The widespread dissemination of smart mobile devices offers new perspectives for timely data collection in large-scale scenarios. However, realizing sophisticated mobile data collection applications raises various technical issues like the support of different mobile operating systems and their platform-specific features. Often, specifically tailored mobile applications are implemented in order to meet particular requirements. In this context, changes of the data collection procedure become costly and profound programming skills are needed to adapt the respective mobile application accordingly. To remedy this drawback, we developed a model-driven approach, enabling end-users to create mobile data collection applications themselves. Basis to this approach are elements for flexibly defining sophisticated questionnaires, called instruments, which not only contain information about the data to be collected, but also on how the instrument shall be processed on different mobile operating systems. For the latter purpose, we provide an advanced mobile (kernel) service that is capable of processing the logic of sophisticated instruments on various platforms. The paper discusses fundamental requirements for such a kernel and introduces a generic architecture. The feasibility of this architecture is demonstrated through a prototypical implementation. Altogether, the mobile service allows for the effective use of smart mobile devices in a multitude of different data collection application scenarios (e.g., clinical and psychological trials).
A Lightweight Process Engine for Enabling Advanced Mobile Applications
Universität Ulm Universität UlmPresentation at the 24th International Conference on Cooperative Information Systems (CoopIS 2016);
Johannes Schobel, Kallithea, Rhodos, Griechenland, 28 October 2016, 11:30 AM