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Foreword

These lecture notes are based on the undergraduate course “Stable distributions” which origi-
nally took place at Ulm University during the summer term 2016.

In modern applications, there is a need to model phenomena that attain very high numerical
values occuring rarely. In probability theory, one talks about distributions with heavy tails.
One class of such distributions are stable laws which (apart from the Gaussian one) do not
have a finite variance. So, the aim of this course is to give an introduction into the theory of
stable distributions, its basic facts and properties.
The choice of material of the course is selective and is mainly dictated by its introductory

nature and limited lecture scope. The main topics of these lecture notes are
1) Stability with respect to convolution
2) Characteristic functions and densities
3) Non-Gaussian limit theorem for i.i.d. random summands
4) Representations and tail properties, symmetry and skewness
5) Simulation.
For each topic, several exercises are included for deeper understanding of the subject. Since

the target audience are undergraduate students of mathematics, no prerequisites other than
basic probability course are assumed.
The author hopes you find these notes helpful. If you notice an error, please do not hesitate

to contact him at evgeny.spodarev@uni-ulm.de.
The author is also grateful to Dr. Vitalii Makogin for typesetting this lectures in LATEX,

making illustrations, and the selection of exercises.

02.11.2016 Prof. Dr. Evgeny Spodarev
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1 Introduction
Let (Ω,F ,P) be an abstract probability space. The property of stability of random variables
with respect to (w.r.t.) convolution is known for you from the basic course of probability. Let
X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) be independent random variables. Then X1 + X2 ∼

N(µ1 + µ2, σ
2
1 + σ2

2). One can rewrite this property as follows. Let X1
d= X2

d= X ∼ N(0, 1)
and X,X1, X2 be independent. Then ∀a, b ∈ R aX1 + bX2 ∼ N(0, a2 + b2), and so

aX1 + bX2
d=
√
a2 + b2︸ ︷︷ ︸
c≥0

X. (1.0.1)

Additionally, for any random variables X1, . . . , Xn i.i.d., Xi
d= X,∀i = 1, . . . , n, it holds∑n

i=1Xi
d=
√
nX. Property (1.0.1) rewrites in terms of cumulative distribution functions of

X1, X2, X as Φ
(
x
a

)
?Φ

(
x
b

)
= Φ

(
x
c

)
, x ∈ R, where Φ(x) = 1√

2π
∫ x
−∞ e

−t2/2dt, x ∈ R, and ? is the
convolution operation.
It turns out that the normal law is not unique satisfying (1.0.1). Hence, it motivates the

following definition.
Definition 1.0.1
A random variable X is stable if ∀a, b ∈ R+∃c, d ∈ R, c > 0 s.t.

aX1 + bX2
d= cX + d, (1.0.2)

where X1, X2 are independent copies of X. X as above is called strictly stable if d = 0.
Remark 1.0.1
Let FX be the cumulative distribution function (c.d.f.) of X, i.e., FX(y) = P(X ≤ y), y ∈ R.
Then the property (1.0.2) rewrites as FX

(y
a

)
? FX

(y
b

)
= FX

(
y−d
c

)
, y ∈ R, if a, b, c /= 0. The

case c = 0 corresponds to X ≡ const a.s., which is a degenerate case. Obviously, a constant
random variable is always stable. The property (1.0.1) shows that X ∼ N(0, 1) is strictly
stable.
Exercise 1.0.1
Show that X ∼ N(µ, σ2) is stable for any µ ∈ R, σ2 > 0. Find the parameters c and d in (1.0.2)
for it. Prove that X ∼ N(µ, σ2) is strictly stable if and only if (iff) µ = 0.

The notion of (strict) stability was first introduced by Paul Lévy in his book Calcul des
probabilités (1925). However, stable distributions (different from the Gaussian one) were known
long before. Thus, French mathematicians Poisson and Cauchy some 150 years before Lévy
found the distribution with density

fλ(x) = λ

π(x2 + λ2) , x ∈ R, (1.0.3)

depending on parameter λ > 0. Now this distribution bears the name of Cauchy, and it is
known to be strictly stable. Its characteristic function ϕλ(t) =

∫
R e

itxfλ(x)dx, t ∈ R has the
form ϕλ(t) = e−λ|t|.
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1 Introduction 3

In 1919 the Danish astronomer J. Holtsmark found a law of random fluctuation of the gravi-
tational field of some stars in space, which had characteristic function ϕ(t) = e−λ‖t‖

3/2
, t ∈ R3,

leading to the family of characteristic functions

ϕ(t) = e−λ|t|
α
, t ∈ R, λ > 0. (1.0.4)

For α = 3/2, it appeared to be strictly stable and now bears the name of Holtsmark. It needed
some time till it was proven by P. Lévy in 1927 that (1.0.4) is a valid characteristic function
of some (strictly stable) distribution only for α ∈ (0, 2]. The theory of stable random variables
took its modern form after 1938 when the books by P. Lévy and A. Khinchin were published.
Let us give further examples of stable laws and their applications.

Example 1.0.1 (Constants):
Any constant c is evidently a stable random variable.
Example 1.0.2 (Cauchy distribution in nuclear physics):
Let a point source of radiation R be located at (0, 0, 1) and radiate its elementary particles
onto a screen S = {(x, y, 0), x, y ∈ R}. The screen S is covered by a thin layer of metal so that
it yields light flashes as the emitted particles reach it. Let (U, V, 0) be the coordinates of one

Figure 1.1:

of these (random) flashes. Due to the symmetry of this picture (the whole process of radiation
is rotationally symmetric around axis RA cf. Fig. 1.1) it is sufficient to find the distribution
of one coordinate of (u, v), say, U d= V. Project the whole picture onto the plane (x, z). Let
FU (x) = P(U ≤ x) be the c.d.f. of U. The angle α to the ray RU varies in (0, π) if it arrives at S.
It is logic to assume that α ∼ U [0, π]. Since tg

(
α− π

2
)

= U
1 = U, it follows α = π/2 + arctanU.

Then for any x > 0 {U ≤ x} = {tg(α− π/2) ≤ x} = {α ≤ π/2 + arctan x}. So,

FU (x) = P(α ≤ π/2 + arctan x) = π/2 + arctan x
π

= 1
2 + 1

π
arctan x

=
∫ x

−∞

1
π

dy

1 + y2 =
∫ x

−∞
f1(y)dy,

with f1(·) as in (1.0.3), λ = 1. So, U ∼ Cauchy(0, 1). For instance, it describes the distribution
of energy of unstable states in nuclear reactions (Lorenz law).
Example 1.0.3 (Theory of random matrices):
Let AnYn = Bn be a random system of n linear equations, where An =

(
X

(n)
ij

)n
i,j=1

be a random
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(n × n)−matrix, and Bn =
(
B

(n)
i

)n
i=1

be a random n − dim vector in Rn. If det(An) /= 0, its
solution is Yn = A−1

n Bn (for det(An) = 0, put Yn = 0 a.s.). As n → ∞, the solution Yn is
numerically very hard to compute. Then the following approximation (as n → ∞) is helpful.
Assume that for each n ∈ N An and Bn are mutually independent, EX(n)

ij = EB(n)
i = 0,

VarX(n)
ij = VarB(n)

i = 1 ∀i, j = 1, . . . , n. If supn,i,j E
(
|X(n)

ij |5 + |B(n)
i |5

)
< ∞ then for any

1 ≤ i, j ≤ n, i /= j limn→∞ P(Y (n)
i ≤ x) = 1

2 + 1
π arctan x, x > 0, where Yn = (Y (n)

i )i=1...n.

Hence, here again, Y (n)
i ∼ Cauchy(0, 1), i = 1 . . . n, compare Exercise 1.0.1

Exercise 1.0.2
Show that if X ∈ Cauchy(0, 1) then X

d= Y1
Y2
, where Y1, Y2 are i.i.d. N(0, 1)−distributed

random variables.

Exercise 1.0.3
1) Prove that Cauchy distribution is stable. If it is centered, i.e., X ∼ Cauchy(0, λ), then it is
strictly stable.
2) Show that if X ∼ Cauchy(0, λ) then X d= 1

X .

In fact, it can be shown that for X ∼ Cauchy(0, 1), X1, . . . , Xn i.i.d. and Xi
d= X,

∑n
i=1Xi

d=
nX, i.e., the constant c in (1.0.2) is equal to a+ b here. The property

∑n
i=1Xi

d= nX rewrites
Xn := 1

n

∑n
i=1Xi

d= X, i.e., the arithmetic mean of Xi is distributed exactly as one of Xi.

Example 1.0.4 (Lévy distribution in branching processes):
Consider the following branching process in discrete time. A population of particles evolves
in time as follows: at each time step, each particle (independently from others) dies with
probability p > 0, doubles (i.e., is divided into two new similar particles) with probability
p > 0, or simply stays untouched (with complimentary probability 1−2p). Let G(s) = p+ (1−
2p)s + ps2, |s| ≤ 1 be the generating function describing this evolution in one step. Let ν0(k)
be the number of particles in generation k− 1, which died in k-th step. Let ν =

∑∞
k=1 ν0(k) be

the total number of died particles during the whole evolution of the process. Assuming that
there is only one particle at time k = 0, put ν0(0) = 0, and denote qn = P(ν = n), n ∈ N0. Let

ϕ(s) =
∞∑
n=0

qns
n, |s| < 1 (1.0.5)

be the generating probability function of ν.

Exercise 1.0.4
Show that ϕ(s) = G(ϕ(s)) + p(s− 1), |s| < 1.

From this evolution, it follows ϕ(s) = p+(1−2p)ϕ(s)+pϕ2(s)+p(s−1), or ϕ2(s)−2ϕ(s)+s =
0 =⇒ ϕ(s)− 1 = ±

√
1− s, |s| < 1. Since |ϕ(s)| ≤ 1 ∀s : |s| < 1, then ϕ(s) = 1−

√
1− s > 1 is

not a solution =⇒ ϕ(s) = 1−
√

1− s, |s| < 1. Expanding it in the Taylor series, we get

ϕ(s) = 1
2
√
π

∞∑
n=1

Γ(n− 1/2)
n! sn, |s| < 1, (1.0.6)

which follows from ϕ(0) = 0, ϕ′(0) = 1
2
√

1−0 = 1
2 , ϕ

′′(0) = 3
2 , and so on: ϕ(n)(0) = Γ(n−1/2)

2Γ(1/2) , n ∈
N.
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Exercise 1.0.5
Prove it inductively.

Recall the Stirling’s formula for Gamma function: ∀x > 0 Γ(x) =
√

2π
x

(
x
e

)x
eµ(x), where

0 < µ < 1
12x . Comparing the form (1.0.5) and (1.0.6), we get

qn = Γ(n− 1/2)
2
√
πΓ(n+ 1) =

√
2π

n−1/2

(
n−1/2
e

)n−1/2
eµ(n−1/2)

2
√
π
√

2π
n n

(
n
e

)n
eµ(n)

= 1
2
√
π

(
n− 1/2

n

)n−1 √e
n3/2 e

µ(n−1/2)−µ(n) ∼ 1
2
√
π

(
1− 1

2n

)n−1 1
n3/2 e

1/2+µ(n−1/2)−µ(n)

∼ n−3/2

2
√
π

exp
(1

2 + (n− 1) log
(

1− 1
2n

)
+ o(1)

)
∼ n−3/2

2
√
π

exp
(1

2 + (n− 1)
(
− 1

2n

)
+ o(1)

)
∼ n−3/2

2
√
π
, n→∞.

Summarizing, qn ∼ n−3/2

2
√
π
, n→∞.

Now assume that the whole process starts with n particles at the initial moment of time
t = 0. Then, the total number of died particles is a sum

∑n
i=1 νi of i.i.d. r.v.’s νi

d= ν. It is
possible to show 1

n2
∑n
i=1 νi

d→ X,n → ∞, where X is a standard Lévy distributed random
variable with density

fX(x) = 1√
2π
x−3/2 exp

(
− 1

2x

)
, x > 0. (1.0.7)

Exercise 1.0.6
Let X be as above. Then

1. X d= Y −2, where Y ∼ N(0, 1).

2. fX(s) ∼ 1√
2πx
−3/2, x→ +∞.

3. EX = VarX =∞.

4. The standard Lévy distribution is strictly stable, i.e., for independent X1
d= X2

d= X :
X1 +X2

d= 4X.

Figure 1.2: Graph of fX
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The graph of fX(·) looks like it has its mode at x = 1/3, and f(0) = 0 by continuity, since
limx→+0 f(x) = 0. Relation from Exercise 1.0.6(4) can be interpreted as X1+X2

2
d= 2X, the

arithmetic mean of X1
d= X2

d= X is distributed as 2X. Compare it with the same property of
Cauchy distribution.



2 Properties of stable laws

2.1 Equivalent definitions of stability

Now we would like to give a number of further definitions of stability which appear to be
equivalent. At the same time, they give important properties of stable laws.

Definition 2.1.1
A random variable X is stable if there exists a family of i.i.d. r.v.’s {Xi}∞i=1 and number
sequences {an}n∈N, {bn}n∈N, bn > 0 ∀n ∈ N s.t.

1
bn

n∑
i=1

Xi − an
d→ X,n→∞. (2.1.1)

Remark 2.1.1
Notice that this definition does not require the r.v. X1 to have a finite variance or even a finite
mean. But if σ2 = VarX1 ∈ (0,+∞) then X ∼ N(0, 1) according to the central limit theorem
with bn =

√
nσ, an = nµ√

nσ
=
√
nµσ , where µ = EX1.

Definition 2.1.2
A non-constant random variable X is stable if its characteristic function has the form ϕX(s) =
eη(s), s ∈ R, where η(s) = λ(isγ − |s|α + isω(s, α, β)), s ∈ R with

ω(s, α, β) =
{
|s|α−1βtg

(
π
2α
)
, α /= 1,

−β 2
π log |s|, α = 1,

(2.1.2)

α ∈ (0, 2], β ∈ [−1, 1], γ ∈ R, λ > 0. Here α is called stability index, β is the coefficient of
skewness, λ is the scale parameter, and µ = λγ is the shift parameter.

We denote the class of all stable distributions with given above parameters (α, β, λ, γ) by
Sα(λ, β, γ). Sometimes, the shift parameter µ is used instead of γ : Sα(λ, β, µ). X ∈ Sα(λ, β, γ)
means that X is a stable r.v. with parameters (α, β, λ, γ).

Unfortunately, the parametrisation of η(s) in Definition 2.1.2 is not a continuous function
of parameters (α, β, λ, γ). It can be easily seen that ω(s, α, β) → ∞ as α → 1 for any β /= 0,
instead of tending to −β π2 log |s|. To remedy this, we can introduce an additive shift +λβtg

(
π
2α
)

to get η(s) = λ(isγM − |s|α + isωM (s, α, β)), s ∈ R, where

γM =
{
γ + βtg

(
π
2α
)
, α /= 1

γ, α = 1
, ωM (s, α, β) =

{
(|s|α−1 − 1)βtg

(
π
2α
)
, α /= 1,

−β 2
π log |s|, α = 1.

(2.1.3)

(M stands for “modified”)

Exercise 2.1.1
Check that this modified parametrisation is a continuous function of all parameters.

7



8 2 Properties of stable laws

Another possibility to parametrise η(s) is given as follows:
η(s) = λB(isγB − |s|α + isωB(s, α, βB)), s ∈ R, where

ωB(s, α, βB) =
{

exp
(
−iπ2βBK(α)sign(s)

)
, α /= 1,

π
2 + iβB log |s| sign(s), α = 1,

K(α) = α− 1 + sign(1− α),

and for α /= 1 : λ = λB cos
(
π

2βBK(α)
)
, γ = γB

/
cos

(
π

2βBK(α)
)
,

β = ctg
(
π

2α
)

tg
(
π

2βBK(α)
)

;

for α = 1 : λ = π

2λB, γ = 2
π
γB, β = βB.

(B stays for “bounded” representation). In this form η(s) is again not continuous at α = 1,
but for α → 1, α /= 1 the whole function η(s) does not go to +∞ as in (2.1.2), but has a
limiting finite form which corresponds to a characteristic function of a stable law with η(s) =
λB
(
is
(
γB ± sin

(
π
2βB

))
− |s| cos

(
π
2βB

))
. Here, the “+”sign is chosen for α → 1 + 0, and “−”

for α→ 1− 0.
Exercise 2.1.2
Show this convergence for α→ 1± 0.
Let us give two more definitions of stability.

Definition 2.1.3
A random variable X is stable if for the sequence of i.i.d. r.v.’s {Xi}i∈N, Xi

d= X,∀i ∈ N, for
any n ≥ 2 ∃cn > 0 and dn ∈ R s.t.

n∑
i=1

Xi
d= cnX + dn. (2.1.4)

It turns out that this definition can be weakened.
Definition 2.1.4
It is sufficient for stability of X to require (2.1.4) to hold only for n = 2, 3.

Now let us formulate the equivalence statement.
Theorem 2.1.1
Definitions 1.0.1,2.1.1-2.1.4 are all equivalent for a non-degenerate random variable X (i.e.,
X /≡ const).

The proof of this result will require a number of auxiliary statements which are now to be
formulated. The first of them is a limit theorem describing domains of attraction of infinitely
divisible laws.
Theorem 2.1.2 (Khinchin):
Let {Xnj , j = 1 . . . kn, n ∈ N} be the sequence of series of independent random variables with
the property

lim
n→∞

max
j=1...kn

P(|Xnj | > ε) = 0,∀ε > 0 (2.1.5)

and with c.d.f. Fnj . Let Sn =
∑kn
j=1Xnj − an, n ∈ N for some sequence {an}n∈N ⊂ R. Then a

random variable X with c.d.f. FX is a weak limit of Sn (Sn
d→ X,n→∞) iff the characteristic
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Figure 2.1: Graph of H

function ϕX of X has the form

ϕX(s) = exp
(
isa− bs2 +

∫
{x /=0}

(
eisx − 1− is sin x

)
dH(x)

)
, s ∈ R, (2.1.6)

where a ∈ R, b ≥ 0, H : R\{0} → R is non-decreasing on R+ and R−, H(s)→ 0, as |x| → +∞,
and

∫
0<|x|<1 x

2dH(s) <∞.
This theorem will be given without proof.

Remark 2.1.2 1. The condition (2.1.5) is called the asymptotic smallness condition of
Xnj .

2. Representation (2.1.6) is called the canonic representation of Lévy-Kninchin.

3. Laws of X with ch.f. ϕX as in (2.1.6) are called infinitely divisible. For more properties
of those, see lectures “Stochastics II”.

4. The function H is called a spectral function of X.
Exercise 2.1.3
Show that CLT is a special case of Theorem (2.1.2): find Xnj and an.
Another important result was obtained by B.V. Gnedenko.

Theorem 2.1.3 (Gnedenko):
Consider An(y) =

∑kn
j=1 E(Xnj I(|Xnj | < y)), n ∈ N, where y ∈ R is a number s.t. y and −y are

continuity points of H in (2.1.6). Introduce σεn =
∑kn
j=1 Var(Xnj I(|Xnj | < ε)), ε > 0. Let FX

be a c.d.f. with ch.f. ϕX as in (2.1.6). Take

an = An(y)− a−
∫
|u|<y

udH(u) +
∫
|u|≥y

1
u
dH(u), n ∈ N.

Then, Sn
d→ X,n→∞ (or Fn → F, n→∞ weakly) iff

1) For each point x of continuity of H it holds

lim
n→∞

kn∑
j=1

(
Fnj (x)− 1

2(1 + sign(x))
)

= H(x).
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2) limε→0 lim supn→∞ σεn = limε→0 lim infn→∞ σεn = 2b.

Without proof.
Remark 2.1.3 1. In order Sn = 1

bn

∑n
i=1Xi − an from Definition 2.1.1 to fulfill condition

(2.1.5), it is sufficient to require bn → ∞, n → ∞. Indeed, in this case Xnj = Xj/bn,
and, since Xj are i.i.d., lim→∞maxj=1...kn P(|Xnj | > ε) = limn→∞ P(|X1| > εbn) = 0 if
bn →∞.

2. In the above setting, property (2.1.5) holds whenever Fn → FX weakly, where FX is
non-degenerate, i.e., X /≡ const a.s. Indeed, let (2.1.5) does not hold, i.e.,

lim
→∞

max
j=1...kn

P(|Xnj | > ε) /= 0

for some ε > 0. Then ∃ a subsequence nk → ∞ as n → ∞ s.t. bnk = O(1). Since,
Sn

d→ X,n→∞, s.t. ϕSnk (s)→ ϕX(s), k →∞, where

ϕSnk (s) = Eeis
∑nk

j=1 Xj/bnk−isank = e−isank
(
ϕX1

(
s

bnk

))nk
, s ∈ R,

so, |ϕX(s)| =
∣∣∣ϕX1

(
s
bnk

)∣∣∣nk (1 + o(1)), k → ∞. Then for each s ∈ Bδ(0) |ϕX1(s)| =

|ϕX (sbnk)|1/nk (1 + o(1)) → 1, k → ∞ for some δ > 0, which can be only if |ϕX1(s)| ≡
1,∀s ∈ R, and hence |ϕX(s)| ≡ 1, which means X ≡ const a.s. This contradicts with our
assumption X /≡ const.

Definition 2.1.5 1) A function L : (0,+∞) → (0,+∞) is called slowly varying at infinity
if for any x > 0

L(tx)
L(t) → 1, t→ +∞.

2) A function U : (0,+∞) → (0,+∞) is called regularly varying at infinity if U(x) =
xρL(x),∀x > 0, for some ρ ∈ R and some slowly varying (at infinity) function L.

Example 2.1.1 1. L(x) = | log(x)|p, x > 0 is slowly varying for each p ∈ R.

2. If limx→+∞ L(x) = p > 0 then L is slowly varying.

3. U(x) = (1 + x2)p, x > 0 is regularly varying for each p ∈ R with ρ = 2p.
Lemma 2.1.1
A monotone function U : (0,+∞) → (0,+∞) is regularly varying at ∞ iff U(tx)

U(t) → ψ(x), t →
+∞ on a dense subset A of (0,+∞), and ψ(x) ∈ (0,+∞) for all x ∈ R+.

Proof Let x1, x2 ∈ A. For t→ +∞ we get

ψ(x1x2)← U(tx1x2)
U(t) = U(tx1x2)

U(tx2)
U(tx2)
U(t) → ψ(x1)ψ(x2).

Hence, ψ(x1x2) = ψ(x1)ψ(x2). Since U is monotone, so is ψ. By monotonicity, define ψ any-
where on R+ by continuity from the right. Then ψ(x1x2) = ψ(x1)ψ(x2) holds for any x1, x2 ∈
R+. Set x = ey, ψ(ey) = ϕ(y). The above equation transforms to ϕ(y1 + y2) = ϕ(y1)ϕ(y2).
One can easily show that if has a unique (up to a constant ρ) solution bounded on any finite
interval, and it is ϕ(y) = eρy ⇔ ψ(x) = xρ.
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The proof of Theorem 2.1.1 will make use of the following important statement which is
interesting on its own right.
Theorem 2.1.4
Let X be a stable r.v. in the sense of Definition 2.1.1 with characteristic function ϕX as in
(2.1.6). Then its spectral function H has the form

H(x) =
{
−c1x

−α, x > 0
c2(−x)−α, x < 0,

where α ∈ (0, 2), c1, c2 ≥ 0.

Proof Consider the non-trivial case of a non-degenerate distribution of X (otherwise c1 = c2 =
0). Denote by XH the set of all continuity points of the spectral function H.
Exercise 2.1.4
Prove that R \ XH is at most countable.

Since X is stable in the sense of Definition 2.1.1, ∃ an i.i.d. sequence of r.v.’s {Xi}i∈N and
number sequences {an}n∈N, {bn}n∈N, bn > 0 ∀n ∈ N s.t. Sn = 1

bn

∑n
i=1Xi − an

d→ X,n → ∞.
Using Theorem 2.1.3, condition 1), it means that ∀x ∈ XH n(F (bnx) − 1

2(1 + signx)) →
H(x), n→∞, where F (y) = P(Xi ≤ y), y ∈ R.

Consider the case x > 0. If H(x) /≡ 0 on R+, so ∃x0 ∈ XH , x0 > 0 with q := −H(x0) > 0,
compare Fig. 2.1 For each t > 0, find an n = n(t) ∈ N s.t. n(t) = min{k : bkx0 ≤ t < bk+1x0}.
Since F (x) = 1− F (x) ↓ on R+, we get

F (bn+1x0x)
F (bnx0)

≤ F (tx)
F (t)

≤ F (bnx0x)
F (bn+1x0)

, ∀x > 0. (2.1.7)

Since n(t)→∞, t→∞, −nF (bnx) = n(F (bnx)− 1)→ H(x), x→∞, we get for x0x ∈ XH

F (bn+1x0x)
F (bnx0)

= −nF (bn+1x0x)
−nF (bnx0)

→ H(x0x)
H(x0) = −H(x0x)

q
:= L(x).

The same holds for the right-hand side of (2.1.7). Hence, for any x, y > 0 s.t. x0x, x0y, x0xy ∈
XH we have F (txy)

F (t) → L(xy),→ +∞. Otherwise,

F (txy)
F (t)

= F (txy)
F (ty)

F (ty)
F (t)

→ L(x)L(y), t→∞

by the same reasoning. As a result, we get the separation L(xy) = L(x)L(y) which holds for
all x, y > 0. (may be except for a countable number of points since XH is at most countable.)
By definition of L(x) := −H(x0x)

q , L : R+ → R+ is non-increasing, L(1) = 1, L(∞) = 0. It
can be shown (cf. the proof of Lemma 2.1.1) that the solution of the equation{

L(xy) = L(x)L(y),
L(1) = 1, L(∞) = 0

is L(x) = 1/xα, α > 0.Hence, for x > 0H(x) = −qL(x/x0) = H(x0)x−α/x−α0 = xα0H(x0)x−α =
−c1x

−α, c1 ≥ 0. Since
∫

0<|x|<1 x
2dH(x) <∞ (cf. Theorem 2.1.2), it holds

∫
0<|x|<1 x

2−α−1dx <
∞ ⇐⇒ 2− α > 0 ⇐⇒ α < 2. Hence, 0 < α < 2, c1 ≥ 0 can be arbitrary.
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The case x < 0 is treated analogously and leads to the representation H(x) = c2(−x)−δ, c2 ≥
0, 0 < δ < 2.
Show that α = δ. Since F (tx)

F (t) ∼ x−α, t → ∞ for x > 0, it means that F (s) is regularly
varying by Lemma 2.1.1. Hence, exists a slowly varying function h1 : (0,+∞) → (0,+∞) s.t.
F (x) = x−αh1(x), x > 0. By property 1) of Theorem 2.1.3, nF (bnx) = nb−αn x−αh1(bnx) →
H(x) = −c1x

−α, n→∞. Since h1(bnx)
h1(bn) → 1, n→∞, it holds

c1 ← nb−αn h1(bnx) = nb−αn h1(bn)h1(bnx)
h1(bn) ∼ nb

−α
n h1(bn), n→∞. (2.1.8)

Analogously, we get F (x) = (−x)−δh2(−x), x < 0, where h2 : (0,+∞) → (0,+∞) is slowly
varying, and nb−δn h1(bn) ∼ c2. Assuming c1, c2 > 0 (otherwise the statement gets trivial since
either α or δ can be chosen arbitrary), we get b−α+δ

n
h1(bn)
h2(bn) →

c1
c2
> 0, n → ∞, where h1/h2 is

slowly varying at +∞, which is possible only if α = δ.

Corollary 2.1.1
Under the conditions of Theorem 2.1.4, assume that c1 +c2 > 0. Then the normalizing sequence
bn in Definition 2.1.1 behaves as bn ∼ n1/αh(n), where h : (0,+∞)→ (0,+∞) is slowly varying
at +∞.

Proof Assume, for simplicity, c1 > 0. Then, formula (2.1.8) yields n ∼ c1b
α
nh
−1
1 (bn), α ∈ (0, 2).

Hence, bn ∼ n1/αc
−1/α
1 (h1(bn))1/α = n1/αh(n), where h(n) = (c−1

1 h1(bn))1/α is slowly varying
at +∞ due to the properties of h1.

Proof of Theorem 2.1.1. 1) Show the equivalence of Definitions 2.1.1 and 2.1.2.
Let X be a non-constant r.v. with characteristic function ϕX as in (2.1.6). Assume that

X is stable in the sence of Definition 2.1.1. By Theorem 2.1.4, its spectral function H has

the form H(x) =
{
−c1/|x|α x > 0,
c2/|x|α, x < 0

, α ∈ (0, 2), c1, c2 ≥ 0. Put it into the formula (2.1.6):

logϕX(x) = isa− bs2 + c1Qα(s) + c2Qα(s), s ∈ R, where

Qα(s) = −
∫ ∞

0

(
eisx − 1− is sin x

)
dx−α = Re (ψα(i, t))|t=−is,

and ψα(z, t) = t
∫∞

0
(
e−zx − e−tx

)
x−αdx for z, t ∈ C : Re z,Re t > 0, α ∈ (0, 2). Here the real

part of ψα(i, t) is then under the assumption t > 0, and after that, t = −is is plugged in.
Integrating by parts, we get

ψα(z, t) = t

1− α

∫ +∞

0
(ze−zx − te−tx)x1−αdx

= t

1− α

(
zα−1

∫ +∞

0
e−zx(zx)1−αd(zx)− tα−1

∫ +∞

0
(e−tx)(tx)1−αd(tx)

)
=
∣∣∣∣∣xz = y
xt = y

∣∣∣∣∣
= t

1− α

(
zα−1

∫ +∞

0
e−yy2−α−1dy − tα−1

∫ +∞

0
e−yy2−α−1dy

)
= tΓ(2− α)

1− α
(
zα−1 − tα−1

)
, for any α /= 1,Re z,Re t > 0.
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For fixed z, t ∈ C : Re z,Re t > 0 the function ψα(z, t) : (0, 2) → C as a function of α is
continuous on (0, 2). Hence,

ψ1(z, t) = lim
α→1

ψα(z, t) = lim
α→1

tΓ(2− α)
1− α (zα−1 − tα−1)

= lim
1−α→0

t

1− α(e(α−1) log z − e(α−1) log t) = |1− α = x|

= lim
x→0

t

x
(1− x log z − 1 + x log t+ o(x)) = t(log t− log z) = t log(t/z).

Then for α /= 1 we get

Qα(s) = −isΓ(2− α)
1− α

(
Re (ei(π/2)(α−1))− (−is)α−1

)
= −isΓ(2− α)

1− α
(
Re (ei(π/2)(α−1))− e(α−1)i(−π/2)signs|s|α−1

)
= −isΓ(1− α)

(
cos

(
π

2 (α− 1)
)
−
(

cos
(
π

2 (α− 1)
)
− i(signs) sin

(
π

2 (α− 1)
))
|s|α−1

)
= −is sin

(
πα

2

)
Γ(1− α) + sin

(
πα

2

)
i(signs)|s|αΓ(1− α) + i2|s|αΓ(1− α) cos

(
πα

2

)
= −Γ(1− α) cos(πα/2)|s|α − is(1− |s|α−1)Γ(1− α) sin(πα/2).

For α = 1

Qα(s) = −is Re (log(t/i))|t=−is = −is log(t)|t=−is = −is log(−is)

= −is(log |s|+ i(−π/2)signs) = −|s|π2 − is log |s|.

Then
|ϕX(s)| = exp{−bs2 − d|s|α}, (2.1.9)

where d = (c1 + c2)Γ(2−α)
1−α sin

(
π
2 (1− α)

)
, α /= 1. For α = 1 get limit as α → 1 as a value of d:

(c1 + c2)π/2. Show that bd = 0.
If, for instance, d > 0, then show that b = 0. By Definition 2.1.1, ∃ sequences {an}, {bn} ⊂ R :

bn → ∞ as n → ∞ and a characteristic function ϕX1(s) s.t. e−isanϕnX1
(s/bn) → ϕX(s),

n→∞, s ∈ R. Hence, |ϕX1(s/bn)|n → |ϕX(s)|, n→∞ where bn = n1/αh(n) by Corollary 2.1.1.
Since, h is slowly varying, bn

bnk
→ k−1/α, n→∞ for any k ∈ N. Then

|ϕX(s)| ←
n→∞

∣∣∣∣ϕX1

(
s

bnk

)∣∣∣∣nk =
∣∣∣∣ϕX1

(
s
bn
bnk

b−1
n

)∣∣∣∣nk →n→∞ ∣∣∣ϕX (sk−1/α
)∣∣∣k ,∀k ∈ N,

i.e., by (2.1.9), exp{−bs2 − d|s|α} = exp{−bs2k1−2/α − d|s|α}, which is only possible if b = 0.
Now set

λ =
{
d, if c1 + c2 > 0,
b, if c1 + c2 = 0 (Gaussian case) ,

β =
{

(c1 − c2)/λ, if c1 + c2 > 0,
0, if c1 + c2 = 0 (Gaussian case) ,

γ = 1
λ(a+ ā), where ā =

{
(c2 − c1)Γ(1− α) sin(πα/2) if α /= 1,
0, if α = 1.

(2.1.10)
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Then ϕX satisfies representation in Definition 2.1.2 with the above parameters λ, β, γ, α.
Vice versa, if ϕX satisfies Definition 2.1.2, then it can be represented as in (2.1.6) with

spectral function H as in Theorem 2.1.4, see the formula (2.1.10), where c1, c2 can be restored
from λ, β, γ uniquely. By Theorem 2.1.2, the limit theorem Sn

d→ X,n→∞ takes place.
Exercise 2.1.5
Show that {Xnj} can be chosen here as in Definition 2.1.1 (since bn = n1/αh(n) is clear, bn →∞,
one has only to fix an, cf. Remark 2.1.3)

2) Show the equivalence of Definitions 2.1.1 and 1.0.1.
Let X be stable in the sense of Definition 1.0.1. By induction, if follows from the relation

aX1 + bX2
d= cX + d of Definition 1.0.1 (with a = b = 1) that for any n ≥ 2 ∃ constants

bn > 0, an s.t. for independent copies Xi, i = 1 . . . n of X : X1 + · · · + Xn
d= bnX + an, or

1
bn

∑n
i=1Xi − an

bn

d= X. So, for n → ∞, the limiting distribution of the left-hand side coincides
with that of X, and Definition 2.1.1 holds.
Vice versa, we show that from Definition 2.1.2 (which is equivalent to Definition 2.1.1) it

follows Definition 1.0.1. Definition 1.0.1 can be rewritten in terms of characteristic function as

ϕX(as)ϕX(bs) = ϕX(cs)eisd, (2.1.11)

where a > 0 and b > 0 are arbitrary constants, and c > 0, d ∈ R are chosen as in Definition
1.0.1, ϕX(s) = Eeisλ. By Definition 2.1.2, ϕX(s) = exp{λ(isγ − |s|2 + isω(s, α, β))}, s ∈ R
with ω(s, α, β) as in (2.1.2). It is quite easy to see that (2.1.2) follows with c = (aα + bα)1/α,

d =
{
λγ(a+ b− c), α /= 1,
λβ 2

π (a log(a/c) + b log(b/c)), α = 1.
3) Show the equivalence of Definition 2.1.3 and Definition 1.0.1. Definition 2.1.3 follows from

Definition 1.0.1 as it was shown in 2). Vise versa, from Definition 2.1.3 it follows Definition
2.1.1 ( see 2) ), which is equivalent to Definition 1.0.1.
4) Show the equivalence of Definitions 2.1.3 and 2.1.4. In one direction (Definition 2.1.3
⇒ Definition 2.1.4) it is evident, in the other direction, assume that X1 + X2

d= c2X + d2,

X1 +X2 +X3
d= c3X + d3 for some c2, c3 > 0, d2, d3 ∈ R. In order to show Definition 2.1.3, it

is sufficient to check that
nη(s) = η(cns) + isdn (2.1.12)

for any n ≥ 4, some cn > 0 and dn ∈ R, where η(s) = logϕX(s), s ∈ R. Since (by assumption)

(2.1.12) holds for n = 2, 3, it holds (by induction) for any n =
{

2m

3m
with cn =

{
cm2 ,

cm3
,

dn =
{
d2(1 + c2 + · · ·+ cm−1

2 ),
d3(1 + c3 + · · ·+ cm−1

3 ).
m ∈ N. Hence, the distribution of X is infinitely divisible,

and then |ϕ(s)| /= 0, ∀s ∈ R.
From the said above, it holds

2j3kη(s) = η(cj2ck3s) + iajks (2.1.13)

for some c2, c3 > 0, ajk ∈ R, j, k ∈ Z 1. The set {2j3k, j, k ∈ Z} is dense in R+, since 2j3k =
exp{j log 2 + k log 3}, and the set {j + ωk, j, k ∈ Z}, ω /∈ Q is dense in R. Hence, for any n ∃

1Let t = s/c2 then it follows from (2.1.12) that 1
2η(t) = η(c−1

2 t)− is d2
c2
. Similarly we get 1

3η(t) = η(c−1
3 t)− is d3

c3
.

So, formula (2.1.13) also holds for negative j, k ∈ Z.
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sequence {rm}m∈N, rm → n as m → ∞, and rm = 2jm3km . Let cn(m) = cjm2 ckm3 ,m ∈ N. Show
that {cn(m)}m∈N is bounded. It follows from (2.1.13) that rmRe (η(s)) = Re (η(cn(m)s)).

Assume that cn(m) is unbounded, then ∃ subsequence {cn(m′)} such that |cn(m′)| → ∞,m′ →
∞. Set s′ = scn(m′) in the last equation. Since rm′ → n,m′ → ∞, we get Re η(s′) =
rm′Re η( s′

cn(m′)) → 0,m′ → ∞. Hence, |η(s)| ≡ 1, which can not be due to the assumption
that X /≡ const.

Then {cn(m)}m∈N is bounded, and ∃ a subsequence {cn(m′)}m′∈N such that |cn(m′)| →
cn,m

′ →∞. Then ajm′km′ = i
s(η(cn(m′))− rm′η(s))→ i

s(η(cns)−nη(s)) := dn. Hence, ∀n ∈ N
and s ∈ R it holds nη(s) = η(cns) + isη(dn), which is the statement of equation (2.1.12), so we
are done.

Remark 2.1.4
It follows from the proof of Theorem 2.1.1 1) that the parameter β = c1−c2

c1+c2
, if c1 + c2 > 0 in

non-Gaussian case. Consider the extremal values of β = ±1. It is easy to see that for β = 1
c2 = 0, for β = −1 c1 = 0. This corresponds to the following situation in Definition 2.1.1:

a) Consider {Xn}n∈N to be i.i.d. and positive a.s., i.e., X1 > 0 a.s. By Theorem 2.1.3,1) it
follows that H(x) = 0, x < 0 =⇒ c2 = 0 =⇒ β = 1.

b) Consider {Xn}n∈N to be i.i.d. and negative a.s. As above, we conclude H(x) = 0, x > 0,
and c1 = 0 =⇒ β = −1.

Although this relation can not be inverted (from β = ±1 it does not follow that X > (<)0 a.s.),
it explains the situation of total skewness of a non-Gaussian X as a limit of sums of positive
or negative i.i.d. random variables Sn = 1

bn

∑n
i=1Xi − an.

Remark 2.1.5
One can show that cn = n1/α in Definition 2.1.3, formula (2.1.4), for α ∈ (0, 2].

Proof We prove it only for strictly stable laws. First, for α = 2 (Gaussian case X,Xi ∼
N(0, 1)) it holds

∑n
i=1Xi ∼ N(0, n) d=

√
nX =⇒ cn = n1/α with α = 2.

Now let α ∈ (0, 2). Let X be strictly stable, s.t.
∑n
i=1Xi

d= cnX. Take n = 2k, then

Sn = (X1 +X2)︸ ︷︷ ︸
X′1

+ (X3 +X4)︸ ︷︷ ︸
X′2

+ · · ·+ (Xn−1 +Xn)︸ ︷︷ ︸
X′
n/2

d= c2(X ′1 +X ′2 + · · ·+X ′n/2) d= · · · d= ck2X,

from which it follows cn = c2k = ck2 = c
logn/ log 2
2 , so

log cn =
( logn

log 2

)
log c2 = log

(
nlog c2/ log 2

)
, cn = n1/α2 , (2.1.14)

where α2 = log 2/ log c2, for n = 2k, k ∈ N. Generalizing the above approach to n = mk turns,
we get

cn = n1/αm , αm = logm
log cm

, n = mk, k ∈ N. (2.1.15)

To prove that cn = n1/α0 it suffices to show that if cr = r1/β then β = α0. Now by (2.1.15)
crj = rj/αr and cρk = ρk/αρ . But for each k there exists a j such that rj < ρk ≤ rj+1. Then

(crj )αr/αρ < cρk = ρk/αρ ≤ r1/αρ(crj )αr/αρ . (2.1.16)
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Note that Sm+n is the sum of the independent variables Sm and Sm+n − Sm distributed,
respectively, as cmX and cnX. Thus for symmetric stable distributions cm+nX

d= cmX1 +cnX2.
Next put η = m + n and notice that due to the symmetry of the variables X,X1, X2 we have
for t > 0 P(X > t) ≤ 2P(X2 >

tcη
2cn ), if n > m. It follows that for η > n that ratios cn/cη remain

bounded. So, it follows from (2.1.16) that

r ≥ (cρk)αρ−αr
(
cρk

crj

)αr
and hence αr ≥ αρ. Interchanging the roles of r and ρ we find similarly that αr ≤ αρ and hence
αr = αρ ≡ α0 for any r, ρ ∈ N.

We get the conclusion that cn = n1/α0 , n ∈ N. It can be further shown that α0 = α.

Definition 2.1.6
A random variableX (or its distribution PX) is said to be symmetric ifX d= −X. X is symmetric
about µ ∈ R if X − µ is symmetric. If X is α−stable and symmetric, we write X ∼ SαS. This
definition is justified by the property X ∼ Sα(λ, β, γ), X−symmetric ⇔ γ = β = 0, which will
be proven later.

2.2 Strictly stable laws

As it is clear from the definition of strict stability (Definition 1.0.1) X is stable iff for any
a, b ∈ R+ ∃c > 0 s.t. ϕX(as)ϕX(bs) = ϕX(cs), s ∈ R, where ϕX(s) = EeisX , s ∈ R.

Theorem 2.2.1
Let X /≡ const a.s. It is strictly stable if its characteristic function admits one of the following
representations: ∀s ∈ R

1.

logϕX(s) =
{
λ(−|s|α + isω(s, α, β)) α /= 1,
λ(isγ − |s|) α = 1,

i.e.
{
γ = 0, α /= 1,
β = 0, α = 1

with ω(s, α, β) as in (2.1.2).

2. (form C) logϕX(s) = −λC |s|α exp(−iπ2 θαsigns), where α ∈ (0, 2], λC > 0, θ ≤ θα =
min{1, 2

α − 1}.

Proof 1. In the proof of Theorem 2.1.1, 2) it is shown that

d =
{
λγ(a+ b− c), α /= 1
λβ 2

π (a log(a/c) + b log(b/c)), α = 1

∣∣∣∣∣ = 0⇔
{
γ = 0, α /= 1
β = 0, α = 1.

2. Take the parametrisation (B) of ϕX with parameters γ, β as in 1, and left α unchanged,θ = βB
K(α)
α , λC = λB, α /= 1,

θ = 2
πarctg

(
2
πγB

)
, λC = λB

(
π2

4 + γ2
B

)1/2
, α = 1.
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2.3 Properties of stable laws
Here we consider further basic properties of α−stable distributions.
Theorem 2.3.1
Let Xi, i = 1, 2 be Sα(λi, βi, γi)-distributed independent random variables, X ∼ Sα(λ, β, γ).
Then

1) X has a density (i.e, has absolutely continuous distribution), which is bounded with all
its derivatives.

2) X1 +X2 ∼ Sα(λ, β, γ) with

λ = λ1 + λ2, β = β1λ1 + β2λ2
λ1 + λ2

, γ = λ1γ1 + λ2γ2
λ1 + λ2

.

3) X + a ∼ Sα(λ, β, γ + a/λ), where a ∈ R is a constant.

4) For a real constant a /= 0 it holds

aX ∼

Sα
(
|a|αλ, sign(a)β, γ|a|1−αsign(a)

)
, α /= 1,

S1
(
|a|λ, sign(a)β, sign(a)

(
γ − 2

π (log |a|)β
))
, α = 1.

5) For α ∈ (0, 2), X ∼ Sα(λ, β, 0)⇔ −X ∼ Sα(λ,−β, 0).

6) X is symmetric iff β = γ = 0. It is symmetric about λγ iff β = 0.

7) Let α /= 1. X is strictly stable iff γ = 0.

Proof 1) Let ϕX , ϕXi be the characteristic function of X,Xi, i = 1, 2. It follows from Definition
2.1.2 that |ϕX(s)| = e−λ|s|

α
, s ∈ R. Take the inversion formula for the characteristic function.

If |ϕX | is integrable on R (which is here the case) then the density fX of X exists and fX(s) =
1

2π
∫
R e
−isxϕX(s)ds, x ∈ R. Additionally, the n−th derivative of fX is

∣∣∣f (n)
X (x)

∣∣∣ ≤ 1
2π

∫
R
|s|n |ϕX(s)|︸ ︷︷ ︸

exp(−λ|s|α)

ds =
Γ
(
n+1

2

)
πα

λ−
n+1

2 <∞, x ∈ R, n ∈ N.

2) Prove it for the case α /= 1, the case α = 1 is treated similarly. Consider the characteristic
function of X1 +X2, and take its logarithms:

logϕX1+X2(s) = log(ϕX1(s)ϕX2(s)) = logϕX1(s) + logϕX2(s)

=
2∑
j=1

λj
(
isγj − |s|α + s|s|α−1iβjtg(πα/2)

)
= −|s|α(λ1 + λ2) + is(λ1γ1 + λ2γ2) + is|s|α−1(λ1β1 + λ2β2)tg(πα/2)

= (λ1 + λ2)
(
is
λ1γ1 + λ2γ2
λ1 + λ2

− |s|α + is|s|α−1λ1β1 + λ2β2
λ1 + λ2

tg(πα/2)
)

= λ(isγ − |s|α + isω(s, α, β)),
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with
λ = λ1 + λ2, γ = λ1γ1 + λ2γ2

λ1 + λ2
, β = λ1β1 + λ2β2

λ1 + λ2
.

So, X1 +X2 ∼ Sα(λ, β, γ) by Definition 2.1.2.
3) logϕX+a(s) = isa + λisγ − λ|s|α + λisω(s, α, β) = λ(is(γ + a/λ) − |s|α + isω(s, λ, β)),

hence X + a ∼ Sα(λ, β, γ + a/λ).
4) Consider the case α /= 1.

logϕaX(s) = logϕX(as) = λ(iasγ − |as|α + iasω(as, α, β))

= λ|a|α
(
isγ

a

|a|α
− |s|α + is

a|a|α−1

|a|α
|s|α−1βtg(πα/2)

)
= λ|a|α

(
isγ|a|1−αsign(a)− |s|α + issign(a)β|s|α−1tg(πα/2)

)
,

hence aX ∼ Sα(λ|a|α, sign(a)β, γ|a|1−αsign(a)).
For α = 1, we have

logϕaX(s) = logϕX(as) = λ

(
iasγ − |as| − iasβ 2

π
log |as|

)
= λ|a|

(
isγ

a

|a|
− is a
|a|
β

2
π

log |a| − |s| − is a
|a|
β

2
π

log |s|
)

= λ|a|
(
isign(a)s

(
γ − β 2

π
log |a|

)
− |s| − isign(a)sβ 2

π
log |s|)

)
,

hence aX ∼ S1
(
λ|a|, sign(a)β, sign(a)

(
γ − β 2

π log |a|
))
.

5) follows from 4) with a = −1.
6) X is symmetric by definition iff X d= −X, i.e., ϕX(s) = ϕ−X(s) = ϕX(−s), ∀s ∈ R, which

is only possible if ϕX(s) ∈ R, s ∈ R. Indeed, EeisX = E cos(sX) + iE sin(sX) = E cos(−sX) +
iE sin(−sX) = E cos(sX) − iE sin(sX) iff 2iE sin(sX) = 0,∀s ∈ R. Using Definition 2.1.2,
ϕX(s) is real only if γ = 0 and ω(s, α, β) = 0, i.e., β = 0.
X is symmetric around λγ by definition iff X − λγ d= −(X − λγ) = −X + λγ. By property

3) and 4), X − λγ ∼ Sα(λ, β, γ − γ),−X + λγ ∼ Sα(λ,−β,−γ + γ). So, X − λγ d= −X + λγ iff
β = 0.

7) Is already proven in Theorem 2.2.1.

Remark 2.3.1
1) The analytic form of the density of a stable law Sα(λ, β, γ) is explicitly known only in the
cases α = 2 (Gaussian law), α = 1 (Cauchy law), α = 1/2 (Lévy law).
2) Due to Property 3) of Theorem 2.3.1, the parameter γ (or sometimes λγ) is called shift

parameter.
3) Due to Property 4) of Theorem 2.3.1, the parameter λ (or sometimes λ1/α) is called shape

or scale parameter. Notice that this name is natural for α /= 1 or α = 1, β = 0. In case
α = 1, β /= 0, scaling of X by a results in a non-zero shift of the law of X by 2

πβ log |a|, hence
the use of this name in this particular case can hardly be recommended.
4) Due to properties 5)-6) of Theorem 2.3.1, parameter β is called skewness parameter. If

β > 0(β < 0) then Sα(λ, β, γ) is said to be skewed to the right (left). Sα(λ,±1, γ) is said to be
totally skewed to the right (for β = 1) or left (for β = −1).
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5) It follows from Theorem 2.2.1 and Theorem 2.3.1, 3) that if X ∼ Sα(λ, β, γ), α /= 1, then
X − λγ ∼ Sα(λ, β, 0) is strictly stable.

6) It follows from Theorem 2.2.1 and Definition 2.1.2 that no non-strictly 1-stable random
variable can be made strictly stable by shifting. Indeed, if X ∼ S1(λ, β, γ) is not strictly stable
then β /= 0, which can not be eliminated due to log |s| in ω(s, α, β). Analogously, every strictly
1-stable random variable can be made symmetric by shifting.

Corollary 2.3.1
Let Xi, i = 1, . . . , n be i.i.d. Sα(λ, β, γ)−distributed random variables, α ∈ (0, 2]. Then

X1 + · · ·+Xn
d=
{
n1/αX1 + λγ(n− n1/α), if α /= 1,
nX1 + 2

πλβn logn, if α = 1.

This means, cn and dn in Definition 2.1.3 have values

cn = n1/α, α ∈ (0, 2], dn =
{
λγ(n− n1/α), if α /= 1,
2
πλβn logn, if α = 1.

Proof It follows by induction from the proof of Theorem 2.1.1 2). There, it is shown aX1 +

bX2
d= cX + d, with c = (aα + bα)1/α, d =

{
λγ(a+ b− c), α /= 1,
λβ 2

π (a log(a/c) + b log(b/c)), α = 1.
Take n =

2, a = b = 1⇒ c2 = 21/α, d2 =
{
λγ(2− 21/α), α /= 1,
λβ 2

π2 log(2)), α = 1.
The induction step is trivial.

Corollary 2.3.2
It follows from Theorem 2.3.1, 2) and 3) that if X1, X2 ∼ Sα(λ, β, γ) are independent then
X1 −X2 ∼ Sα(2λ, 0, 0) and −X1 ∼ Sα(λ,−β,−γ).

Proposition 2.3.1. Let {Xn}n∈N be a sequence of random variables defined on the same proba-
bility space (Ω,F ,P), Xn ∼ Sαn(λMn , βMn , γMn ), n ∈ N, where αn ∈ (0, 2), λMn > 0,
βMn ∈ [−1, 1], γMn ∈ R. Assume that αn → α, λMn → λM , βMn → βM , γMn → γM as n → ∞
for some α ∈ (0, 2), λM > 0, βM ∈ [−1, 1], γM ∈ R. Then Xn

d→ X ∼ Sα(λM , βM , γM ) as
n→∞. Here the superscript “M” means the modified parametrisation, cf. formula (2.1.3)
after Definition 2.1.2.

Proof Xn
d→ X as n→∞ is equivalent to ϕXn(s) → ϕX(s), n → ∞, s ∈ R, or, logϕXn(s) =

λMn (isγMn − |s|αn + isωM (s, αn, βMn )) →
n→∞

λM (isγM − |s|α + isωM (s, α, βM )) which is straight-
forward by the continuity of the modified parametrisation w.r.t. its parameters.

Our aim now is to prove the following result.

Proposition 2.3.2. Let X ∼ Sα(λ, 1, 0), λ > 0, α ∈ (0, 1). Then X ≥ 0 a.s.

This property justifies again the use of β as skewness parameter and brings a random variable
X ∼ Sα(λ, 1, 0) the name of stable subordinator. The above proposition will easily follow from
the next theorem.
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Theorem 2.3.2
1) For α ∈ (0, 1), consider Xδ =

∑Nδ
k=1 Uδ,k to be compound Poisson distributed, where Nδ is

a Poisson(δ−α)−distributed random variable, δ > 0, and {Uδ,k}k∈N are i.i.d. positive random

variables, independent of Nδ, with P(Uδ,k > x) =
{
δα/xα, x > δ,

1, x ≤ δ.
Then Xδ

d→ X, δ → 0, where X ∼ Sα(λ, 1, 0) with λ = Γ(1− α) cos(πα/2).
2) Let X ∼ Sα(λ, 1, 0), α ∈ (0, 1). Then its Laplace transform l̂X(s) := Ee−sX is equal to

l̂X(s) = e−Γ(1−α)sα , s ≥ 0. (2.3.1)

Proof 1) Since the generating function of N ∼ Poisson(a) is equal to ĝN (z) = EzN =∑∞
k=0 z

kP(N = k) =
∑∞
k=0 z

ke−a a
k

k! = e−a
∑∞
k=0

(az)k
k! = e−aeaz = ea(z−1), z ∈ C, we have

ĝNδ(z) = eδ
−α(z−1), z ∈ C, and hence

ϕXδ(s) = EeisXδ = E
(
E
(
eisXδ |Nδ

))
= E

(
E
(
eis
∑Nδ

k=0 Uδ,k |Nδ

))

= E

 Nδ∏
k=1

EeisUδ,1
 = ĝNδ(ϕUδ,1(s)) = e

δ−α(ϕUδ,1 (s)−1)
,

where ϕUδ,1(s) =
∫∞

0 eisxdP(Uδ,1 ≤ x) = α
∫∞
δ eisxδαx−α−1dx. So (since α

∫∞
δ x−α−1dx = −δ−α)

ϕXδ(s) = exp
{
α

∫ ∞
δ

(eisx − 1)x−α−1dx

}
→

δ→+0
exp

{
α

∫ ∞
0

(eisx − 1)x−α−1dx

}
,

which is of the form (2.1.6) with H(x) = −c1x
−αI(x > 0) as in Theorem 2.1.4 (c2 = 0).

Consider ϕX(s) := exp
{
α
∫∞

0 (eisx − 1)x−α−1dx
}
, s ≥ 0, α ∈ (0, 1). Show that∫ ∞

0

eisx − 1
xα+1 dx = −sαΓ(1− α)

α
e−iαπ/2. (2.3.2)

If it is true then logϕX(s) = −|s|αΓ(1 − α)(cos(πα/2) − isign(s) sin(πα/2)) since for s < 0
we make the substitution s → −s, i → −i. Then, logϕX(s) = −|s|αΓ(1 − α) cos(πα/2)(1 −
isign(s)tg(πα/2)), s ∈ R, which means that, according to Definition 2.1.2, X ∼ Sα(λ, 1, 0). Now
prove relation (2.3.2). It holds∫ ∞

0

eisx − 1
xα+1 dx = lim

θ→+0

∫ ∞
0

eisx−θx − 1
xα+1 dx = lim

θ→+0
− 1
α

∫ ∞
0

(e−θx+isx − 1)d(x−α)

= lim
θ→+0

(
− 1
α

(e−θx+isx − 1) 1
xα

∣∣∣∣∞
0

+ −θ + is

α

∫ ∞
0

e−θx+isx

xα
dx

)

= lim
θ→+0

− θ − is
θ1−αα

Γ(1− α)θ1−α
∫ ∞

0

eisxx1−α−1e−θx

Γ(1− α) dx

= − lim
θ→+0

θ − is
θ1−αα

Γ(1− α) 1
(1− is/θ)1−α = − lim

θ→+0

(θ − is)1−1+α

θ1−αα/θ1−α Γ(1− α)

= − lim
θ→+0

(θ − is)αΓ(1− α)
α

= −Γ(1− α)
α

lim
θ→+0

(√
θ2 + s2eiξ

)α
= −Γ(1− α)

α
sαe−i

π
2 α,
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where ξ = arg(θ − is) →
θ→+0

−π/2.
2) Similarly to said above,

l̂Xδ(s) = Ee−sXδ = exp
{
α

∫ ∞
δ

(eisx − 1)x−α−1dx

}
→

δ→+0
exp

{
α

∫ ∞
0

(eisx − 1)x−α−1dx

}
(sub. y = sx) = exp

{
sα
∫ ∞

0
α(eiy − 1)y−α−1dy

}
= exp

{
−sα

∫ ∞
0

x−αe−xdx

}
= exp{−sαΓ(1− α)}, s ≥ 0.

Proof of Proposition 2.3.2 Since Xδ ≥ 0, Xδ →
δ→+0

X as in Theorem 2.3.2,1) it holds X ≥ 0.
This means that the support of the density f of X ∼ Sα(λ, 1, 0) is contained in R+. Moreover,
one can show that suppf := {x ∈ R : f(x) > 0} = R+ by showing that ∀a, b > 0 : aα + bα = 1
it holds a · suppf + b · suppf = suppf. It follows from this relation that suppf = R+ since it
can not be R.

Exercise 2.3.1
Show this!
Remark 2.3.2
Actually, formula (2.3.1) is valid for all α /= 1, α ∈ (0, 2] : for X ∼ Sα(λ, 1, 0),

l̂X(s) =

exp
{
− λ

cos(πα/2)s
α
}
, α /= 1, α ∈ (0, 2],

exp
{
−λ 2

πs log s
}
, α = 1,

s ≥ 0,

where Γ(1− α) = λ
cos(πα/2) for α /= 1. Here, − λ

cos(πα/2) =


< 0, α ∈ (0, 1),
> 0, α ∈ (1, 2),
λ, α = 2.

Proposition 2.3.3. The support of Sα(λ, β, 0) is R, if β ∈ (−1, 1), α ∈ (0, 2).

Proof Let X ∼ Sα(λ, β, 0), α ∈ (0, 2), β ∈ (−1, 1) with density f. It follows from properties
2)-4) of Theorem 2.3.1 that ∃ i.i.d. random variables Y1, Y2 ∼ Sα(λ, 1, 0) and constants a, b >

0, c ∈ R s.t. X
d=
{
aY1 − bY2, α /= 1,
aY1 − bY2 + c, α = 1.

Since, Y1 ≥ 0 and −Y2 ≤ 0 a.s. by Proposition

2.3.2, and their support is the whole R+ (R−, resp.), it holds suppf = R.

Remark 2.3.3
One can prove that the support of Sα(λ,±1, 0) is R as well, if α ∈ [1, 2).

Now consider the tail behavior of stable random variables. In the Gaussian case (α = 2), it
is exponential:

Proposition 2.3.4. Let X ∼ N(0, 1). Then, P(X < −x) = P(X > x) ∼ ϕ(x)
x , x → ∞, where

ϕ(x) = 1√
2πe
−x2/2 is the standard normal density.
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Proof Due to the symmetry of X, P(X < −x) = P(X > x),∀x > 0. Prove the more accurate
inequality (1

x
− 1
x3

)
ϕ(x) < P(X > x) < ϕ(x)

x
, ∀x > 0. (2.3.3)

The asymptotic P(X > x) ∼ ϕ(x)
x , x→ +∞ follows immediately from it.

First prove the left relation in (2.3.3). Since e−t2/2 < e−t
2/2
(
1 + 1

t2

)
, ∀t > 0, it holds

for x > 0 : P(X > x) = 1√
2π
∫∞
x e−t

2/2dt ≤ 1√
2π
∫∞
x e−t

2/2
(
1 + 1

t2

)
dt = 1√

2πe
−x2/2 1

x , where

the last equality can be easily verified by differentiation w.r.t. x : − 1√
2πe
−x2/2

(
1 + 1

x2

)
=

1√
2π

(
−x
xe
−x2/2 − e−x2/2 1

x2

)
=
(
ϕ(x)
x

)′
. Analogously, e−t2/2

(
1− 3

t4

)
< e−t

2/2,∀t > 0, hence(1
x
− 1
x3

)
ϕ(x) = 1√

2π

∫ ∞
x

e−t
2/2
(

1− 3
t4

)
dt ≤ 1√

2π

∫ ∞
x

e−t
2/2dt = P(X > x), (2.3.4)

where again the left equality in (2.3.4) is proved by differentiation w.r.t. x.

Remark 2.3.4
If X ∼ N(µ, σ2), then P(X > x) ∼ σ

x−µϕ
(
x−µ
σ

)
, x→ +∞ accordingly.

However, for λ ∈ (0, 2), the behaviour of right and left hand side tail probabilities is polyno-
mial in 1

x :

Proposition 2.3.5. Let X ∼ Sα(λ, β, γ), α ∈ (0, 2). Then

xαP(X > x)→ cα
1 + β

2 λ, xαP(X < −x)→ cα
1− β

2 λ, as x→ +∞,

where

cα =
(∫ ∞

0

sin x
xα

dx

)−1
=


1

Γ(1−α) cos(πα/2) , α /= 1
2
π , α = 1.

Remark 2.3.5
1) The above proposition states, for β = ±1, that for{

X ∼ Sα(λ,−1, 0), it holds P(X > x)xα → 0, x→ +∞,
X ∼ Sα(λ, 1, 0), it holds P(X < −x)xα → 0, x→ +∞,

which means that the tails go to zero faster than x−α. But what is the correct asymptotic
in this case? For α ∈ (0, 1) we know that X is totally skewed to the left (right) and hence
P(X > x) = 0, ∀x > 0 for β = −1 and P(X < −x) = 0,∀x > 0 for β = 1.
For α ≥ 1, this asymptotic is far from being trivial. Thus, it can be shown (see [6, Theorem

2.5.3]) that
P(X > x) ∼

x→+∞
1√

2πα(α−1)

(
x
αaα

)− α
2(α−1) exp

(
−(α− 1)

(
x
αaα

) α
(α−1)

)
, α > 1,

P(X > x) ∼
x→+∞

1√
2π exp

(
− (π/2)λx−1

2 − e(π/2)λx−1
)
, α = 1,

β = −1,

where aα = (λ/ cos(π(2− α)/2))1/α.
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For β = 1 and P(X < −x) the same asymptotic applies, since P(X < −x) = P(−X > x),
and −X ∼ Sα(λ,−1, 0) with X ∼ Sα(λ, 1, 0).
2) In the specific case of SαS X, i.e., β = 0, X ∼ Sα(λ, 0, 0), Proposition 2.3.5 yields

P(X < −x) = P(X > x) ∼ λcα
2

1
xα , x→ +∞.

Proposition 2.3.5 will be proved later after we have proven important results needed for it.
Let us state now some corollaries.
Corollary 2.3.3
For any X ∼ Sα(λ, β, γ), 0 < α < 2 it holds E|X|p < ∞ iff p ∈ (0, α). In particular, E|X|α =
+∞.

Proof It follows immediately from the tail asymptotic of Proposition 2.3.5 and the formula
E|X|p =

∫∞
0 P(|X|p > x)dx.

Proposition 2.3.6. Let X ∼ Sα(λ, β, 0) for 0 < α < 2, and β = 0 if α = 1. Then (E|X|p)1/p =
cα,β(p)λ1/α, where p ∈ (0, α) and cα,β(p) is a constant s.t.

cα,β(p) = 2p−1Γ(1− p/α)
p
∫∞

0 u−p−1 sin2 udu

(
1 + β2tg2

(
απ

2

))p/(2α)
cos

(
p

α
arctg(βtg(απ/2))

)
.

Proof We show only that (E|X|p)1/p = cα,β(p)λ1/α, where cα,β(p) = (E|X0|p)1/p with X0 ∼
Sα(1, β, 0). The exact calculation of cα,β(p) will be left without proof. The first statement fol-
lows from Theorem 2.3.1,4), namely, since X d= λ1/αX0. Then (E|X|p)1/p = λ1/α(E|X0|p)1/p =
λ1/αcα,β(p).

2.4 Limit theorems
Let us reformulate Definition 2.1.1 as follows.
Definition 2.4.1
We say that the distribution fuction F belongs to the domain of attraction of distribution
function G if for a sequence of i.i.d. r.v.’s {Xn}n∈N, Xn ∼ F ∃ sequences of constants
{an}n∈N, {bn}n∈N : an ∈ R, bn > 0, ∀n ∈ N s.t.

1
bn

n∑
i=1

Xi − an
d→ X ∼ G,n→∞.

Let us state and prove the following result.
Theorem 2.4.1
1) G has a domain of attraction iff G is a distribution function of a stable law.
2) F belongs to the domain of attraction of N(µ, σ2), σ > 0 iff

µ(x) :=
∫ x

−x
y2F (dy), x > 0

is slowly varying at ∞. This holds, in particular, if F has a finite second moment (then
∃ limx→+∞ µ(x) = EX2

1 ).
3) F belongs to the domain of attraction of α-stable law, α ∈ (0, 2), iff

µ(x) ∼ x2−αL(x), (2.4.1)
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where L : R+ → R+ is slowly varying at +∞ and it holds the tail balance condition

P(X1 > x)
P(|X1| > x) = 1− F (x)

1− F (x) + F (−x) →
x→+∞

p,

P(X1 < −x)
P(|X1| > x) = F (−x)

1− F (x) + F (−x) →
x→+∞

q

(2.4.2)

for some p, q ≥ 0 : p+ q = 1 with X1 ∼ F. Condition (2.4.1) is equivalent to

P(|X1| > x) = 1− F (x) + F (−x) ∼
x→+∞

x−αL(x). (2.4.3)

Remark 2.4.1
a) In Definition 2.4.1, one can choose bn = inf{x : P(|X1| > x) ≤ n−1},
an = nE(X1I(|X1| ≤ bn)).
b) It is quite clear that statements 2) and 3) are special cases of the following one:
4) F belongs to the domain of attraction of an α-stable law, α ∈ (0, 2], iff (2.4.1) and (2.4.2)

hold.
c) It can be shown that {bn} in Theorem 2.4.1 must satisfy the condition limn→∞

nL(bn)
bαn

= λcα,

with cα as in Proposition 2.3.5. Then {an} can be chosen as

an =


0, α ∈ (0, 1),
nb2n

∫
R sin(x/bn)dF (x), α = 1,

nb2n
∫
R xdF (x), α ∈ (1, 2).

Proof of Proposition 2.3.5 We just give the sketch of the proof. It is quite clear that
Sα(λ, β, γ) belongs to the domain of attraction of Sα(λ, β, 0) with bn = n1/α, cf. Theorems
2.1.3,2.1.4, Corollary 2.1.1 and Remark 2.1.5. Then the tail balance condition (2.4.2) holds
with p = 1+β

2 , q = 1−β
2 . By Remark 2.4.1 c), putting bn = n1/α into it yields that L(x) in

(2.4.3) has the property limx→+∞ L(x) = cαλ. It follows from (2.4.2) and (2.4.3) of Theorem
2.4.1 that for x→ +∞

xαP(X > x) ∼ xαpP(|X| > x) ∼ p, xαx−α lim
x→+∞

L(x) = pcαλ = cα
1 + β

2 λ,

xαP(X < −x) ∼ qcαλ = cα
1−β

2 λ, x→ +∞ is shown analogously.

Proof of Theorem 2.4.1 F belongs to the domain of attraction of a distribution function G
if, by Definition 2.4.1, ∃ i.i.d. r.v.’s {Xn}n∈N, Xn ∼ F, {an}n∈N, {bn}n∈N ⊂ R : bn > 0 ∀n, s.t.
Sn = 1

bn

∑n
i=1Xi − an =

∑n
i=1

Xi−anbn 1
n

bn

d→ X ∼ G,n→∞. Denote cn = an
1
n , n ∈ N. In terms

of characteristic functions, ϕSn(s) →
n→∞

ϕX(s) ∀s ∈ R, where

ϕSn(s) = E exp
(
is

n∑
k=1

Xk − cnbn
bn

)
=

n∏
k=1

E exp
(
is
Xk − cnbn

bn

)
=

Xi−i.i.d.

(
e−iscnϕX1(s/bn)

)n
.

Put ϕn(s) = ϕX1(s/bn), Fn(x) = F (bnx). Then the statement of Theorem 2.4.1 is equivalent to(
e−iscnϕn(s)

)n
→

n→∞
ϕX(s), (2.4.4)

where X is stable.
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Lemma 2.4.1
Under assumptions of Theorem 2.4.1, relation (2.4.4) is equivalent to

n(ϕn(s)− 1− icns)→ η(s), n→∞ (2.4.5)

where η(s) is a continuous function of the form η(s) = isa−bs2 +
∫
{x /=0}(eisx−1−is sin x)dH(x)

(cf. (2.1.6)) with H(·) from Theorem 2.1.2 and ϕX(s) = eη(s), s ∈ R.

Proof 1) Show this equivalence in the symmetric case, i.e., if X1
d= −X1. Then it is clear that

we may assume cn = 0,∀n ∈ N. Show that

ϕnn(s) →
n→∞

eη(s) ⇔ (2.4.6)

n(ϕn(s)− 1) →
n→∞

η(s), (2.4.7)

and η is continuous. First, if a characteristic function ϕ(s) /= 0∀s : |s| < s0, then ∃! representa-
tion ϕ(s) = r(s)eiθ(s), where θ(·) is continuous and θ(0) = 0. Hence, logϕ(s) = log r(s) + iθ(s)
is well-defined, continuous, and logϕ(0) = log r(0) + iθ(0) = log 1 + i0 = 0.

Let us show (2.4.7) ⇒ (2.4.6). It follows from (2.4.7) that ϕn(s) →
n→∞

1 and by continuity
theorem for characteristic functions, this convergence is uniform in any finite interval s ∈
(−s0, s0). Then, logϕn(s) is well-defined for large n (since ϕn(s) /= 0 there). Since

log z = z − 1 + o((z − 1)2) for |z − 1| < 1, (2.4.8)

it follows logϕnn(s) = n logϕn(s) = n
(
ϕn(s)− 1 + o((ϕn(s)− 1)2)

)
∼

n→∞
n(ϕn(s)−1) →

n→∞
η(s)

by (2.4.7). Then, ϕnn(s) →
n→∞

eη(s), ∀s ∈ R and (2.4.6) holds.
Let us show (2.4.6) ⇒ (2.4.7). Since η(0) = 0, then eη(s) /= 0 ∀s ∈ (−s0, s0) for some

s0 > 0. Since the convergence of characteristic functions is uniform by continuity theorem,
ϕn(s) /= 0 for all n large enough and for s ∈ (−s0, s0). Taking logarithms in (2.4.6), we get
n logϕn(s) →

n→∞
η(s). Using Taylor expansion (2.4.8), we get n(ϕn(s)−1) →

n→∞
η(s), and (2.4.7)

holds.
2) Show this equivalence in the general case cn /= 0. More specifically, show that it holds if

ϕn(s) →
n→∞

1 ∀s ∈ R, and nβ2
n →n→∞ 0, where βn =

∫
R sin

(
x
bn

)
F (dx). Then

n(βn − cn) →
n→∞

a, (2.4.9)

and (2.4.5) writes equivalently as

n(ϕn(s)− 1− iβns) →
n→∞

η(s). (2.4.10)

Without loss of generality set a = 0.
Notice that the proof of 1) does not essentially depend on the symmetry of X1, i.e., equiv-

alence (2.4.6) ⇔ (2.4.7) holds for any characteristic functions {ϕn} s.t. ϕn(s) →
n→∞

1 ∀s ∈ R.
Applying this equivalence to {ϕn(s)e−iscn}n∈N leads to n(ϕn(s)e−icns − 1) →

n→∞
η(s) = −bs2 +∫

{x /=0}(eisx − 1 − is sin x)dH(x). Since we assumed that ϕn(s) →
n→∞

1 it follows cn →
n→∞

0,
while bn → ∞. Consider Im (n(ϕn(s) − eicns)) →

n→∞
Im (eicnsη(s)) for s = 1. Since η(1) ∈ R

and cn → 0, we get n (Imϕn(1)− sin cn) ∼
n→∞

η(1) sin cn, sin cn ∼ cn as cn → 0, where
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Imϕn(1) = Im
(∫

R e
is/bndF (x)

)∣∣∣
s=1

=
∫
R sin(x/bn)dF (x) = βn ⇒ n(βn − cn) →

n→∞
0. Hence,

relation n(ϕn(s)e−icns − 1) →
n→∞

η(s) one can write as n(ϕn(s)e−iβns − 1) →
n→∞

η(s). But

n(ϕn(s)e−iβns − 1) = n(ϕn(s)− 1− iβns)e−iβns + n((1 + iβns)e−iβns − 1)︸ ︷︷ ︸
→0,n→∞

,

since n((1 + iβns)e−iβns− 1) = n((1 + iβns)(1− iβns+ o(bn))− 1) = n(1 + β2
ns

2 + o(bn)− 1) =
nβ2

ns
2 + o(nbn) →

n→∞
0 by our assumption. We conclude that (2.4.4) ⇒ (2.4.5) holds.

Conversely, if (2.4.9) and (2.4.8) hold then reading the above reasoning in reverse order we
go back to (2.4.4).
Now we have to show that ϕn(s) →

n→∞
1, nβ2

n →
n→∞

0. The first statement is trivial since
ϕn(s) = ϕ(s/bn) → ϕ(0) = 1, as bn → ∞. Let us show nβ2

n = n (
∫
R sin(x/bn)F (dx))2 →

n→∞
0.

By Corollary 2.1.1 bn ∼ n1/αh(n), n→∞, where h(·) is slowly varying at +∞. It follows from
(2.4.3) that E|X1|p < ∞ ∀p ∈ (0, α). Then for p ∈ (0, 1] it holds |βn| ≤ 2

∫∞
0

∣∣∣ xbn ∣∣∣p dF (x) =
O(|bn|−p) = O(n−p/αh−p(n)) and nβ2

n = O(n1−2p/α) →
n→∞

0 if β is chosen s.t. p ∈ (α/2, 1].

Now prove the following.

Lemma 2.4.2
Conditions of Theorem 2.4.1 are necessary and sufficient for relation (2.4.5) to hold with some
special sequences of constants {bn}, {cn}.

If this lemma is proven, then the proof of Theorem 2.4.1 is complete, since by Lemma 2.4.1
relation (2.4.5) and (2.4.4) are equivalent, and thus F belongs to the domain of attraction of
some α−stable law.

Proof of Lemma 2.4.2. Let relation (2.4.5) holds with some bn > 0 and an. This means,
equivalently, that Sn

d→
n→∞

X ∼ G. Since the case X ∼ N(0, 1) is covered by the CLT, let
us exclude it as well as the trivial case X ≡ const. By Theorem 2.1.2-2.1.3 with kn = n
Xnj = Xj/bn, an = An(y)− a−

∫
|u|<y udH(u) +

∫
|u|≥y

1
udH(u), X1 ∼ F,

An(y) = nE
(
X1
bn

I(|X1|/bn < y)
)

= n

bn
E(X1I(|X1| < bny)) n

bn

∫ ybn

−ybn
xdF (x),

±y being continuity points of H, it follows that

n(F (xbn)− 1) →
n→∞

H(x), x > 0,
nF (xbn) →

n→∞
H(x), x < 0,

and

lim
ε→0

lim sup
n→∞

n

b2n

∫ εbn

−εbn
x2dF (x)−

(∫ εbn

−εbn
x2dF (x)

)2
 = b. (2.4.11)

1) Show that bn → +∞, bn+1
bn

→
n→∞

1, if X /≡ const a.s. By Remark 2.1.3 2), it holds property
(2.1.5), i.e., limn→∞ P(|X1| < c) = 1 then the central limit theorem can be applied to {Xn}
with ∑n

i=1Xi − nEX1√
n
√
VarX1

d→
n→∞

N(0, 1)
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and it is not difficult to show (see Exercise 2.3.2 below) that bn = const
√
n → ∞ in this

case. If /∃ c > 0 : P(|X1| < c) = 1 then bn /= O(1), n → ∞ since that would contradict
limn→∞ P(|X1| > bnε) = 0 ⇒ ∃{nk}, nk → ∞ as k → ∞ : bnk → +∞. W.l.o.g. identify
sequences {n} and {nk}. Alternatively, one can agree that {Sn} is stochastically bounded
(which is the case if Sn

d→
n→∞

X) iff bn → +∞.

Exercise 2.4.1
Let {Fn}n∈N be a sequence of c.d.f. s.t. Fn(αn · +βn) d→ U(·), n → ∞, Fn(γn · +δn) d→ V (·),
n → ∞ for some sequences {αn}, {βn}, {γn}, {δn} s.t. αnγn > 0, where U and V are c.d.f.’s
which are not concentrated at one point. Then

γn
αn

→
n→∞

a /= 0, δn − βn
αn

→
n→∞

b

and V (x) = U(ax+ b), ∀x ∈ R.

Now show that bn+1
bn
→ 1, n → ∞. Since Sn

d→
n→∞

X /≡ const, it holds Sn+1
d→

n→∞
X, Xn+1

bn+1
=

Sn+1 − Sn
d→

n→∞
0 ⇒ Xn+1

bn+1

P→ 0, n → ∞. Thus, 1
bn+1

Sn − an+1
d→

n→∞
X and 1

bn
Sn − an

d→
n→∞

X,

which means by Exercise 2.4.1, that bn+1
bn

→
n→∞

1.
2) Prove the following.

Proposition 2.4.1. Let βn →
n→∞

+∞, αn+1
αn

→
n→∞

1. Let U be a monotone function s.t.

lim
n→∞

αnU(βnx) = ψ(x) (2.4.12)

exists on a dense subset of R+, where ψ(x) ∈ (0,+∞) on some interval I, then U is regularly
varying at +∞, ψ(x) = cxρ, ρ ∈ R.

Proof W.l.o.g. set ψ(1) = 1, and assume that U is non-decreasing and (2.4.12) holds for x = 1
(otherwise, a scaling in x can be applied). Set n = min{k ∈ N0 : βk+1 > t}. Then it holds
βn ≤ t < βn+1, and

ψ(x) ∼
n→∞

λnU(βnx)
λn+1U(βn+1) ∼

n→∞
U(βnx)
U(βn+1) ≤

U(tx)
U(t)

≤U(βn+1x)
U(βn) ∼

n→∞
λn+1U(βn+1x)
λnU(βn) ∼

n→∞
ψ(x)
ψ(1) = ψ(x)

for all x, for which (2.4.12) holds. The application of Lemma 2.1.1 finishes the proof.

3) Apply Proposition 2.4.1 to
{
n(F (xbn)− 1)→ H(x), x > 0
nF (−xbn)→ H(−x), x < 0

as n→∞ with αn = n, βn =

bn ⇒ 1 − F (x) = P(X1 > x), F (−x) = P(X1 < −x) are regularly varying at +∞, and
H(x) = c1x

ρ1 , H(−x) = c2x
ρ2 ,

P(X1 > x) ∼ xρ1L1(x), P(X1 < −x) ∼ xρ2L2(x), x→ +∞, (2.4.13)

where L1, L2 are slowly varying at +∞.
Since (2.4.11) holds, limn→∞

n
b2
n

(
µ(εbn)−

(∫ εbn
−εbn xdF (x)

)2
)
is a bounded function of ε in the

neighborhood of zero, hence by Proposition 2.4.1 with αn = n
b2
n
, βn = bn, µ(x)−

(∫ x
−x ydF (y)

)2
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is regularly varying at +∞. By Theorem 2.1.4, ρ1 = ρ2 = −α, c1 < 0, c2 > 0, and evidently,
P(|X1| > x) = 1− F (x) + F (−x) ∼

x→+∞
x−α (L1(x) + L2(x))︸ ︷︷ ︸

L(x)

, so (2.4.3) holds.

Exercise 2.4.2
Show that then µ(x) ∼

x→+∞
x2−αL3(x) is equivalent to (2.4.3). Show that tail balance condition

(2.4.2) follows from (2.4.13) with ρ1 = ρ2 = −α.

So we have proven that (2.4.5) ⇒ (2.4.2),(2.4.3) (or, equivalently, (2.4.1),(2.4.2)). Now let
us prove the inverse statement.
4) Let (2.4.1) hold. Since L1 is slowly varying, one can find a sequence {bn}, bn →∞, n→∞

s.t. n
bαn
L(bn) →

n→∞
c > 0 – some constant. (Compare Remark 2.4.1, c).) Then n

b2
n
µ(bnx) ∼

n→∞
n
b2
n

(bnx)2−αL(bnx) = n
bαn
L(bnx)x−α ∼

n→∞
cx−α, x > 0 and hence

n(F (xbn)− 1) →
n→∞

c1x
−α,

nF (−xbn) →
n→∞

c2x
−α.

(2.4.14)

Exercise 2.4.3
1) Show the last relation. Then 1) of Theorem 2.1.3 holds.
2) Prove that 2) of Theorem 2.1.3 holds as well, as a consequence of n

b2
n
µ(bnx) ∼

n→∞
cx−α and

(2.4.14).

Then, by Theorem 2.1.3 Sn
d→

n→∞
X, and (2.4.5) holds. Lemma 2.4.2 is proven.

The proof of Theorem 2.4.1 is thus complete. Part a) and the second half of part c) of
Remark 2.4.1 will remain unproven.

2.5 Further properties of stable laws

Proposition 2.5.1. Let X ∼ Sα(λ, β, γ) with α ∈ (1, 2]. Then EX = λγ.

In addition to a proof a using the law of large numbers, (see Exercise 4.1.14) let us give an
alternative proof here.

Proof By Corollary 2.3.3, E|X| < ∞ if α ∈ (1, 2). For α = 2 X is Gaussian and hence
E|X| < ∞ is trivial. Let µ = λγ. By Remark 2.3.1 5), X − µ is strictly stable, i.e., X1 − µ +
X2 − µ

d= c2(X − µ) by Definition 2.1.3, where X1
d= X2

d= X, all independent r.v.’s. Taking
expectations on both sides yields 2E(X − µ) = c2E(X − µ). Since cn = n1/α by Remark 2.1.5,
c2 = 21/α, and hence E(X − µ) = 0⇒ EX = µ.

Now we go on to show series representation of stable random variables. Some preparatory
definitions are in order.

Definition 2.5.1
Let X and Y be two random variables defined possibly on different probability space. One says
that X is a representation of Y if X d= Y.
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Definition 2.5.2
Let {Ti}i∈N be the sequence of i.i.d. Exp(λ)-distributed random variables with λ > 0. Set
τn =

∑n
i=1 Ti ∀n ∈ N, τ0 = 0, and N(t) = max{n ∈ N0 : τn ≤ t}, t ≥ 0. The random process

N = {N(t), t ≥ 0} is called Poisson with intensity λ. Time instants τi are called arrival times,
Ti are interarrival times.
Exercise 2.5.1
Prove the following properties of a Poisson process N :

1. N(t) ∼ Poisson(λt), t > 0, and, in particular, EN(t) = VarN(t) = λt.

2. Let Ni = {Ni(t), t ≥ 0} be two independent Poisson processes with intensities λi, i = 1, 2.
Then {N1(t) + N2(t), t ≥ 0} is a Poisson process with intensity λ1 + λ2 (which is called
the superposition N1 +N2 of N1 and N2.)

3. τn ∼ Γ(n, λ), n ∈ N, where Γ(n, λ) is a Gamma distribution with parameters n and λ,
Eτn = n/λ.

Clearly, all Tn are dependent random variables.

Proposition 2.5.2. Let N = {N(t), t ≥ 0} be a Poisson process with intensity one (λ = 1)
and arrival times {τn}n∈N. Let {Rn}n∈N be a sequence of i.i.d. random variables, independent
of {τn}n∈N. Then X =

∑∞
n=1 τ

−1/α
n Rn is a strictly α−stable random variable provided that

α ∈ (0, 2] and this series converges a.s.

Proof Let Xi =
∑∞
n=1(τ (i)

n )−1/αR
(i)
n , i = 1, 2, 3 be three independent copies of X, where

{Rn}
d= {R(i)

n }, i = 1, 2, 3, {τn}
d= {τ (i)

n }, i = 1, 2, 3, and all three sequences are independent.

By Definition 2.1.4 and Remark 2.1.5, it suffices to show that

X1 +X2
d= 21/αX,

X1 +X2 +X3
d= 31/αX,

21/αX =
∑∞
n=1(τn/2)−1/αRn, where {τn/2}n∈N forms a Poisson process 2N with intensity

λ = 2, since Tn/2 = (τn − τn−1)/2 ∀n, and P(Tn/2 ≥ x) = P(Tn ≥ 2x) = exp(−2x), x ≥ 0.
It is clear that X1 + X2 =

∑∞
n=1(τ ′n)−1/αR′n, where {τ ′n} are arrival times of the super-

position N1 + N2 (being a Poisson process of intensity 2, cf. Exercise 2.5.1), and R′n =R
(1)
k , if τ ′n = τ

(1)
k for some k ∈ N

R
(2)
k , if τ ′n = τ

(2)
m for some m ∈ N.

Since {Rn}n∈N
d= {R′n}n∈N, and N1 +N2

d= 2N, we have

X1 +X2
d= X, so we are done. For X1 +X2 +X3, the proof is analogous.

In order to get a series representation of a SαS random variable X, we’ll have to ensure the
a.s. convergence of this series. For that, we impose restrictions on α ∈ (0, 2) and on {Rn} : we

assume Rn = εnWn, where εn = sign(Rn) =
{

+1, if Rn > 0,
−1, if Rn ≤ 0,

Wn = |Rn|,EWα
n <∞.

Theorem 2.5.1 (LePage representation):
Let {εn}, {Wn}, {τn} be independent sequences of random variables, where {εn}n∈N are i.i.d.

Rademacher random variables, εn =
{

+1, with probability 1/2,
−1, with probability 1/2

, {Wn}n∈N are i.i.d. random

variables with E|Wn|α < ∞, α ∈ (0, 2), and {τn}n∈N is the sequence of arrival times of a unit
rate Poisson process N (λ = 1).



30 2 Properties of stable laws

Then X a.s.:=
∑∞
n=1 εnτ

−1/α
n Wn ∼ Sα(σ, 0, 0), where this series converges a.s., σ = E|W1|α

cα
, and

cα is a constant introduced in Proposition 2.3.5.
Remark 2.5.1
1) Proposition 2.5.2 yields the fact that X ∼ SαS, but it does not give insights into the value
of σ.
2) Since the distribution of X depends only on E|W1|α, it does not matter, which {Wn} we

choose. A usual choice can be Wn ∼ U [0, 1], or Wn ∼ N(0, 1). Hence, Wn do not need to be
non-negative, as in the comment before Theorem 2.5.1.
3) The LePage representation is not used to simulate stable variables, since the convergence

of the series is rather slow. Indeed, methods in Chapter 3 are widely used.
4) Skewed stable variables have another series representation which will be given (without

proof) in Theorem 2.5.3 below.
5) It follows directly from Theorem 2.5.1 that for any SαS random variableX ∼ Sα(λ, 0, 0), it

has the LePage representationX d=
(

cαλ
E|W1|α

)1/α∑∞
n=1 εnτ

−1/α
n Wn, where sequences {εn}, {Wn},

{τn} are chosen as above. In particular, choosing the law of W1 s.t. E|W1|α = λ reduces the
representation to X d= c

1/α
α

∑∞
n=1 εnτ

−1/α
n Wn. Since τn ↑ a.s. as n→∞, the terms εnτ−1/α

n Wn ↓
stochastically, and one can show that the very first term ε1τ

−1/α
1 W1 dominates the whole tail

behaviour of X. In more details, by Proposition 2.3.5, it holds P(X > x) ∼
x→∞

1
2cαλx

−α, and it
is not difficult to see that
a) P(c1/α

α ε1τ
−1/α
1 W1 > x) ∼ 1

2cαλx
−α as x→ +∞,

b) P(
∑∞
n=0 εnτ

−1/α
n Wn > x) = o(x−α) as x→ +∞.

Exercise 2.5.2
Prove the statement a) of Remark 2.5.1.

Proof of Theorem 2.5.1 1) Let {Un}n∈N be a sequence of i.i.d. U [0, 1]−distributed random
variables, independent of {εn}n∈N and {Wn}n∈N. Then {Yn}n∈N given by Yn = εnU

−1/α
n Wn, n ∈

N is a sequence of symmetric i.i.d. random variables. Let us show that the law of Y1 lies in the
domain of attraction of a SαS random variable. For that, compare its tail probability

P(|Y1| > x) = P(U−1/α
1 |W1| > x) = P(U1 < x−α|W1|α)

=
∫ ∞

0
P(U1 < x−αωα)dF|W |(ω) =

∫ x

0
x−αωαdF|W |(ω) +

∫ ∞
x

dF|W |(ω)

= x−α
∫ x

0
ωαdF|W |(ω) + P(|W1| > x),

where F|W |(x) = P(|W1| ≤ x). So,

lim
x→+∞

xαP(|Y1| > x) =
∫ ∞

0
ωαdF|W |(ω)︸ ︷︷ ︸
E|W1|α

+ lim
x→+∞

xαP(|W1| > x)︸ ︷︷ ︸
=0, since E|W1|α<∞

= E|W1|α.

Hence, condition (2.4.3) of Theorem 2.4.1 is satisfied. Due to symmetry of Y1, tail balance
condition (2.4.2) is obviously true with p = q = 1/2. Then, by Theorem 2.4.1 and Corollary
2.1.1, it holds 1

n1/α
∑n
k=1 Yk

d→
n→∞

X ∼ Sα(σ, 0, 0), where the parameters (λ, β, γ) of the limiting

stable law come from the proof of Theorem 2.1.1 with c1 = c2 = E|W1|α
2 (due to the symmetry

of Y1 and X).
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2) Rewrite 1
n1/α

∑n
k=1 Yk to show that its limiting random variable X coincides with∑∞

k=1 εkτ
−1/α
k Wk.

Exercise 2.5.3
Let N be the Poisson process with intensity λ > 0 built upon arrival times {τn}n∈N. Show that

a) under the condition {τn+1 = t} it holds (τ1/t, . . . , τn/t)
d= (u(1), . . . , u(n)), where u(k), k =

1, . . . , n are order statistics of a sample (u1, . . . , un) with uk ∼ U(0, 1) being i.i.d. random
variables.
b)
(

τ1
τn+1

, . . . , τn
τn+1

)
d= (u(1), . . . , u(n)).

Reorder the terms Yk in the sum
∑n
k=1 Yk in order of ascending uk, so to have

∑n
k=1 εku

−1/α
(k) Wk.

Since Wk and εk are i.i.d., this does not change the distribution of the whole sum. Then

1
n1/α

n∑
k=1

Yk
d= 1
n1/α

n∑
k=1

εku
−1/α
(k) Wk

d= 1
n1/α

n∑
k=1

εk

(
τk
τn+1

)−1/α
Wk

by Exercise 2.5.3 b). Then, by part 1),
(
τn+1
n

)1/α n∑
k=1

εkτ
−1/α
k Wk︸ ︷︷ ︸

=:Sn

d→
n→∞

X with X as above.

3) Show that Sn
d→
∑∞
k=1 εkτ

−1/α
k Wk, then we are done, since then Sα(σ, 0, 0) ∼ X

d=∑∞
k=1 εkτ

−1/α
k Wk. By the strong law of large numbers, it holds τn+1

n = τn+1
n+1

n+1
n =

∑n+1
i=1 Ti
n+1

n+1
n

a.s.→
ET1 = 1, as n→∞, since the Poisson process N has the unit rate, and T1 ∼ Exp(1). Then
P(A) = 1, where A = {limn→∞

τn
n = 1} ∩ τ1 > 0. Let us show that ∀ω ∈ A∑∞

k=1 εk(ω)(τk(ω))−1/αWk(ω) < ∞. Apply the following three-series theorem by Kolmogorov
(without proof).
Theorem 2.5.2 (Three-series theorem by Kolmogorov):
Let {Yn}n∈N be a sequence of independent random variables. Then

∑∞
n=1 Yn < ∞ a.s. iff

∀s > 0

a)
∑∞
n=1 P(|Yn| > s) <∞

b)
∑∞
n=1 E(YnI(|Yn| ≤ s)) <∞

c)
∑∞
n=1 Var(YnI(|Yn| ≤ s)) <∞

See the proof in [1, Theorem IX.9.2.]
Let us check conditions a)-c) above. ∀s > 0

a)
∑∞
n=1 P(|εnτ−1/α

n Wn| > s) =
∑∞
n=1 P(|Wn|α > sατn) ≤

∑∞
n=1 P(|W1|α > sαc1n) < ∞,

since ∃c1, c2 > 0 : c1n ≤ τn(ω) ≤ c2n ∀n > N(ω) (due to τn(ω)
n

d→
n→∞

1 ∀ω ∈ A) and
E|W1|α <∞ by assumptions.

b) It holds E
[
εnτ
−1/α
n WnI(|εnτ−1/α

n Wn| ≤ s)
]

= Eεn︸︷︷︸
=0

E
[
τ
−1/α
n WnI(|τ−1/α

n Wn| ≤ s)
]

= 0 by

independence of εn from τn and Wn, and by symmetry of {εn}. Then∑∞
n=1 E

[
εnτ
−1/α
n WnI(|εnτ−1/α

n Wn| ≤ s))
]

= 0 <∞.
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c)

∞∑
n=1

Var
[
εnτ
−1/α
n WnI(|εnτ−1/α

n Wn| ≤ s)
] by b)

=
∞∑
n=1

E
[
τ−2/α
n W 2

nI(|τ−1/α
n Wn| ≤ s)

]
≤
∞∑
n=1

c
−2/α
1 n−2/αE

[
W 2

1 I(|W1| ≤ s(c2n)1/α)
]

= c
−2/α
1

∞∑
n=1

n−2/α
∫ s(c2n)1/α

0
w2dF|W |(w)

≤ c3

∫ ∞
0

x−2/α
∫ s(c2x)1/α

0
w2dF|W |(w)dx Fubini= c3

∫ ∞
0

w2dF|W |(w)
∫ ∞
s−αc−1

2 wα
x−2/αdx

= c4

∫ ∞
0

wαdF|W |(w) = c4E|W1|α <∞,

where c3, c4 > 0.

Hence, by Theorem 2.5.2 Sn
d→

n→∞

∑∞
k=1 εkτ

−1/α
k Wk < ∞ a.s. and X

d=
∑∞
k=1 εkτ

−1/α
k Wk ∼

Sα(σ, 0, 0).

Theorem 2.5.3 (LePage representation for skewed stable variables):
Let {Wn}n∈N be a sequence of i.i.d. random variables and let N = {N(t), t ≥ 0} be a unit rate
Poisson process with arrival times {τn}n∈N, independent of {Wn}n∈N. Assume E|W1|α <∞, α ∈
(0, 2), α /= 1, and E|W1 log(|W1|)| <∞, α = 1. Then X :=

∑∞
n=1(τ−1/α

n Wn−κ(α)
n ) ∼ Sα(λ, β, 0),

where this convergence is a.s., λ = E|W1|α
cα

with cα being a constant introducing in Proposition
2.3.5, β = E(|W1|αsignW1)

E|W1|α , and

κ(α)
n =


0, 0 < α < 1,
E
(
W1

∫ |W1|/(n−1)
|W1|/n

sinx
x2 dx

)
, α = 1

α
α−1

(
n
α−1
α − (n− 1)

α−1
α

)
EW1, α > 1.

If α = 1, then

X :=
∞∑
n=1

(
T−1
n Wn − E (W1)

∫ 1/(n−1)

1/n

sin x
x2 dx

)
∼ S1(λ, β, γ), (2.5.1)

with λ and β as above, and γ = − 1
λE(W1 log |W1|).

Proof see [3, §1.5.]

Some remarks are in order.

Remark 2.5.2
1) the statement of Theorem 2.5.3 can be easily converted into a representation: a random
variable X ∼ Sα(λ, β, γ), 0 < α < 2, has a representation X d= λγ +

∑∞
n=1(τ−1/α

n Wn − κ(α)
n ),

where the i.i.d. random variables {Wn}n∈N satisfy E|W1|α = cαλ,E(|W1|2signW1) = cαβλ.
Apart from this restrictions on {Wn}n∈N, the choice of their distribution is deliberate.
2) Theorem 2.5.1 is a special case of Theorem 2.5.3 if we replaceWn by εnWn, where {εn}n∈N

are independent of {Wn}n∈N i.i.d. random variables.
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3) The LePage representation of a stable subordinator X ∼ Sα(λ, 1, 0), λ > 0, α ∈ (0, 1),
follows easily from Theorem 2.5.3. Indeed, set Wn = 1,∀n. Then,

∑∞
n=1 τ

−1/α
n ∼ Sα(c−1

α , 1, 0),
so X d= λ1/αc

1/α
α

∑∞
n=1 τ

−1/α
n .

4) For α ≥ 1, the series
∑∞
n=1 τ

−1/α
n Wn diverges in general, if Wn are not symmetric.

Hence, the correction κ(α)
n is needed, which is of order of the E(Wnτ

−1/α
n ). Indeed, for λ > 1

E(τ−1/α
n Wn) = Eτ−1/α

n EWn ∼ n−1/αEW1 ∼ κ
(α)
n . Analogously, for α = 1 E(τ−1

n Wn) ∼
n−1EW1 ∼

∫ 1/(n−1)
1/n

sinx
x2 dx · EW1 as in (2.5.1).

The following result yields the integral form of the cumulative distribution function of a SαS
law.
Theorem 2.5.4
1) Let X ∼ Sα(1, 0, 0) be a SαS random variable, α /= 1, α ∈ (0, 2]. Then

1
π

∫ π/2

0
exp

(
−x

α
α−1κα(t)

)
dt =

{
P(0 ≤ X ≤ x), α ∈ (0, 1),
P(X > x), α ∈ (1, 2]

for x > 0, where

κα(t) =
(sin(αt)

cos t

) α
1−α cos((1− α)t)

cos t , t ∈
(

0, π2

]
.

2) Let X ∼ Sα(1, 1, 0), α ∈ (0, 1]. Then

P(X ≤ x) = 1
π

∫ π/2

−π/2
exp

(
−x

α
α−1 κ̄α(t)

)
dt, x > 0,

where

κ̄α(t) =
(sin(α(π/2 + t))

sin(π/2 + t)

) α
1−α sin((1− α)(π/2 + t))

sin(π/2 + t) , t ∈
(
−π2 ,

π

2

]
.

See [6, Remark 1 p.78.] and [5, formula (4.5.2)].



3 Simulation of stable variables
In general, the simulation of stable laws can be demanding. However, in some particular cases,
it is quite easy.
Proposition 3.0.1 (Lévy distribution). Let X ∼ S1/2(λ, 1, γ). Then X can be simulated by
representation X d= λ2Y −2 + λγ, where Y ∼ N(0, 1).
Proof It follows from Exercise 1.0.6,1) and Theorem 2.3.1, 3),4).

Proposition 3.0.2 (Cauchy distribution). Let X ∼ S1(λ, 0, γ). Then X can be simulated by
representations
1) X d= λY1

Y2
+ λγ, where Y1 and Y2 are i.i.d. N(0, 1) random variables,

2) X d= λtg(π(U − 1/2)) + λγ, where U ∼ Uniform[0, 1].
Proof 1) Use Exercise 4.1.29 and the scaling properties of stable laws given in Theorem 2.3.1,
3),4).
2) By Example 1.0.2 it holds tgY d= Z, Y ∼ U [−π/2, π/2] d= π(U −1/2), Z ∼ Cauchy(0, 1) ∼

S1(1, 0, 0). Then use again Theorem 2.3.1, 3),4) to get X d= λZ + λγ.

Now we reduced the simulation of Lévy and Cauchy laws to the simulation of U [0, 1] and
N(0, 1) random variables. A realisation of a U [0, 1] is given by generators of pseudorandom
numbers built into any programming language. The simulation of N(0, 1) is more involved,
and we give it in the following Proposition 3.0.3 below. From this, it can be easily seen that
the method of Proposition 3.0.2, 2) is much more efficient and fast than that of Proposition
3.0.2, 1).
Proposition 3.0.3. 1) Let R and θ be independent random variables, R2 ∼ Exp(1/2), θ ∼
U [0, 2π]. Then X1 = R cos θ and X2 = R sin θ are independent N(0, 1)-distributed random
variables.
2) A random variable X ∼ N(µ, σ2) can be simulated by X d= µ + σ

√
−2 logU cos(2πV ),

where U, V ∼ U [0, 1] are independent.
Proof 1) For any x, y ∈ R consider

P(X1 ≤ x,X2 ≤ y) = P(
√
R2 cos θ) ≤ x,

√
R2 sin θ) ≤ y)

= 1
2π

∫ 2π

0

∫ ∞
0

I(
√
t cosϕ ≤ x,

√
t sinϕ ≤ y)1

2e
−t/2dtdϕ =

∣∣∣t = r2
∣∣∣

= 1
2π

∫ 2π

0

∫ ∞
0

I(r cosϕ ≤ x, r sinϕ ≤ y)re−r2/2drdϕ =
∣∣∣∣∣x1 = r cosϕ,
x2 = r sinϕ

∣∣∣∣∣
= 1

2π

∫ ∞
0

∫ ∞
0

I(x1 ≤ x, x2 ≤ y)e−
x2

1+x2
2

2 dx1dx2

= 1√
2π

∫ x

0
e−

x2
1

2 dx1
1√
2π

∫ y

0
e−

x2
2

2 dx2 = P(X1 ≤ x)P(X2 ≤ y).

34
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Hence, X1, X2 ∼ N(0, 1) are independent.
2) If X ∼ N(µ, σ2) then Y = X−µ

σ ∼ N(0, 1). By 1), Y d= R cos Θ, where R2 ∼ Exp(1/2),
Θ d= 2πV, V ∼ U [0, 1]. Simulate R2 by the inversion method, i.e. show that R d= −2 logU, where
U ∼ U [0, 1], independent of V. Indeed, P(−2 logU ≤ x) = P(logU ≥ −x/2) = P(U ≥ e−x/2) =
1 − e−x/2, x ≥ 0. Hence −2 logU ∼ Exp(1/2), then, it holds X−µ

σ
d=
√
−2 logU cos(2πV ), and

we are done.

Remark 3.0.1 (Inverse function method):
From the proof of Proposition 3.0.3, 2) it follows that forX ∼ Exp(λ) it holdsX d= − 1

λ logU,U ∼
U [0, 1], λ > 0. This is the particular case of the so-called inverse function simulation method:
for any random variable X with c.d.f. FX(x) = P(X ≤ x) s.t. FX is increasing on (a, b)
−∞ ≤ a < b ≤ +∞, limx→a+ FX(x) = 0, limx→b− FX(x) = 1 : it holds X d= F−1

X (U), where
U ∼ U [0, 1], and F−1

X is the quantile function of X. Indeed, we may write P(F−1
X (U) ≤ x) =

P(U ≤ FX(x)) = FX(x), x ∈ (a, b), since P(U ≤ y) = y,∀y ∈ [0, 1].

Theorem 3.0.1 (Simulation of Sα(1, 0, 0)):
Let X ∼ Sα(1, 0, 0), α ∈ (0, 2]. Then X can be simulated by representation

X
d= sin(απ(U − 1/2))

(cos(π(U − 1/2)))1/α

(cos((1− α)π(U − 1/2))
− log V

) 1−α
α

, (3.0.1)

where U, V ∼ U [0, 1] are independent random variables.

Proof Denote T = π(U−1/2),W = − log V. By Remark 3.0.1 it is clear that T ∼ U [−π/2, π/2],
W ∼ Exp(1). So (3.0.1) reduces to

X
d= sin(αT )

(cosT )1/α

(cos((1− α)T )
W

) 1−α
α

. (3.0.2)

1) α = 1 : Then (3.0.2) reduces to X d= tgT, which was proven in Proposition 3.0.2,2).

2) α ∈ (0, 1) : Under the condition T > 0, relation (3.0.2) rewrites as X d= Y =
(
Kα(T )
W

) 1−α
α ,

where Kα(T ) =
(

sin(αT )
(cosT )

)1/α cos((1−α)T )
W as in Theorem 2.5.1.

Then

P(0 ≤ Y ≤ x) = P(0 ≤ Y ≤ x, T > 0) = |Y ≥ 0⇔ T > 0|

= P

0 ≤
(
Kα(T )
W

) 1−α
α

≤ x, T > 0

 = P(W ≥ Kα(T )x−
α

1−α , T > 0)

= 1
π

∫ π/2

0
P(W ≥ Kα(t)x−

α
1−α )dt W∼Exp(1)= 1

π

∫ π/2

0
exp

(
−Kα(t)x

α
1−α

)
dt.

Hence, Y ∼ Sα(1, 0, 0) by Theorem 2.5.4 ⇒ X
d= Y ∼ Sα(1, 0, 0).

3) α ∈ (1, 2] is proven analogously as in 2) considering 1 − α < 0 and P(Y ≥ x) = P(Y ≥
x, T > 0).
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Remark 3.0.2
In the Gaussian case α = 2, the formula (3.0.2) reduces to X d=

√
W sin(2T )

cosT =
√
W 2 sinT cosT

cosT =
√

2
√

2W sinT, where
{
W ∼ Exp(1)
T ∼ U [−π/2, π/2]

, so 2W ∼ Exp(1/2). Hence, X ∼ N(0, 2) is gener-

ated by the algorithm 2) of Proposition 3.0.3, so formula (3.0.1) contains Proposition 2.4.7,2)
as a spacial case.

Now let us turn to the general case of simulating a random variable X ∼ Sα(λ, β, γ). We
show first that, to this end, it sufficient to know how to simulate X ∼ Sα(1, 1, 0).

Lemma 3.0.1
Let X ∼ Sα(λ, β, γ), α ∈ (0, 2). Then

X
d=
{
λγ + λ1/αY, α /= 1,
λγ + 2

πβλ log λ+ λY, λ = 1,
(3.0.3)

where Y ∼ Sα(1, β, 0) can be simulated by

Y
d=


(

1+β
2

)1/α
Y1 −

(
1−β

2

)1/α
Y2, α /= 1,(

1+β
2

)
Y1 −

(
1−β

2

)
Y2 + λ

π

(
(1 + β) log

(
1+β

2

)
− (1− β) log

(
1−β

2

))
, α = 1,

(3.0.4)

with Y1, Y2 ∼ Sα(1, 1, 0) being independent random variables.

Proof Relation (3.0.4) follows from the proof of Proposition 2.3.3 and Exercise 4.1.28. Relation
(3.0.3) follows easily from Theorem 2.3.1,3)-4).

Now let us simulate X ∼ Sα(1, 1, 0). First, we do it for α ∈ (0, 1).

Lemma 3.0.2
Let X ∼ Sα(1, 1, 0), α ∈ (0, 1). Then X can be simulated by X d= sin(αθ)

sin θ

(
sin((1−α)θ)
W sin θ

) 1−α
α , where

θ and W are independent random variables, θ ∼ U [0, π],W ∼ Exp(1). As before, θ and W

can be simulated by θ d= πU,U ∼ U [0, 1], where W d= − log V, V ∼ U [0, 1], where U and V are
independent.

Proof By Theorem 2.5.4, 2) we have true following representation formula for the c.d.f. P(X ≤
x) = FX(x) :

FX(x) = 1
π

∫ π/2

−π/2
exp

(
−x

α
α−1 K̄α(t)

)
dt, x > 0,

where

K̄α(t) =
(sin(α(π/2 + t))

sin(π/2 + t)

) α
1−α sin((1− α)(π/2 + t))

sin(π/2 + t) , t ∈
(
−π2 ,

π

2

]
.

The rest of the proof is exactly as in Theorem 3.0.1, 2).

Similar results can be proven for α ∈ [1, 2) :
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Theorem 3.0.2
The random variable X ∼ Sα(1, 1, 0), α ∈ [1, 2) can be simulated by

X
d=


2
π

(
(π/2 + T )tgT − log

( π
2W cosT
π
2 +T

))
, α = 1,(

1 + tg2 (π
2α
)) 1

2α sin(α(T+π/2))
(cosT )1/α

(
cos((1−α)T−απ/2)

W

) 1−α
α , α ∈ (1, 2),

where W ∼ Exp(1) and T ∼ U [−π/2, π/2] are independent random variables.
Without proof.



4 Additional exercises

4.1
Exercise 4.1.1
LetX1, X2 be two i.i.d. r.v.’s with probability density ϕ. Find a probability density of aX1+bX2,
where a, b ∈ R.

Exercise 4.1.2
Let X be a symmetric stable random variable and X1, X2 be its two independent copies. Prove
that X is a strictly stable r.v., i.e., for any positive numbers A and B, there is a positive number
C such that

AX1 +BX2
d=CX.

Exercise 4.1.3 1. Prove that ϕ = {e−|x|, x ∈ R} is a characteristic function. (Check
Pólya’s criterion for characteristic functions.1)

2. Let X be a real r.v. with characteristic function ϕ. Is X a stable random variable? (Verify
definition.)

Exercise 4.1.4
Let real r.v. X be Lévy distributed (see Exercise Sheet 1, Ex. 1-4). Find the characteristic
function of X. Give parameters (α, σ, β, µ) for the stable random variable X.
Hint: You may use the following formulas. 2

∫ ∞
0

e−1/(2x)

x3/2 cos(yx)dx =
√

2πe−
√
|y| cos(

√
|y|), y ∈ R,∫ ∞

0

e−1/(2x)

x3/2 sin(yx)dx =
√

2πe−
√
|y| sin(

√
|y|)signy, y ∈ R.

Exercise 4.1.5
Let Y be a Cauchy distributed r.v. Find the characteristic function of Y. Give parameters
(α, σ, β, µ) for the stable random variable Y.
Hint: Use Cauchy’s residue theorem.
Exercise 4.1.6
Let X ∼ S1(σ, β, µ) and a > 0. Is aX stable? If so, define new (α2, σ2, β2, µ2) of aX.
Exercise 4.1.7
Let X ∼ N(0, σ2) and A be a positive α−stable r.v. Is the new r.v. AX stable, strictly stable?
If so, find its stability index α2.

1 Pólya’s theorem. If ϕ is a real-valued, even, continuous function which satisfies the conditions ϕ(0) = 1,
ϕ is convex for t > 0, limt→∞ ϕ(t) = 0, then ϕ is the characteristic function of an absolutely continuous
symmetric distribution.

2Oberhettinger, F. (1973). Fourier transforms of distributions and their inverses: a collection of tables. Aca-
demic press, p.25

38
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Exercise 4.1.8
Let L be a positive slowly varying function, i.e., ∀x > 0

lim
t→+∞

L(tx)
L(t) = 1. (4.1.1)

1. Prove that x−ε ≤ L(x) ≤ xε for any fixed ε > 0 and all x sufficiently large.

2. Prove that limit (4.1.1) is uniform in finite intervals 0 < a < x < b.

Hint: Use a representation theorem:3
A function Z varies slowly iff it is of the form Z(x) = a(x) exp

(∫ x
1
ε(y)
y dy

)
, where ε(x) → 0

and a(x)→ c <∞ as x→∞.
Definition 4.1.1 (Infinitely divisible distributions):
A distribution function F is called infinitely divisible if for all n ≥ 1, there is a distribution
function Fn such that

Z
d= Xn,1 + · · ·+Xn,n,

where Z ∼ F and Xn,k, 1 ≤ k ≤ n are i.i.d. r.v.’s with the distribution function Fn.
Exercise 4.1.9
For the following distribution functions check whether they are infinitely divisible.

1. (1 point) Gaussian distribution.

2. (1 point) Poisson distribution.

3. (1 point) Gamma distribution.

Exercise 4.1.10
Find parameters (a, b,H) in the canonic Lévy-Khintchin representation of a characteristic func-
tion for

1. (1 point) Gaussian distribution.

2. (1 point) Poisson distribution.

3. (1 point) Lévy distribution.

Exercise 4.1.11
What is wrong with the following argument? If X1, . . . , Xn ∼ Gamma(α, β) are independent,
then X1 + · · ·+Xn ∼ Gamma(nα, β), so gamma distributions must be stable distributions.
Exercise 4.1.12
Let Xi, i ∈ N be i.i.d. r.v.’s with a density symmetric about 0 and continuous and positive at
0. Prove

1
n

( 1
X1

+ · · ·+ 1
Xn

)
d→ X,n→∞,

where X is a Cauchy distributed random variable.
Hint: At first, apply Khintchin’s theorem (T.2.2 in the lecture notes). Then find parameters

a, b and a spectral function H from Gnedenko’s theorem (T.2.3 in the lecture notes).
3Feller, W. (1973). An Introduction to Probability Theory and its Applications. Vol 2, p.282
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Exercise 4.1.13
Show that the sum of two independent stable random variables with different α-s is not stable.
Exercise 4.1.14
Let X ∼ Sα(λ, β, γ). Using the weak law of large numbers prove that when α ∈ (1, 2], the shift
parameter µ = λγ equals EX.
Exercise 4.1.15
Let X be a standard Lévy distributed random variable. Compute its Laplace transform

E exp(−γX), γ > 0.

Exercise 4.1.16
Let X ∼ Sα′(λ′, 1, 0), and A ∼ Sα/α′(λA, 1, 0), 0 < α < α′ < 1 be independent. The value of
λA is chosen s.t. the Laplace transform of A is given by E exp(−γA) = exp(−γα/α′), γ > 0.
Show that Z = A1/α′X has a Sα(λ, 1, 0) distribution for some λ > 0.
Exercise 4.1.17
Let X ∼ Sα(λ, 1, 0), α < 1 and the Laplace transform of X be given by E exp(−γX) =
exp(−cαγα), γ > 0,where cα = λα/ cos(πα/2).

1. Show that
lim
x→∞

xαP{X > x} = Cα,

where Cα is a positive constant.
Hint: Use the Tauberian theorem.4

2. (2 points) Prove that

E|X|p <∞, for any 0 < p < α,

E|X|p =∞, for any p ≥ α.

Exercise 4.1.18
Let X1, X2 be two independent α-stable random variables with parameters (λ, β, γ). Prove that
X1 −X2 is a stable random variable and find its parameters (α1, λ1, β1, γ1).
Exercise 4.1.19
Let X1, . . . , Xn be i.i.d Sα(λ, β, γ) distributed random variables and Sn = X1 + · · ·+Xn. Prove
that the limiting distribution of

1. n−1/αSn, n→∞, if α ∈ (0, 1);

2. n−1(Sn − 2π−1λβn logn)− λγ, n→∞, if α = 1;

3. n−1/α(Sn − nλγ), n→∞, if α ∈ (1, 2];
4(Feller 1971 Theorem XIII.5.4.) If L is slowly varying at infinity and ρ ∈ R+, the following
relations are equivalent

U(t) ∼ 1
Γ(ρ+ 1) t

ρL(t), t→∞,
∫ ∞

0
e−τxdU(x) ∼ 1

τρ
L

(1
τ

)
, τ → 0.
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is Sα(λ, β, 0).
Exercise 4.1.20
Let X1, X2 . . . , be a sequence of i.i.d. random variables and let p > 0. Applying the Borel-
Cantelli lemmas, show that

1. E|X1|p <∞ if and only if limn→∞ n
−1/pXn = 0 a.s.,

2. E|X1|p =∞ if and only if lim supn→∞ n−1/pXn =∞ a.s.

Exercise 4.1.21
Let ξ be a non-negative random variable with the Laplace transform E exp(−λξ) = exp(−λα), λ ≥
0. Prove that

Eξαs = Γ(1− s)
Γ(1− αs) , s ∈ (0, 1).

Exercise 4.1.22
Denote by

f̃(s) :=
∫ ∞

0
e−sxf(x)dx,

the Laplace transform of a real function f defined for all s > 0, whenever f̃ is finite. For the
following functions find the Laplace transforms (in terms of f̃):
1. For a ∈ R f1(x) := f(x− a), x ∈ R+, and f(x) = 0, x < 0.
2. For b > 0 f2(x) := f(bx), x ∈ R+.
3. f3(x) := f ′(x), x ∈ R+.
4. f4(x) :=

∫ x
0 f(u)du, x ∈ R+.

Exercise 4.1.23
Let f̃ , g̃ be Laplace transforms of functions f, g : R+ → R+.

1. Find the Laplace transform of the convolution f ∗ g.

2. Prove the final value theorem: lims→0 sf̃(s) = limt→∞ f(t).

Exercise 4.1.24
Let {Xn}n≥0 be i.i.d. r.v.’s with a density symmetric about 0 and continuous and positive at 0.
Applying the Theorem 2.8 from the lecture notes, prove that cumulative distribution function
F (x) := P(X−1

1 ≤ x), x ∈ R belongs to the domain of attraction of a stable law G. Find its
parameters (α, λ, β, γ) and sequences an, bn s.t. 1

bn

∑n
i=1X

−1
i − an

d→ Y ∼ G as n→∞.
Exercise 4.1.25
Let {Xn}n≥0 be i.i.d. r.v.’s with for x > 1

P(X1 > x) = θx−δ, P(X1 < −x) = (1− θ)x−δ,

where 0 < δ < 2. Applying the Theorem 2.8 from the lecture notes, prove that c.d.f. F (x) :=
P(X1 ≤ x), x ∈ R belongs to the domain of attraction of a stable law G. Find its parameters
(α, λ, β, γ) and sequences an, bn s.t. 1

bn

∑n
i=1Xi − an

d→ Y ∼ G as n→∞.
Exercise 4.1.26
Let X be a random variable with probability density function f(x). Assume that f(0) /= 0 and
that f(x) is continuous at x = 0. Prove that
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1. if 0 < r ≤ 1
2 , then |X|

−r belongs to the domain of attraction of a Gaussian law,

2. if r > 1/2 then |X|−r belongs to the domain of attraction of a stable law with stability
index 1/r.

Exercise 4.1.27
Find a distribution F which has infinite second moment and yet it is in the domain of attraction
of the Gaussian law.
Exercise 4.1.28
Prove the following statement which is used in the proof of Proposition 2.3.3.
Let X ∼ Sα(λ, β, 0) with α ∈ (0, 2). Then there exist two i.i.d. r.v.’s Y1 and Y2 with common

distribution Sα(λ, 1, 0) s.t.

X
d=


(

1+β
2

)1/α
Y1 −

(
1−β

2

)1/α
Y2, if α /= 1,(

1+β
2

)
Y1 −

(
1−β

2

)
Y2 + λ

π

(
(1 + β) log 1+β

2 − (1− β) log 1−β
2

)
, if α = 1.

Exercise 4.1.29
Prove that for α ∈ (0, 1) and fixed λ, the family of distributions Sα(λ, β, 0) is stochastically
ordered in β, i.e., if Xβ ∼ Sα(λ, β, 0) and β1 ≤ β2 then P(Xβ1 ≥ x) ≤ P(Xβ2 ≥ x) for x ∈ R.

Exercise 4.1.30
Prove the following theorem.
Theorem 4.1.1
A distribution function F is in the domain of attraction of a stable law with exponent α ∈ (0, 2)
if and only if there are constants C+, C− ≥ 0, C+ + C− > 0, such that

1.

lim
y→+∞

F (−y)
1− F (y) =

{
C−/C+, if C+ > 0,
+∞, if C+ = 0,

2. and for every a > 0 limy→+∞
1−F (ay)
1−F (y) = a−α, if C+ > 0,

limy→+∞
F (−ay)
F (−y) = a−α, if C− > 0.



Bibliography

[1] W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley
& Sons, 2008.

[2] J. Nolan. Stable Distributions: Models for Heavy-Tailed Data.

[3] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes: stochastic
models with infinite variance, volume 1. CRC press, 1994.

[4] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, 1999.

[5] V. V. Uchaikin and V. M. Zolotarev. Chance and stability: stable distributions and their
applications. Walter de Gruyter, 1999.

[6] V. M. Zolotarev. One-dimensional stable distributions, volume 65. American Mathematical
Soc., 1986.

[7] V. M. Zolotarev. Modern theory of summation of random variables. Walter de Gruyter,
1997.

43


	Introduction
	Properties of stable laws
	Equivalent definitions of stability
	Strictly stable laws
	Properties of stable laws
	Limit theorems
	Further properties of stable laws

	Simulation of stable variables
	Additional exercises
	Literature

