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Abstract

• Consider discrete-time processes on a finite state space.
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Example: Infant sleep states

(Stoffer et al. 2000)

• We construct Markov models by specifying dependence and
marginal distributions separately.

arXiv:2407.17682
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Introduction (1/3)

• A Markov model is determined by the Markov kernel (=
transition probability matrix), which is designed to have
specific dependence relations between the present state x and
the future state y.

• For example, consider a Markov kernel

w(y|x) = exp(θxy)∑5
z=0 exp(θxz)

, x, y ∈ {0, . . . , 5},

where θ ∈ R controls the correlation between x and y.

• Problem: the stationary distribution is not directly specified.∑
x

w(y|x)p(x) = p(y)

3 / 20



Introduction Preliminaries Main result Information geometry Summary

Introduction (2/3)

Markov kernel stationary distribution
w(y|x) ∝ eθxy, θ = 0.5 p(x)
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The stationary distribution highly depends on θ.
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Introduction (3/3)
• It would be convenient if we could design the dependence and
stationary distribution separately. It is indeed possible.

Markov kernel stationary distribution

θ = 0.1
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Preliminaries: Markov kernel

To state the method, we define some symbols and terminology.

• Let X be a finite set, which represents the state space.

• Let R+ and R≥0 be the set of positive and non-negative
numbers, respectively.

• A Markov kernel on X is a function w : X 2 → R≥0 such that∑
y∈X

w(y|x) = 1

for any x ∈ X .
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Preliminaries: irreducibility

• A graph (X , E) is said to be strongly connected if for any pair
(x, y) ∈ X 2 there exists a path from x to y.

• A nonnegative matrix f : X 2 → R≥0 is said to be irreducible if
supp(f) = {(x, y) ∈ X 2 | f(x, y) > 0} is strongly connected.

A strongly connected graph
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Preliminaries: Perron–Frobenius theorem

• Let P+(X ) denote the set of strictly positive probability
distributions on X .

Perron–Frobenius Theorem

If f : X 2 → R≥0 is irreducible, f has a simple eigenvalue Z > 0
and an eigenvector γ ∈ P+(X ).

• From the Perron–Frobenius theorem, every irreducible Markov
kernel w has a unique stationary distribution pw ∈ P+(X ):∑

x∈X
w(y|x)pw(x) = pw(y).
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Main result 1
We begin with first-order Markov chains.

Theorem 1

• Let H : X 2 → R and r ∈ P+(X ) be given.

Then, there exists a unique Markov kernel of the form

w(y|x) = exp(H(x, y) + κ(y)− κ(x)− δ(y)), (x, y) ∈ X 2,

with the stationary distribution

pw(x) = r(x), x ∈ X .

• H(x, y) controls the dependence between x and y.

• r(x) specifies the stationary distribution.

• κ and δ are unique up to an additive constant.
9 / 20
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Minimum information Markov model

• From the theorem, we can construct a Markov kernel{
w(y|x) = exp(H(x, y) + κ(y)− κ(x)− δ(y)),

pw(x) = r(x).

• We call it the minimum information Markov kernel generated
by H and r. This is named after the minimum information
copulas (Bedford and Wilson 2014, S. and Yano 2024 etc.).

“The marginal distribution is fixed to r(x).”

10 / 20



Introduction Preliminaries Main result Information geometry Summary

Example: integer-valued autoregressive process

Let X = {0, 1, · · · , 5}, H(x, y) = −xy, r(x) = Bin(5, 0.4).
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Remark: Sinkhorn scaling

• Our model is w(y|x) = eH(x,y)+κ(y)−κ(x)−δ(y).

• The problem of finding κ and δ is reduced to a system of
equations {∑

y e
H(x,y)+α(x)+β(y) = r(x),∑

x e
H(x,y)+α(x)+β(y) = r(y)

with respect to α and β.

• This is the same as Sinkhorn’s matrix scaling problem, used in
entropic optimal transport: e.g. Nutz (2022).

• In other words, Theorem 1 is just a corollary of the known
fact.

• However, this correspondence no longer holds for higher-order
Markov chains, as observed below.
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Higher-order cases
We next consider d-th-order Markov chains for d ≥ 1.

• A sequence (xs, . . . , xt) for s ≤ t is abbreviated as xs:t.

• A d-th-order Markov kernel is a function w : X d+1 → R≥0

such that ∑
xd+1∈X

w(xd+1|x1:d) = 1.

• Meaning: the future state depends on the past d states.

• The stationary distribution p
(d)
w of w is defined by∑

x1

w(xd+1|x1:d)p(d)w (x1:d) = p(d)w (x2:(d+1)).

• Denote the marginal stationary distribution as

p(1)w (x1) =
∑
x2:d

p(d)w (x1:d).

13 / 20
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Main result 2

Theorem 2

• Let H : X d+1 → R and r ∈ P+(X ) be given.

Then, there exists a unique Markov kernel of the form

w(xd+1|x1:d)
= exp

(
H(x1:(d+1)) + κ(x2:(d+1))− κ(x1:d)− δ(xd+1)

)
with its marginal stationary distribution

p(1)w (x1) = r(x1).
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Example: integer-valued AR process of order 2

X = {0, 1, · · · , 5}, H(x, y, z) = 0.6yz − 0.3xz, r(x) = Bin(5, 0.4).
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Exponential family of Markov chains

For proof of the main theorem, we recall information geometry.

Definition (Nagaoka 2005, Hayashi and Watanabe 2016)

• Let (X , E) be a strongly connected graph.

• Let C,F1, . . . , FK : E → R be given functions.

Then, a family of Markov kernels

wθ(y|x) = exp

(
C(x, y) +

K∑
i=1

θkFk(x, y) + κθ(y)− κθ(x)− ψθ

)
.

supported on E is called the exponential family generated by
C,F1, . . . , FK .

Existence of κθ and ψθ follows from the Perron–Frobenius theorem.
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An existence theorem for Markov chains

Theorem (Csiszár et al. 1987)

• Let E be an exponential family generated by C,F1, . . . , FK .

• Let M be the set of all Markov kernels w satisfying∑
(x,y)∈E

p(2)w (x, y)Fk(x, y) = µk, k = 1, . . . ,K

for given µ1, . . . , µK ∈ R.

If M ̸= ∅, then there exists a unique w∗ ∈M ∩ E.

• Furthermore, we have generalized Pythagorean theorem:

D(w|w∗) +D(w∗|v) = D(w|v), w ∈M, v ∈ E

for the divergence rate D(w|v). Details are omitted.
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Picture

M =Mµ1,...,µK = {w ∈ W |
∑

(x,y) p
(2)
w (x, y)Fk(x, y) = µk (∀k)}

E = {v(x, y) = eC(x,y)+
∑

k θkFk(x,y)+κθ(y)−κθ(x)−ψθ | θ ∈ RK}

W: the set of all Markov kernels.
18 / 20
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Proof of Theorem 1

• Denote X = {ξ1, . . . , ξm}.
• Let K = m− 1 and

C(x, y) = H(x, y), Fk(x, y) = −I{ξk}(y), µk = −r(ξk).

• Then, the generalized Pythagorean theorem{
w(y|x) = eC(x,y)+

∑K
k=1 θkFk(x,y)+κθ(y)−κθ(x)−ψθ ,∑

x,y p
(2)
w (x, y)Fk(x, y) = µk.

is read as {
w(y|x) = eH(x,y)−δ(y)+κ(y)−κ(x),∑

y p
(1)
w (y) = r(y),

where κ(y) = κθ(y) and δ(y) = ψθ +
∑m−1

i=1 θiI{ξi}(y).

• This proves Theorem 1. Theorem 2 is similarly proved.
19 / 20



Introduction Preliminaries Main result Information geometry Summary

Future work
Summary

• We proved existence of a Markov kernel that satisfies given
dependence and marginal conditions, for finite state spaces.

• Information geometry plays a central role in the proof.

Future work
• Infinite state space (ongoing work)

• In i.i.d. theory, Csiszár (1975) and Nutz (2022) used Pinsker’s
inequality

∥Q−R∥TV ≤
√
2D(Q|R)

to prove the existence.
• A Markov analogue called “Marton’s inequality” does not work

in the present purpose.

• Relation with INAR models (McKenzie 1985 among others)

• Statistical inference

Thank you for your kind attention!
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Appendix: Divergence rate

• Let W be the set of Markov kernels supported on E .
• Define the divergence rate of Markov chains by

D(v|w) =
∑

(x,y)∈E

p(2)v (x, y) log
v(y|x)
w(y|x)

, v, w ∈ W,

• D(v|w) ≥ 0 with equality if and only if v = w.

• Property:

lim
n→∞

1

n

∑
x1:n∈Xn

p(n)v (x1:n) log
p
(n)
v (x1:n)

p
(n)
w (x1:n)

= D(v|w).
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Appendix: Proof sketch of the Pythagorean theorem

• If w ∈M , w∗ ∈M ∩ E and v ∈ E, then

D(w|w∗) +D(w∗|v)−D(w|v)

=
∑

(x,y)∈E

(p(2)w (x, y)− p(2)w∗ (x, y)) log
v(y|x)
w∗(y|x)︸ ︷︷ ︸

∈span(F1,...,FK ,N )

= 0.

• Uniqueness follows from the identity: if w,w∗ ∈M ∩ E, then
D(w|w∗) +D(w∗|w) = D(w|w) = 0 and so w = w∗.

• For existence, it is shown that the function p
(2)
w 7→ D(w|v) is

continuous, convex and steep.

See the preprint arXiv:2407.17682 for details.
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Appendix: Conference FDIG 2025

For your information...

• We will hold a conference titled

Further Developments of Information Geometry (FDIG) 2025

in March 17–21, 2025 at Tokyo.

• https://sites.google.com/view/fdig2025/

• Contributed talks are welcome by Sep 30 (maybe extended).

• If you have geometric ideas in probability and statistics, please
consider to apply!
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