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Abstract

We analyse the numbers of closed paths of length k ∈ N on two important regular lattices: the hexagonal
lattice (also called graphene in chemistry) and its dual triangular lattice. These numbers form a moment
sequence of specific random variables connected to the distance of a position of a planar random flight
(in three steps) from the origin. Here, we refer to such a random variable as a random eigenvalue of
the underlying lattice. Explicit formulas for the probability density and characteristic functions of these
random eigenvalues are given for both the hexagonal and the triangular lattice. Furthermore, it is proven
that both probability distributions can be approximated by a functional of the random variable uniformly
distributed on increasing intervals [0, b] as b → ∞. This yields a straightforward method to simulate
these random eigenvalues without generating graphene and triangular lattice graphs. To demonstrate this
approximation, we first prove a key integral identity for a specific series containing the third powers of the
modified Bessel functions In of nth order, n ∈ Z. Such series play a crucial role in various contexts, in
particular, in analysis, combinatorics, and theoretical physics.

Keywords: annihilator, (modified) Bessel function, characteristic function, closed walk, golden ratio,
graphene, holonomic function, method of moments, moment generating function, random eigenvalue, regular
hexagonal lattice, regular triangular lattice.
MSC2010: Primary: 05C10; Secondary: 05C63, 05C38, 33C10, 33C05, 92E10.

1 Introduction

In 2010, Sir Konstantin Novoselov and Sir Andre Geim were awarded the Nobel price in Physics for their
method to isolate single layers of graphene. Graphene is a carbon allotrope in which the carbon atoms are
arranged in a cut-out of an infinitely large hexagonal lattice. It can be considered as an extreme case of other
finite-sized carbon allotropes like fullerenes. The analysis of graphene is a mathematical problem with a
long history. The hexagonal lattice is one of the well-known two-dimensional Bravais lattices, cf. [31, 1.2.5.4].
Although many (mathematical) results about graphene and its dual, the triangular lattice, are known and
may be found e.g. in [19,24], many more questions are still open. The similarities and differences between
graphene and its finite-sized counterparts is also of great interest.

In this paper, we study the spectral properties of these carbon allotropes. The spectral density of a
lattice is linked with its combinatorial properties, like the numbers of closed paths rooted at some vertex.
Indeed, let µk (L) be the number of closed paths of length k on the lattice L starting in an arbitrary vertex
of L. For a finite graph Gn with n vertices, we denote by µk (Gn) the average number of closed paths of
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length k on Gn. It can be easily seen that

µk (Gn) =
1

n
tr
(
Ak
)
=

1

n

n∑
j=1

λk
j , (1)

where λ1, . . . , λn are the eigenvalues of the adjacency matrix A describing the graph Gn. The term tr
(
Ak
)
is

often referred to as the Newton polynomial of order k. An in-depth analysis of Newton polynomials of order
k ≤ n for (dual) fullerene graphs with n ≤ 150 can be found in [11]. Therefore, µk(Gn) is the kth moment of
a probability measure ϱGn with empirical distribution function given by

FϱGn
(x) =

1

n

n∑
j=1

1{λj ≤ x}. (2)

Since each eigenvalue λj is chosen with uniform probability, ϱGn is the distribution of a random variable
Ln which will often be referred to as random eigenvalue of Gn. The measure ϱGn is often called empirical
spectral distribution (ESD) of Gn. For lattices L, i.e. infinite graphs with all vertices having a finite degree,
one cannot directly define its spectral distribution as in (2), but one can still define ϱL through its moments:∫

R
xkdϱL(x) = µk (L) , k ∈ N. (3)

The measure ϱL is well-known as the density of states or spectral density of L; it is a probability distribution.
Any random variable with law ϱL will be called random eigenvalue of L.

In both cases, the spectral density of a structure captures many properties of the geometry of the
underlying graph or lattice. It is our primary goal to study the spectral properties of graphene. In this
paper, we shed light on how the ESD ϱFn of large (but finite) fullerenes Fn approximates the density of
states of graphene, ϱL, and to analyze ϱL itself. In particular, we use a notion of graph convergence to show
how graphene can be seen as an infinitely large fullerene, and the consequences on their respective spectral
densities. Mathematically, the convergence of random fullerenes towards graphene is an open question
(Conjecture 1). The main part of the paper then deals with the spectral properties of L. Although ϱL
has been studied in the physics literature mostly under the lens of L’s Green function, cf. [25], its explicit
expression is not commonly encountered in the literature. In this work, we show several identities and
probabilistic representations for ϱL, involving elegant and striking integral formulas for cylinder functions.

The paper is structured as follows. In the next section, we formally define lattices and graphs under
consideration, we also recall the notion of local weak convergence for graphs, and its consequences for the
spectrum. Section 3 contains our main results followed by their discussion. There, we propose a novel integral
representation of the series of third powers of modified Bessel functions (Theorem 5) which is used to prove
a simple approximation of the distribution of a random eigenvalue of the triangular and hexagonal lattices
(Theorem 4). We give an independent proof of Theorem 4 elucidating some connections to ergodic theory.
Furthermore, we give explicit forms of the densities and the characteristic functions of random eigenvalues
for graphene and the triangulation of plane. Section 4 explains the point of view of local weak convergence of
fullerenes and gives some details on Conjecture 1. Proofs are given in Section 5. The Python code supporting
the results of this paper can be downloaded from [10].

2 Spectral properties of graphenes and fullerenes

In this section, we collect known definitions and results on Bessel functions, regular planar lattices, paths on
them as well as planar random flights. In the sequel, N0 denotes the set of natural numbers and zero.
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2.1 Lattices and planar graphs

A graph G = (V (G), E(G)) = (V,E) is a tuple consisting of sets of vertices V and of edges E = V 2. If
|V | = ∞ and every vertex has a finite degree the graph G is usually called an infinite graph. An introduction
to the general theory of infinite graphs can be found in [21, Section 8]. Here, we consider only infinite
non–oriented graphs whose planar embedding forms a tiling of the plane R2 by convex regular polygons. We
call such graphs (convex) lattices.

Let us define two lattices whose random eigenvalues are studied in the sequel.

x

y

Figure 1: Illustration of the relationship between H and T . The set V (H) consists of both blue and
red-coloured vertices, whereas V (T ) contains only the red-coloured ones. Edges of H and T are coloured in
black and green, respectively.

Definition 1. We call the infinite graph

(i) H a hexagonal lattice, if its set of vertices is given by

V (H) :=

{(
√
3x+

y
√
3

2
,
3y

2
+ c

)⊺

∈ R2

∣∣∣∣∣ x, y ∈ Z, c ∈ {0, 1}

}
, (4)

and every vertex is connected with its three nearest neighbours (w.r.t. the Euclidean distance) by an
edge;

(ii) T a triangular lattice, if its set of vertices is given by

V (T ) := {v ∈ V (H) | c = 0}

and every vertex is connected with its six nearest neighbours (w.r.t. the Euclidean distance) by an edge.

Roughly speaking, the hexagonal lattice is composed of two triangular sublattices. Adding three loops to
every vertex of T and denoting this modification by T ∗, yields a simple bijection between the set of closed
paths with even length 2k on H and the set of closed paths with length k on T ∗. These three loops can be
mathematically formulated as one loop of weight 3.

Let us now turn to formal definitions of fullerenes. It is well known that Euler’s formula and Eberhard’s
theorem impose hard constraints on the structure of finite planar graphs: for example, there can be no finite
planar graph which is 3-regular and with only hexagonal faces. One has to introduce faces with degree
smaller than 6 to fulfil these constraints; in fullerenes, one only allows faces with degree 5 or 6 and it turns
out that the number of faces of degree 5 (called pentagons) must exactly be 12.

Definition 2. A fullerene (graph) is a finite, connected, 3-regular planar graph with faces of degrees both 5
and 6.
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2.2 Fullerenes and the planar hexagonal lattice

Local weak convergence, also called Benjamini-Schramm convergence due to the seminal paper [9], is a
mode of convergence well suited to graphs with a small number of edges. We refer to [4, 8, 13] for in-depth
presentations; for our purposes, let us simply recall the basic elements.

If H = (V,E) is a graph and v ∈ V , we denote by BH(v, r) the “ball of radius r around v”, that is, the
subgraph of H induced by all the vertices of H whose graph distance to v is smaller than r. A graph H
endowed with a special vertex o is called a rooted graph; the set of all locally finite rooted graphs can be
endowed with a Polish space structure. We say that (the law of) a sequence of finite random graphs (Gn)
converges locally weakly towards (the law of) a random rooted graph (G, o) if for any fixed integer r and
fixed rooted graph (H, o),

P(BGn(on, r) is isomorphic to BH(o, r)) −−−→
n→∞

P(BG(o, r) is isomorphic to BH(o, r)), (5)

where on is itself a random element uniformly distributed over the vertices of Gn. This notion of convergence
indeed coincides with the local weak convergence of probability measures on the space of rooted graphs
mentioned above. The limiting random rooted graph (G, o) can be infinite and always has a property called
unimodularity which is very restrictive, see [8, Section 2.2]. The convergence of random planar graphs has
recently been widely studied, especially for uniform random triangulations of the sphere. However, to our
knowledge, the following statement remains open.

Conjecture 1. Let Fn be a random fullerene, chosen uniformly on the set of fullerenes with n vertices. The
sequence (Fn) converges locally weakly towards the planar hexagonal lattice H.

We will comment more thoroughly on this question in Section 4. Conjecture 1 has noticeable consequences
on the behaviour of the eigenvalues of typical fullerenes. Indeed, the convergence of a sequence of finite graphs
(Gn) towards a random rooted graph (G, o) implies the convergence of the empirical spectral distribution ϱGn

towards a limiting probability measure ϱ, see [1] or [13, Theorem 2.5]. This measure ϱ can be defined directly
from the law (G, o). The general construction is functional-analytic in essence. Under mild assumptions such
as uniform boundedness of the degrees in G, the measure ϱ is the unique Borel measure on an interval I ⊂ R
whose k-th moments are equal to Eµk(G), the expected number of closed walks at the root of (G, o); more
precisely, ϱ is the unique probability measure whose Stieltjes transform is given by∫

I

1

z − x
ϱ(dx) =

∞∑
k=0

Eµk(G)

zk+1
, z ∈ C \ I. (6)

The measure ϱ is called the spectral density of (the law of) the random graph (G, o); it is also known by the
name of averaged density of states in the physics community. For the hexagonal lattice H, the construction
given in (3) coincides with (6), since in this case the number of closed paths at the root is nonrandom.

The spectral density of H will be systematically denoted by ϱH. Similarly, the spectral density of the
dual lattice T ∗ will be denoted by ϱT ∗ .

The preceding discussion together with Conjecture 1 directly implies that the ESD of large random
fullerenes converges towards the spectral density of H.

Theorem 1. Let ϱH be the spectral density of H, uniquely defined by (6). The empirical spectral distribution
of random fullerenes with n vertices converges weakly towards ϱH as n → ∞.

Our goal in the sequel will be to thoroughly study the spectral density ϱH and its various representations.
We will start by a careful examination of the sequence µk(H).
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2.3 Paths on the planar hexagonal lattice

Let us discuss the computation of the number of paths on H between two vertices with a given number of
steps k. Without loss of generality, let the starting point be the origin and the endpoint a vertex v ∈ V (H).
Finally, set v = (0, 0) to get the number of closed paths of length k. Clearly, it is sufficient to consider even
lengths 2k with arbitrary k ∈ N0 only. In the sequel, we follow [27, pp. 59–61] in our exposition to prove the
following explicit expression for the numbers µ2k(H).

Theorem 2 ( [18], Theorem 3). For k ∈ N0 it holds

µ2k (H) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

∣∣eiφ1 + eiφ2 + eiφ3
∣∣2k dφ1 dφ2 dφ3. (7)

Proof. Every path on H can be described as a sequence of the three direction vectors

x1 = (0, 1)⊺ , x2 =

(
1

2
,−

√
3

2

)⊺

, x3 =

(
−1

2
,−

√
3

2

)⊺

,

and their inverse vectors

x−1
1 = (0,−1)⊺, x−1

2 =

(
−1

2
,

√
3

2

)⊺

, x−1
3 =

(
1

2
,

√
3

2

)⊺

,

compare Figure 1. Thus, a path of length 2k starting at the origin and ending in v can be written as a
sequence

xi1x
−1
j1

xi2x
−1
j2

. . . xikx
−1
jk

(8)

for i1, j1, . . . , ik, jk ∈ {1, 2, 3}. Note that every odd step on H has to be x1, x2 or x3. On the other hand,
every even step has to be one of the inverse directions x−1

1 , x−1
2 or x−1

3 . Hence, the total number of directions
x1, x2, x3 in such sequence has to be equal to the total number of inverse directions x−1

1 , x−1
2 , x−1

3 . Moreover,
the specific order of directions is not important for the calculation of the number of paths. Hence, in (8) we
can rearrange the elements, cancel directions with their inverse, and write the remaining amount of steps in
direction xj for j = 1, 2, 3 as its power. For every destination vertex v, one gets an unique minimal amount

of directions one has to go, i.e., the powers k1, k2, k3 ∈ Z in the shortened form xk11 xk22 xk33 of (8) are uniquely
determined by v. If v = (0, 0) it follows immediately that k1 = k2 = k3 = 0.

One can get the number of paths terminating in v as the coefficient of the term xk11 xk22 xk33 in the
multinomial expansion of (

(x1 + x2 + x3)
(
x−1
1 + x−1

2 + x−1
3

))k
,

or, equivalently, as the constant term in the multinomial expansion of(
(x1 + x2 + x3)

(
x−1
1 + x−1

2 + x−1
3

))k
x−k1
1 x−k2

2 x−k3
3 .

To get this constant term, replace xj by complex number eiφj , j = 1, 2, 3, and integrate the resulting
expression over all possible φ1, φ2, φ3 ∈ [0, 2π]. This step is reasonable since x1, x2, x3 and their inverse are
unit vectors in R2 and thus can be interpreted as unit complex numbers. In other words, we transform
Cartesian coordinates into polar coordinates.

Now, the amount of paths of length 2k from the origin to v is given by

1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

((
eiφ1 + eiφ2 + eiφ3

) (
e−iφ1 + e−iφ2 + e−iφ3

))k
e−i(k1φ1+k2φ2+k3φ3) dφ1 dφ2 dφ3.

Notice that
((
eiφ1 + eiφ2 + eiφ3

) (
e−iφ1 + e−iφ2 + e−iφ3

))
=
∣∣eiφ1 + eiφ2 + eiφ3

∣∣2 and set k1 = k2 = k3 = 0
for the number of closed paths of length 2k.
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2.4 Special functions

Before going further, we briefly need to recall some definition and well-known results for the (modified)
Bessel functions used in the proofs of our next results. For integers n ∈ Z, the Bessel function of the first
kind of order n can be defined by the series

Jn(x) :=
∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)2k+n
, x ∈ C.

The modified Bessel function of the first kind of order n is closely related to Jn by

In(x) := i−nJn(ix) =
∞∑
k=0

1

k!(k + n)!

(x
2

)2k+n
, x ∈ C. (9)

Results given in [2, 9.1.27] imply the following useful relation:

2
d In(x)

dx
= In−1(x) + In+1(x), x ∈ C, n ∈ Z. (10)

Another important property of the modified Bessel function is the following recursive formula, which is a
direct consequence of [2, 9.1.27, 9.1.28]:

In(x) =In+2(x) +
2(n+ 1)

x
In+1(x), x ∈ C, n ∈ Z. (11)

We will occasionally need the generalized hypergeometric function 2F1 which is defined as

2F1

(
a1, a2
b

;x

)
:=

∞∑
j=0

a
(j)
1 a

(j)
2 xj

b(j)j!
, x ∈ R

for a1, a2, b ∈ C where a(n) is the rising factorial, i.e.,

a(n) :=
n−1∏
j=0

(a+ j) .

2.5 Properties of the spectral density of H

In equation (7), the sum eiφ1 + eiφ2 + eiφ3 can be seen as the position W3 of a planar random flight W
after three steps. This provides a surprising connection between the moments of the spectral density ϱH
and the position of a certain random walk in two dimensions. We define the planar random flight as a
random walk W = {Wt, t ∈ N0} on R2 = C in discrete time starting from the origin (W0 = (0, 0)) such that
Wt+1 = Wt + eiUt , where the random angles Ut ∼ U [0, 2π], t ∈ N form an i.i.d. sequence.

This interpretation yields that (7) is nothing but the (2k)th moment of X := |W3|, and in particular
the spectral density ϱH and the probability distribution of X are identical, providing a very surprising
representation for ϱH that will be further exploited in our main results. From now on, we gather some results
on the density of X.

Borwein et al. presented in [14, Theorem 2.1] a formula for the density of |Wt| in case of a spatial random
flight W in Rd for arbitrary dimension d ≥ 2 and any number of steps t ∈ N. Let us formulate their result in
our specific case d = 2, t = 3:

Theorem 3. The random variable X is absolutely continuously distributed with density

fX(x) =

∫ ∞

0
txJ0(tx)J

3
0 (t) dt, x ≥ 0. (12)

6



Next we analyse the behaviour of fX on the positive real half line.

Proposition 1. It holds

fX(x) =


2
√
3x

π(3+x2) 2
F1

(
1
3 ,

2
3

1
; x

2(9−x2)2

(3+x2)3

)
, if x ∈ [0, 3],

0, if x > 3,

where 2F1 is the generalized hypergeometric function.

The above formula for x ∈ [0, 3] was derived in [15, Example 2]. If x > 3 it follows∫ ∞

0
tJ0(tx)J0(t)

3 dt = 0

by [37, p. 413] where we set a1 = x, a2 = a2 = a3 = 1 and ν = 0. The fact that the support of fX lies in
the interval [0, 3] is very intuitive since X is a distance 0 ≤ |W3| ≤ 3. The even moments of X were derived
in [14, Theorem 2.18]:

Proposition 2. For k ∈ N0, it holds

EX2k =
∑

k1+k2+k3=k

(
k

k1, k2, k3

)2

. (13)

As an immediate consequence, the number of closed walks on graphene H and the triangular lattice T ∗

can be obtained if we notice that µk (T ∗) = µ2k (H) and µ2k−1 (H) = 0 for any k ∈ N. The latter relation
holds since any path on H with an odd length k ∈ N ends in a vertex with parameter c = 1 in (4) and thus
cannot be closed.

Proposition 3. The number of closed paths of length k at the root of H are given by

µk (H) =


∑

k1+k2+k3=k/2

( k/2
k1,k2,k3

)2
if k is even,

0 if k is odd.

(14)

Similarly, the number of closed paths of length k at the root of T ∗ are given by

µk (T ∗) =
∑

k1+k2+k3=k

(
k

k1, k2, k3

)2

. (15)

Formula (14) for even k can be also deduced from [20, Proposition 2] using Vandemonde’s identity [2, p.822]
if one sets all transition probabilities in [20, Proposition 3.2] of a random walk on H to be equal to 1/3.

3 Main results

Here we formulate our main results:

3.1 Distribution of random eigenvalues of graphene H and its dual graph T ∗

Proposition 4. The probability distribution ϱH is absolutely continuous with respect to the Lebesgue measure,
and has a density given by

fH(x) =
1

2

∫ ∞

0
t|x|J0(|x|t)J3

0 (t) dt, x ∈ R,

7



=


√
3|x|

π(3+x2) 2
F1

(
1
3 ,

2
3

1
;
x2(9−x2)

2

(3+x2)3

)
, if x ∈ [−3, 3],

0, else,

Similarly, the density of the probability law ϱT ∗ is given by

fT (x) =
1

2

∫ ∞

0
tJ0(t

√
x)J3

0 (t) dt, x > 0,

=


√
3

π(3+x) 2F1

(
1
3 ,

2
3

1
; x(9−x)2

(3+x)3

)
, if x ∈ [0, 9],

0, else.

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: Density functions fH (left) and fT (right) of the random eigenvalue H, T of the hexagonal lattice
H and triangular lattice T ∗, respectively.

The density function fH has two logarithmic singularities in x = ±1, cf. [14, Example 2.6]. By construction
it follows that fT has a logarithmic singularity in x = 1.

In the sequel, we will use H and T to denote random variables whose probability distribution is ϱH or
ϱT ∗ , or equivalently with densities fH or fT . It can be immediately seen from the above densities that the
following important relation holds:

H
d
= A

√
T , (16)

where A is a Rademacher distributed random variable taking values ±1 with probability 1/2 each, and
d
=

means the equality of probability laws. A and T must be chosen stochastically independent from each other.
The next result provides a handy integral representation for the characteristic functions of H and T .

Proposition 5. For the characteristic functions φH(s) = EeisH and φT (s) = EeisT , s ∈ R, it holds

φH(s) =
d

ds

[
s

∫ 1

0
I30

(
2is
√
t(1− t)

)
dt

]
, (17)

φT (s) =

∫ 1

0
I30

(
2i
√

is log t
)
dt . (18)

Calculating the derivative in (17) and using property (10) we get

φH(s) =

∫ 1

0
I30

(
2is
√

t(1− t)
)
dt+ 6is

∫ 1

0

√
t(1− t)I20

(
2is
√
t(1− t)

)
I1

(
2is
√
t(1− t)

)
dt,

since I−1(x) = I1(x) for all x ∈ C.

8



3.2 Approximation in distribution ϱH and ϱT ∗

Consider the random variable

Yb := cos(Xb) + cos(βXb) + cos((1 + β)Xb), (19)

where Xb ∼ U [0, b], b > 0, and β > 0 is any irrational number. Interestingly enough, random variable 3+ 2Yb
approximates random eigenvalue T of the triangulation of plane T ∗ with density function fT in distribution
as b → ∞. Inspired by the Wolfram blog [36], we formulate and prove the following

Theorem 4. Let Xb ∼ U([0, b]) for some b ∈ R+. For a random variable Yb defined in (19), it holds

3 + 2Yb
d−→

b→∞
T, (20)

A
√
3 + 2Yb

d−→
b→∞

H, (21)

where A is a Rademacher distributed random variable independent of Xb and
d−→ denotes convergence in

distribution.

To illustrate the above convergence, we set β = ϕ := 1+
√
5

2 = 1.61805... to be the golden ratio. Since
ϕ2 − ϕ− 1 = 0, it follows 1 + β = ϕ2. Hence, we simulate

Yb = cos(Xb) + cos(ϕXb) + cos(ϕ2Xb),

generating 105 realizations of a uniformly distributed random variable Xb on the interval [0, b] for b =
1, 10, 102, 105. Then we compare the empirical density function of 3 + 2Yb with fT given in Proposition 4. As
one can see in Figure 3, the histograms show convergence to fT as b goes to infinity.

However, there is an easy direct way of simulation of T and H without any approximations:

Remark 1 (Exact simulation of T and H). It holds

T
d
= 3 + 2 (cos(U1 − U2) + cos(U1 − U3) + cos(U2 − U3)) , (22)

where U1, U2, U3 ∼ U [0, 2π] are i.i.d. random variables.
Indeed, Theorem 2 implies that the moments of T can be written as

ET k = E
(
f(U1, U2, U3)

k
)
, k ∈ N,

where f(x, y, z) :=
∣∣eix + eiy + eiz

∣∣2. Since random variables on the left and right hand side of (22) take
values in the interval [0, 9], their probability laws are uniquely determined by their moment sequences. Hence,

it follows T
d
= f(U1, U2, U3). Using Euler’s identity, write

f(U1, U2, U3) =
∣∣eiU1 + eiU2 + eiU3

∣∣2 = 3 + 2 (cos(U1 − U2) + cos(U1 − U3) + cos(U2 − U3)) . (23)

As stated in Proposition 6 below, the distribution of U3 can be even chosen arbitrarily, i.e., it need not be
uniform. Distribution relation (16) allows us to simulate H, once T is simulated by means of formula (22).

Remark 2. In 1880, Lord Rayleigh posed in [32] a problem about the distribution of a finite Fourier series

N∑
j=1

aj cos(ωjt+ bjXj),

where Xj are random variables and N, aj , bj , ωj , t are deterministic numbers. More than 100 years later,
Blevins [12] derived a formula for the probability densitiy of such series in case of independent phases
Xj. The above remark shows the distribution of such Fourier series with dependent phases Xj = Uk − Ul,
{j, k, l} = {1, 2, 3}, U1, U2, U3 ∼ U [0, 2π] i.i.d. and parameters

N = 3, aj = bj ≡ 1, ωj ≡ 0, j = 1, . . . , 3.

9



0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6
Emp. density

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6
Emp. density

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6
Emp. density

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6
Emp. density

Figure 3: Density fT (red line) and normalized histograms of simulated 3 + 2Yb (blue bars) for b = 1 (upper
left), b = 10 (upper right), b = 102 (lower left), b = 105 (lower right) with sample size 105 and β = ϕ.

Theorem 4 is proven in Section 5.2 by the method of moments using a nontrivial new identity about
modified Bessel functions, cf. Theorem 5 below. However, this proof is, in a sense, non–constructive. In
what follows, we give an independent direct and constructive proof of Theorem 4 which reveals connections
to ergodic theory.

Our goal will be to show

Proposition 6. Let β > 0 be any irrational number, and let U1, U2 ∼ U [0, 2π] be independent random
variables. Then

cos(Xb) + cos(βXb) + cos((1 + β)Xb)
d−→

b→∞
cos(U1 − U3) + cos(U3 − U2) + cos(U2 − U1),

where U3 is an arbitrary random variable independent of U1 and U2.

The next main statement bears the spirit of Weyl’s uniform distribution theory, cf. [23, 30, 38], thus
connecting Proposition 6 to ergodic theory:

Proposition 7. Let β > 0 be an irrational number. Then,

(Xb, βXb) mod 2π
d−→

b→∞
(U1, U2), (24)

where U1, U2 ∼ U [0, 2π] are independent random variables.

Its proof via the method of moments can be found in Section 5.3. By Proposition 7 and the continuous
mapping theorem, we arrive at

(Xb, βXb, (1 + β)Xb) mod 2π
d−→

b→∞
(U1, U2, U1 + U2) mod 2π.

The conditional distribution below (when U3 is given) equals

((U1 − U3, U2 + U3) mod 2π) |U3
d
= (U1, U2). (25)
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Since the right-hand side of (25) is independent of U3, identity (25) holds also unconditionally. Then

(U1, U2, U1 + U2) mod 2π
d
= (U1 − U3, U2 + U3, (U1 − U3) + (U2 + U3)) mod 2π

= (U1 − U3, U2 + U3, U1 + U2) mod 2π

d
= (U1 − U3, 2π − U2 + U3, U1 + 2π − U2) mod 2π

d
= (U1 − U3,−U2 + U3, U1 − U2) mod 2π,

where we used the obvious relation U2
d
= 2π − U2. Using the continuous mapping theorem once again, we

finally get

cos(Xb) + cos(βXb) + cos((1 + β)Xb)
d−→

b→∞
cos(U1) + cos(U2) + cos(U1 + U2)

d
= cos(U1 − U3) + cos(U3 − U2) + cos(U2 − U1),

which finishes the constructive proof of Proposition 6.

3.3 Auxiliary results for modified Bessel functions

Results in this section are instrumental to prove Proposition 5 and Theorem 4. However, they may be also
of independent interest (especially Theorem 5 below) since they state some fundamental identities about
modified Bessel functions.

For convenience, introduce the notation ak := µk (T ∗), k ∈ N0, where the sequence µ (T ∗) was given in
(15). Using Vandermonde’s identity [2, p.822], rewrite ak for every k ∈ N0 in the following way:

ak =
k∑

k1=0

k−k1∑
k2=0

(
k

k1, k2, k − k1 − k2

)2

=
k∑

k1=0

(k!)2

(k1!)2

k−k1∑
k2=0

1

(k2!)2((k − k1 − k2)!)2
· ((k − k1)!)

2

((k − k1)!)2

=

k∑
k1=0

(k!)2

(k1!)2((k − k1)!)2

k−k1∑
k2=0

(
k − k1
k2

)2

=

k∑
k1=0

(
k

k − k1

)2(2(k − k1)

k − k1

)
=

k∑
n=0

(
k

n

)2(2n
n

)
.

The sequence a = {ak}k∈N0 has number A002893 in the On-Line Encyclopedia of Integer Sequences [34]. The
following result was communicated to us by Vladeta Jovovic:

Proposition 8. It holds

∞∑
k=0

ak
xk

(k!)2
=

( ∞∑
k=0

xk

(k!)2

)3

= I30
(
2
√
x
)
, x ∈ C. (26)

Our independent proof will be given in Section 5.1. This implies the following form of exponential
generating functions of the sequence a and its subsequences containing only terms of even or odd order:

Corollary 1. For arbitrary x ∈ C it holds

∞∑
k=0

ak
xk

k!
=

∫ ∞

0
I30

(
2
√
xt
)
e−t dt, (27)

∞∑
k=0

a2k
x2k

(2k)!
=

1

2

∫ ∞

0

(
I30

(
2
√
xt
)
+ I30

(
2i
√
xt
))

e−t dt, (28)

∞∑
k=0

a2k+1
x2k+1

(2k + 1)!
=

1

2

∫ ∞

0

(
I30

(
2
√
xt
)
− I30

(
2i
√
xt
))

e−t dt. (29)
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The following beautiful identity finishes the line of our results:

Theorem 5. For every x ∈ C it holds

e3x/2
∑
n∈Z

I3n(x) =

∫ ∞

0
I30

(√
2xt
)
e−t dt. (30)

4 Local weak convergence of graphenes and fullerenes

In this section, we explain the difficulties arising in the proof of Conjecture 1.

4.1 Working with duals: triangulations with degree constraints

It is easily seen that the local weak convergence of a sequence of 3–connected planar graphs is equivalent to
the local weak convergence of the sequence of its duals; we recall that the dual G′ of a planar graph G has
nodes representing the facets of G, with two nodes being connected by an edge in G′ if and only if their
facets in G have a common edge. The following paragraphs will only deal with the local weak convergence of
the duals of fullerenes, which are triangulations with degree constraints.

Every fullerene Fn has exactly 12 pentagonal faces (and m = n
2 − 10 hexagonal faces), so its dual Tm

has 12 nodes with degree 5 and m with degree 6; moreover, each face of Tm is a triangle, since fullerenes
are 3-regular. In summary, the set of dual graphs of fullerenes is precisely the set of sphere triangulations
with 12 nodes of degree 5 and the rest of degree 6; they must also be 3-connected. We simply call these
triangulations f-triangulations.

Remark 3. Unlike sphere triangulations with no constraints on the degree, the number F (m) of f-
triangulations with m vertices of degree 6 is not amenable to classical analytical methods like the ones
worked out by Tutte. Indeed, in the celebrated paper [35], William Thurston proved that F (m) has order m9

using deep geometric arguments, but no explicit formula is known. The best bounds for this limit known to
the authors are presented in [33, Theorem 1 (b)], which are direct consequences of [22]:

lim inf
m→∞

F (m)

m9
=

809

215 · 313 · 52
, lim sup

m→∞

F (m)

m9
=

809ζ(9)

215 · 313 · 52
,

where ζ(9) = 1.002008 . . . is the value of the Riemann zeta function.

4.2 The weak limit of triangulations

We now fix a sequence {Tm} of random f-triangulations.
Since the set of graphs with uniformly bounded degree is a precompact subset in the set of rooted graphs

endowed with the local distance, see [8], the sequence {Tm} has weak limits. Upon extracting a subsequence,
we can suppose it has a local weak limit, which is a random rooted graph (G, o). This infinite graph should
have the following properties: (i) the root should have degree 6 or 5; (ii) (G, o) should be unimodular, as
every local weak limit of graphs.

It turns out that any weak limit of triangulations has a mean degree of exactly 6 at the root; more precisely,
E[degG(o)] = 6, see [3, Lemma 17]. Consequently, if (G, o) is a weak limit of a sequence of triangulations,
the degree of the root is almost surely equal to 6. By a standard argument using unimodularity ( [5, Lemma
2.3]), the degree of all vertices in G must be 6. In other words, any weak limit of f-triangulations must be an
infinite 6-regular triangulation. One example is the dual of the planar hexagonal lattice H. However, H is
not the unique infinite 6-regular planar triangulation: any folding of H would have the same property. Yet,
there is only one unimodular 6-regular infinite triangulation of the plane with only one topological end, and it
is H; hence, proving Conjecture 1 is reduced to proving that no weak limit of f-triangulation can have more
than one topological end.
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Remark 4. (i) It is possible to construct a sequence of f-triangulations that converge towards some folding
of H; in chemistry, these structures are known as carbon nanotubes. Conjecture 1 implies that these
structures are rare in regard to the whole set of f-triangulations.

(ii) Most generating algorithms, like Buckygen [16], which is the most efficient known complete algorithm,
or the approach of Buchstaber and Erokhovets in [17], use a hierarchical trial-and-error approach. By
applying carefully chosen finite sequences of expansion and reduction operations to the dodecahedron
(the smallest fullerene) and C28, eventually leads to the entire set of fullerenes for a given number of
vertices. However, not every sequence of operations leads to a (new) fullerene. Therefore, the practical
construction of a uniformly distributed sample among all fullerenes with n vertices is a non–trivial
problem.

4.3 Isoperimetric properties of triangulations

The proof of the one-endedness of weak limit of planar graphs usually proceeds by contradiction, as
demonstrated in the seminal argument of Corollary 3.4 in [7].

Let us denote (T, o) as the weak limit of {Tm}, and suppose that the probability of (T, o) having two
distinct topological ends is ε > 0. This implies that, for some fixed integer l, with probability ε, there is a
closed path of finite length l such that T deprived of this path has two unbounded connected components.
According to (5), this leads to the following statement: there exists a sequence {cj}j∈N0 with cj → ∞ as
j → ∞, and a fixed integer l such that

|E(m, l, cj)|
|{f-triangulations of size m}|

−→
n→∞

0, (31)

where |A| denotes the cardinality of a set A, and E(m, l, c) represents the set of f-triangulations with a closed
path of length l and such that T deprived of this path has two connected components of size greater than c.
One can think of E(m, l, c) as graphs with a bottleneck.

Remark 5. The isoperimetric inequality from [6] implies that if a fullerene has a bottleneck path of length
l and cj > l2/12, then both connected components of the fullerene deprived of the path must have at least
one pentagon. It is worth mentioning that in general, the isoperimetric inequality mentioned above fails for
triangulations allowed to have degrees strictly smaller than 5 (In Remark 4 we mention the existence of
f-triangulations with an arbitrary small isoperimetric constant).

To prove (31), a classical argument is needed, similar to the one in [7]. Let us denote by A(m, l, p) the
set of all planar graphs with m vertices, in which all faces are triangles except one which must have l faces,
and in which all the internal nodes have degree 6 except exactly p having degree 5; then,

E(m, l, c) ⩽
∑

p1+p2⩽12

m−c∑
k=c

A(k, l, p1)A(m− k, l, p2).

For triangulations without degree constraints, estimates for the number of triangulations with a non-
triangular face were available thanks to Tutte’s works; but, this is not the case when degree constraints are
added. In conclusion, no efficient bound for A(k, l, p) is known, and we could not extract it from Thurston’s
paper.

5 Proofs

We start proving statements about Bessel functions formulated in Section 3.3.
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5.1 Results for modified Bessel functions

Proof of Proposition 8:

Proof. By the convolution formula for two infinite series, it holds for any two complex sequences {ak}k∈N0 , {bk}k∈N0

that ( ∞∑
k=0

akx
k

)
·

( ∞∑
k=0

bkx
k

)
=

∞∑
k=0

ckx
k, (32)

where

ck :=
k∑

n=0

ak−nbn.

Hence, it holds( ∞∑
k=0

xk

(k!)2

)2

=

( ∞∑
k=0

1

(k!)2
xk

)
·

( ∞∑
k=0

1

(k!)2
xk

)
=

∞∑
k=0

ckx
k =

∞∑
k=0

1

(k!)2

(
2k

k

)
xk,

since

ck =

k∑
n=0

1

((k − n)!)2
· 1

(n!)2
· (k!)

2

(k!)2
=

1

(k!)2

k∑
n=0

(
k

n

)2

=
1

(k!)2

(
2k

k

)
.

We can compute the middle term in (26) analogously:( ∞∑
k=0

xk

(k!)2

)3

=

( ∞∑
k=0

xk

(k!)2

)2

·

( ∞∑
k=0

xk

(k!)2

)
=

( ∞∑
k=0

xk

(k!)2

(
2k

k

))
·

( ∞∑
k=0

xk

(k!)2

)
=

∞∑
k=0

dkx
k =

∞∑
k=0

ak
xk

(k!)2
,

where

dk =
k∑

n=0

1

((k − n)!)2

(
2(k − n)

k − n

)
1

(n!)2
· (k!)

2

(k!)2
=

1

(k!)2

k∑
n=0

(
k

k − n

)2(2(k − n)

k − n

)
=

1

(k!)2
ak.

The second equation of (26) holds due to the definition of the modified Bessel function of first order.

Proof of Corollary 1:

Proof. Using formula (26) and the identity∫ ∞

0

tk

(k)!
e−t dt = 1, k ∈ N0

yields

∞∑
k=0

xk

k!
ak =

∫ ∞

0

∞∑
k=0

(xt)k

(k!)2
ake

−t dt =

∫ ∞

0
I30

(
2
√
xt
)
e−t dt,

where we interchanged the order of the sum and the integral above. This proves the relation (27).
To show (28)-(29), notice that∫ ∞

0
I30

(
2
√
xt
)
e−t dt =

∞∑
k even

xk

k!
ak +

∞∑
k odd

xk

k!
ak,
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∫ ∞

0
I30
(
2
√
−xt

)
e−t dt =

∞∑
k even

xk

k!
ak −

∞∑
k odd

xk

k!
ak.

Summing up the left and the right–hand sides of the above relations and dividing by two yields

∞∑
k even

xk

k!
ak =

1

2

∫ ∞

0

(
I30

(
2
√
xt
)
+ I30

(
2i
√
xt
))

e−t dt,

∞∑
k odd

xk

k!
ak =

1

2

∫ ∞

0

(
I30

(
2
√
xt
)
− I30

(
2i
√
xt
))

e−t dt,

which finishes the proof.

Proof of Theorem 5. Rewrite the statement (30) in a more convenient way taking e3x/2 to the right–hand
side and evaluating the whole expression at 2x:∑

n∈Z
I3n(2x) =

∫ ∞

0
I30

(
2
√
xt
)
e−t−3x dt. (33)

The main idea of this proof is to show that both sides of (33) are the unique solution of the Cauchy
problem

Axu(x) = 0,

subject to the initial conditions:

u(0) = 1, Dxu(x)|x=0 = 0, D2
xu(x)

∣∣
x=0

= 6.

The operator Ax is defined as

Ax = x2D3
x −

(
x2 − 3x

)
D2

x −
(
24x2 + 2x− 1

)
Dx −

(
36x2 + 24x

)
, (34)

where Dx = d
dx represents the differential operator with respect to the x coordinate. Notice that the explicit

form of operator (34) was first found as an annihilator for the right–hand side of (33) by means of the
Wolfram Mathematica package HolonomicFunction, V. 1.7.3 [28,29].

First, let us show that Ax annihilates the left-hand side of (33). Relations (10)–(11) together with some
simple calculations yield

AxIn(2x) = x2
d3

dx3
In(2x)−

(
x2 − 3x

) d2

dx2
In(2x)−

(
24x2 + 2x− 1

) d

dx
In(2x)−

(
36x2 + 24x

)
=

(
−3n− 9n2 +

27n3

x
+ 12nx− 48x2

)
I3n(2x) +

(
78n2 − 6x− 24nx+ 24x2

)
I2n(2x)In+1(2x)

+
(
72nx− 24x2

)
In(2x)I

2
n+1(2x) + 48x2I3n+1(2x).

Since In(x) = I−n(x) and nIn(2x) = x (In−1(2x)− In+1(2x)), we get∑
n∈Z

nI3n(2x) =
∑
n∈Z

n3I3n(2x) = 0,

and ∑
n∈Z

n2I3n(2x) =
∑
n∈Z

nIn(2x)x (In−1(2x)− In+1(2x)) = x
∑
n∈Z

nI2n(x)In−1(2x)− x
∑
n∈Z

nI2n(x)In+1(2x)
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=x
∑
n∈Z

(−n)I2n(x)In+1(2x)− x
∑
n∈Z

nI2n(x)In+1(2x) = −2x
∑
n∈Z

nI2n(x)In+1(2x),

as well as ∑
n∈Z

nIn(x)I
2
n+1(x) =

∑
n∈Z

nI−n(x)I
2
−n−1(x) = −

∑
n∈Z

(n+ 1)In+1(x)I
2
n(x).

Therefore, it holds∑
n∈Z

AxI
3
n(2x) =

∑
n∈Z

(
18nx+ 6(13n2 − x− 4nx+ 4x2)− 24x(3(n+ 1) + x)

)
I2n(2x)In+1(2x)

=78
∑
n∈Z

(
n2 − (n+ 1)x

)
I2n(2x)In+1(2x).

Moreover, noting that∑
n∈Z

n2I2n(2x)In+1(2x) =x2
∑
n∈Z

(In−1(2x)− In+1(2x))
2 In+1(2x)

=x2
∑
n∈Z

I2n−1(2x)In+1(2x)− 2In−1(2x)I
2
n+1(2x) + I3n+1(2x)

=− x2
∑
n∈Z

I2n(2x)In+2(2x) + x2
∑
n∈Z

I3n(2x),

and∑
n∈Z

(n+ 1)I2n(2x)In+1(2x) =x
∑
n∈Z

I2n(2x) (In(2x)− In+2(2x)) = x
∑
n∈Z

I3n(2x)− x
∑
n∈Z

I2n(2x)In+2(2x),

we obtain

Ax

∑
n∈Z

I3n(2x) =
∑
n∈Z

AxI
3
n(2x) = 0.

Next, we show that Ax

∫∞
0 f(t, x) dt = 0, where f(t, x) := e−3x−tI30

(
2
√
xt
)
is the integrand on the

right-hand side of (33). To do so, use the following special cases of relation (11):

I3

(
2
√
tx
)
=I1

(
2
√
tx
)
− 2√

tx
I2

(
2
√
tx
)
,

I2

(
2
√
tx
)
=I0

(
2
√
tx
)
− 1√

tx
I1

(
2
√
tx
)
.

Then, we get

Axf(t, x) =(3x− 1)f
(0)
3,0 + (−10x+ 1)f

(1)
3,0 + (9x− 10)

√
xf

(1/2)
2,1 + 7

√
xf

(3/2)
2,1 − 20xf

(1)
1,2 + 2

√
xf

(3/2)
0,3 ,

where

f
(α)
k,l = f

(α)
k,l (t, x) := e−3x−ttαIk0 (2

√
tx)I l1(2

√
tx), k, l ∈ N0, α ∈ R.

Note that f(t, x) = f
(0)
3,0 (t, x), and define

F
(α)
k,l = F

(α)
k,l (x) :=

∫ ∞

0
f
(α)
k,l (t, x) dt, k, l ∈ N0, α ∈ R.
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For the sake of readability, in the following we drop the argument
(
2
√
tx
)
of all Bessel functions. So,

integrating by parts yields

F
(α)
k,l =

∫ ∞

0
e−3x−ttαIk0 I

l
1 dt = −e−3x−ttαIk0 I

l
1

∣∣∣∞
0

+

∫ ∞

0
e−3x−t

(
tαIk0 I

l
1

)′
dt = e−3x1(α = 0, l = 0)

+α

∫ ∞

0
e−3x−ttα−1Ik0 I

l
1 dt+ k

∫ ∞

0
e−3x−ttαIk−1

0 I0I
l
1

√
x

t
dt+ l

∫ ∞

0
e−3x−ttαIk0 I

l−1
1 I1

√
x

t
dt. (35)

Then, the last integral of (35) can be rewritten as

l

∫ ∞

0
e−3x−ttαIk0 I

l−1
1

(I0 + I2)
√
x

2
√
t

dt = l

∫ ∞

0
e−3x−ttαIk0 I

l−1
1

(√
xI0√
t

− I1
2t

)
dt

= l

∫ ∞

0
e−3x−ttαIk+1

0 I l−1
1

√
x

t
dt− l

∫ ∞

0
e−3x−ttαIk0 I

l
1

1

2t
dt.

Therefore,

F
(α)
k,l =e−3x1(α = 0, l = 0) + (α− l/2)F

(α−1)
k,l + k

√
xF

(α−1/2)
k−1,l+1 + l

√
xF

(α−1/2)
k+1,l−1 .

In particular, by applying

F
(1)
3,0 = F

(0)
3,0 + 3

√
xF

(1/2)
2,1 , F

(3/2)
2,1 = F

(1/2)
2,1 + 2

√
xF

(1)
1,2 +

√
xF

(1)
3,0 , F

(1)
2,1 =

1

2
F

(0)
2,1 + 2

√
xF

(1/2)
1,2 +

√
xF

(1/2)
3,0 ,

F
(1)
1,2 =

√
xF

(1/2)
0,3 + 2

√
xF

(1/2)
2,1 , F

(3/2)
0,3 = F

(1/2)
0,3 + 3

√
xF

(1)
1,2 , F

(1)
0,3 = −1

2
F

(0)
0,3 + 3

√
xF

(1/2)
1,2

to

Ax

∫ ∞

0
f(t, x) dt =((3x− 1)F

(0)
3,0 + (−10x+ 1)F

(1)
3,0 + (9x− 10)

√
xF

(1/2)
2,1 + 7

√
xF

(3/2)
2,1 − 20xF

(1)
1,2 + 2

√
xF

(3/2)
0,3 ,

we see that

Ax

∫ ∞

0
f(t, x) dt = 0.

Finally, we show that both sides of (33) coincide in at least one point. If Ax is the annihilator for the
analytic function

g(x) :=
∞∑
j=0

cjx
j ,

the coefficients have to satisfy the recurrence relation

cj =
1

j3

(
(j − 1)jcj−1 + 24(j − 1)cj−2 + 36cj−3

)
, j ∈ N0.

Therefore, once g(0) = c0, g
′(0) = c1, g

′′(0) = 2c2 are given, the whole sequence {cj}j∈N0 is determined
uniquely. To prove (33), it remains to show that the initial values of its left- and right-hand side as well as
their first two derivatives at x = 0 coincide.

By In(0) = 1(n = 0) and the derivative formula (10), one gets∑
n∈Z

In(2x)
3
∣∣∣
x=0

=
∑
n∈Z

In(0)
3 = 1,

Dx

∑
n∈Z

In(2x)
3
∣∣∣
x=0

=
∑
n∈Z

6In(0)
2In+1(0) = 0,
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D2
x

∑
n∈Z

In(2x)
3
∣∣∣
x=0

=
∑
n∈Z

(
12In−1(0)In(0)

2In+1(0) + 12In(0)In+1(0)
2 + 6In(0)

3 + 6In(0)
2In+2(0)

)
= 6.

On the other hand, it is easy to see that

f(t; 0) = e−t, Dxf(t; 0) = 3e−t(t− 1), D2
xf(t; 0) =

3

2
e−t(5t2 − 12t+ 6),

and, hence ∫ ∞

0
f(t; 0) = 1,

∫ ∞

0
Dxf(t; 0) = 0,

∫ ∞

0
D2

xf(t; 0) = 6,

which proves the claim.

5.2 Densities and characteristic functions of H and T

Proof of Proposition 4:

Proof. For k ∈ N, Proposition 2 and Proposition 3 imply that

µ2k(H) =

∫
R
x2kfX(x) dx. (36)

Next, we need to adjust fX such that (36) also holds for odd orders 2k + 1, k ∈ N0. Since µ2k+1(H) = 0,
the corresponding density has to be symmetric. Therefore, we expand the support of fX onto the whole
real line by replacing x by its absolute value. Further, we normalize the density dividing it by 2. It follows
immediately that fH is a density, and its kth moment coincides with µk(H) for k ∈ N. Due to Proposition 1,
the support of fH is the interval [−3,−3]. Thus, the distribution of H is uniquely identified by its moment
sequence with density fH , cf. e.g. [26, Problem 10, p. 101].

Using the relationship µk (T ∗) = µ2k(H), k ∈ N0, and changing variables x 7→
√
z we get

µk (T ∗) =

∫ ∞

0
x2kfH(x) dx =

∫ ∞

0
x2k

∫ ∞

0
txJ0(tx)J

3
0 (t) dtdx

=

∫ ∞

0

zk

2
√
z

∫ ∞

0
t
√
zJ0(t

√
z)J3

0 (t) dt dz =

∫ ∞

0
zk
∫ ∞

0

1

2
tJ0(t

√
z)J3

0 (t) dt dz.

It is easy to see that fT (z) :=
1
2

∫∞
0 tJ0(t

√
z)J0(t)

3 dt is a density with support [0, 9] and kth moments µk(T ∗)
for k ∈ N. Hence, fT is the distribution density of T . By the same change of variables, both expressions for
fH and fT via 2F1 follow directly from Proposition 1.

Proof of Proposition 5:

Proof. Let us prove relation (17) by calculating the generating function

GH(x) :=

∞∑
k=0

ak
(2k)!

x2k, x ∈ C,

of the moment sequence µ(H) and then setting x = is. Using relation∫ 1

0
tk(1− t)k dt =

(k!)2

(2k + 1)!
, k ∈ N0,

18



and formula (26), we write

GH(x) =

∞∑
k=0

ak
(k!)2

(k!)2

(2k)!
x2k =

∞∑
k=0

ak
(k!)2

(k!)2

(2k + 1)!

d

dx
x2k+1 =

d

dx

[
x

∫ 1

0

∞∑
k=0

ak
(k!)2

tk(1− t)kx2k dt

]

=
d

dx

[
x

∫ 1

0
I30

(
2x
√
t(1− t)

)
dt

]
,

where we exchanged the order of the sum, integral and derivative.
Relation (18) follows from Corollary 1, formula (27) after the substitution t = − log y in the integral and

putting x = is.

5.3 Approximation of random eigenvalues of T

Now, we can show our Theorem 4.

Proof of Theorem 4. In order to prove the claim we notice that the support of 3 + 2Yb is a compact interval
[0, 9] for every b ∈ R. Hence, the convergence in distribution as b → +∞ is equivalent to the convergence
of moments of 3 + 2Yb to those of T , see e.g. [26, Problem 11, p. 101]. For simplicity, let us consider even
moments only. The following computation works analogously for odd moments with some changes presented
at the end of this proof.

Before we show

E (3 + 2Yb)
2k −→

b→+∞
ET 2k =

∑
k1+k2+k3=2k

(
2k

k1, k2, k3

)2

, k ∈ N0,

let us state two observations.
First, for k ∈ N0 recall the well-known formulae

cosk(x) =


1
2k

(
k

k/2

)
+ 1

2k−1

k
2
−1∑

n=0

(
k
n

)
cos ((k − 2n)x) , if k is even,

1
2k−1

k−1
2∑

n=0

(
k
n

)
cos ((k − 2n)x) , if k is odd.

(37)

Second, for m1,m2,m3 ∈ N0 the following two cases hold.
1. Case: If mi ̸= mj for (at least) one pair (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, we get

lim
b→∞

1

b

∫ b

0
cos (m1x) cos (m2βx) cos (m3(1 + β)x) dx

= lim
b→∞

1

4b

(
sin ((m1 −m2β +m3(1 + β)) b)

m1 −m2β +m3(1 + β)
+

sin ((m1 +m2β −m3(1 + β)) b)

m1 +m2β −m3(1 + β)

+
sin ((m1 −m2β −m3(1 + β)) b)

m1 −m2β −m3(1 + β)
+

sin ((m1 +m2β +m3(1 + β)) b)

m1 +m2β +m3(1 + β)

)
= 0. (38)

2. Case: For m := m1 = m2 = m3 ̸= 0, we get

lim
b→∞

1

b

∫ b

0
cos (m1x) cos (m2βx) cos (m3(1 + β)x) dx

= lim
b→∞

1

4b

(
b+

sin (2mb)

2m
+

sin (2βmb)

2βm
+

sin (2(1 + β)mb)

2(1 + β)m

)
=

1

4
. (39)
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Due to the binomial theorem it holds

lim
b→∞

E (3 + 2Yb)
2k = lim

b→∞
E

 2k∑
k1=0

(
2k

k1

)
3k122k−k1Y 2k−k1

b

 =

2k∑
k1=0

(
2k

k1

)
3k122k−k1 lim

b→∞
EY 2k−k1

b ,

for k ∈ N0. Next, we consider the limit separately. We apply the multinomial theorem to Y 2k−k1
b and get

lim
b→∞

EY 2k−k1
b = lim

b→∞
E (cosXb + cos(βXb) + cos ((1 + β)Xb))

2k−k1

= lim
b→∞

E

2k−k1∑
k2=0

2k−k1−k2∑
k4=0

(
2k − k1

k2, k4, 2k − k1 − k2 − k4

)
· (cosXb)

k2(cos(βXb))
k4(cos ((1 + β)Xb))

2k−k1−k2−k4
)

=

2k−k1∑
k2=0

2k−k1−k2∑
k4=0

(
2k − k1

k2, k4, 2k − k1 − k2 − k4

)

· lim
b→∞

1

b

∫ b

0
(cosx)k2(cos(βx))k4(cos ((1 + β)x))2k−k1−k2−k4 dx.

Due to (37), (38), (39) we need to consider both cases when all three k1, k2, k4 are either even or odd.
Otherwise, the limit of the integral is zero. In the case of even kj , it holds

lim
b→∞

1

b

∫ b

0
(cosx)k2(cos(βx))k4(cos ((1 + β)x))2k−k1−k2−k4 dx

=
1

22k−k1

(
k2

k2/2

)(
k4
k4/2

)(
2k − k1 − k2 − k4

2k−k1−k2−k4
2

)
+

1

22k−k1−1

k2
2
−1∑

n=0

(
k2
n

)(
k4

k4−k2
2 + n

)(
2k − k1 − k2 − k4
2k−k1−2k2−k4

2 + n

)
.

In the case of odd kj , we get

lim
b→∞

1

b

∫ b

0
(cosx)k2(cos(βx))k4(cos ((1 + β)x))2k−k1−k2−k4 dx

=
1

22k−k1−1

k2−1
2∑

n=0

(
k2
n

)(
k4

k4−k2
2 + n

)(
2k − k1 − k2 − k4
2k−k1−2k2−k4

2 + n

)
.

In total, it follows that

lim
b→∞

E (3 + 2Yb)
2k =

∑
k1+k2+k3+k4=k

32k1
(

2k

2k1, 2k2, 2k3, 2k4

)(
2k2
k2

)(
2k3
k3

)(
2k4
k4

)
︸ ︷︷ ︸

=:rk

+2
∑

k1+k2+k3+k4=k

32k1
(

2k

2k1, 2k2, 2k3, 2k4

) k2−1∑
n=0

(
2k2
n

)(
2k3

k3 − k2 + n

)(
2k4

k4 − k2 + n

)
︸ ︷︷ ︸

=:sk

+2
∑

k1+k2+k3+k4=k−2

32k1+1

(
2k

2k1+1, 2k2+1, 2k3+1, 2k4+1

) k2∑
n=0

(
2k2+1

n

)(
2k3+1

k3−k2+n

)(
2k4+1

k4−k2+n

)
︸ ︷︷ ︸

=:tk

,

where these sums run over indices k1, . . . , k4 ∈ N0: k1 + . . . + k4 = k or k − 2. Here we tacitly use the
convention that binomial coefficient

(
a
b

)
= 0 whenever a = 0 or b < 0.
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Next, we compute the generating functions of sequences rk, sk, tk separately. Note that

∞∑
k=0

32kxk

(2k)!
= cosh

(
3
√
x
)

and

∞∑
k=0

xk

(k!)2
= I0

(
2
√
x
)
.

Hence, one gets

H1(x) :=
∞∑
k=0

xk

(2k)!
rk = cosh

(
3
√
x
)
I30
(
2
√
x
)
.

Further, recall that for a := k2 − n it holds

∞∑
k=|a|

xk

(k − a)!(k + a)!
= I2a

(
2
√
x
)

and

∞∑
n=0

xn

n!(n+ 2a)!
= I2a

(
2
√
x
)
x−a.

This yields

H2(x) :=
∞∑
k=0

xk

(2k)!
sk = 2 cosh(3

√
x)

∞∑
k2=0

k2−1∑
n=0

xk2

n!(2k2 − n)!
I22(k2−n)

(
2
√
x
)

= 2 cosh(3
√
x)

∞∑
n=0

∞∑
k2=n+1

xk2

n!(2k2 − n)!
I22(k2−n)

(
2
√
x
)

= 2 cosh
(
3
√
x
) ∞∑
a=1

( ∞∑
n=0

xn

n!(n+ 2a)!

)
xaI22a(2

√
x) = 2 cosh

(
3
√
x
) ∞∑
a=1

I32a
(
2
√
x
)
.

Next define a := 2(k2 − n) + 1, and note that

∞∑
k1=0

32k1+1xk1

(2k1 + 1)!
= sinh(3

√
x)x−1/2,

∞∑
k3=max{a,−a−1}

xk3

(k3 − a)!(k3 + a+ 1)!
= I2a−1(2

√
x)x−1/2,

as well as

∞∑
n=0

1

n!(n+ a)!
xn = Ia(2

√
x)x−a/2.

Hence, we get

H3(x) :=
∞∑
k=0

xk

(2k)!
tk = 2 sinh(3

√
x)x−1/2

∞∑
k2=0

k2∑
n=0

xk2

n!(2k2 − n+ 1)!
I22(k2−n)−1(2

√
x)x

= 2 sinh(3
√
x)x−1/2

∞∑
n=0

∞∑
k2=n

xk2

n!(2k2 − n+ 1)!
I22(k2−n)−1(2

√
x)x

= 2 sinh(3
√
x)x−1/2

∞∑
k′2=0

( ∞∑
n=0

xn

n!(n+ 2k′2 + 1)!

)
xk

′
2I22k′2+1(2

√
x)x

= 2 sinh(3
√
x)

∞∑
k′2=0

I32k′2+1(2
√
x),

where k′2 := k2 − n. Finally, we have

H(x) =H1(x) +H2(x) +H3(x)
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=cosh
(
3
√
x
)
I30
(
2
√
x
)
+ 2 cosh

(
3
√
x
) ∞∑
k=1

I32k
(
2
√
x
)
+ 2 sinh

(
3
√
x
) ∞∑
k=1

I32k−1

(
2
√
x
)

=cosh
(
3
√
x
)∑
n∈Z

I32n
(
2
√
x
)
+ sinh

(
3
√
x
)∑
n∈Z

I32n+1

(
2
√
x
)
.

It remains to prove that
∑∞

k=0
xk

(2k)!a2k = H(x), or, equivalently,

∞∑
k=0

x2k

(2k)!
a2k = H

(
x2
)
.

Using representation (28) from Corollary 1 and Theorem 5 yields

∞∑
k=0

x2k

(2k)!
a2k =

1

2

∫ ∞

0
I30

(
2
√
xt
)
e−t dt+

1

2

∫ ∞

0
I30
(
2
√
−xt

)
e−t dt

(30)
=

1

2
e3x
∑
n∈Z

I3n (2x) +
1

2
e−3x

∑
n∈Z

I3n (−2x)

=
1

2
e3x
∑
n∈Z

I32n (2x) +
1

2
e3x
∑
n∈Z

I32n+1 (2x) +
1

2
e−3x

∑
n∈Z

I32n (−2x)︸ ︷︷ ︸
=I32n(2x)

+
1

2
e−3x

∑
n∈Z

I32n+1 (−2x)︸ ︷︷ ︸
=−I32n+1(2x)

=
1

2

(
e3x − e−3x

)
︸ ︷︷ ︸

=sinh(3x)

∑
n∈Z

I32n (2x) +
1

2

(
e3x + e−3x

)
︸ ︷︷ ︸

=cosh(3x)

∑
n∈Z

I32n+1 (2x) = H
(
x2
)
,

which finishes the proof of convergence in (20). Analogously, one gets in the odd case

E (3 + 2Yb)
2k+1 −→

b→∞
ET 2k+1 =

∑
k1+k2+k3=2k+1

(
2k + 1

k1, k2, k3

)2

, k ∈ N0.

Due to (37), (38), (39), it follows that

lim
b→∞

E (3 + 2Yb)
2k+1 =

k∑
k1=0

k−k1∑
k2=0

k3∑
k4=0

32k1+1 2k + 1

2k1 + 1

(
k

k1, k2, k4, k3 − k4

)2(2k
k

)(
2k1
k1

)−1

︸ ︷︷ ︸
=:r̃k

+ 2
k∑

k1=0

k−k1∑
k2=0

k3−1∑
k4=0

k2∑
n=0

32k1
(

2k+1

2k1

)(
2(k−k1)+1

2k2+1,2k4+1,2(k3−k4)−1

)(
2k2+1

n

)(
2k4+1

k4−k2+n

)(
2(k3−k4)−1

k3−k2−k4−1+n

)
︸ ︷︷ ︸

=:s̃k

+ 2

k∑
k1=0

k−k1∑
k2=0

k3∑
k4=0

k2−1∑
n=0

32k1+1

(
2k+1

2k1+1

)(
2(k−k1)

2k2,2k4,2(k3−k4)

)(
2k2

n

)(
2k4

k4−k2+n

)(
2(k3−k4)

k3−k2−k4+n

)
︸ ︷︷ ︸

=:t̃k

,

where k3 := k − k1 − k2. The generating functions of r̃k, s̃k, t̃k are given as

H̃1(x) :=
∞∑
k=0

xk+1/2

(2k + 1)!
r̃k = sinh

(
3
√
x
)
I30
(
2
√
x
)
,

H̃2(x) :=

∞∑
k=0

xk+1/2

(2k + 1)!
s̃k = 2 cosh

(
3
√
x
) ∞∑
a=0

I32a+1

(
2
√
x
)
,

H̃3(x) :=
∞∑
k=0

xk+1/2

(2k + 1)!
t̃k = 2 sinh

(
3
√
x
) ∞∑
n=0

I32n(2
√
x).
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Finally, we have

H̃(x) :=H̃1(x) + H̃2(x) + H̃3(x) = sinh
(
3
√
x
)∑
n∈Z

I32n
(
2
√
x
)
+ cosh

(
3
√
x
)∑
n∈Z

I32n+1

(
2
√
x
)
.

It remains to prove that

∞∑
k=0

x2k+1

(2k + 1)!
a2k+1 = H̃

(
x2
)
.

Formula (29) and the identity (30) yield

∞∑
k=0

x2k+1

(2k + 1)!
a2k+1 =

1

2

∫ ∞

0
I30

(
2
√
xt
)
e−t dt− 1

2

∫ ∞

0
I30
(
2
√
−xt

)
e−t dt

=
1

2

(
e3x − e−3x

)
︸ ︷︷ ︸

=sinh(3x)

∑
n∈Z

I32n (2x) +
1

2

(
e3x + e−3x

)
︸ ︷︷ ︸

=cosh(3x)

∑
n∈Z

I32n+1 (2x) = H̃
(
x2
)
,

which finishes the proof of the odd case.
Approximation (21) follows from (20) by the continuous mapping theorem taking distributional equality

(16) into account.

Proof of Proposition 7. Interpret independent random variables U1, U2 ∼ U [0, 2π] as polar angles on a unit
circle. Then convergence (24) is equivalent to(

eiXb , eiβXb

)
d−→

b→∞

(
eiU1 , eiU2

)
. (40)

Taking the real and the imaginary parts of both sides of (40) leads to showing

(cos(Xb), sin(Xb), cos(βXb), sin(βXb))
d−→

b→∞
(cosU1, sinU1, cosU2, sinU2),

or equivalently

lim
b→∞

Φb(s, t, u, v) = I0(
√

s2 + t2)I0(
√
u2 + v2), s, t, u, v ∈ R,

where

Φb(s, t, u, v) : = E[exp{s cos(Xb) + t sin(Xb) + u cos(βXb) + v sin(βXb)}],

I0(
√

s2 + t2) = E[exp{s cosU1 + t sinU1}]

are the corresponding characteristic functions. Now we check the convergence of moments. Noting that

Φb(s, t, u, v) =
∑

j,k,l,m≥0

sjtkulvm

j!k!l!m!
E[cosj(Xb) sin

k(Xb) cos
l(βXb) sin

m(βXb)]

and

I0(
√

s2 + t2) =
∑
m≥0

m even

(s2 + t2)m/2

(m/2)!(m/2)!2m
=
∑
m≥0

m even

∑
j+k=m
j,k even

(
m/2

j/2

)
sjtk

(m/2)!(m/2)!2m

=
∑
j,k≥0

j,k even

sjtk

((j + k)/2)!(j/2)!(k/2)!2j+k
,
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it suffices to show that

lim
b→∞

E[cosj(Xb) sin
k(Xb) cos

l(βXb) sin
m(βXb)]

=


j!k!l!m!

(j + k)/2)!(j/2)!(k/2)!((l +m)/2)!(l/2)!(m/2)!2j+k+l+m
, j, k, l,m even,

0, otherwise.

This can be confirmed using relations (37)-(39) similar to the proof of Theorem 4.

6 Summary

This paper investigates the distribution of a randomly chosen eigenvalue H (T , respectively) of the adjacency
matrix of two infinite regular lattices on the plane: hexagonal lattice (graphene) and its dual, the triangulation
of plane. Explicit formulae for the probability densities, moment generating functions, and characteristic
functions have been obtained. A connection to symmetric random walks on these lattices as well as planar
random flights was established. We presented a direct simulation approach for generating random eigenvalues
T and H. Additionally, we provide an approximation theorem, which approximates these eigenvalues by a
simple function involving the sum of three cosines of a uniformly distributed random variable with irrational
frequencies. It was also shown how this approximation is related to the ergodic theory. As a side effect of
this research, a new identity for the series of third powers of modified Bessel functions In(·), n ∈ Z, was
proven. This series can be thus expressed as an integral of I30 (·).
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[24] B. Grünbaum and G. C. Shephard. Tilings and patterns. Courier Dover Publications, 1987.

[25] T. Horiguchi. Lattice Green’s functions for the triangular and honeycomb lattices. Journal of Mathe-
matical Physics, 13(9):1411–1419, 1972.

[26] O. Kallenberg. Foundations of Modern Probability. Probability and Its Applications. Springer, 2002.

[27] P. Kasteleyn. Graph theory and crystal physics. In Graph theory and theoretical physics, pages 43–110.
Academic Press, London, 1967.

[28] C. Koutschan. Advanced applications of the holonomic systems approach. ACM Commun. Comput.
Algebra, 43(3/4):119, 2010.

[29] C. Koutschan. Holonomicfunctions (user’s guide). Technical Report in RISC Report Series, University
of Linz, Austria, https://www3.risc.jku.at/publications, 2010.

[30] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics.
Wiley, first edition, 1974.

[31] U. Müller and H. Wondratschek. International Tables for Crystallography: Volume A1 Symmetry
Relations Between Space Groups. Kluwer Academic Publishers, 2004.

[32] L. Rayleigh. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10:73–78, 1880.

[33] A. D. Rukhovich. On the growth rate of the number of fullerenes. Russian Mathematical Surveys,
73:734–736, 2018.

[34] N. Sloane. On-line encyclopedia of integer sequences. http://oeis.org, 2010.

[35] W. P. Thurston. Shapes of polyhedra and triangulations of the sphere. In The Epstein birthday schrift,
volume 1 of Geom. Topol. Monogr., pages 511–549. Geom. Topol. Publ., 1998.

[36] M. Trott. A tale of three cosines – an experimental mathematics adventure. Wolfram blog. Accessed:
02.06.2023. https://blog.wolfram.com/2018/04/24/a-tale-of-three-cosines-an-experimental-mathematics-
adventure/, April 2018.

[37] G. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge,
1966.
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