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We consider a non-ergodic class of stationary real harmonizable symmetric α-stable processes X = {X(t) : t ∈ R}
with a finite symmetric and absolutely continuous control measure. We refer to its density function as the spectral
density of X . These processes admit a LePage series representation and are conditionally Gaussian, which allows
us to derive the non-ergodic limit of sample functions on X . In particular, we give an explicit expression for the
non-ergodic limits of the empirical characteristic function of X and the lag process {X(t + h) − X(t) : t ∈ R} with
h > 0, respectively. The process admits an equivalent representation as a series of sinusoidal waves with random
frequencies which are i.i.d. with the (normalized) spectral density of X as their probability density function. Based
on strongly consistent frequency estimation using the periodogram we present a strongly consistent estimator of
the spectral density. The computation of the periodogram is fast and efficient, and our method is not affected by
the non-ergodicity of X .

Keywords: Fourier analysis; frequency estimation; harmonizable process; non-ergodic process; non-ergodic
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1. Introduction

Stationarity is often a key property in the analysis of dependence structures of time series or more
generally stochastic processes. Especially stationary Gaussian processes have been extensively studied
[8,9,20]. It is well known that α-stable processes, where α ∈ (0,2] is the so-called index of stability,
generalize Gaussian processes [26]. In particular, symmetric α-stable (SαS) processes are of interest.
It is the infinite second moment of α-stable distributions (in the case α < 2) which sets them apart from
Gaussian processes (α = 2), and allows them to be used for example in models of heavy-tailed random
phenomena.

It can be shown that stationary SαS processes fall into one of the following three subclasses – SαS
moving average processes, harmonizable SαS processes and a third class, which consists of processes
characterized by a non-singular conservative flow and the corresponding cocycle [24]. The classes of
moving averages and harmonizable processes are disjoint when the index of stability α is less then 2.
Only in the case α = 2, i.e. in the Gaussian case, one may find both a moving average representation
and a harmonizable representation for the same process [26, Theorem 6.7.2].

Cambanis et al [6] studied ergodic properties of stationary stable processes and proved that contrary
to stable moving averages the harmonizable stable processes are non-ergodic. As a consequence, the
latter has garnered little attention from a statistical point of view, as classical estimation methods that
rely on empirical functions are unfeasible for non-ergodic processes.

To date, mainly the special subclass of harmonizable fractional stable motions, which are a gener-
alization of fractional Brownian motions and belong to the class of stable self-similar processes, has
been in the focus of the study of harmonizable stable processes. These processes play an important
role in probability theory as they appear in connection with limit theorems [19], as well as in stochastic
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modeling since the self-similarity and fractal-like behavior are features observable in real world phe-
nomena. Structural, probabilistic and sample path properties have been studied in recent works [1–3,7]
but their statistical inference tools have been missing so far. This is mainly due to the aforementioned
non-ergodicity of the processes.

Harmonizable fractional stable motions are characterized solely by their Hurst parameter and the
index of stability. The underlying stable random measure’s control measure is infinite, more precisely
it is the Lebesgue measure on R.

As a first step towards the statistical analysis of harmonizable stable processes with infinite control
measure, such as the fractional stable motions, we consider the class of stationary harmonizable stable
processes with finite control measure and integrable symmetric spectral density f . This is motivated
by the fact that our case is equivalent to consider a harmonizable stable process with Lebesgue control
measure and weighted kernel function eitx f 1/α(x).

The class of stationary real harmonizable symmetric SαS (SRH SαS) processes X = {X(t) : t ∈ R}
with index of stability 0 < α < 2 is defined by

X(t) = Re
(∫
R

eitxM(dx)
)
,

where M is an isotropic complex SαS random measure with circular control measure k. This measure is
a product measure on the space (R× S1,B(R)×B(S1)) and admits the form k =m · γ. The measure m is
called the control measure of M and γ is the uniform probability measure on S1. The finite dimensional
distributions of the process X are determined by m, hence the process X is completely characterized
by m as well. We assume that the control measure m is an absolutely continuous symmetric probability
measure on R with symmetric probability density function f , which we refer to as the spectral density
of the process X . It can be easily verified that the above integral representation is equivalent to

X(t) = Re
(∫
R

eitx f 1/αM̃(dx)
)
,

where M̃ is a isotropic complex SαS random measure with Lebesgue control measure m(dx) = dx on
R and f is a symmetric integrable function on R.

In this paper, an approach for the estimation of the spectral density based on classical methods from
spectral analysis and signal processing [5,23] is presented. Furthermore, we examine the asymptotic
behaviour of time-averages of observables on SRH SαS processes and derive an ergodic theorem. This
allows us to give an explicit expression for the non-ergodic limit of the finite-dimensional empirical
characteristic function of the process X .

First, Section 2 establishes the basics on SRH SαS processes. An in-depth definition of the process
as well as its properties are given. In particular, the non-ergodicity of SRH SαS processes is discussed.
We also give a short introductory example involving α-sine transforms on R, and how their inversion
can be used to estimate the spectral density.

In Section 3, the non-ergodicity of SRH SαS processes is examined in more detail. From a LePage-
type series representation it follows that SRH SαS processes are conditionally Gaussian, albeit still non-
ergodic. This underlying Gaussian structure can be used to study the non-ergodic behaviour of time-
averages of observables of X . In particular, explicit expressions for the non-ergodic limit of the finite-
dimensional empirical characteristic functions of the process X and the lag process {X(t + h) − X(t) :
t ∈ R} are derived.

The fourth section dives deeper in the underlying Gaussian structure of SRH SαS processes. As a
consequence of the LePage type series representation, SRH SαS processes can be generated by a series
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of sinusoidal waves with random amplitudes, phases and frequencies. The frequencies are indepen-
dently and identically distributed with the spectral density f as their probability density function. The
periodogram is a standard tool for the estimation of frequencies in signal theory. The locations of the
peaks in the periodogram are strongly consistent estimators of the aforementioned frequencies, and in
conjunction with kernel density estimators they can be used to estimate the spectral density f of the
SRH SαS process X . Under minimal assumptions on the kernel function the strong consistency of the
frequency estimators translates to strong or weak consistency of the kernel density estimator for f .

In the final section of this paper we present a thorough numerical analysis and a collection of numer-
ical examples. Furthermore, some minor numerical challenges of the spectral density estimation are
discussed. The Matlab and R implementation of our inference method can be downloaded at [14].

2. Preliminaries

Consider the probability space (Ω,F ,P), and denote by L0(Ω) the space of real-valued random vari-
ables on this probability space. Furthermore, define the space of complex-valued random variables on
(Ω,F ,P) by L0

c(Ω) =
{

X = X1 + iX2 : X1,X2 ∈ L0(Ω)
}

. A real-valued random variable X ∈ L0(Ω) is
said to be symmetric α-stable if its characteristic function is of the form

E
[
eisX

]
= exp {−σα |s |α} ,

where σ > 0 is called the scale parameter of X and α ∈ (0,2] its index of stability. We write X ∼
SαS(σ). In the multivariate case, a real-valued symmetric α-stable random vector X = (X1, . . . ,Xn) is
defined by its joint characteristic function

E [exp {i(s,X)}] = exp
{
−

∫
Sn−1
| (θ, s)|α Γ(dθ)

}
,

where (x, y) denotes the scalar product of two vectors x, y ∈ Rn, and Sn−1 is the unit sphere in Rn. The
measure Γ is called the spectral measure of X . It is unique, finite and symmetric for 0 < α < 2 [26,
Theorem 2.4.3]. A random variable X ∈ L0

c(Ω) has complex symmetric α-stable distribution if its real
and imaginary parts form a SαS random vector, i.e. if the vector (Re(X), Im(X)) is jointly SαS.

To give a rigorous definition of harmonizable SαS processes, the notion of complex random mea-
sures needs to be introduced. Let (E,E) be a measurable space, and let (S1,B(S1)) be the measurable
space on the unit circle S1 equipped with the Borel σ-algebra B(S1). Let k be a measure on the product
space (E × S1,E × B(S1)), and let

E0 =
{

A ∈ E : k(A× S1) <∞
}
.

A complex-valued SαS random measure on (E,E) is an independently scattered, σ-additive, complex-
valued set function

M : E0→ L0
c(Ω)

such that the real and imaginary part of M(A), i.e. the vector (Re(M(A)), Im(M(A))), is jointly SαS
with spectral measure k(A × ·) for every A ∈ E0 [26, Definition 6.1.2]. We refer to k as the circular
control measure of M , and denote by m(A) = k(A× S1) the control measure of M . Furthermore, M is
isotropic if and only if its circular control measure is of the form

k =m · γ,
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where γ is the uniform probability measure on S1 [26, Example 6.1.6].
Define the space of α-integrable functions on E with respect to the measure m by

Lα(E,m) =
{
u : E→ C :

∫
E
|u(x)|αm(dx) <∞

}
.

A stochastic integral with respect to a complex SαS random measures M is defined by

I(u) =
∫
E

u(x)M(dx),

for all u ∈ Lα(E,m). This stochastic integration is well-defined on the space Lα(E,m) [26, Chapter 6.2].
In fact, for simple functions u(x) =

∑n
j=1 cj1A j (x), where cj ∈ C and Aj ∈ E0, it is easily seen that the

integral I(u) is well-defined. Moreover, for any function u ∈ Lα(E,m) one can find a sequence of simple
functions {un}∞n=1 which converges to the function u almost everywhere on E with |un(x)| ≤ v(x) for
some function v ∈ Lα(E,m) for all n ∈ N and x ∈ E . The sequence {I(un)}∞n=1 converges in probability,
and I(u) is then defined as its limit.

Setting (E,E) = (R,B) and u(t, x) = eitx , the definition of harmonizable SαS processes is as follows.

Definition 1. The stochastic process X = {X(t) : t ∈ R} defined by

X(t) = Re
(∫
R

eitxM(dx)
)
,

where M is a complex SαS random measure on (R,B) with finite circular control measure k (equiva-
lently, with finite control measure m), is called a real harmonizable SαS process.

A real harmonizable SαS process is stationary if and only if M is isotropic, i.e. its spectral measure
is of the form k = m · γ [26, Theorem 6.5.1]. In this case X is called a stationary real harmonizable
SαS process. Furthermore, by [26, Proposition 6.6.3] the finite-dimensional characteristic function of
a SRH SαS process X is given by

E

[
exp

{
i

n∑
i=1

siX(ti)
}]
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−λα
∫
R

������ n∑
j ,k=1

sj sk cos
( (

tk − tj
)

x
) ������
α/2

m(dx)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

with constant λα = 1
2π

∫ 2π
0 | cos (x) |αdx s1, . . . , sn ∈ R and t1, . . . , tn ∈ R for all n ∈ N. Clearly, the pro-

cess X is uniquely characterized by its control measure m since all its finite-dimensional distributions
are determined by m.

We assume that the control measure m is absolutely continuous with respect to the Lebesgue measure
on R with symmetric density function f , which we refer to as the spectral density of the process X .
The goal is to estimate f from one single sample of observations (X(t1), . . . ,X(tn)).

2.1. Ergodicity and series representation of stationary real harmonizable SαS
processes

In statistical physics the study of ergodic properties of random processes is motivated by the funda-
mental question whether long-term empirical observations of a random process evolving in time, e.g.
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the motion of gas molecules, suffice to estimate the mean value of the observable on the state space
of the process. In other words, are time-averages of observables equal to their so-called phase or en-
semble averages? First groundbreaking results, i.e. the pointwise or strong ergodic theorem and mean
ergodic theorem were proven by Birkhoff in 1931 and von Neumann in 1932, respectively. These results
also sparked the general study of ergodic theory in mathematics, in particular the field of dynamical
systems.

A brief introduction to ergodic theory is given in the following. Details can be found in [17, Chapter
10]. Let (Ω,F ,P) be a probability space and X0 :Ω→ R be a random variable. Denote by φ = (φt )t∈R
a family of transformations on R satisfying the semi-group property φsφt = φs+t for all s, t ∈ R. We
say that the transform φt is measure-preserving for all t ∈ R w.r.t. the measure PX0(B) = P(X0 ∈ B),
B ∈ B(R), if

PX0(B) = P(X0 ∈ B) = P(X0 ∈ φ−1
t (B)) = PX0(φ

−1
t (B))

for all t ∈ R and B ∈ B(R). Note that from the above it is easy to follow that for all t ∈ R the family
of transformations (φt )t∈R and the random variable X0 generate a continuous-time stationary process

with X(t) := φt X0
d
= X0 = X(0). Ex adverso, for any stationary process {X(t) : t ∈ R} there exist such a

family φ = (φt )t∈R and a random variable X0 which generate the process.
Any set I ∈ B(R) is called invariant with respect to φ if φ−1

t (I) = I for all t ∈ R. The family of all φ-
invariant sets I =

{
I ∈ B(R) : φ−1

t (I) = I ∀t ∈ R
}

is a σ-algebra called the σ-algebra of invariant sets.
Furthermore, denote by IX0 = X−1

0 (I) = {X
−1
0 (I) : I ∈ I} the σ-algebra of preimages of φ-invariant

sets generated by the random variable X0.
One of the main results in Ergodic theory is Birkhoff’s ergodic theorem. We will state the

continuous-time version of the theorem as it can be found in [17, Corollary 10.9].

Theorem 1 (Continuous-time ergodic theorem). Let {X(t) : t ∈ R} be a continuous-time stationary
process generated by the random variable X = X(0) and the family of measure-preserving transforma-
tions (φt )t∈R on (R,B(R)) with invariant σ-algebra I. Then, for any measurable function h ≥ 0 on R
it holds that

T−1
∫ T

0
h(φτX0)dτ −→ E

[
h(X0)|IX0

]
a.s.

as T→∞.

Note that the above result can be extended to integrable function h on R by linearity of the integration
and expectation as well as the representation h = h+−h−, where h+ and h− are the positive and negative
parts of h, respectively.

The stochastic process {X(t) : t ∈ R} is ergodic if and only if P(X0 ∈ I) = 0 or 1 for any I ∈ I, i.e. if
the σ-algebra IX0 is P-trivial. In this case, the above limit becomes deterministic, i.e. the conditional
expectation reduces to E

[
h(X0)|IX0

]
= E [h(X0)].

Proposition 1. Harmonizable SαS process with 0 < α < 2 are non-ergodic.

This result was proven by Cambanis, Hardin Jr., Weron [6, Theorem 4]. The authors also show that
SαS moving averages are ergodic and Sub-Gaussian processes are non-ergodic, see [26, Chapter 3.6,
3.7] for the respective definitions of these processes.
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2.2. Independent path realizations, ensemble averages and α-sine transform

In the case that samples of independent path realizations of a SRH SαS process X are available,
consistent estimation of a symmetric spectral density f of X can be performed without any prob-
lems caused by the non-ergodicity of the process. Consider the codifference function, which is the
stable law analog of the covariance function when second moments do not exist. It is defined by
τ(t) = 2‖X(0)‖αα − ‖X(t) − X(0)‖αα , where ‖X(0)‖α and ‖X(t) − X(0)‖α are the scale parameters of
X(0) and X(t) − X(0), respectively, see [26, Chapter 2.10]. Using the finite-dimensional characteristic
function in Equation (1) these scale parameters can be computed explicitly which yields

τ(t) = 2σα − 2αλα

∫
R

���sin
( t x

2

) ���α m(dx), (2)

see [26, Chapter, 6.7] and [16, Section 5.2]. Following Equation (2) and assuming the control measure
m to have a symmetric density function f we define the α-sine transform of f as

Tα f (t) :=
∫ ∞

0
|sin (t x)|α f (x)dx =

2σα − τ(2t)
2α+1λα

=
‖X(2t) − X(0)‖αα

2α+1λα
. (3)

Consistent estimation of the right hand side of (3) (based on independent realizations of X) and the
inversion of the above integral transform, which was studied in [16], yield an estimate of the spectral
density function f .

In more detail, let X (1), . . . ,X (L) denote a sample of independent realizations of the path of X finitely
observed at points 0 = t0 < t1 < · · · < tn <∞, i.e. X (l) = (X (l)(t0), . . . ,X (l)(tn)) for l = 1, . . . ,L. Then, for
any fixed time instant ti the sample (X (1)(ti), . . . ,X (L)(ti)) consists of i.i.d. SαS(σ) random variables. In
particular, the vector of differences (X (1)(ti) − X (1)(t0), . . . ,X (L)(ti) − X (L)(t0)) consists of i.i.d. random
samples of X(ti) − X(t0) ∼ SαS(σ(ti)) with scale parameter σ(ti) = ‖X(ti) − X(t0)‖α which depends on
the lag ti − t0.

There are a handful of consistent parameter estimation techniques available in literature, e.g. Mc-
Culloch’s quantile based method [21] or the regression-type estimators by Koutrouvelis [18]. These
methods can be used to estimate the index of stability α and the scale parameters σ(ti). Let (α̂, σ̂(ti))
be a consistent estimator of (α,σ(ti)). Then,

T̂α f (ti/2) =
σ̂(ti)

2α̂+1λα̂
(4)

is consistent for Tα f (ti/2) for all i = 1, . . . ,n. Using the results of [16] we can estimate the Fourier
transform of the spectral density f at equidistant points, which then allows us to reconstruct f itself us-
ing interpolation methods from sampling theory and Fourier inversion. An illustration of the described
estimation method for independent paths is given in Section 5.1, Figure 1. We will not go into further
details at this point as our main interest lies within single path statistics.

3. Non-ergodic limit of sample functions

Trying to estimate the spectral density f from a single path of a SRH SαS process, determining the
non-ergodic almost sure limit of empirical functions is essential. We make use of the following LePage
type series representation of X which stems from the series representation of complex SαS random
measures [26, Section 6.4]. As a consequence, SRH SαS processes are in fact conditionally Gaussian
which allows us to use their underlying Gaussian structure for further analysis.
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Proposition 2 (LePage Series representation). Let X = {X(t) : t ∈ R} be a SRH SαS process with
finite control measure m. Then, X is conditionally stationary centered Gaussian with

X(t) d=
(
Cαb−1

α m(R)
) 1/α

G(t), t ∈ R,

where

G(t) =
∞∑
k=1

Γ
−1/α
k

(
G(1)
k

cos(tZk) +G(2)
k

sin(tZk)
)
, t ∈ R, (5)

and the constants bα and Cα are given by

bα = 2α/2Γ (1 + α/2) ,

Cα =

(∫ ∞

0
x−α sin(x)dx

) −1

=

⎧⎪⎪⎨⎪⎪⎩
1 − α

Γ(2 − α) cos(πα/2) , α � 1,

2/π, α = 1.

Furthermore, the sequence {Γk}∞k=1 denotes the arrival times of a unit rate Poisson process, {G(i)
k
}∞
k=1,

i = 1,2, are sequences of i.i.d. standard normally distributed random variables, and {Zk}∞k=1 is a
sequence of i.i.d. random variables with law m(·)/m(R).

Assumption. Additionally to the assumption that the control measure m is absolutely continuous with
respect to the Lebesgue measure on R, let its density f be symmetric with m(R) = 1, i.e. the spectral
density f is in fact a probability density function.

The process G in Proposition 2, conditionally on the sequences {Γk}∞k=1 and {Zk}∞k=1, is a stationary
centered Gaussian process with autocovariance function

r(t) = E [G(0)G(t)] =
∞∑
k=1

Γ
−2/α
k

cos (tZk) , t ∈ R

[26, Proposition 6.6.4]. Note that by the Wiener-Khinchin theorem the autocovariance function r and
the spectral measure ζ of G are directly related by the Fourier transform, i.e. r(t) =

∫
R

eitωζ(dω), and
one can compute

ζ(dω) =
∞∑
k=1

Γ
−2/α
j

2
(
δ
(
dω − Z j

)
+ δ

(
dω + Z j

) )
via Fourier inversion. The spectral measure ζ is purely discrete, hence G is non-ergodic, as Gaussian
processes are ergodic if and only if their corresponding spectral measure is absolutely continuous [20,
Chapter 6.5].

The asymptotic behavior of time averages for non-ergodic Gaussian processes is studied in [30].
There, the so-called Harmonic Gaussian processes of the form

X(t) =
∑
k

Akeitωk , (6)
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are considered, where Ak are independent complex Gaussian random variables, and ωk are determin-
istic frequencies of the process.

The autocovariance function r and spectral measure σ of the above harmonic Gaussian process are
given by

r(t) =
∑
k

E|Ak |2 cos(ωk t) and σ(dω) =
∑
k

E|Ak |2
2
(δ (dω −ωk ) + δ (dω +ωk ))

[30, Equation (22), (23)]. Since SRH SαS processes are conditionally Gaussian, we can embed them
into the above non-ergodic harmonic Gaussian case and apply the results in [30].

Theorem 2. Let X be a SRH SαS process with finite control measure m. Then, the process X admits
the series representation

X(t) d=
∞∑
k=1

Rk cos (Θk + tZk) , (7)

where {Θk } are i.i.d. uniformly distributed on (0,2π),

Rk =
(
Cαb−1

α m(R)
) 1/α
Γ
−1/α
k

√(
G(1)
k

) 2
+

(
G(2)
k

) 2

and {Γk }∞k=1, {G
(1)
k
}∞
k=1, {G

(2)
k
}∞
k=1, {Zk}∞k=1 are the sequences in the series representation of X from

Proposition 2.

Proof. The series representation of X in Equation (5) clearly shows a strong resemblance to a Fourier
series. Similarly to the equivalence of the sine-cosine and exponential form of Fourier series, the pro-
cess X admits the form

X(t) d=
∞∑

k=−∞
AkeitZk , (8)

where {Ak }∞k=1 conditionally on {Γk}∞k=1 is a sequence of complex Gaussian random variables with

Ak =
(
Cαb−1

α m(R)
) 1/α Γ−1/α

k

2
G(1)
k
− i

(
Cαb−1

α m(R)
) 1/α Γ−1/α

k

2
G(2)
k

(9)

for k ≥ 1, and A0 = 0. Furthermore, we set A−k = A∗
k
, the complex conjugate of Ak , and Z−k = −Zk .

One can easily verify that the exponential form in Equation (8) is indeed equal in distribution to the

series representation (5) of X from Proposition 2. To do so, denote C̃k =
(
Cαb−1

α m(R)
) 1/α Γ−1/α

k
2 for

ease of notation, and compute

AkeitZk = C̃k

(
G(1)
k
+ iG(2)

k

)
(cos(tZk) + i sin(tZk))

= C̃k

(
G(1)
k

cos(tZk) −G(2)
k

sin(tZk) + iG(1)
k

sin(tZk) + iG(2)
k

cos(tZk)
)
,

A−ke−Z−k = C̃k

(
G(1)
k
− iG(2)

k

)
(cos(tZk) − i sin(tZk))

= C̃k

(
G(1)
k

cos(tZk) −G(2)
k

sin(tZk) − iG(1)
k

sin(tZk) − iG(2)
k

cos(tZk)
)
.
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Consequently,

AkeitZk + A−ke−Z−k = 2C̃k

(
G(1)
k

cos(tZk) −G(2)
k

sin(tZk)
)

=
(
Cαb−1

α m(R)
) 1/α
Γ
−1/α
k

(
G(1)
k

cos(tZk) −G(2)
k

sin(tZk)
)

is equal in distribution to the k-th summand of the series representation in Proposition 2, taking into

account that −G(2)
k

d
=G(2)

k
by symmetry of the standard normal distribution.

Conditionally on {Γk}∞k=1 and {Zk}∞k=1, the SRH SαS process X is in fact a non-ergodic harmonic
Gaussian process as in Equation (6). Analogously to [30, Equation (27)], setting

Rk = 2|Ak | =
(
Cαb−1

α m(R)
) 1/α
Γ
−1/α
k

√(
G(1)
k

) 2
+

(
G(2)
k

) 2

yields an alternative series representation for the process X with

X(t) d=
∞∑
k=1

Rk cos (Θk + tZk) ,

where Rk are the amplitudes of the spectral points at the frequencies Zk , and Θk are i.i.d. uniformly
distributed phases of Ak on (0,2π).

It is now possible to state the non-ergodic almost sure limit of the empirical characteristic function
of an SRH SαS process X = {X(t) : t ∈ R}.

Theorem 3. Let X be a SRH SαS process with finite control measure m. Then, for all λ ∈ R

T−1
∫ T

0
eiλX(τ)dτ −→ E

[
eiλX(t) |A

]
=

∞∏
k=1

J0(λRk) a.s.

as T →∞, where A = σ({Γ−1/α
k

G(1)
k
,Γ
−1/α
k

G(2)
k
,Zk }k∈N) and J0(s) = 1

2π

∫ π

−π eis cos(u)du is the Bessel
function of the first kind of order 0.

Proof. Using the series representation in Equation (7) from Theorem 2, we first compute the charac-
teristic function of X(t) conditional on A. Note that the amplitudes {Rk } are measurable functions of
Γ
−1/α
k

G(1)
k
,Γ
−1/α
k

G(2)
k

, and are therefore measurable with respect to A. For any λ ∈ R it holds that

E [exp (iλX(t)) |A] =E
[
exp

(
iλ
∞∑
k=1

Rk cos (Θk + tZk)
)
|A

]
= E

[ ∞∏
k=1

exp (iλRk cos (Θk + tZk)) |A
]

=

∞∏
k=1

E [exp (iλRk cos (Θk + tZk)) |A]︸������������������������������������︷︷������������������������������������︸
1

2π

∫ π

−π exp(iλRk cos(u))du=J0(λRk )

=

∞∏
k=1

J0(λRk).

Birkhoff’s ergodic theorem, see Theorem 1 in Section 2.1, readily states that the empirical character-
istic function T−1

∫ T

0 eiλX(τ)dτ converges almost surely to the conditional expectation E
[
eiλX(t) |IX0

]
.

Note that the theorem is stated for all measurable functions h ≥ 0 but can easily be extended to our
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case. Linearity of integration and expectation allows us to consider the real and imaginary part of the
complex exponential separately. Each can then be expressed as the difference of positive and negative
parts.

What remains to be shown is the equality IX0 =A. The inclusion IX0 ⊆ A follows easily from the
LePage-type series representation in Proposition 2. It holds that X(t) is a series of measurable functions
of Γ−1/α

k
G(1)
k

, Γ−1/α
k

G(2)
k

and Zk , k ∈ N, see Equation (5). Hence, it is A-measurable. Additionally, the
inclusion I ⊆ B(R) holds, which yields IX0 = X−1(I) ⊆ X−1(B(R)) ⊆ A.

For the reverse inclusion IX0 ⊇ A note thatA = σ(E), where E is a system of sets that generatesA.
A suitable choice of E is given by the collection of cylinder sets of the form

A=
{
ω ∈ Ω : Γ−1/α

k
(ω)G(1)

k
(ω) ≤ ak,Γ

−1/α
k
(ω)G(2)

k
(ω) ≤ bk,Zk(ω) ≤ ck, k = 1, . . . ,n

}
with ak,bk,ck ∈ R, k = 1, . . . ,n, and n ∈ N.

Consider the set B = {X(s;ω) : s ∈ R,ω ∈ A}. For any x ∈ B there exist s ∈ R and ω ∈ A such that
x = X(s;ω). Then, φt x = X(s + t;ω) ∈ B. Conversely, for x ∈ φ−1

t (B), it holds that Tt x ∈ B, i.e. there
exist s ∈ R and w ∈ A such that Tt x = X(s;ω). Clearly, x = φ−tφt x = X(s − t;ω) ∈ B. Hence, the set B
is φ-invariant as it holds that φ−1

t (B) = B for all t ∈ R, i.e. B ∈ I.
By definition of IX0 we have X−1

0 (B) ∈ IX0 , and as a consequence it holds that σ(X−1
0 (B)) ⊆

IX0 . Denote by X0(A) the set {X(0;ω) : ω ∈ A}, which clearly is a subset of B. It follows that
A = X−1

0 (X0(A)) ⊆ X−1
0 (B). Since the σ-algebra A is generated by all sets A ∈ E we conclude that

A ⊆ σ(X−1
0 (B)) ⊆ IX0 .

Remark 1. For the lag process {X(t + h) − X(t) : t ∈ R} with h > 0 it holds that

lim
T→∞

1
T

∫ T

0
eiλX(τ+h)−X(τ)dτ =

∞∏
k=1

J0 (2λRk sin (hZK/2)) a.s.

For the proof note that the computation of E [exp (iλ(X(t + h) − X(t))) | {Rk } , {Zk}] is straightforward
using cos(Θk + (t + h)Zk) − cos(Θk + tZk) = −2 sin (hZk/2) sin (Θk + tZk + hZk/2), where the latter
term − sin (Θk + tZk + hZk/2) is equal in distribution to cos (Θk) with Θk ∼U(0,2π) i.i.d.

Remark 2. Note that
∏∞

k=1 J0(λRk) � 0 on R. Clearly, it holds that
∏∞

k=1 J0(λRk) = 1 for λ = 0 since

J0(0) = 1. This makes sense since the empirical characteristic function T−1
∫ T

0 eiλX(τ)dτ = 1 for λ = 0.
Let λ > 0 and denote by R[k] be the k-th largest amplitude, i.e. R[1] ≥ R[2] ≥ . . . and by j0,1 ≈ 2.4048

the first positive root of the Bessel function J0. Then, by monotonicity it holds that 0 < J0(λR[k]) ≤
J0(λR[k+1]) < 1 for all λ ∈ (0, j0,1/R[1]) and k ∈ N.

Consider λ ∈ (0,2/R[1]). Applying the logarithm to the infinite product yields a series of logarithms
which converges absolutely, as one can bound

∞∑
k=1

|log (J0 (λRk))| ≤
λ2

4 − λ2R[1]

∞∑
k=1

R2
k

=
λ2

4 − λ2R[1]

(
Cαb−1

α m(R)
) 2/α ∞∑

k=1

Γ
−2/α
k

( (
G(1)
k

) 2
+

(
G(1)
k

) 2
)

︸��������������������︷︷��������������������︸
=W2

k

.
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This upper bound holds true by the monotonicity of J0(λR[k]) in k ∈ N for λ ∈ (0, j0,1/R[1]) and the
inequalities log(1/x) ≤ 1/x − 1 for x > 0 as well as J0(x) ≥ 1 − x2/4 for x ∈ (0,2). The latter follows
from the Taylor series expansion of J0.

The series
∑∞

k=1 Γ
−2/α
k

W2
k

converges almost surely for all α ∈ (0,2) by [26, Theorem 1.4.5], since
W2

k
are i.i.d. χ2

2 -distributed with finite moments E|W2
k
|α/2 =E|Wk |α <∞ for α ∈ (0,2). Ultimately, it

follows that
∏∞

k=1 J0(λRk) ∈ (0,1) almost surely for λ ∈ (0,2/R[1]).

Corollary 1. Let h : R→ R be an integrable function with integrable Fourier transform F h such that
h(x) =

∫
R
F h(y)eixydy. Then

lim
T→∞

1
T

∫ T

0
h(X(τ))dτ =

∫
R

F h(y)
( ∞∏
k=1

J0(yRk)
)

dy a.s.

If h is p-periodic with absolutely convergent Fourier series h(x) =
∑

n∈Z cnei
p

2π nx , then

lim
T→∞

1
T

∫ T

0
h(X(τ))dτ =

∑
n∈Z

cn
∞∏
k=1

J0

(
n

p
2π

Rk

)
a.s.

Proof. We prove the first part only since all arguments are applicable for the periodic h as well. By
Fubini’s theorem and Lebesgue’s dominated convergence theorem we can interchange the order of
integration and limit, which yields

lim
T→∞

1
T

∫ T

0
h(X(τ))dτ = lim

T→∞

1
T

∫ T

0

∫
R

F h(y) exp

{
iy
∞∑
k=1

Rk cos (Θk + τZk)
}

dydτ

=

∫
R

F h(y)
(

lim
T→∞

1
T

∫ T

0
exp

{
iy
∞∑
k=1

Rk cos (Θk + τZk)
}

dτ

)
dy

=

∫
R

F h(y)
( ∞∏
k=1

J0(yRk)
)

dy a.s.

Summarizing, it becomes clear that, conditionally on {Rk }∞k=1 and {Zk }∞k=1, SRH SαS processes
are non-ergodic harmonic Gaussian processes from Equation (6). For SRH SαS processes additional
randomness is introduced by the random frequencies {Zk}∞k=1 and the arrival times {Γk}∞k=1, which are

in a sense random variances to the Gaussian random variables {G(i)
k
}∞
k=1, i = 1,2. Indeed, the sequence

{Ak }∞k=1 in Equation (9) consists of variance mixtures of Gaussian random variables.

4. Spectral density estimation

The underlying Gaussian structure of the SRH SαS process X plays a central role in the estimation of
the spectral density. The LePage series representation and Theorem 2 demonstrate that the randomness
of the paths of X is generated by the Gaussian variance mixture amplitudes {Rk }∞k=1 as well as the
random frequencies {Zk }∞k=1. Although these quantities are inherently random and not directly observ-
able, they are fixed for a given path. It is therefore possible to consider a path of the harmonizable



Stationary real harmonizable symmetric α-stable processes 173

process X as a signal generated by frequencies {Zk }∞k=1 with amplitudes {Rk }∞k=1 and phases {Uk }∞k=1
(see Equation (7)), and use standard frequency estimation techniques to estimate {Zk}∞k=1.

Recall that Z1,Z2, . . . are i.i.d. with probability density function f , which is the spectral density
function of the process X . A density kernel estimate will then yield the desired estimate of f . As the
goal is to estimate the spectral density f alone, we can neglect the estimation of amplitudes {Rk }∞k=1
and phases {Uk }∞k=1.

4.1. Periodogram method

Spectral density estimation is a widely studied subject in the field of signal processing, and we will rely
on classical techniques provided there [5,11,23]. In particular, the periodogram is a standard estimate of
the density function fζ of an absolutely continuous spectral measure ζ , often also referred to as power
spectral density. When the spectral measure of a signal is purely discrete, i.e. the signal is produced
by sinusoidal waves alone, the periodogram still proves to be a powerful tool for the estimation of
frequencies [23]. Such a sinusoidal signal X = {X(t) : t ∈ R} is modeled by

X(t) = μ+
∞∑
k=1

rk cos (φk + λk t) +Y (t), (10)

where μ is called the overall mean of the signal and rk, φk,λk are the amplitude, phase and frequency of
the k-th sinusoidal. The process Y = {Y (t) : t ∈ R} is a noise process usually assumed to be a stationary
zero mean process with spectral density fy [23, p.5].

Note that in the above model the amplitudes, phases and frequencies are deterministic and random-
ness is introduced by the noise process Y . For harmonic Gaussian processes it is assumed that the
phases are i.i.d. uniformly distributed on (0,2π) and the amplitudes are given by Rk = |Ak |, where Ak

are complex Gaussian random variables as seen in [30]. For SRH SαS process these Gaussian random
variables are replaced by variance mixtures of Gaussian variables, and, additionally, the frequencies
are i.i.d. random variables with density f . The amplitudes {Rk }∞k=1 and frequencies {Zk}∞k=1 in (7)
are fixed for a given path of the SRH SαS process X . Furthermore, we have μ = 0. Also, the phases
{Uk }∞k=1 do not play any role in the following computation of the periodogram.

We define the discrete Fourier transform and the periodogram as follows.

Definition 2. Let x = (x(1), . . . , x(n)) ∈ Cn be a (complex) vector. Then, the transform

Fn
(
θ j

)
= n−1

n∑
k=1

x(k)e−ikθ j

defines the discrete Fourier transform of x at the Fourier frequencies {θ j }nj=1 = {2π j/n}nj=1. Further-
more, the periodogram of x at the Fourier frequencies {θ j }nj=1 is defined by

In
(
θ j

)
=

��Fn
(
θ j

) ��2 = �����n−1
n∑

k=1

x(k)e−ikθ j
�����2 .

Since the discrete Fourier transform can be viewed as a discretization of the continuous time Fourier
transform, the definition of the periodogram can simply be extended to arbitrary frequencies by re-
placing the Fourier frequencies θ j with θ > 0 in the above. The periodogram is a standard tool for



174 L.V. Hoang and E. Spodarev

the estimation of the spectral density if the spectral measure is absolutely continuous with respect to
the Lebesgue measure on R. In the case that the spectral measure is purely discrete it can be used to
estimate the underlying frequencies of a signal in the following way.

Let (x(1), . . . x(n)) = (X(t1), . . . ,X(tn)) be a sample generated from the SRH SαS process X =
{X(t) : t ∈ R} at equidistant points tj = jδ, δ > 0, for j = 1, . . . ,n. Then, according to Equation (7)
the sample x( j) is of the form

x( j) =
∞∑
l=1

Rl cos (Θl + jδZl)

for all j = 1, . . . ,n. For θ > 0, the discrete Fourier transform is given by

Fn(δθ) = n−1
n∑
j=1

x ( j) e−i jθδ = n−1
n∑
j=1

∞∑
l=1

Rl cos (Θl + jδZl) e−i jθδ (11)

= n−1
∞∑
l=1

Rl

n∑
j=1

e−i jθδ cos (Θl + jδZl)︸�������������︷︷�������������︸
= ei

(
Θl+ jδZl

)
+e−i

(
Θl+ jδZl

)
2

= n−1
∞∑
l=1

(
eiΘl Rl

2

n∑
j=1

ei jδ(Zl−θ) +
e−iΘl Rl

2

n∑
j=1

e−i jδ(Zl+θ)
)
. (12)

Taking the squared modulus of the right-hand side expression in Equation (11) yields the periodogram.
The full computation is given in the supplementary material [15, Section 1], and for more details we
refer to [23].

For any fixed k ∈ N the periodogram behaves like

In(δθ) =
R2
k

4

(
sin2 (

n
2 δ(Zk − θ)

)
n2 sin2

(
1
2δ(Zk − θ)

)
︸���������������������︷︷���������������������︸

(∗)

+
sin2 (

n
2 δ(Zk + θ)

)
n2 sin2

(
1
2δ(Zk + θ)

)
︸���������������������︷︷���������������������︸

(∗∗)

)
+O

(
n−2

)
(13)

as θ→ |Zk | and n→∞. Analogously to [23, pp. 35-36], for θ > 0 and Zk > 0 the second term (∗∗)
vanishes with rate O(n−2) as n→∞. Furthermore, the first term (∗) converges to 1 as θ→ Zk or to 0
for all θ � {Zk }k∈N as n→∞ with rate O(n−2) [13, p. 515]. On the other hand, for θ > 0 and Zk < 0 the
first term (∗) in Equation (13) behaves like O(n−2) as n→∞. Again, the second term (∗∗) converges to
1 as θ→ Zk and to 0 for all θ � {Zk }k∈N as n→∞. Therefore, the periodogram In shows pronounced
peaks close to the absolute values of the true frequencies {Zk }. The height of the peak at a frequency
Zk is given by R2

k
/4.

Let R[k] be the k-th largest amplitude, i.e. R[1] > R[2] > · · · > 0 a.s., and denote by Z[k] the frequency
associated to R[k]. Taking the location of the N ∈ N largest peaks of In as estimators for {|Z[k] |}Nk=1
might be intuitive but is not feasible, as there are constraints on the minimal distance between the |Z[k] |,
see [31, Equation (5.5) and (5.6)]. Instead, an iterative approach is proposed, see e.g. [23, Chapter 3.2]
and [31, Section 5].

Set coefficients (ak,bk )k∈N with

ak =
(
Cαb−1

α m(R)
) 1/α
Γ
−1/α
k

G(1)
k
, bk =

(
Cαb−1

α m(R)
) 1/α
Γ
−1/α
k

G(2)
k
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such that the series representation of X from Proposition 2 is given by

X(t) =
∞∑
k=1

ak cos (Zk t) + bk sin (Zk t) .

Also, note that Rk = (a2
k
+ b2

k
)1/2. We denote by the subscript [k] in a[k] and b[k] their association to

R[k].
Again, consider the sample (x(1), . . . , x(n)) = (X(t1), . . . ,X(tn)), and denote by In = I(0)n the peri-

odogram computed from the sample x(1), . . . , x(n). Determine the estimate Ẑ1,n for |Z[1] | from the lo-
cation of the largest peak of I(0)n . This peak is asymptotically unique, since the amplitudes satisfy R[1] >
R[2] > . . . a.s. Compute estimators (â1,n, b̂1,n) for (a[1],b[1]) by regressing a[1] cos(t Ẑ1,n)+b[1] sin(t Ẑ1),
t = 1, . . . ,n, on x(1), . . . , x(n).

Next, compute the periodogram I(1)n of the residuals x(1)(t) = x(t) − â1,n cos(t Ẑ1,n) − b̂1,n sin(t Ẑ1),
t = 1, . . . ,n. Determining the location of the largest peak of I(1)n yields the estimate Ẑ2,n for |Z[2] |. As
in the first step, compute the regression estimates (â[2],n, b̂[2],n) for (a[2],b[2]) and the periodogram I(2)n

from x(2)(t) = x(1)(t) − â2 cos(t Ẑ2,n) − b̂2 sin(t Ẑ2), t = 1, . . . ,n. We repeat this process for fixed N ∈ N
iterations. The choice of N (depending on the sample size n) is discussed in Section 5.2.

Theorem 4. Let X = {X(t) : t ∈ R} be a SRH SαS process with finite control measure m and symmetric
spectral density f . Furthermore, let (x(1), . . . , x(n)) = (X(t1), . . . ,X(tn)) be a sample of the process X
at equidistant points t1 < · · · < tn, n ∈ N with tj = jδ, δ > 0 for j = 1, . . . ,n. Denote by {Ẑk ,n}Nk=1 the
periodogram frequency estimators for {Z[k]}Nk=1 as well as by {âk ,n}Nk=1 and {b̂k ,n}Nk=1 the regression
estimators for {a[k]}Nk=1 and {b[k]}Nk=1, as described above. Then, it holds that

lim
n→∞

n
(
|Z[k] | − Ẑk ,n

)
= 0 , lim

n→∞
âk ,n = a[k] , lim

n→∞
b̂k ,n = b[k] a.s.

for k = 1, . . . ,N.

Proof. Recall that (Ω,F ,P) denotes the probability space on which the process X lives. For any ω ∈ Ω
we denote the corresponding path of X by X(ω) = {X(t;ω) : t ∈ R} and periodogram by In(θ;ω). From
Equation (13) we know that the periodogram In(δθ;ω) converges to R2

[k](ω)/4 as θ→ |Z[k](ω)| and

n→∞. On the other hand, the periodogram converges to 0 as n→∞ for all θ �
{
|Z[k] |

}
k∈N. For

simplicity we can assume δ = 1 in the following.
Similar to [23,31] one can first show that Ẑ1,n → |Z[1] | a.s. as n→∞. To see this, assume that

Ẑ1,n(ω) does not converge to |Z[1](ω)| but instead to some z′ � |Z[1](ω)|. We can distinguish between
the cases z′ � {Z[k](ω)}k∈N and z′ = |Z[k′](ω)| for some k ′ > 1. Then, for n→∞

R2
[1](ω)

4
← In(|Z[1](ω)|;ω) ≤ In(Ẑ1,n(ω);ω) →

⎧⎪⎪⎨⎪⎪⎩
0 , z′ � {|Z[k](ω)|}k∈N,
R2
[k′](ω)

4
, z′ = |Z[k′](ω)|, k ′ > 1,

since Ẑ1,n = arg maxθ In(θ;ω) by definition of the estimator. This is a contradiction for almost allω ∈ Ω
as R[1] > R[k′] > 0 a.s. for all k ′ > 1. In case that Ẑ1,n(ω) diverges there exists a convergent subsequence
(Ẑ1,nl (ω))l∈N that converges to an z′, which falls again into one of the two above cases, and the same
contradiction arises. Hence, we can conclude that Ẑ1,n→ |Z[1] | a.s. as n→∞.
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Recall that In(|Z[1](ω);ω|) = R2
[1](ω)/4 +O(n−2). Following the proof of [13, Theorem 1], it holds

that

0 ≤ In(Ẑ1,n(ω);ω) − In(|Z[1](ω)|;ω)

=
R2
[1](ω)

4

(
sin2( 12 n(|Z[1](ω)| − Ẑ1,n(ω)))

n2 sin2( 12 (|Z[1](ω)| − Ẑ1,n(ω)))︸�����������������������������������︷︷�����������������������������������︸
≤1

−1

)
+O

(
n−2

)
.

Since the first term in the above is non-positive and the second term vanishes as n→∞, it follows
that S2

n(zN ) = sin2(nzn)/(n2 sin2(zn)) → 1 as n→∞, where zn = (|Z[1](ω)| − Ẑ1,n(ω))/2. The fact that
sin2(nzn) is bounded by 1 and the convergence of the function S2

n(zn) to 1 implies that n2 sin2(zn) is
also bounded by 1 for n large enough. It follows that sin2(zn) ≤ n−2 and hence |zn | ≤ n−1 for n large
enough by the convergence zn→ 0. Equivalently, n|zn | ≤ 1 for large n, hence | sin(nzn)/(nzn)| can only
converge to 1 if nzn converges to 0 as n→∞. Ultimately, we have n(Ẑ1,n − |Z[1] |) → 0 a.s.

Next, the almost sure convergence of â1,n and b̂1,n to a[1] and b̂[1] is established. Details can be
found in the supplement [15, Section 2] and [31, Section 3]. The explicit forms of â1,n and b̂1,n are
given by

â1,n =
2
n

n∑
t=1

x(t) cos(Ẑ1,nt), b̂1,n =
2
n

n∑
t=1

x(t) sin(Ẑ1,nt)

[31, Equation (2.5)]. One can show that��� (â1,n − a[1]
)
+ i

(
b̂1,n − b[1]

) ��� ≤ 2
n

��Mn(Ẑ1,n − |Z[1] |) − n
�� +O

(
n−1

)
,

where |Mn(x)| =
∑n

t=1 eixt = eix
(
einx − 1

)
/
(
eix − 1

)
and O(n−1) is a quantity that converges a.s. to 0

as n→∞. Applying the mean value theorem and the fact that
��M ′n(x)�� = ��∑n

t=1 teixt
�� < n2 for all x ∈ R

[31, p. 27] yields

n−1 ��Mn(Ẑ1,n − |Z[1] |) − n
�� = n−1 ��Mn(Ẑ1,n − |Z[1] |) −Mn(0)

�� < n
��Ẑ1,n − |Z[1] |

��→ 0 a.s.

as n→∞, which establishes the desired strong consistency of â1,n and b̂1,n.
In the next step, compute the periodogram I(1)n of x(1)(t) = x(t) − â1,n cos(Ẑ1,nt) − b̂1,n sin(Ẑ1,nt)

and estimate Ẑ2,n from the location of the largest peak of I(1)n . As before, one then shows that
n(Ẑ2,n − |Z[2] |) → 0, â2,n → a[2] and b̂2,n → b[2] a.s. as → ∞ and proceeds by setting x(k) =
x(k−1)(t) − âk ,n cos(Ẑk ,nt) − b̂k ,n sin(Ẑk ,nt) to compute I(k)n , establish the strong consistency of Ẑk ,n

(with rate n−1), âk ,n and b̂k ,n for k = 2 and repeat this process for k = 3, . . . ,N − 1. For more details we
refer to [23,31] and Section 2 of the supplementary material [15].

4.2. Kernel density estimator and weak consistency

We denote by {Ẑk ,n}Nk=1 the estimators of the absolute frequencies {|Z[k] |}Nk=1 corresponding to the N ∈
N largest peaks located of the periodogram. Recall that frequencies Zk , hence also the Z[k], are drawn
independently from a distribution with the sought-after symmetric spectral density f as probability
density function.
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Remark 3. Let Z be a random variable with symmetric probability density function f . Note that the
probability density function of |Z | satisfies the relation f |Z | (x) = 2 f (x) for any x ≥ 0.

Hence, applying a kernel density estimator on the estimates {Ẑk ,n}Nk=1 yields an estimate of 2 f .
Denote by f̂N the kernel density estimator with kernel function κ and bandwidth hN > 0:

f̂N (x) =
1

NhN

N∑
k=1

κ

(
x − |Zk |

hN

)
, (14)

and define the kernel density estimator f̂N ,n based on
{

Ẑk ,n

}N

k=1 by

f̂N ,n(x) =
1

NhN

N∑
k=1

κ

(
x − Ẑk ,n

hN

)
. (15)

Let ‖u‖∞ = supx∈R |u(x)| denote the uniform norm of a function u on R. Furthermore, let
P−→ denote

convergence in probability and
a.s.−→ almost sure convergence.

Theorem 5. Let X = {X(t) : t ∈ R} be a SRH SαS process with symmetric spectral density f , and
(x(1), . . . , x(n)) = (X(t1), . . . ,X(tn)) be a sample of the process X at equidistant points t1 < · · · < tn,
n ∈ N. Furthermore, let {Ẑk ,n}Nk=1, N ∈ N, be the strongly consistent frequency estimators of {|Z[k] |}Nk=1
from Theorem 4. Consider the kernel density estimator f̂N ,n defined in Equation (15) with Lipschitz
continuous kernel function κ and bandwidth hN > 0. Then,

lim
N→∞

lim
n→∞

h2
Nn

-- f̂N ,n − f̂N
--
∞ = 0 a.s. (16)

Proof. Note, that the triangle inequality as well as the Lipschitz continuity of the kernel function κ
yield

�� f̂N ,n(x) − f̂N (x)
�� ≤ 1

NhN

N∑
k=1

�����κ
(

x − Ẑk ,n

hN

)
− κ

(
x − |Z[k] |

hN

) �����︸�����������������������������������︷︷�����������������������������������︸
≤L

���� x−Ẑk ,n
hN

−
x−|Z[k] |

hN

����= L
hN

�� |Z[k] |−Ẑk ,n

��
≤ L

Nh2
N

N∑
k=1

��|Z[k] | − Ẑk ,n

�� ,
for all x ∈ R. In particular, the above upper bound is uniform. It follows that

P

(
lim
N→∞

lim
n→∞

h2
Nn

-- f̂N ,n − f̂N
--
∞ > 0

)
≤ P

(
lim
N→∞

lim
n→∞

h2
Nn

L
Nh2

N

N∑
k=1

��|Z[k] | − Ẑk ,n

�� > 0

)

=P

(
lim
N→∞

lim
n→∞

1
N

N∑
k=1

n
��|Z[k] | − Ẑk ,n

�� > 0

)
(17)
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The sets AN =

{
limn→∞

1
N

N∑
k=1

n
��|Z[k] | − Ẑk ,n

�� > 0
}

are nested with AN ⊂ AN+1, hence term (17) sim-

plifies to

lim
N→∞

P

(
lim
n→∞

1
N

N∑
k=1

n
��|Z[k] | − Ẑk ,n

�� > 0

)
= lim

N→∞
P

(
N∑
k=1

lim
n→∞

n
��|Z[k] | − Ẑk ,n

�� > 0

)

≤ lim
N→∞

N∑
k=1

P

(
lim
n→∞

n
��|Z[k] | − Ẑk ,n

�� > 0
)

︸�������������������������������︷︷�������������������������������︸
=0

= 0.

Kernel density estimators have been studied extensively, and the following results on the consistency
of f̂N as well as the behavior of its bias and variance are well known, see [29,32].

Lemma 1. Let hN → 0 with NhN →∞ as N →∞. Then, the kernel density estimator f̂N is weakly
pointwise consistent for 2 f at every point of continuity x of f . It is weakly uniformly consistent if
Nh2

N →∞ as N→∞. Moreover, if κ is a right-continuous kernel function with bounded variation that
vanishes at ±∞, f is uniformly continuous, and the bandwidth satisfies

∑∞
N=1 exp(−γNh2

N ) < ∞ for
any γ > 0, then f̂N is strongly uniform consistent.

Lemma 2. Let f be r-times continuously differentiable in a neighborhood of x. Let limN→∞ NhN =∞.
Then, Bias( f̂N ) = E

[
f̂N (x) − 2 f (x)

]
=O(hrN ) and Var( f̂N (x)) =O

(
1

NhN

)
.

As a direct consequence of Theorem 5 and Lemma 1 the following consistency results of f̂N ,n for
2 f can be given.

Corollary 2. Consider the kernel density estimator f̂N ,n from Theorem 5. Then, for all ε > 0 it holds
that

lim
N→∞

lim
n→∞

P

(-- f̂N ,n − 2 f
--
∞ > ε

)
= 0

if Nh2
N →∞ as N →∞. Under the weaker condition NhN →∞ as N →∞, weak pointwise consis-

tency holds at any continuity point of f . Moreover, under the conditions for strong uniform consistency
of f̂N in Lemma 1 it holds that

P

(
lim
N→∞

lim
n→∞

-- f̂N ,n − 2 f
--
∞ = 0

)
= 1.

Proof. The triangle inequality yields-- f̂N ,n − 2 f
--
∞ ≤

-- f̂N ,n − f̂N
--
∞ +

-- f̂N − 2 f
--
∞ , (18)

i.e. consistency of f̂N ,n for 2 f is determined by its consistency for f̂N as well as the consistency of f̂N
for 2 f . By Theorem 5 strong and weak consistency, both pointwise as well uniformly, of f̂N ,n for f̂N
are guaranteed. Lemma 1 provides the conditions for weak pointwise and uniform consistency f̂N for
2 f , as well as the conditions for strong uniform consistency.
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Remark 4. The asymptotic results in Lemma 2 can be used to derive rates for the pointwise weak
consistency of f̂N for 2 f . The triangle inequality yields�� f̂N (x) − 2 f (x)

�� ≤ �� f̂N (x) − E f̂N (x)
�� + ��E f̂N (x) − 2 f (x)

�� ,
where the second summand on the right-hand side is the bias of f̂N for 2 f . Applying Chebyshev’s
inequality to the first summand in the sum above yields

f̂N (x) − 2 f (x) =Op
./0
√

1
NhN

+ hrN
234 (19)

if f is r-times continuously differentiable in a neighborhood of x, and the bandwidth hN satisfies
limN→∞ NhN =∞.

Under stronger assumptions, i.e. if f is bounded, and the bandwidth hN → 0 satisfies that hN/h2N
is bounded, −log(hN )/log(log(N)) →∞ and NhN/log(N) →∞, then

-- f̂N − E f̂N
--
∞ =O ./0

√
− log(hN )

NhN

234 a.s.,

see [10,12]. If additionally f is r-times continuously differentiable with bounded derivatives f (i), i =
1, . . . ,r , then

-- f̂N − 2 f (x)
--
∞ =O ./0

√
− log(hN )

NhN
+ hrN

234 a.s. (20)

Remark 5. Theorem 4 and Remark 4 yield the following convergence rates. By Theorem 5 it holds that
‖ f̂N ,n − f̂N ‖∞ = o(h−2

N n−1) almost surely. In particular, this implies | f̂N ,n(x) − f̂N (x)| = op(h−2
N n−1)

and Equation (19) in Remark 4 yields

�� f̂N ,n(x) − 2 f (x)
�� ≤ �� f̂N ,n(x) − f̂N (x)

�� + �� f̂N (x) − 2 f (x)
�� = op

(
h−2
N n−1

)
+Op

./0
√

1
NhN

+ hrN
234

for the pointwise weak convergence rate of f̂N ,n(x) to 2 f (x).
For the uniform strong consistency it holds that

-- f̂N ,n − 2 f
--
∞ ≤

-- f̂N ,n − f̂N
--
∞ +

-- f̂N − 2 f
--
∞ = o

(
h−2
N n−1

)
+O ./0

√
− log(hN )

NhN
+ hrN

234 a.s.

by Equation (20). Bandwidth choice heavily influences the performance of the kernel density estima-
tion. It can be shown that the globally optimal bandwidth that minimizes the mean square error of the
kernel density estimator behaves like O(N−1/5). More details are given in Section 5.2, in particular
Equation (22). The above convergence rates therefore simplify to�� f̂N ,n(x) − 2 f (x)

�� = op

(
N2/5

n

)
+Op

(
N−2/5 + N−r/5

)



180 L.V. Hoang and E. Spodarev

and

-- f̂N ,n − 2 f
--
∞ = o

(
N2/5

n

)
+O

(√
log(N)

5
N−2/5 + N−r/5

)
a.s.

5. Numerical results

In this section, we aim to verify our theoretical results with numerical inference. We will consider the
following four examples for the spectral density of a SRH SαS process X .

Example 1. We consider the following symmetric probability density functions on R as examples.

(a) f1(x) = 1√
2π

e−
x2
2 ,

(b) f2(x) = 1
4 x2e−|x | ,

(c) f3(x) = 1
x21[1,∞)(|x |),

(d) f4(x) = 1
21[−1,1](x).

For the simulation of the SRH SαS process X we make use of the series representation in Proposition
2, i.e.

XN (t) =
(
Cαb−1

α

) 1/α N∑
k=1

Γ
−1/α
k

(
G(1)
k

cos(tZk) +G(2)
k

sin(tZk)
)
, (21)

where Γk are the arrival times of a unit rate Poisson point process, G(i)
k

, i = 1,2, are i.i.d. N(0,1) and
Zk are i.i.d. with probability density function fi , i = 1, . . . ,4 from the example above. The constants Cα

and bα are given in Proposition 2. Note that in the above series representation of X the summation is
finite up to N ∈ N, where we choose N large enough such that Γ−1/α

k
are negligibly small for k ≥ N .

5.1. Independent paths

In the introductory example in Section 2.2 we considered L ∈ N independent path realizations of a SRH
SαS process X with symmetric spectral density f . These paths build the basis for the estimation of the
α-sine transform of f . Applying the inversion method of the α-sine transform described in [16] allows
us to reconstruct the spectral density.

For the results in Figure 1 we simulated L = 100 paths of the process X with index of stability α = 1.5
and spectral density f1 of Example 1. The paths were sampled at n = 101 equidistant points 0 = t1 < ... <
tn = T on the interval [0,T] = [0,10]. Across all paths samples of lags X (l)(ti) − X (l)(0) ∼ S1.5S(σ(ti))
for i = 1, . . . ,n, l = 1, . . . ,L were generated. The regression-type estimators of Koutrouvelis [18] were
used to estimate α and the scale parameters σ(ti) = ‖X(ti) − X(0)‖α of the lags. With Equation (4)
we get estimates of the α-sine transform of f at the points {ti/2}ni=1, and the inversion method in [16]
yields an estimate of the spectral density f . One might incorporate smoothing for better estimation
results, see [16, Section 6.2.1], see Figure 1 (c). The performance clearly improves with the increase of
the number of paths L, the number of sample points n and the sample range T , but further analysis was
omitted here, since our focus lies on statistics based on a single path of SRH SαS processes.



Stationary real harmonizable symmetric α-stable processes 181

Figure 1. Inference on multiple paths. The solid blue line shows the estimates and the dashed red line shows the
theoretical function.

5.2. Periodogram frequency estimation

The periodogram estimate can be jeopardized by errors caused by aliasing and spectral leakage [22,
Chapters 4 and 10], when both the range T on which the signal is sampled as well as number of sam-
ple points n are small. Determining all peaks in the periodogram at once proves to be a difficult task.
Distinguishing between peaks in the periodogram which actually stem from frequencies and not spec-
tral leakage requires a meticulous setup of tuning parameters such as the minimum distance between
peaks or their minimum height when employing algorithms such as findpeaks in Matlab. Instead
we utilize an iterative approach to estimate the peak locations from the periodogram as in Theorem 4,
see also [23, Chapter 3.2, p.53].

The choice of N , i.e. the number of iterations, therefore the number of frequencies to be estimated,
depends on the sample size n as follows. The convergence rate of the kernel density estimator f̂N ,n

depends on both the sample size n and the number N of estimated frequencies, see Remark 5. In
particular, the convergence of the ratio N2/5/n to 0 is crucial. Since the sample size n is fixed for a
given path observation, we chose N such that N2/5/n ≈ ε for some small error ε > 0. The resulting
estimate Ẑ1,n, . . . , ẐN ,n will be used for the kernel density inference of the spectral density f .

We use Matlab’s findpeaks function for to detect the peaks and their locations in the peri-
odogram. The specific value of the function’s parameter MinPeakProminence is chosen such that
the above iteration does not break before delivering N frequency estimates.

The computation of the periodogram is performed with zero-padding [22, Chapter 8], i.e. zeros are
added at the end of the sample resulting in a new sample (x(1), . . . , x(n),0, . . . ,0) of length ñ > n. Hence,
the discrete Fourier transform is computed on a finer grid {2π j/ñ}ñj=1 resulting in an interpolation of
the periodogram between the actual Fourier frequencies {2π j/n}nj=1, which allows us to better distin-
guish between peaks. Zero-padding has no noticable effect on the computation time of the periodogram
estimate. It is practical to choose ñ to be a power of 2 to make use of the (Cooley-Tukey or radix-2)
fast Fourier transform and its reduced complexity of O(ñ log ñ) compared to the direct computation
of the discrete Fourier transform [22, Chapter 9]. For our examples the samples are zero-padded with
ñ = 213 = 8192 if n < ñ.

We compute kernel density estimator f̂N ,n given in Equation (15) with the Gaussian kernel κ(x) =
e−x

2/2/
√

2π. As for the bandwidth, any fixed bandwidth h = hN immediately fulfills all the conditions
for the consistency results in Lemma 1. But kernel density estimation is highly sensitive to bandwidth
selection, and a poor choice of h naturally leads leads to poor performance of the estimator. A global
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Figure 2. Spectral density estimation (Gaussian kernel, Sheather-Jones bandwidth). Kernel density estimator
(blue) against spectral density (red) for examples f1, . . . , f4 with index of stability α = 1.5, sample range T = 5000,
sample size n = 104 and number of estimated frequencies N = 316.

optimal bandwidth, which minimizes the mean integrated squared error of the kernel density estimator,
i.e. the MISE( f̂N ) =

∫
R

MSE( f̂N (x))dx, where MSE( f̂N (x)) = E[( f̂N (x) − 2 f (x))2] is given by

h∗N = N−1/5
(∫
R

κ(t)dt
) 1/5 (∫

R

t2κ(t)dt
) −2/5 (∫

R

2 f ′′(x)dx
) −1/5

=O
(
N−1/5

)
. (22)

For the above optimal bandwidth the MISE and the MSE are of order O(N−5/4), see [29, Chapter 3.3].
The optimal bandwidth h∗N in Equation (22) is nice for theoretical purposes but is not applicable

in practice due to the simple fact that it depends on the unknown spectral density f . Instead, many
methods to approximate the optimal bandwidth can be found in literature. Scott’s or Silverman’s rules
of thumb are widespread in practices for their ease of use but assume the sample to be drawn from a
Gaussian distribution [29, Section 3.4]. These methods are efficient and fast but their accuracy can only
be guaranteed in the Gaussian case or for the estimation of unimodal and close to Gaussian densities.
When the form of the sought-after density is unknown, which is usually the case, methods like the
unbiased cross-validation [4,25] or the Sheather and Jones plug-in method [28] are far better suited.
There are many more cross-validation and plug-in methods at hand, see e.g. [27] for an overview, but
we applied the Sheather and Jones method as it is already implemented in R. Similar results were
achieved with other methods.

We consider one path of a SRH S1.5S process for examples f1, . . . , f4 in Figure 2. The path is sampled
on the interval [0,T], T = 5000, at n = 104 equidistant points. The number of frequencies in the series
representation of X is set to K = 104. In Remark 5 we derived convergence rates for the kernel density
estimator f̂N ,n. We set the number of estimated frequencies N such that N2/5/n = ε for some small
ε > 0. Choosing ε = 10−3 yields N = 316.

The results for the spectral density estimation are given in Figure 2. Similar results were achieved
using other well-known kernel functions such as the Epanechnikov kernel or triangle kernel. Figure 3
illustrates our results for the estimation of example function f2 in the cases α ∈ {1.75,1.25,0.75,0.25}.
As expected, the estimation becomes more difficult as the index of stability α decreases. Recall that
the decay of the amplitudes Rk in the series representation of the SRH SαS process X in Equation (7)
is determined by the factors Γ−1/α

k
. The smaller α, the faster Γ−1/α

k
tends to 0, which directly translates

to the amplitudes Rk . Since the Rk decay much faster it becomes increasingly difficult to estimate
the corresponding frequencies Zk with smaller values of α. In Figure 3 (d) we can see a dominating
frequency, most likely associated to the largest amplitude R[1] � R[k], k ≥ 2. The periodogram will
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Figure 3. Spectral density estimation (Gaussian kernel, Sheather-Jones bandwidth). Kernel density estimator
(blue) against spectral density (red) for example f2 with index of stability α ∈ {1.75,1.25,0.75,0.25}, sample
range T = 5000, sample size n = 104 and number of estimated frequencies N = 316.

oscillate heavily in a neighbourhood of that frequency such that all other frequencies with amplitudes
Rk � R[1] are hard to detect. Larger sample sizes n, which allow for larger N while maintaining the
same error bound ε, as well as the application of smoothing window functions lead to better results for
small α.

One thing we would like to mention is the the dip of the kernel density estimates near 0 in examples
f1 and f4, see Figures 2 (a) and (d). These dips are a direct consequence of a commonly known problem
in frequency estimation, i.e. very low frequencies that are close to 0 are difficult to detect via the
periodogram. This can be resolved by an increase of the sampling range T and sample size n. For more
details we refer to [23, Section 3.5].

Table 1 gives an overview of the mean L2-distance between the kernel density estimator f̂N ,n and
the true spectral density fi . For example f1 the L2-distance is evaluated on the interval [0,5], for f2 on
[0,10], for f3 on [0,15] and for f4 on [0,2]. For each combination of example fi , index of stability α,
sample size n and number of estimated frequencies N , L = 1000 single paths were simulated. From each
of those paths a spectral density estimate and the corresponding L2-distance to the true spectral density
is computed. We clearly observe that the estimators perform better the larger the index of stability α is.
This is to be expected as already mentioned before.

Mean L2-dist. ×10−1 n 103 5 · 103 104

N 10 20 50 50 75 100 100 200 300

α = 0.75

f1 3.66 2.74 2.13 3.29 2.98 2.77 3.92 3.19 2.79
f2 2.26 1.63 1.19 2.11 1.86 1.71 2.58 2.10 1.87
f3 6.79 6.99 7.15 7.32 7.22 7.13 7.46 7.14 6.96
f4 4.42 3.37 2.41 4.13 3.70 3.35 4.85 3.84 3.23

α = 1.5

f1 2.49 1.85 1.67 1.65 1.48 1.38 1.49 1.25 1.17
f2 1.54 1.07 0.69 0.85 0.71 0.63 0.72 0.55 0.48
f3 6.31 6.58 6.98 6.68 6.56 6.46 6.54 6.27 6.23
f4 2.85 2.14 1.77 2.08 1.87 1.75 1.92 1.61 1.45

Table 1. Mean L2-distances between kernel density estimators and spectral densities f1, . . . , f4 based on L = 1000
single path simulations and spectral density estimation for each path, respectively. For example f1 the L2-distance
is evaluated on the interval [0,5], for f2 on [0,10], for f3 on [0,15] and for f4 on [0,2].
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Within a fixed sample size n we also see that the L2-distance between the estimators and the respec-
tive spectral density decreases with increasing N . Additionally, for α = 1.5 the results also improve
with increasing sample size n.

In the case of α = 0.75 we see a decrease in accuracy for examples f1, f3 and f4 comparing the
same number of estimated frequencies N = 100 for both n = 5 · 103 and n = 104. The reason is that for
small α a small number frequencies with relatively large amplitudes dominate all other frequencies,
due to the fast decay of Γ−1/α

k
. In combination with larger sample sizes this leads to oscillations in the

periodogram around these dominating frequencies which are not completely filtered out by the iteration
process and overshadow frequencies with smaller amplitudes.

Other issues that can lead to poorer estimation results are discontinuities, see f3 and f4, as well as
spectral densities which generate frequencies close to 0 that are difficult to detect by the periodogram,
see f1 and f4.

Possible solutions to the aforementioned issues might be smoothing of the periodogram using ap-
propriate window functions as well as adaptive bandwidth methods with narrower bandwidths at dis-
continuities and wider bandwidths where the kernel density estimator oscillates.

Also note that, out of all examples, estimation results for f2 are the most accurate due to it vanishing
at the origin such that no frequencies close to 0 need to be estimated, and its smoothness, which has a
direct effect on the convergence rate of the kernel density estimator, see Remark 5.

6. Conclusion

Harmonizable SαS processes are one of the three main classes of stationary SαS processes. Unlike
stationary moving average SαS processes, the harmonizable case has not received much attention from
a statistical point of view. This is mainly due to the non-ergodicity of these processes, which inhibits
the application of standard empirical methods.

We considered the special case of stationary real harmonizable SαS, in which the circular control
measure of the process is the product of the uniform probability measure on the unit circle (0,2π) and
a finite control measure m. Assuming that the control measure m has a symmetric density f , the goal
of our work was to develop a consistent and efficient statistical procedure to estimate f .

The series representation in Proposition 2 shows that a SRH SαS process X is a conditional non-
ergodic harmonic Gaussian process. In Theorem 3 and Remark 1 we derived the non-ergodic limits of
the empirical characteristic function of X and the lag process {X(t + h) − X(t) : t ∈ R}, h > 0. These
limits can be explicitly given in terms of the Bessel function of the first kind of order 0 and the pro-
cesses’ invariant sets.

Additionally, Theorem 2 also yields an equivalent series representation of X in terms of amplitudes
{Rk }∞k=1, i.i.d. uniform phases {Θk }∞k=1 and frequencies {Zk }∞k=1, see Equation (7). The frequencies
Zk are i.i.d. with probability density function f . Although these quantities are random, they are prede-
termined for a given path.

In signal theory, amplitudes, phases and frequencies are usually assumed to be deterministic, and
randomness is added by some stationary ergodic noise sequence. In the case of SRH SαS processes,
randomness is introduced by the random amplitudes, phases and frequencies themselves. Furthermore,
path observations are non-ergodic. The methods we employ for frequency estimation are not new but
have not been applied in this context before. We show that consistency is given since the frequencies
to be estimated form an i.i.d. sample.

The periodogram is a fast and efficient tool for the estimation of the absolute frequencies |Zk | as
it relies on the fast Fourier algorithm. We show that the frequency estimators are strongly consistent
in Theorem 4. Applying kernel density estimation yields an estimate of the spectral density. Under
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minimal assumptions on the kernel function, the kernel density’s bandwidth and the spectral density f ,
various consistency results for our spectral density estimator are proven in Theorem 5 and Corollary 2.
Convergence rates are given in Remark 5.

An extensive numerical analysis shows that our proposed estimation method performs well on a
variety of examples with index of stability α > 0.5. The smaller the index of stability α is, the more
difficult the estimation of the spectral density becomes as peaks in the periodogram are harder to detect.
In general, an increase of the sampling range T and sample size n results in significant improvements of
the estimation. Problems might arise when the spectral density has discontinuities or does not vanish
at 0, as seen in examples f1, f3 and f4. Further improvements can be achieved with the application of
different window functions in the periodogram computation as well as adaptive bandwidth methods for
the kernel density estimation.

Ultimately, aside from the consistency of our spectral density estimator and its ease of computation,
we would like to highlight that no other requirements or prior knowledge on the process (such as e.g.
the index of stability α) is needed for the estimation of the spectral density f . The Matlab and R
implementations used in this paper can be found in [14].
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