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Model Setup



Lévy process

» A stochastic process L = (L;);>0 With Ly = 0 a.s. is called a Lévy
process if the following conditions are satisfied:
1. Independent and stationary increments (0 =ty <t <--- < t;

n € N)
> L =Ly, Ly, = Ly,..., Ly, — L, are independent.
> Ltf _Ltjfl ~ Lr. £

j7hH1
2. Continuity in probability: L, - L; as s — t.
» L is a continuous-time analogue of random walk:

n

L= ) (L= Le)

i=1

and there exists a one-to-one correspondence between infinitely
divisible distributions.



Lévy-1t6 decomposition

» A Lévy process L can be decomposed as:
Ly = bt + oB; + ]t,

where b € R, 0 > 0, and B = (By)s»o is the standard Brownian
motion.

» Moreover, B and | = (J;)i>0 are independent and | is a pure-jump
process with

log E[e™)] = t f (" =1 — iuzlly<1)v(dz),
and v(-) is a so-called Lévy measure (f(l A ZP)v(dz) < oo).

> Non-Gaussian distribution corresponds to | and we suppose that
o = 0 in this talk.



Sample path of Lévy process
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Continuous-time Moving Average Process

» One-dimensional continuous-time moving average (CMA)
process XY = {X%};cg of the form

X? .= fkg(t—u)dLu, teR, (1)
R
where {L;};r is a pure-jump Lévy process satisfying that
E[L,] = 0, E[L3] = 1, E[L{] < co.

» Assume the function x — kg(x) belongs to L*(R) N L*(R).

> Notice that X% = {X%},cr is a centered stationary process
with covariance function

Cov[XY, X0 = fk@(l/l — |t = s|)ko(u) du.
R



Objective

X0 ::fk@(t—u)dLu, teR,
R

» We consider the situation where the process Xf has long
memory, that is, the spectral density function sg(z) of Xf’ behaves
as

se(z) ~ colzl ™ as |z| = 0,

with some positive constant ¢y and ag € (0, 1).
> Observe {Xja}j=12,» With a fixed positive constant A.

Objective

» Estimate the p-dimensional parameter 6 from the observations.



Examples

1. Fractional Ornstein-Uhlenbeck Kernel:

ko(x) = ocy (xH'% —~ Kf e 9gH=3 ds) 10,00y (%)
0

where 6 = (H,«,0) witho >0, H € (1/2,1) and « > 0.
2. Power Law Kernel:
ko(x) = oxP(1 + x)”_ﬁ_lll(o,m)(x)

where 6 = (8,1,0) witho > 0, p € (-1/4,1/2) and
ne€(0,1/2).



Example: SPD for fOU Process

> The spectral density of the fOU process, e.g. see
Cheridito-Kawaguchi-Maejima (2003-EJP), is given by
o, |Z|1—2H
ole) = oChp
where cy = 2n)"'I'(2H + 1) sin(nH) and 6 = (H, x, o) with
He(1/2,1),x>0and o > 0.
» Then we can show that

2" as|z| -» 0

2
0°CHy
so(2) ~ —5 Iz
which implies

ap =2H -1 and cg = o%cy/x>%



Continuous-time Spectral Density Function

» Recall that the It isometry yields
Vo(t) := Cov[Xf’,Xg] = fkg(u — |t)ke(u) du. (2)
R
» Plancherel-Parseval’'s equality yields
1 -
velt) =5~ f F (ko(- = It)(2) - F ko(z) dz
T JRr
_i V=1t)z 2
=5 jﬂ; e |Fko(z)|” dz
_i V-1tz 2
=5 fﬂ; e |Fko(z)|” dz
so that the spectral density function of X is given by

se(z) = % |Fko(z)]*, z€RR. (3)



Discrete-time Spectral Density Function

> Set Y, := X, for j € Z. Notice that Y = {Y} .z is a centered
discrete-time stationary process.

» Using the aliasing formula of the spectral density function,
the spectral density function of the discrete-time stationary
process Y, denoted by s5(w), is given by

1 21T + W
sg(a)) = X Zs@( A ), w € [-n, ],
(V4

where sy(z) is the spectral density function of X°.

» In particular, for the CMA process, we have

54 = 57 15 7o

since sg(z) = 21) Y F ko(2).

2717 + w)‘



Main Results



Estimation scheme: Whittle estimation

> Denote IL}Y by the Whittle likelihood function of the observations
{Y;}j=1,2,..,.n, which is given by

n

LY () = %Z [1ogsg(wj) + ﬂ]

=1 sp(@;)
2

where w; = 5L and I,(w) = @rn) Y| L, Yielt®| .

> We define the Whittle estimator of 6 by

0, € arg min IL,ZV ).
0c®

> We suppose that the parameter space © is a bounded convex
domain.



Approximation by discretized process
> We approximate Y = (Y}jcz by Y" := {Y;?}]-ez defined as
= Y Ko(uA) Lia-vma = Liscina) = ), kolihaA)AyiL,
ieZ\{0} ieZ\{0}
where AL := Li_(i-1)n,)a — L(t=ina-

> {Y"},eN is an approximating sequence of Y in the sense of

sup B[ - Y] = Oy asn — oo, (4)
j€Z
when 9.k, (z) ~ |zIF~! around the origin.

» We can also derive the approximation of the spectral density
function:

sgn(w) = %Z(hnA Z ko((i1hn)Nke((T+irhy )A)) V=Ttw _, ()

1€z i1€Z\{0}



Assumption 1 (Continuous-Time SPD sy(z))

The spectral density sg(z) = s(z, 0) of X? = {X%)er satisfying the
following conditions:

(1) Foreach 6 € O, z — sg(z) is a non-negative integrable even
function on IR. Moreover, it satisfies that s(-,-) € C1® (IR\{0}) x ©).
(2) There exists a continuous function ap : @ — (0, 1) such that for
some constants ¢y, ¢, > 0 and for any « > 0 and some constant
c3, > 0, the following conditions hold for every
(z,0) € ([-Am, Am]\{0}) X ©:
(@) c1lzI70) < sp(2) < colz| ™.
(b) Forany j€{0,1,2,3} and k € {0,1}, it holds
agaQSQ(z)‘ < a2 0@,

(3) Forany je€{0,1,2,3}and k € {0,1}, it holds

8’;8259(2RT +a))‘ <o,

sup A

reZ\|0} (@0)el-1,1]xO



Lemma (Properties of Discrete-time SPD s5(w))

(1) Foreach 8 € ® and w € [-7t, 7] \ {0}, sg(w) is finite, and
s5(-) € C (=, 7]\{0}) x ©).

(2) For some constants ¢y, ¢, > 0 and for any ¢ > 0 and some
constant c3, > 0, the following conditions hold for every
(w,0) € ([-7, 7]\{0}) X ©:

(@) alwl? < (W) < colaw| ™.
(b) Forany j€{0,1,2,3} and k € {0,1}, it holds

05 hsh ()] < e el O



Derivation of Lemma

> Recall that s (w) is given by

1 ) 1 21T + W
A e — — —
5p(@) = ASQ(A)+ ATG;{O}S@( A )

» Under Assumption 1, it follows that

-

1 |- .
52(60) < A HK + 1] < Jaw| @),

On the other hand, using the positiveness of sg(z), we can
directly show the lower estimate




Asymptotic behavior of the Whittle estimator

In addition to Assumption 1, we assume the following conditions.
Assumption 2

> If 6, and 6, are distinct elements of ©, the set
{we[-m, 7]\ {0}: sgl (w) # s§2(a))} has a positive Lebesgue
measure.

Theorem 1: Asymptotic Normality of MLE 5n

Under Assumptions 1 and 2, a sequence of Whittle estimator {5n}neN
is consistent and asymptotically normal:

V(0 - 0) > N, (0,,7%),

where the asymptotic variance L is supposed to be positive definite.



Numerical Experiment



Numerical experiment

» We consider the following fractional Lévy process:

t d d
X9 = i f a[{(t—u)]lt_,Do} —{—u]l_u>0} ]dLu, £>0,

whered = H — % and cy is the normalizing constant such that
E[(XP - X0 )] =%

» Although our method cannot be applied for the above process
directly, by taking the difference Y? = X? — X9 , a similar
approach will be valid (we expect).

» We suppose that the driving Lévy process is a compound
Poisson process whose intensity is 1 and the jump distribution is
the standard normal distribution.



» Since the difference of jump times of compound Poisson
processes obeys the exponential distribution, we can simulate
the path of

t d d
X?'(L) = CHf U[{(t - u)]lt—u>0} - { - u]l—u>0} ]dth
-L

for some positive constant L > 0 and we set L = 5000 for the
approximation of X?.

» We independently simulate 1000 paths for L = 5000, and
calculate the Whittle estimator of H and o based on the discrete
observations {Y?}_ .

» We consider two cases: (H,o0) = (0.9,1) and (H, o) = (0.75, 1).



Result: case 1

n H, Oy,
250 0.8879627 1.216178
(0.04525944) (1.157441)
500 0.8961821 1.113735
(0.03300364) (0.6215016)
1000  0.8970059 1.025469
(0.02215364) (0.2720051)

Table: The performance of the Whittle estimator with the true value
(H,0) =(0.9,1); the mean of each estimator is given with the standard
deviation in parenthesis.



Result: case 2

n H, Oy,
250 0.7370236 0.9938576
(0.04389529)  (0.1782975)
500 0.7420348 0.992157
(0.03252598)  (0.1216881)
1000  0.7459363 0.9951483
(0.02210757) (0.08555319)

Table: The performance of the Whittle estimator with the true value
(H, 0) = (0.75,1); the mean of each estimator is given with the standard
deviation in parenthesis.



Summary



Summary:

» For general Lévy continuous-time moving average process
with long memory, we proved the consistency and
asymptotic normality of the Whittle estimator.

» We used the approximation process based on
discretization and derived the convergence of the spectral
density, the decomposition of periodogram.



