Forschungsgruppe "Verteilt-parametrische Systeme"
Die Steuerung und Regelung technischer Prozesse, deren Dynamik signifikant sowohl von der Zeit als auch vom Ort abhängt, erfordert die Modellbildung als verteilt-parametrisches System. In der Forschungsgruppe "Verteilt-parametrische Systeme" werden neue Methoden zum Steuerungs- und Regelungsentwurf für diese Systemklasse entwickelt. Um die stetig zunehmenden Anforderungen an die hohe Systemzuverlässigkeit und -verfügbarkeit von Regelungssystemen zu berücksichtigen, ist ein weiterer Forschungsschwerpunkt die Fehlerdiagnose verteilt-parametrischer Systeme. Die steigende Vernetzung technischer Prozesse erfordert auch für verteilt-parametrische Systeme die Entwicklung neuer Methoden zur Netzwerkregelung, weshalb in den Forschungsarbeiten auch Multi-Agenten-Systeme betrachtet werden. Anwendungsbereiche für die neuen Entwurfsverfahren umfassen beispielsweise chemische Reaktoren, Systeme zur Energiespeicherung und -übertragung, Herstellungsprozesse in der Stahl- und Glasindustrie sowie die Regelung flexibler Strukturen.
Team
- Joachim Deutscher (Leitung)
- Tarik Enderes
- Nick Jung
- Julian Zimmer
Publikationen
Aktuelle wissenschaftliche Beiträge zu unserer Forschungsarbeit finden Sie in der Publikationsdatenbank des Instituts.
Lehre
Zur Vertiefung von Themen der Forschungsgruppe im Rahmen des Masterstudiums werden die Vorlesungen "Regelung verteilt-parametrischer Systeme" und "Automatisierungstechnik: Ereignisdiskrete und Multi-Agenten-Systeme" angeboten.
Studentische Arbeiten
Wir bieten zu unseren Forschungsthemen jederzeit sowohl Abschlussarbeiten im Bachelor- als auch im Masterstudium an. Darüber hinaus besteht die Möglichkeit, in unserem Forschungsteam im Rahmen von Hiwi-Tätigkeiten mitzuarbeiten. Eine Übersicht finden Sie unter den Studentischen Arbeiten des Instituts.
Aktuelle Forschungsprojekte
In this research project new methods are derived for extending the backstepping approach to coupled PDE and PDE-ODE systems. This class of distributed-parameter systems (DPS) arise frequently in applications. Examples are chemical reactors described by their temperature and concentration profiles, DPS with dynamic boundary conditions, with finite-dimensional actuator and sensor dynamics or with input and output delays. The work in this project focuses on new backstepping-based design procedures for observer-based compensators.
Selected publications
- Deutscher, J. and Gabriel, J.: Fredholm backstepping control of coupled linear parabolic PDEs with input and output delays.
IEEE Trans. Autom. Control, in press, 2019. - Kerschbaum, S. and Deutscher, J.: Backstepping control of coupled linear parabolic PDEs with space and time dependent coefficients.
IEEE Trans. Autom. Control, in press, 2019. - Deutscher, J., Gehring, N. and Kern, R.: Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems.
Automatica 95 (2018), pp. 472-480. - Deutscher, J. and Kerschbaum, S.: Backstepping control of coupled linear parabolic PIDEs with spatially varying coefficients.
IEEE Trans. Autom. Control 63 (2018), pp. 4218-4233.
Contact
Please contact Joachim Deutscher for further Information.
Besides the pure stabilization an additional basic property of a controller is to achieve the asymptotic tracking of online prescribed reference inputs in the presence of disturbances. If these exogenous signals are describable by a signal model, then the output regulation theory provides a systematic framework for the controller design. In this research project the backstepping approach for boundary controlled distributed-parameter systems is combined with results from output regulation theory. This yields new systematic procedures to determine output feedback regulators for distributed-parameter systems.
Selected publications
- Deutscher, J. and Kerschbaum, S.: Robust output regulation by state feedback control for coupled linear parabolic PIDEs.
IEEE Trans. Autom. Control 65 (2020), pp. 2207-2214. - Deutscher, J. and Kerschbaum, S.: Output regulation for coupled linear parabolic PIDEs. Automatica 100 (2019), pp. 360-370.
- Deutscher, J. and Gabriel, J.: Robust state feedback regulator design for general linear heterodirectional hyperbolic systems. IEEE Trans. Autom. Control 63 (2018), pp. 2620-2627.
- Deutscher, J.: Output regulation for general linear heterodirectional hyperbolic systems with spatially-varying coefficients. Automatica 85 (2017), pp. 34-42.
- Deutscher, J.: Backstepping design of robust state feedback regulators for linear 2x2 hyperbolic systems. IEEE Trans. Autom. Control 62 (2017), pp. 5240-5247.
- Deutscher, J.: Finite-time output regulation for linear 2x2 hyperbolic systems using backstepping. Automatica 75 (2017), pp. 54-62.
- Deutscher, J.: Backstepping design of robust output feedback regulators for boundary controlled parabolic PDEs. IEEE Trans. Autom. Control 61 (2016), pp. 2288-2294.
- Deutscher, J.: A backstepping approach to the output regulation of boundary controlled parabolic PDEs. Automatica 57 (2015), pp. 56-64.
Contact
Please contact Joachim Deutscher for further Information.
Due to the increasing complexity of technical systems the detection of faults and their consideration in the controller design becomes more and more important in order to assure the safety of various technical processes. Though this problem has been thoroughly investigated for finite-dimensional systems only a few results exist for distributed-parameter systems. In this research project new methods for the fault detection in infinite-dimensions are derived. In order to take faults in the closed-loop system into account new approaches are developed for fault tolerant control.
Funding: Research is financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the project DE-1368/5-1 Fehlerdiagnose verteilt-parametrischer Systeme mittels Modulationsfunktionen (starting 2018).
Selected publications
- Fischer, F. and Deutscher, J.: Flatness-based algebraic fault diagnosis for distributed-parameter systems.
Automatica 117 (2020), 108987. - Fischer, F. and Deutscher, J.: Modulating function based fault detection for parabolic systems with polynomial faults.
Proc. SAFEPROCESS 2018 in Warsaw, Poland. - Fischer, F. and Deutscher, J.: Fault detection for parabolic systems with distributed inputs and outputs using the modulation function approach. IFAC World Congress 2017 in Toulouse, France, pp. 6968-6973.
- Fischer, F. and Deutscher, J.: Algebraic fault detection and isolation for parabolic distributed-parameter systems using modulation functions. Proc. CPDE 2016 in Bertinoro, Italy, pp. 164-169.
- Deutscher, J.: Fault detection for distributed-parameter systems using finite-dimensional functional observers. Int. J. Control 89 (2016), pp. 550-563.
Contact
Please contact Ferdinand Fischer for further Information.
The research of this project deals with methods for functionally safe and thus fail-safe monitoring of mechatronic systems, especially robots. The objective is to detect and identify faults as well as potential hazards for humans and the process, in order to be able to transfer the system into a safe state if necessary. The method is based on the novel approach of polynomial approximation, which allows algebraic fault detection and identification, as well as to consider disturbances, nonlinear equations of motion and can be evaluated solely on the basis of measurable signals within a sliding time interval.
Selected publications
- Lomakin, A. and Deutscher J.: Algebraic Fault Detection and Identification for Rigid Robots. In Proc. International Conference on Robotics and Automation (ICRA) , 2020 Paris, France, pp. 9352-9358.
- Lomakin, A. and Deutscher J.: Fault Detection and Identification for Nonlinear MIMO Systems Using Derivative Estimation. In Proc. IFAC World Congress, (accepted) , Berlin, Germany.
- Lomakin, A. and Deutscher J.: Identification of Dynamic Parameters for Rigid Robots based on Polynomial Approximation. In Proc. International Conference on Intelligent Robots and Systems (IROS), (accepted), 2020 Las Vegas, NV, USA.
Contact
Please contact Alexander Lomakin for further Information.