

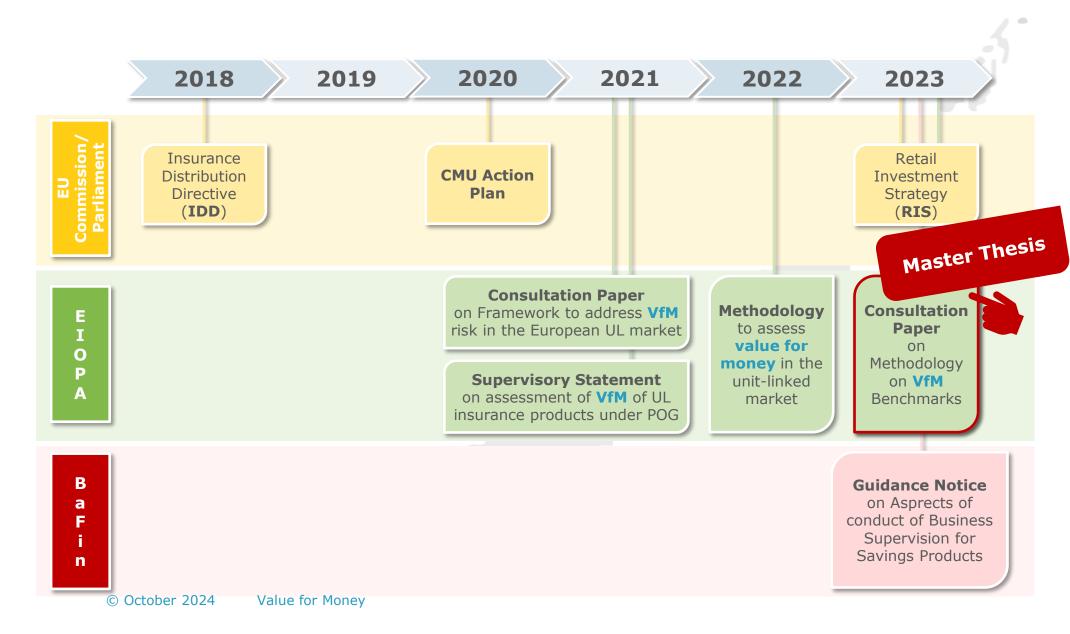
Actuarial Analysis of Key Figures from EIOPA

Consultation Paper on Methodology on Value for Money Benchmarks

- Presentation of Master Thesis
- Theresia Deiß, Alexander Kling

Agenda

Previous Publications and Context


(EIOPA's) Understanding of Value for Money

Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indicators

Publications on the Topic of Value for Money

Agenda

Previous Publications and Context

(EIOPA's) Understanding of Value for Money

Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indicators

EIOPA's Definition

"EIOPA considers that products offer <u>value for money</u> where the <u>costs and charges are proportionate to</u> the <u>benefits</u> (i.e., investment performance, guarantees, coverage and services) to the identified target market and reasonable taking into account the expenses born by providers and in comparison to other comparable retail solutions on the market.

adequate costs

This also means that the **product delivers added value for the consumer** given the costs and expected returns and assuming a reasonable holding period. To this end, products are expected to be reviewed and tested.

added value for customer

For products with different components, such as unit-linked policies, value for money is expected from the product in its entirety – as well as from each individual component separately – taking into account the **target market's needs, objectives and characteristics** and all the costs and benefits, as well as possible costs and benefits of offering the different components singularly or as 'a package'. "

in line with target market

Consultation Paper on Framework to address value for money risk in the European unit-linked market (EIOPA 2021)

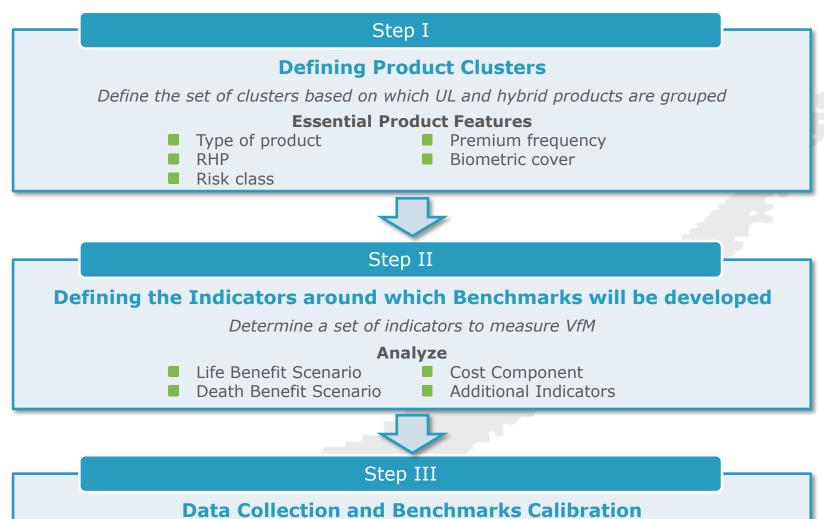
Vague Statement: "Product should add value"

How can we measure this Europe-wide consistently?

Agenda

Previous Publications and Context

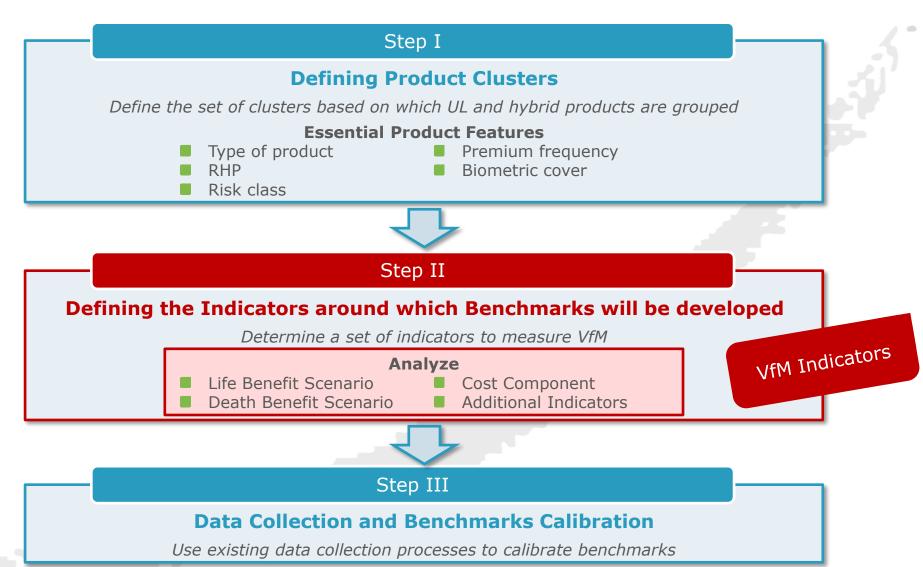
(EIOPA's) Understanding of Value for Money


Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indicators

Consultation Paper on Methodology on Value for Money Benchmarks

EIOPA (2023)



Use existing data collection processes to calibrate benchmarks

Consultation Paper on Methodology on Value for Money Benchmarks

EIOPA (2023)

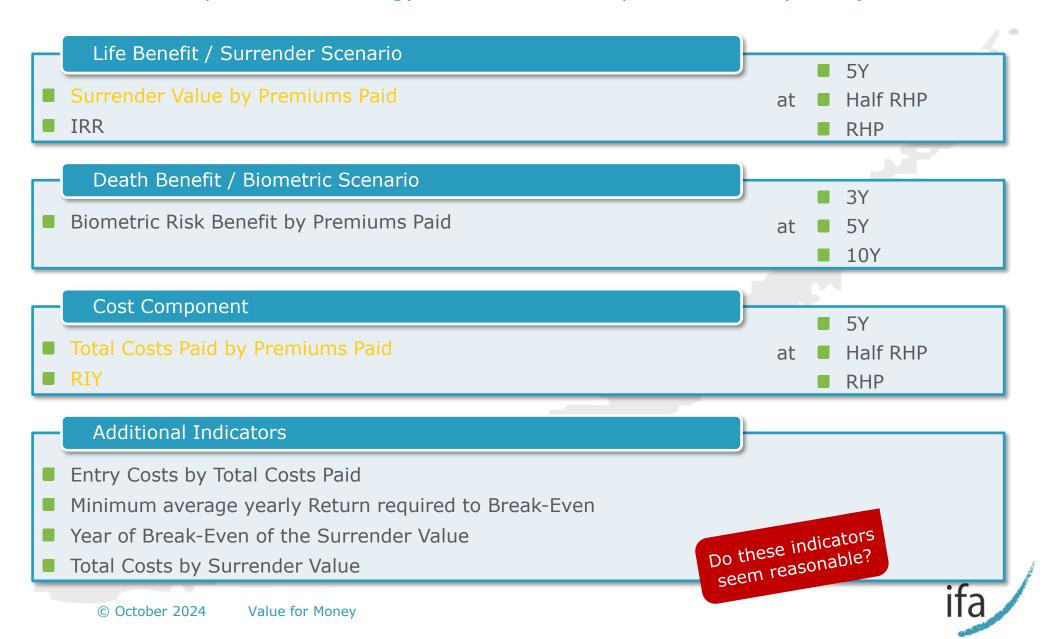
Agenda

Previous Publications and Context

(EIOPA's) Understanding of Value for Money


Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indicators


Value-for-Money-Indikatoren

Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indikatoren

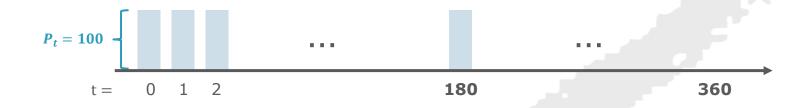
Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Value-for-Money-Indikatoren

Consultation Paper on Methodology on Value for Money Benchmarks (EIOPA)

Idea of Analysis:

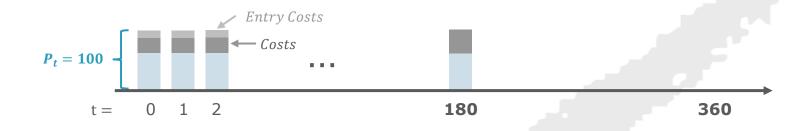
- Step 1: Insurance Market
 - Unit-Linked Life Insurance
- Step 2: Value-for-Money Indicators
 - Calculation of indicators
 - Analyze
 - Deterministic Analysis
 - Constant fund development
 - Indicators over time, sensitivities
 - Stochastic Analysis
 - Simulated fund development
 - Probability distribution



Value-for-Money-Indicators

General Information:

 $\begin{array}{ll} \text{Maturity} & 30 \text{ years (=RHP)} \\ \text{Regular Premium} & P_t = 100 \end{array}$


Value-for-Money-Indicators

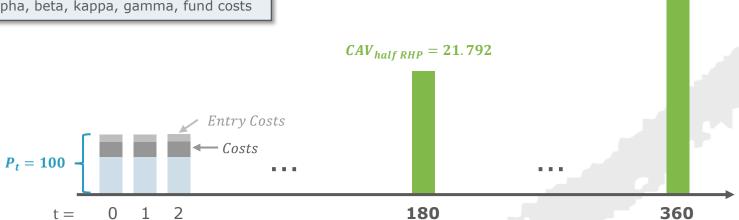
General Information:

 $\begin{array}{ll} \text{Maturity} & 30 \text{ years (=RHP)} \\ \text{Regular Premium} & P_t = 100 \end{array}$

Costs: alpha, beta, kappa, gamma, fund costs

Value-for-Money-Indicators

 $CAV_{RHP} = 65.006$


General Information:

30 years (=RHP) Maturity

 $P_{t} = 100$ Regular Premium

6% p.a. Gross Return

Costs: alpha, beta, kappa, gamma, fund costs

Value-for-Money-Indicators

 $CAV_{RHP} = 65.006$

General Information:

30 years (=RHP) Maturity

 $P_{t} = 100$ Regular Premium

6% p.a. Gross Return

 $P_t = 100$

t =

Costs: alpha, beta, kappa, gamma, fund costs

0 1 2

Maturity	30Y
Premium	100€
Return	3%
Alpha	2,5%
Beta	5%
Карра	3€
Gamma	0,5%
Fund Costs	1%

Base Case:

		Half RHP	RHP
Premiums Paid	$PP_t =$	18.000	36.000
Total Costs	$TC_t =$	4.473	15.183
Entry Costs	$EC_t =$	900	900
Current Account Value	$CAV_t =$	21.792	65.006
Surrender Value	$SV_t =$	21.292	65.006
Biometric Risk Benefit	$BRB_t =$	21.792	65.006

- Costs

Surrender Value by Premiums Paid

Value-for-Money-Indicators

Time Points and Expected Value

- <1 at inception
- RHP
- Half RHP \blacksquare ≥ 1 at RHP in the moderate case, assuming a long maturity already at half RHP

EI	O	P	A

		Half RHP	RHP
Premiums Paid	$PP_t =$	18.000	36.000
Total Costs	$TC_t =$	4.473	15.183
Entry Costs	$EC_t =$	900	900
Current Account Value	$CAV_t =$	21.792	65.006
Surrender Value	$SV_t =$	21.292	65.006
Biometric Risk Benefit	$BRB_t =$	21.792	65.006

(Naive) Interpretation

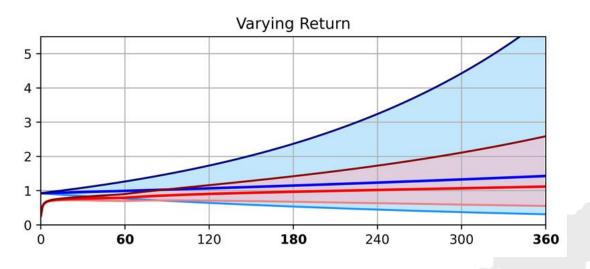
Expected benefit in relation to paid premium

Per 1€ of premium the consumer receives x€.

Calculation (our interpretation!)

Zum Zeitpunkt T:

$$\frac{SV_T}{\sum_{t=0}^{T-1} P_t}$$

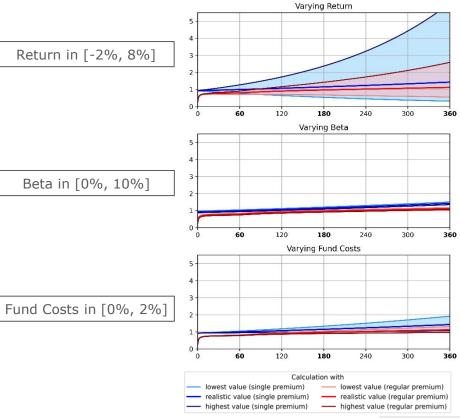

	Half RHP	RHP
$SV/PP = \frac{SV}{PP}$	$\frac{21.292}{18.000} \approx 1,18$	$\frac{65.006}{36.000} \approx 1,81$

Surrender Value by Premiums Paid

Value-for-Money-Indicators

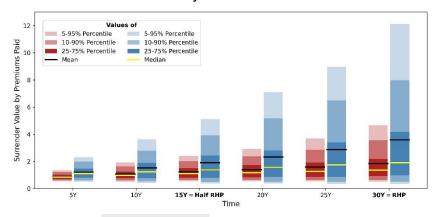
Surrender Value by Premiums Paid over Time

Calculation with				
lowest value (single premium)	— lowest value (regular premium)			
realistic value (single premium)	realistic value (regular premium)			
highest value (single premium)	highest value (regular premium)			



Surrender Value by Premiums Paid

Value-for-Money-Indicators


Realistic Scenario

Surrender Value by Premiums Paid over Time Varying different Parameters

Realistic Scenario

Percentiles of Surrender Value by Premiums Paid at different Points in Time

Indicator measures Return, not Costs!

Single premium

Regular premium

Total Costs Paid by Premiums Paid

Value-for-Money-Indicators

■ Time Points and Expected Value

- 5Y
- As low as possible
- Half RHP
- RHP

EIOPA

		Half RHP	RHP
Premiums Paid	$PP_t =$	18.000	36.000
Total Costs	$TC_t =$	4.473	15.183
Entry Costs	$EC_t =$	900	900
Current Account Value	$CAV_t =$	21.792	65.006
Surrender Value	$SV_t =$	21.292	65.006
Biometric Risk Benefit	$BRB_t =$	21.792	65.006

■ (Naive) Interpretation

How expensive is the product?

Per 1€ of premium the costumer pays x€ of costs

Calculation

$$TC/PP = \frac{TC}{PP}$$
 $\frac{4.473 + 500}{18.000} \approx 0,276$ $\frac{15.183}{36.000} \approx 0,422$

Total Costs Paid by Premiums Paid

Value-for-Money-Indicators

Calculation Example: Single Premium of 100.000€

Calculation Logic: $CAV_{EOM} = CAV_{ROM} * (1 + p - fc)^{\frac{1}{12}}$

> p - Return fc - Fund Costs

1% Fund Costs, 6% Return p.a.

1% Fund Costs, 3% Return p.a.

1% Fund Costs, -2% Return p.a.

	Total Costs/ PP	CAV
10Y	0,124	162.889 €
20Y	0,324	265.330 €
30Y	0,650	432.194 €
40Y	1,182	703.999 €
50Y	2,048	1.146.740 €

Total Costs/ PP	CAV
0,109	121.899 €
0,241	148.595 €
0,402	181.136 €
0,598	220.804 €
0,837	269.159 €

Total Costs/ PP	CAV	
0,089	73.742 €	
0,154	54.379 €	
0,202	40.101 €	
0,237	29.571 €	
0,263	21.807 €	

- Naive Interpretation is misleading!
- Ceteris paribus: Lower Return → lower volume-dependent Costs → better Result for Indicator

Value-for-Money-Indicators

■ Time Points and Expected Value

- **5**Y
- As low as possible
- Half RHP
- RHP

■ (Naive) Interpretation

- Constant reduction of return because of costs
- Difference of return before costs and return after costs
- All costs are translated to volume dependent costs p.a.

■ Calculation (Idea)

Zum Zeitpunkt T:

p - Return

$$RIY = p - IRR$$

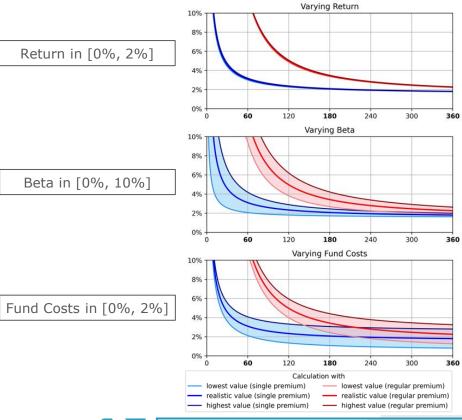

$$\sum_{t=0}^{12*T-1} P_t * (1+p-RIY)^{(12*T-t)/12} = SV_T$$

Calculation

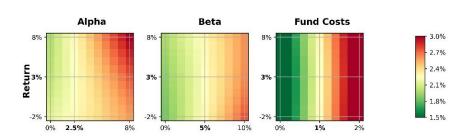
Method: Modified Benefit

Method: Modified Premiums

$$RIY_{mod\ Ben} = IRR \begin{pmatrix} -P \\ -P \\ ... \\ -P \\ CAV_{wo\ costs} \end{pmatrix} - IRR \begin{pmatrix} -P \\ -P \\ ... \\ -P \\ CAV_{w\ costs} \end{pmatrix}$$


$$RIY_{mod\ Prem} = IRR \begin{pmatrix} -(P-C) \\ -(P-C) \\ ... \\ -(P-C) \\ CAV_{w\ costs} \end{pmatrix} - IRR \begin{pmatrix} -P \\ -P \\ ... \\ -P \\ CAV_{w\ costs} \end{pmatrix}$$

$$RIY_{mod\ Prem} = IRR \begin{pmatrix} -(P-C) \\ -(P-C) \\ \dots \\ -(P-C) \\ CAV_{w\ costs} \end{pmatrix} - IRR \begin{pmatrix} -P \\ -P \\ \dots \\ -P \\ CAV_{w\ costs} \end{pmatrix}$$

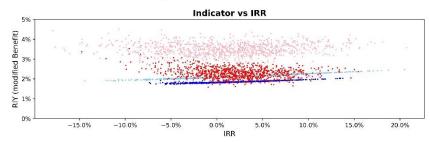


Deterministic Analysis

RIY over Time

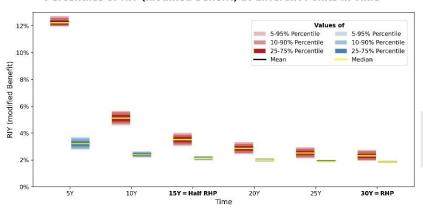
Regular Premium, Realistic Scenario
RIY (modified Benefit) at RHP
Varying different Parameters

In the deterministic case, both methods lead to the same result! RIY is mainly independent of Return



Stochastic Analysis

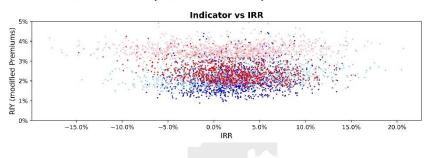
Method: Modified Benefit


Realistic Scenario

Scatter Plot of RIY (modified Benefit) for different Returns

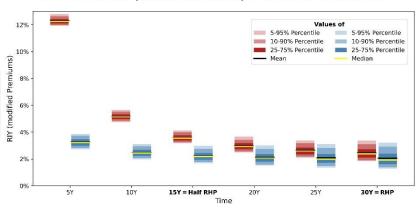
Realistic Scenario

Percentiles of RIY (modified Benefit) at different Points in Time


Values at

- RHP (single premium)
- Half RHP (single premium)
- RHP (regular premium)
 Half RHP (regular premium)

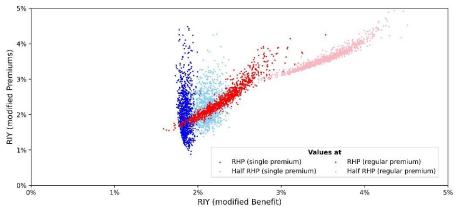
Method: Modified Premiums


Realistic Scenario

Scatter Plot of RIY (modified Premiums) for different Returns

Realistic Scenario

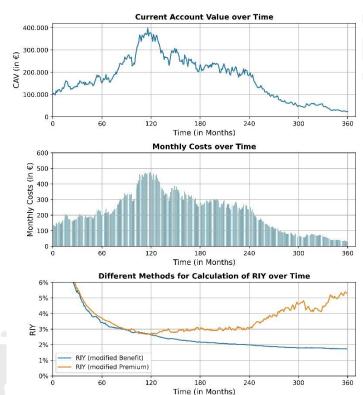
Percentiles of RIY (modified Premiums) at different Points in Time



Stochastic Analysis

Comparison of Different Methods

Realistic Scenario Scatter Plot of RIY (modified Benefit) against RIY (modified Premiums) at RHP and Half RHP



Values at

- RHP (single premium)
- RHP (regular premium)
- Half RHP (single premium)
- Half RHP (regular premium)

Single Payment, Realistic Costs

Comparison of different Methods for Calculation of RIY

In the stochastic case, both methods lead to very different results!

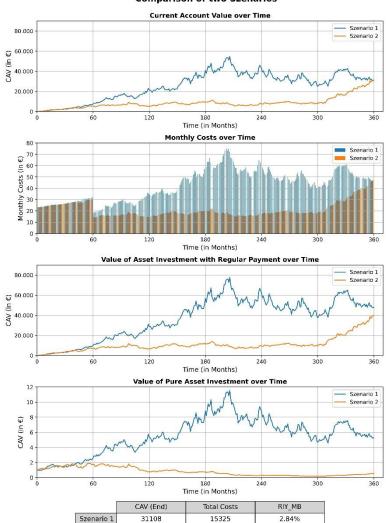
Thank you for your attention!

Stochastic Analysis

RIY (modified Benefit)

Method: Modified Benefit

Scatter Plot of RIY (modified Benefit) for different Returns
Indicator vs IRR


-15.0% -10.0% -5.0% 0.0% 5.0% 10.0% 15.0% 20.0%

Realistic Scenario

Regular Payment, Realistic Szenario

Comparison of two Szenarios

7681

1.59%

Szenario 2

31291

Stochastic Analysis

	Asset Investment		Acco	ount of Custo	omer
Time	Asset Course	Return	Premium	CAV BOY	CAV EOY
0	100	0%	100	100	حر 100
1	100	3%	0	50	51,5
2	103		0	51,5	

mod Premium	Approximation		
CF	Shares invested	Return	
-100	1	0%	
50	0,5	3%	
51,5			

mod Benefit	Approximation	
CF	Shares	Return
CF	invested	netuiii
-100	1	0%
0	1	3%
103		

Return
before
Costs:

Return before costs

1,49% weighted average 1,50%

