Räumliche Statistik II
Veranstalter
Dozent
Prof. Dr. Volker Schmidt
Übungsleiter
Dipl-Math. Ole Stenzel
Zeit und Ort
Vorlesung
Dienstags, 8-10 Uhr (c. t.), Raum 120, He18
Übung
Freitags, 10-12 Uhr (c. t.), Raum E60, He18
Umfang
2V+2Ü
Leistungspunkte: 6
Voraussetzungen
Die Veranstaltung eignet sich für Studenten mit Vorkenntnissen aus den Vorlesungen Wahrscheinlichkeitsrechnung und Stochastik I. Sie baut nicht unmittelbar auf die Vorlesung "Räumliche Statistik I" auf.
Zielgruppe
Die Vorlesung wendet sich vor allem an Master-Studenten der Mathematik, Wirtschaftsmathematik und Mathematischen Biometrie, die Spaß daran haben, sich ein über die Pflichtveranstaltungen hinausgehendes Teilgebiet der Stochastik zu erschließen, das eine Vielzahl praktischer Anwendungen ermöglicht. Die Inhalte der Veranstaltung sind so ausgerichtet, dass sich leicht Anknüpfungspunkte zu aktuellen Forschungsprojekten herstellen lassen, die an unserem Institut in Kooperation mit Partnern aus der Wissenschaft, Wirtschaft und der Industrie durchgeführt werden. Der Besuch der Vorlesung ist deshalb eine gute Vorbereitung zur Mitarbeit an diesen Projekten, sei es in Form von Praktika oder einer Master-Arbeit.
Inhalt
Im Fokus dieser Veranstaltung steht die stochastische Modellierung, statistische Analyse und Simulation von Punktmustern im IRd. Die vorgestellten Techniken eröffnen Anwendungsmöglichkeiten für ein weites Spektrum räumlicher Datensätze. In Zusammenarbeit mit Partnern aus anderen wissenschaftlichen Disziplinen und Wirtschaftsunternehmen wird statistische Punktmusteranalyse allein an unserem Institut zur Zeit auf Fragestellungen aus so unterschiedlichen Bereichen wie Finanz- und Versicherungswirtschaft, Krebsforschung, Telekommunikation, Batterie-, Brennstoff- und Solarzellenforschung, Dialektometrie und Georisikomodellierung angewendet.
In der Vorlesung werden Punktmuster thematisiert, die neben den Lokationen der Punkte (zufällige) Markierungen besitzen, die z.B. eine ökonomische Kennzahl wie die Kaufkraft an den jeweiligen Orten oder die Aktienreturns von Unternehmen widerspiegeln können. Mit Hilfe von markierten Punktprozessmodellen lassen sich z.B. Einblicke in die räumliche Korrelationstruktur der Marken und deren zeitliche Veränderungen gewinnen. In dieser Veranstaltung wird das Instrumentarium der Punktprozessstatistik sowohl in seinen mathematischen Grundlagen als auch in seiner praktischen Umsetzung erarbeitet. Auf diese Weise sollen grundlegende Ansätze zur statistischen Analyse räumlicher Daten erlernt werden, die insbesondere aufgrund der anhaltend rasanten Entwicklung im Bereich der bildgebenden Verfahren von zunehmender praktischer Relevanz sind.
Kriterien zur Erlangung des Übungsscheins
Präsentation eigener Lösungen zu den Übungsaufgaben als Zulassungsvoraussetzung zur Prüfung.
Vorlesungsskript
kann hier heruntergeladen werden. Stand: April 2011
Ein R-Skript kann auf der Homepage der Vorlesung Wirtschaftsstatistik heruntergeladen werden.
Übungsblätter
- Blatt1.pdf, RSBlatt1.r
- Blatt2.pdf
- Blatt3.pdf
- Blatt4.pdf
- Blatt5.pdf, Loesung Blatt5.zip
- Blatt6.pdf, RSBlatt6.java
- Blatt7.pdf
- Blatt8.pdf
- Blatt9.pdf
Literatur
[1] Baddeley, A., Bárány, I., Schneider, R., Weil, W. (Hrsg.)
Stochastic Geometry. Lecture Notes in Mathematics, Vol. 1892, Springer, Berlin 2007
[2] Benes, J., Rataj, J.
Stochastic Geometry. Kluwer, Boston 2004
[3] Daley, D.J., Vere-Jones, D.
An Introduction to the Theory of Point Processes, Vol. I. Springer, New York 2005
[4] Daley, D.J., Vere-Jones, D.
An Introduction to the Theory of Point Processes, Vol. II. Springer, New York 2008
[5] Diggle, P.J.
Statistical Analysis of Spatial Point Patterns. Arnold, London 2003
[6] Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P. (eds.)
Handbook of Spatial Statistics. Chapman & Hall / CRC, Boca Raton 2010
[7] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.
Statistical Analysis and Modelling of Spatial Point Patterns. J. Wiley & Sons, Chichester 2008
[8] Kallenberg, O.
Foundations of Modern Probability. Springer, New York 2001
[9] Kendall, W. S. and Molchanov, I. (eds.)
New Perspectives in Stochastic Geometry. Springer, Berlin 2010
[10] Kingman, J.F.C.
Poisson Processes. Oxford University Press, Oxford 1993
[11] König, D., Schmidt, V.
Zufällige Punktprozesse. Teubner, Stuttgart 1992
[12] Matheron, G.
Random Sets and Integral Geometry. J. Wiley & Sons, New York 1975
[13] Møller, J., Waagepetersen, R.P.
Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall / CRC, Boca Raton 2004
[14] Ohser, J. and Schladitz, K.
3D Images of Materials Structures - Processing and Analysis. Wiley-VCH, Weinheim 2009
[15] Ripley, B.D.
Spatial Statistics. J. Wiley & Sons, New York 1981
[16] Schneider, R., Weil, W.
Stochastic and Integral Geometry. Springer, Heidelberg 2008
[17] Stoyan, D., Kendall, W.S., Mecke, J.
Stochastic Geometry and its Applications. J. Wiley & Sons, Chichester 1995
[18] Stoyan, D., Stoyan, H.
Fractals, Random Shapes and Point Fields. J. Wiley & Sons, Chichester 1994