Universität Ulm
Functionalized nanodiamonds for biomedical research and therapy
Abstract:
Nanodiamonds are biocompatible nanoparticles, which can be functionalized by manifold surface modifications. Therefore, they are an excellent candidatefor biomedical and even therapeutic applications. The project aims at developing nanodiamonds labeled by different lattice modifications, such that they are detectable by various techniques, from microscopy and radiography to magnet resonance imaging. Modifying the nanodiamond lattice instead of its surface ensures that the nanoparticle and its label do not dissolve in physiologic environment. Additionally, it does not alter its interactions with the environment and hence the bio-compatibility of the nanoparticle is preserved. A nanoparticle that is not detectable due to surface but to lattice modifications for the first time allows comparable investigations from the subcellular to organism level, eventually leading to the development of nanodiamond based tools for biomedical and therapeutic applications.
Projektbeteiligte:
Prof. Dr. Fedor Jelezko, Universität Ulm, Dr. Boris Naydenov, Universität Ulm, Dr. Patrick Happel, Universität Bochum, RUBION, gemeinsam mit: Dr. Helmut Bühler, Universität Bochum, Universitätsklinik Marienhospital, Klinik Strahlentherapie und Radio-Onkologie, Prof. Dr. Irenaeus Adamietz, Universität Bochum, Universitätsklinikum Marienhospital Herne, Klinik für Strahlentherapie, und Prof. Dr. Rolf Heumann, Universität Bochum, Fakultät für Chemie und Biochemie, Molekulare Neurobiochemie, Prof. Dr. Jan Meijer, Universität Leipzig, Prof. Dr. Anke Krüger, Universität Würzburg
Molecular nanodiamonds
Nano-crystalline diamond is a new carbon phase with numerous intriguing physical and chemical properties and applications. Small doped nanodiamonds for example do find increased use as novel quantum markers and sensors in biomedical applications. However, making nanodiamonds below sizes of 5 nm with controlled composition has been elusive so far. The aim of this project is engineered growth of functional nanodiamonds with unprecedented degree of control of size, doping, isotopic composition and surface determination. The approach should allow to incorporate a custom designed seed molecule at the center of a nanodiamond. By substituting atoms at particular locations in the seed molecule it will be possible to achieve complex multi-atom diamond color centers or even to engineer complete nitrogen-vacancy diamond (NV) quantum registers with auxiliary nuclear spins. Furthermore, quantum confinement effects in undoped ultrasmall material (with sizes between 2 and 5 nm) will be explored to design states in the bandgap centers without placing a heteroatom. Finally, new diamond material for applications in quantum computing, quantum sensing and photochemistry will be explored.
Projektbeteiligte:
Professor Fedor Jelezko, Universität Ulm, Institut für Quantenoptik
Professor Peter Bäuerle, Universität Ulm, Institut für Organische Chemie II und Neue Materialien
Professor Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut