On Whittle estimation for Lévy continuous-time moving average process

> Yuma Uehara Kansai University

(with Tetsuya Takabatake at Osaka University)

Time Series, Random Fields and beyond, 23-27, September, 2024

Outline

- 1. Model Setup
- 2. Main Results
- 3. Numerical Experiment
- 4. Summary

Model Setup

Lévy process

- ▶ A stochastic process $L = (L_t)_{t>0}$ with $L_0 = 0$ a.s. is called a Lévy process if the following conditions are satisfied:
	- 1. Independent and stationary increments $(0 = t_0 < t_1 < \cdots < t_n;$ $n \in \mathbb{N}$

▶ *L^t*¹ − *L^t*⁰ , *L^t*² − *L^t*¹ , . . . , *L^tⁿ* − *L^tn*−¹ are independent. ▶ *L^t^j* − *L^tj*−¹ ∼ *L^tj*−*tj*−¹

- 2. Continuity in probability: $L_s \stackrel{p}{\rightarrow} L_t$ as $s \rightarrow t$.
- ▶ *L* is a continuous-time analogue of random walk:

$$
L_t = \sum_{i=1}^n (L_{\frac{i}{n}t} - L_{\frac{i-1}{n}t}),
$$

and there exists a one-to-one correspondence between infinitely divisible distributions.

Lévy-Itô decomposition

 \blacktriangleright A Lévy process L can be decomposed as:

$$
L_t = bt + \sigma B_t + J_t,
$$

where $b \in \mathbb{R}, \sigma \geq 0$, and $B = (B_t)_{t \geq 0}$ is the standard Brownian motion.

▶ Moreover, *B* and $I = (I_t)_{t>0}$ are independent and *I* is a pure-jump process with

$$
\log E[e^{iuJ_t}] = t \int (e^{iuz} - 1 - iuz \mathbb{1}_{|z| \le 1})^{\exists} v(dz),
$$

and $v(\cdot)$ is a so-called Lévy measure ($\int (1 \wedge |z|^2) v(dz) < \infty$).

▶ Non-Gaussian distribution corresponds to *J* and we suppose that $\sigma = 0$ in this talk.

Sample path of Lévy process

Continuous-time Moving Average Process

▶ One-dimensional continuous-time moving average (CMA) process $X^{\theta} = \{X^{\theta}_t\}$ *t* }*t*∈^R of the form

$$
X_t^{\theta} := \int_{\mathbb{R}} k_{\theta}(t - u) \, \mathrm{d}L_u, \quad t \in \mathbb{R}, \tag{1}
$$

where ${L_t}_{t \in \mathbb{R}}$ is a pure-jump Lévy process satisfying that

$$
\mathbb{E}[L_1] = 0, \mathbb{E}[L_1^2] = 1, \mathbb{E}[L_1^4] < \infty.
$$

- ▶ Assume the function $x \mapsto k_{\theta}(x)$ belongs to $L^2(\mathbb{R}) \cap L^4(\mathbb{R})$.
- \blacktriangleright Notice that $X^{\theta} = \{X^{\theta}_t\}$ *t* }*t*∈^R is a centered stationary process with covariance function

$$
Cov[X_s^{\theta}, X_t^{\theta}] = \int_{\mathbb{R}} k_{\theta}(u - |t - s|)k_{\theta}(u) du.
$$

Objective

$$
X^\theta_t:=\int_{\mathbb{R}}k_\theta(t-u)\,\mathrm{d} L_u,\;\;t\in\mathbb{R},
$$

 \blacktriangleright We consider the situation where the process X_t^θ has long *the sendace the shadon whole the precess* x_t *has long* behaves memory, that is, the spectral density function $s_{\theta}(z)$ of X_t^{θ} behaves as

$$
s_{\theta}(z) \sim c_{\theta} |z|^{-\alpha_{\theta}} \text{ as } |z| \to 0,
$$

with some positive constant c_{θ} and $\alpha_{\theta} \in (0, 1)$.

▶ Observe {*Xj*∆}*j*=1,2,··· ,*ⁿ* with a fixed positive constant ∆.

Objective

 \blacktriangleright Estimate the *p*-dimensional parameter θ from the observations.

Examples

1. Fractional Ornstein-Uhlenbeck Kernel:

$$
k_{\theta}(x) = \sigma c_H \left(x^{H - \frac{1}{2}} - \kappa \int_0^x e^{-\kappa(x - s)} s^{H - \frac{1}{2}} ds \right) 1\!\!1_{(0, \infty)}(x)
$$

where $\theta = (H, \kappa, \sigma)$ with $\sigma > 0$, $H \in (1/2, 1)$ and $\kappa > 0$.

2. Power Law Kernel:

$$
k_{\theta}(x) = \sigma x^{\beta} (1+x)^{\eta-\beta-1} 1\!\!1_{(0,\infty)}(x)
$$

where $\theta = (\beta, \eta, \sigma)$ with $\sigma > 0$, $\beta \in (-1/4, 1/2)$ and $\eta \in (0, 1/2)$.

Example: SPD for fOU Process

 \blacktriangleright The spectral density of the fOU process, e.g. see Cheridito-Kawaguchi-Maejima (2003-EJP), is given by

$$
s_{\theta}(z) = \sigma^2 c_H \frac{|z|^{1-2H}}{z^2 + \kappa^2}
$$

where $c_H = (2\pi)^{-1} \Gamma(2H + 1) \sin(\pi H)$ and $\theta = (H, \kappa, \sigma)$ with *H* \in (1/2, 1), κ $>$ 0 and σ $>$ 0.

 \blacktriangleright Then we can show that

$$
s_{\theta}(z) \sim \frac{\sigma^2 c_H}{\kappa^2} |z|^{1-2H} \text{ as } |z| \to 0
$$

which implies

$$
\alpha_{\theta} = 2H - 1
$$
 and $c_{\theta} = \sigma^2 c_H / \kappa^2$.

Continuous-time Spectral Density Function

 \triangleright Recall that the Itô isometry yields

$$
\gamma_{\theta}(t) := \text{Cov}[X_t^{\theta}, X_0^{\theta}] = \int_{\mathbb{R}} k_{\theta}(u - |t|) k_{\theta}(u) \, \mathrm{d}u. \tag{2}
$$

▶ Plancherel-Parseval's equality yields

$$
\gamma_{\theta}(t) = \frac{1}{2\pi} \int_{\mathbb{R}} \mathcal{F}(k_{\theta}(\cdot - |t|))(z) \cdot \overline{\mathcal{F}k_{\theta}(z)} dz
$$

$$
= \frac{1}{2\pi} \int_{\mathbb{R}} e^{\sqrt{-1}|t|z} |\mathcal{F}k_{\theta}(z)|^2 dz
$$

$$
= \frac{1}{2\pi} \int_{\mathbb{R}} e^{\sqrt{-1}tz} |\mathcal{F}k_{\theta}(z)|^2 dz
$$

so that the spectral density function of X^θ is given by

$$
s_{\theta}(z) = \frac{1}{2\pi} \left| \mathcal{F} k_{\theta}(z) \right|^2, \ \ z \in \mathbb{R}.
$$
 (3)

Discrete-time Spectral Density Function

- ▶ Set $Y_j := X_{j\Delta}$ for $j \in \mathbb{Z}$. Notice that $Y = \{Y_j\}_{j \in \mathbb{Z}}$ is a centered discrete-time stationary process.
- \triangleright Using the aliasing formula of the spectral density function, the spectral density function of the discrete-time stationary process *Y*, denoted by *s* ∆ $^{\Delta}_{\theta}(\omega)$, is given by

$$
s^{\Delta}_{\theta}(\omega) := \frac{1}{\Delta} \sum_{\tau \in \mathbb{Z}} s_{\theta} \left(\frac{2\pi\tau + \omega}{\Delta} \right), \quad \omega \in [-\pi, \pi],
$$

where $s_{\theta}(z)$ is the spectral density function of $X^{\theta}.$

 \blacktriangleright In particular, for the CMA process, we have

$$
s^{\Delta}_{\theta}(\omega) = \frac{1}{2\pi\Delta} \sum_{\tau \in \mathbb{Z}} \left| \mathcal{F} k_{\theta} \left(\frac{2\pi\tau + \omega}{\Delta} \right) \right|^2
$$

since $s_{\theta}(z) = (2\pi)^{-1} |\mathcal{F}k_{\theta}(z)|^2$.

Main Results

Estimation scheme: Whittle estimation

 \blacktriangleright Denote \mathbb{L}_n^W by the Whittle likelihood function of the observations ${Y_i}_{i=1,2,...,n}$, which is given by

$$
\mathbb{L}_n^W(\theta) = \frac{1}{n} \sum_{j=1}^n \left[\log s_\theta^\Delta(\omega_j) + \frac{I_n(\omega_j)}{s_\theta^\Delta(\omega_j)} \right],
$$

where
$$
\omega_j = \frac{j}{2\pi n}
$$
 and $I_n(\omega) = (2\pi n)^{-1} \left| \sum_{t=1}^n Y_t e^{it\omega} \right|^2$.

 \triangleright We define the Whittle estimator of θ by

$$
\hat{\theta}_n \in \argmin_{\theta \in \Theta} \mathbb{L}_n^W(\theta).
$$

 \triangleright We suppose that the parameter space Θ is a bounded convex domain.

Approximation by discretized process

▶ We approximate $Y = \{Y_j\}_{j\in\mathbb{Z}}$ by $\bar{Y}^n := \{\bar{Y}^n_j\}_{j\in\mathbb{Z}}$ defined as

$$
\bar{Y}^n_t = \sum_{i \in \mathbb{Z} \setminus \{0\}} k_{\theta}(ih_n \Delta) (L_{t\Delta - (i-1)h_n \Delta} - L_{t\Delta - ih_n \Delta}) = \sum_{i \in \mathbb{Z} \setminus \{0\}} k_{\theta}(ih_n \Delta) \Delta_{t,i} L,
$$

where
$$
\Delta_{t,i}L := L_{\{t-(i-1)h_n\}\Delta} - L_{\{t-ih_n\}\Delta}
$$
.

▶ ${\{\bar{Y}^n\}}_{n\in\mathbb{N}}$ is an approximating sequence of *Y* in the sense of

$$
\sup_{j\in\mathbb{Z}} \mathbb{E}[|\bar{Y}_j^n - Y_j|^2] = O(h_n^{2\beta+1}) \text{ as } n \to \infty,
$$
 (4)

when $\partial_z k_{\theta_0}(z) \sim |z|^{\beta-1}$ around the origin.

 \triangleright We can also derive the approximation of the spectral density function:

$$
s_{\theta}^{\bar{Y}^n}(\omega) := \frac{1}{2\pi} \sum_{\tau \in \mathbb{Z}} \left(h_n \Delta \sum_{i_1 \in \mathbb{Z} \setminus \{0\}} k_{\theta}((i_1 h_n) \Delta) k_{\theta}((\tau + i_1 h_n) \Delta) \right) e^{\sqrt{-1}\tau \omega} \to s_{\theta}^{\Delta}(\omega)
$$

Assumption 1 (Continuous-Time SPD $s_{\theta}(z)$)

The spectral density $s_{\theta}(z) = s(z, \theta)$ of $X^{\theta} = \{X^{\theta}_t\}_{t \in \mathbb{R}}$ satisfying the following conditions:

- (1) For each $\theta \in \Theta$, $z \mapsto s_{\theta}(z)$ is a non-negative integrable even function on $\mathbb R$. Moreover, it satisfies that $s(\cdot,\cdot) \in C^{1,3}\left(\left(\mathbb R\backslash\{0\}\right) \times \Theta\right)$.
- (2) There exists a continuous function $\alpha_0 : \Theta \to (0,1)$ such that for some constants $c_1, c_2 > 0$ and for any $\iota > 0$ and some constant $c_{31} > 0$, the following conditions hold for every $(z, \theta) \in ([-\Delta \pi, \Delta \pi] \setminus \{0\}) \times \Theta$:

(a)
$$
c_1|z|^{-\alpha_0(\theta)} \le s_\theta(z) \le c_2|z|^{-\alpha_0(\theta)}
$$
.

(b) For any
$$
j \in \{0, 1, 2, 3\}
$$
 and $k \in \{0, 1\}$, it holds

$$
\left| \frac{\partial_z^k \partial_\theta^j s_\theta(z)}{\partial z} \right| \le c_{3, t} |z|^{-\alpha_0(\theta) - k - t}.
$$

(3) For any *j* ∈ {0, 1, 2, 3} and *k* ∈ {0, 1}, it holds

$$
\sum_{\tau \in \mathbb{Z} \setminus \{0\}} \sup_{(\omega, \theta) \in [-\pi, \pi] \times \Theta} \left| \partial_z^k \partial_\theta^j s_\theta \left(\frac{2\pi \tau + \omega}{\Delta} \right) \right| < \infty.
$$

Lemma (Properties of Discrete-time SPD *s* ∆ $\frac{\Delta}{\theta}(\omega)$

- (1) For each $\theta \in \Theta$ and $\omega \in [-\pi, \pi] \setminus \{0\}, s_{\theta}^{\Delta}$ $^{\Delta}_{\theta}(\omega)$ is finite, and *s* ∆ $\mathcal{L}_{\theta}^{(\cdot)} \in C^{1,3} \left((-\pi, \pi] \backslash \{0\} \right) \times \Theta.$
- (2) For some constants $c_1, c_2 > 0$ and for any $\iota > 0$ and some constant c_3 , > 0 , the following conditions hold for every $(\omega, \theta) \in ([-\pi, \pi] \setminus \{0\}) \times \Theta$:

$$
(a) \ c_1|\omega|^{-\alpha(\theta)} \leq s_\theta^\Delta(\omega) \leq c_2|\omega|^{-\alpha(\theta)}.
$$

(*b*) For any *j* ∈ {0, 1, 2, 3} and *k* ∈ {0, 1}, it holds $\partial^k_\omega \partial^j_\theta$ $\left|\int_{\theta}^{j} s_{\theta}^{\Delta}(\omega)\right| \leq c_{3,t} |\omega|^{-\alpha(\theta)-k-t}.$

Derivation of Lemma

▶ Recall that *s* ∆ $^{\Delta}_{\theta}(\omega)$ is given by

$$
s^{\Delta}_{\theta}(\omega) = \frac{1}{\Delta} s_{\theta} \left(\frac{\omega}{\Delta} \right) + \frac{1}{\Delta} \sum_{\tau \in \mathbb{Z} \setminus \{0\}} s_{\theta} \left(\frac{2\pi \tau + \omega}{\Delta} \right).
$$

▶ Under Assumption 1, it follows that

$$
s^{\Delta}_{\theta}(\omega) \lesssim \frac{1}{\Delta} \left[\left| \frac{\omega}{\Delta} \right|^{-\alpha_0(\theta)} + 1 \right] \lesssim |\omega|^{-\alpha_0(\theta)}.
$$

On the other hand, using the positiveness of $s_{\theta}(z)$, we can directly show the lower estimate

$$
s^{\Delta}_{\theta}(\omega) \gtrsim \frac{1}{\Delta} \left| \frac{\omega}{\Delta} \right|^{-\alpha_0(\theta)} \gtrsim |\omega|^{-\alpha_0(\theta)} > 0.
$$

Asymptotic behavior of the Whittle estimator

In addition to Assumption 1, we assume the following conditions.

Assumption 2

 \blacktriangleright If θ_1 and θ_2 are distinct elements of Θ , the set $\{\omega \in [-\pi, \pi] \setminus \{0\} : s_{\theta}^{\Delta}$ $\frac{\Delta}{\theta_1}(\omega) \neq s^{\Delta}_{\theta_2}$ $^{\Delta}_{\Theta_2}(\omega)$ } has a positive Lebesgue measure.

Theorem 1: Asymptotic Normality of MLE $θ_n$

Under Assumptions 1 and 2, a sequence of Whittle estimator {θ_n}_{n∈Ni} is consistent and asymptotically normal:

$$
\sqrt{n}(\widehat{\theta}_n-\theta)\to N_p\left(\mathbf{0}_p,{}^{\exists}\Sigma\right),\,
$$

where the asymptotic variance Σ is supposed to be positive definite.

Numerical Experiment

Numerical experiment

 \triangleright We consider the following fractional Lévy process:

$$
X_t^{\theta} = c_H \int_{-\infty}^t \sigma \left[\left\{ (t - u) \mathbb{1}_{t-u>0} \right\}^d - \left\{ -u \mathbb{1}_{-u>0} \right\}^d \right] dL_u, \quad t \ge 0,
$$

where $d = H - \frac{1}{2}$ and c_H is the normalizing constant such that $E[(X_t^{\theta} - X_{t-1}^{\theta})^2] = \sigma^2.$

- ▶ Although our method cannot be applied for the above process directly, by taking the difference $Y_t^\theta = X_t^\theta - X_{t-1}^\theta$, a similar approach will be valid (we expect).
- \triangleright We suppose that the driving Lévy process is a compound Poisson process whose intensity is 1 and the jump distribution is the standard normal distribution.

▶ Since the difference of jump times of compound Poisson processes obeys the exponential distribution, we can simulate the path of

$$
X_t^{\theta,(L)} = c_H \int_{-L}^t \sigma \left[\left\{ (t-u) 1\hspace{-0.1cm}1_{t-u>0} \right\}^d - \left\{ -u 1\hspace{-0.1cm}1_{-u>0} \right\}^d \right] \, dL_u
$$

for some positive constant $L > 0$ and we set $L = 5000$ for the approximation of X_t^θ .

- ▶ We independently simulate 1000 paths for *L* = 5000, and calculate the Whittle estimator of H and σ based on the discrete observations $\{Y_t^\theta\}_{t:}^n$ *t*=0 .
- $▶$ We consider two cases: $(H, σ) = (0.9, 1)$ and $(H, σ) = (0.75, 1)$.

Result: case 1

Table: The performance of the Whittle estimator with the true value $(H, \sigma) = (0.9, 1)$; the mean of each estimator is given with the standard deviation in parenthesis.

Result: case 2

Table: The performance of the Whittle estimator with the true value $(H, \sigma) = (0.75, 1)$; the mean of each estimator is given with the standard deviation in parenthesis.

Summary

Summary:

- \triangleright For general Lévy continuous-time moving average process with long memory, we proved the consistency and asymptotic normality of the Whittle estimator.
- ▶ We used the approximation process based on discretization and derived the convergence of the spectral density, the decomposition of periodogram.