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Model Setup



Lévy process

▶ A stochastic process L = (Lt)t≥0 with L0 = 0 a.s. is called a Lévy
process if the following conditions are satisfied:

1. Independent and stationary increments (0 = t0 < t1 < · · · < tn;
n ∈N)
▶ Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent.
▶ Lt j − Lt j−1 ∼ Lt j−t j−1

2. Continuity in probability: Ls
p→ Lt as s→ t.

▶ L is a continuous-time analogue of random walk:

Lt =

n∑
i=1

(
L i

n t − L i−1
n t

)
,

and there exists a one-to-one correspondence between infinitely
divisible distributions.



Lévy-Itô decomposition

▶ A Lévy process L can be decomposed as:

Lt = bt + σBt + Jt,

where b ∈ R, σ ≥ 0, and B = (Bt)t≥0 is the standard Brownian
motion.

▶ Moreover, B and J = (Jt)t≥0 are independent and J is a pure-jump
process with

log E[eiuJt] = t
∫

(eiuz − 1 − iuz1l|z|≤1)∃ν(dz),

and ν(·) is a so-called Lévy measure (
∫

(1 ∧ |z|2)ν(dz) < ∞).
▶ Non-Gaussian distribution corresponds to J and we suppose that
σ = 0 in this talk.



Sample path of Lévy process



Continuous-time Moving Average Process

▶ One-dimensional continuous-time moving average (CMA)
process Xθ = {Xθt }t∈R of the form

Xθt :=
∫
R

kθ(t − u) dLu, t ∈ R, (1)

where {Lt}t∈R is a pure-jump Lévy process satisfying that

E[L1] = 0,E[L2
1] = 1,E[L4

1] < ∞.

▶ Assume the function x 7→ kθ(x) belongs to L2(R) ∩ L4(R).

▶ Notice that Xθ = {Xθt }t∈R is a centered stationary process
with covariance function

Cov[Xθs ,X
θ
t ] =

∫
R

kθ(u − |t − s|)kθ(u) du.



Objective

Xθt :=
∫
R

kθ(t − u) dLu, t ∈ R,

▶ We consider the situation where the process Xθt has long
memory, that is, the spectral density function sθ(z) of Xθt behaves
as

sθ(z) ∼ cθ|z|−αθ as |z| → 0,

with some positive constant cθ and αθ ∈ (0, 1).
▶ Observe {X j∆} j=1,2,··· ,n with a fixed positive constant ∆.

Objective

▶ Estimate the p-dimensional parameter θ from the observations.



Examples

1. Fractional Ornstein-Uhlenbeck Kernel:

kθ(x) = σcH

(
xH− 1

2 − κ
∫ x

0
e−κ(x−s)sH− 1

2 ds
)

1l(0,∞)(x)

where θ = (H, κ, σ) with σ > 0, H ∈ (1/2, 1) and κ > 0.

2. Power Law Kernel:

kθ(x) = σxβ(1 + x)η−β−11l(0,∞)(x)

where θ = (β, η, σ) with σ > 0, β ∈ (−1/4, 1/2) and
η ∈ (0, 1/2).



Example: SPD for fOU Process

▶ The spectral density of the fOU process, e.g. see
Cheridito-Kawaguchi-Maejima (2003-EJP), is given by

sθ(z) = σ2cH
|z|1−2H

z2 + κ2

where cH = (2π)−1Γ(2H + 1) sin(πH) and θ = (H, κ, σ) with
H ∈ (1/2, 1), κ > 0 and σ > 0.

▶ Then we can show that

sθ(z) ∼ σ
2cH

κ2 |z|
1−2H as |z| → 0

which implies

αθ = 2H − 1 and cθ = σ2cH/κ
2.



Continuous-time Spectral Density Function
▶ Recall that the Itô isometry yields

γθ(t) := Cov[Xθt ,X
θ
0 ] =

∫
R

kθ(u − |t|)kθ(u) du. (2)

▶ Plancherel-Parseval’s equality yields

γθ(t) =
1

2π

∫
R

F (kθ(· − |t|))(z) · F kθ(z) dz

=
1

2π

∫
R

e
√
−1|t|z |F kθ(z)|2 dz

=
1

2π

∫
R

e
√
−1tz |F kθ(z)|2 dz

so that the spectral density function of Xθ is given by

sθ(z) =
1

2π
|F kθ(z)|2 , z ∈ R. (3)



Discrete-time Spectral Density Function
▶ Set Y j := X j∆ for j ∈ Z. Notice that Y = {Y j} j∈Z is a centered

discrete-time stationary process.

▶ Using the aliasing formula of the spectral density function,
the spectral density function of the discrete-time stationary
process Y, denoted by s∆θ(ω), is given by

s∆θ(ω) :=
1
∆

∑
τ∈Z

sθ
(2πτ + ω
∆

)
, ω ∈ [−π, π],

where sθ(z) is the spectral density function of Xθ.

▶ In particular, for the CMA process, we have

s∆θ(ω) =
1

2π∆

∑
τ∈Z

∣∣∣∣∣F kθ
(2πτ + ω
∆

)∣∣∣∣∣2
since sθ(z) = (2π)−1|F kθ(z)|2.



Main Results



Estimation scheme: Whittle estimation

▶ Denote LW
n by the Whittle likelihood function of the observations

{Y j} j=1,2,...,n, which is given by

LW
n (θ) =

1
n

n∑
j=1

[
log s∆θ (ω j) +

In(ω j)

s∆
θ

(ω j)

]
,

where ω j =
j

2πn and In(ω) = (2πn)−1

∣∣∣∣∣∣ ∑n
t=1 Yteitω

∣∣∣∣∣∣
2

.

▶ We define the Whittle estimator of θ by

θ̂n ∈ arg min
θ∈Θ

LW
n (θ).

▶ We suppose that the parameter space Θ is a bounded convex
domain.



Approximation by discretized process
▶ We approximate Y = {Y j} j∈Z by Ȳn := {Ȳn

j } j∈Z defined as

Ȳn
t =

∑
i∈Z\{0}

kθ(ihn∆)(Lt∆−(i−1)hn∆ − Lt∆−ihn∆) =
∑

i∈Z\{0}
kθ(ihn∆)∆t,iL,

where ∆t,iL := L{t−(i−1)hn}∆ − L(t−ihn)∆.

▶ {Ȳn}n∈N is an approximating sequence of Y in the sense of

sup
j∈Z
E[|Ȳn

j − Y j|2] = O(h2β+1
n ) as n→∞, (4)

when ∂zkθ0(z) ∼ |z|β−1 around the origin.
▶ We can also derive the approximation of the spectral density

function:

sȲn

θ (ω) :=
1

2π

∑
τ∈Z

(
hn∆

∑
i1∈Z\{0}

kθ((i1hn)∆)kθ((τ+i1hn)∆)
)
e
√
−1τω → s∆θ (ω)



Assumption 1 (Continuous-Time SPD sθ(z))
The spectral density sθ(z) = s(z, θ) of Xθ = {Xθt }t∈R satisfying the
following conditions:

(1) For each θ ∈ Θ, z 7→ sθ(z) is a non-negative integrable even
function on R. Moreover, it satisfies that s(·, ·) ∈ C1,3 ((R\{0}) ×Θ).

(2) There exists a continuous function α0 : Θ→ (0, 1) such that for
some constants c1, c2 > 0 and for any ι > 0 and some constant
c3,ι > 0, the following conditions hold for every
(z, θ) ∈ ([−∆π,∆π]\{0}) ×Θ:

(a) c1|z|−α0(θ) ≤ sθ(z) ≤ c2|z|−α0(θ).
(b) For any j ∈ {0, 1, 2, 3} and k ∈ {0, 1}, it holds∣∣∣∣∂k

z∂
j
θsθ(z)

∣∣∣∣ ≤ c3,ι|z|−α0(θ)−k−ι.

(3) For any j ∈ {0, 1, 2, 3} and k ∈ {0, 1}, it holds∑
τ∈Z\{0}

sup
(ω,θ)∈[−π,π]×Θ

∣∣∣∣∣∂k
z∂

j
θ
sθ

(2πτ + ω
∆

)∣∣∣∣∣ < ∞.



Lemma (Properties of Discrete-time SPD s∆θ(ω))

(1) For each θ ∈ Θ and ω ∈ [−π, π] \ {0}, s∆θ (ω) is finite, and
s∆θ (·) ∈ C1,3 (([−π, π]\{0}) ×Θ).

(2) For some constants c1, c2 > 0 and for any ι > 0 and some
constant c3,ι > 0, the following conditions hold for every
(ω, θ) ∈ ([−π, π]\{0}) ×Θ:

(a) c1|ω|−α(θ) ≤ s∆θ (ω) ≤ c2|ω|−α(θ).

(b) For any j ∈ {0, 1, 2, 3} and k ∈ {0, 1}, it holds∣∣∣∣∂k
ω∂

j
θs
∆
θ (ω)

∣∣∣∣ ≤ c3,ι|ω|−α(θ)−k−ι.



Derivation of Lemma

▶ Recall that s∆θ(ω) is given by

s∆θ(ω) =
1
∆

sθ
(
ω
∆

)
+

1
∆

∑
τ∈Z\{0}

sθ
(2πτ + ω
∆

)
.

▶ Under Assumption 1, it follows that

s∆θ(ω) ≲
1
∆

[∣∣∣∣ω
∆

∣∣∣∣−α0(θ)
+ 1

]
≲ |ω|−α0(θ).

On the other hand, using the positiveness of sθ(z), we can
directly show the lower estimate

s∆θ(ω) ≳
1
∆

∣∣∣∣ω
∆

∣∣∣∣−α0(θ)
≳ |ω|−α0(θ) > 0.



Asymptotic behavior of the Whittle estimator

In addition to Assumption 1, we assume the following conditions.

Assumption 2
▶ If θ1 and θ2 are distinct elements of Θ, the set
{ω ∈ [−π, π] \ {0} : s∆θ1

(ω) , s∆θ2
(ω)} has a positive Lebesgue

measure.

Theorem 1: Asymptotic Normality of MLE θ̂n

Under Assumptions 1 and 2, a sequence of Whittle estimator {θ̂n}n∈N
is consistent and asymptotically normal:

√
n(θ̂n − θ)→Np

(
0p,
∃Σ

)
,

where the asymptotic variance Σ is supposed to be positive definite.



Numerical Experiment



Numerical experiment

▶ We consider the following fractional Lévy process:

Xθt = cH

∫ t

−∞
σ

[{
(t − u)1lt−u>0

}d
−

{
− u1l−u>0

}d]
dLu, t ≥ 0,

where d = H − 1
2 and cH is the normalizing constant such that

E[(Xθt − Xθt−1)2] = σ2.

▶ Although our method cannot be applied for the above process
directly, by taking the difference Yθt = Xθt − Xθt−1, a similar
approach will be valid (we expect).

▶ We suppose that the driving Lévy process is a compound
Poisson process whose intensity is 1 and the jump distribution is
the standard normal distribution.



▶ Since the difference of jump times of compound Poisson
processes obeys the exponential distribution, we can simulate
the path of

Xθ,(L)
t = cH

∫ t

−L
σ

[{
(t − u)1lt−u>0

}d
−

{
− u1l−u>0

}d]
dLu

for some positive constant L > 0 and we set L = 5000 for the
approximation of Xθt .

▶ We independently simulate 1000 paths for L = 5000, and
calculate the Whittle estimator of H and σ based on the discrete
observations {Yθt }nt=0.

▶ We consider two cases: (H, σ) = (0.9, 1) and (H, σ) = (0.75, 1).



Result: case 1

n Ĥn σ̂n

250 0.8879627 1.216178
(0.04525944) (1.157441)

500 0.8961821 1.113735
(0.03300364) (0.6215016)

1000 0.8970059 1.025469
(0.02215364) (0.2720051)

Table: The performance of the Whittle estimator with the true value
(H, σ) = (0.9, 1); the mean of each estimator is given with the standard
deviation in parenthesis.



Result: case 2

n Ĥn σ̂n

250 0.7370236 0.9938576
(0.04389529) (0.1782975)

500 0.7420348 0.992157
(0.03252598) (0.1216881)

1000 0.7459363 0.9951483
(0.02210757) (0.08555319)

Table: The performance of the Whittle estimator with the true value
(H, σ) = (0.75, 1); the mean of each estimator is given with the standard
deviation in parenthesis.



Summary



Summary:
▶ For general Lévy continuous-time moving average process

with long memory, we proved the consistency and
asymptotic normality of the Whittle estimator.

▶ We used the approximation process based on
discretization and derived the convergence of the spectral
density, the decomposition of periodogram.


