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Outline

Goal:

Extend the framework of causal inference for Euclidean data to general
geodesic metric spaces.

▶ Introduce geodesic averate treatment effect (GATE)

Propose a doubly robust (DR) estimator for the GATE
▶ Investigate asymptotic properties of the DR estimator.
▶ Apply the proposed method to several real-world datasets.
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Geodesic metric space
(M, d): a uniquely geodesic metric space.
∀α, β ∈ M, the unique geodesic connecting α and β is a curve

γα,β : [0, 1] 7→ M

such that d(γα,β(s), γα,β(t)) = d(α, β)|t − s| for s, t ∈ [0, 1].

Extension of geodesics

The space of interest is sometimes a subset of (M, d), often closed and
convex.

Assume that the geodesic γα,β extends to the boundary point ζ. For ρ > 1,
the scalar multiplication is defined as

ρ� γα,β = {γα,ζ(t) : t ∈ [0, h(ρ)]},

h(ρ) = −
(
1− d(α, β)

d(α, ζ)

)ρ

+ 1.

Note that γα,ζ(0) = α, γα,ζ(h(1)) = β, γα,ζ(h(∞)) = ζ.

We write γα,ζ(h(ρ)) as γα,β(ρ).
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Geodesic metric space
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Figure: Illustration of ρ� γα,β when ρ > 1.
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Geodesic metric space (Examples of metric spaces)

1. Finite dimensional sphere

Finite dimensional case:

▶ directional data
▶ spherical simplex with geodesic distance (Sd−1

+ , dg )
→ space for compositional data (Application 1).

∆d−1 =

{
y ∈ Rd : yj ≥ 0, j = 1, . . . , d , and

d∑
j=1

yj = 1

}
.

Consider a map ∆d−1 → Sd−1
+ = {z ∈ Sd−1 : zj ≥ 0, j = 1, . . . , d} s.t.

(y1, . . . , yd)
′ 7→ (

√
y1, . . . ,

√
yd)

′.

For y1, y2 ∈ Sd−1
+ , dg (y1, y2) = arccos(y ′

1y2).
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Geodesic metric space (Examples of metric spaces)

2. Space of graph Laplacians with Frobenius metric (Lm, dF )
(Application 2)

G = (V ,E ): an undirected weighted netwrork.
V = {v1, . . . , vm}: a set of nodes.
E = {wij ,wij ≥ 0, i , j = 1, . . . ,m}: a set of edge weights.

wij = 0 ⇔ vi and vj are unconnected.

3. Space of covariance/correlation matrices with Frobenius metric
(Sm, dF ). (Application 3)
Sm: symmetric and positive semidefinite matrices.

4. Space of univariate distributions with L2-Wasserstein metric
(W2(I ), dW). For univariate distributions µ and ν, the Wasserstein metric is
defined as

dW(µ, ν) =

√∫ 1

0

(Qµ(s)− Qν(s))2ds,

where Qµ and Qν are quantile functions of µ and ν.
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Geodesic average treatment effect (GATE)
For each unit i = 1, . . . , n, we observe (Yi ,Ti ,Xi ) ∈ M× {0, 1} × Rp.

Ti : the indicator of a teatment. Ti = 1 if treated and Ti = 0 otherwise.

Yi : the outcome

Yi =

{
Yi (0) if Ti = 0

Yi (1) if Ti = 1,

where Yi (0),Yi (1) ∈ M are potential outcomes

Xi : Euclidean covariates.

Geodesic average treatment effect

The geodesic average treatment effect (GATE) of T on Y is defined as

γE⊕[Y (0)],E⊕[Y (1)].

E⊕[A] denotes the Fréchet mean of the random object A ∈ M, that is,

E⊕[A] = arg min
ν∈M

E[d2(ν,A)].
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Doubly robust estimator for the GATE

Assumption 3.1
Let p(x) = P(Ti = 1|Xi = x) be the propensity score.

(i) (M, d) is a uniquely extendable geodesic metric space.

(ii) {Yi ,Ti ,Xi}ni are i.i.d. samples from a super-population of
(Y ,T ,X ) ∈ M× {0, 1} × X , where X is a compact subset of Rp.

(iii) There exists a positive constant η0 ∈ (0, 1/2) such that η0 ≤ p(x) ≤ 1− η0
for each x ∈ X .

(iv) Ti and {Yi (0),Yi (1)} are conditionally independent given Xi .

Assumption 3.2
For t ∈ {0, 1}, let Pt : M → M be a random perturbation map and mt be a
function such that mt : X → M and

(i) Y (t) = Pt(mt(X )),

(ii) E⊕[Pt(mt(X ))|X ] = mt(X ),

(iii) E⊕[Pt(mt(X ))] = E⊕[mt(X )].
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Doubly robust estimator for the GATE

Definition (DR estimator)

DR estimator for the GATE is given as γ
Θ̂

(DR)
0 ,Θ̂

(DR)
1

where

Θ̂
(DR)
t := arg min

ν∈M
Qn,t(ν; µ̂t , φ̂),

Qn,t(ν;µ, φ) =
1

n

n∑
i=1

d2

(
ν, γµ(Xi ),Yi

(
tTi

e(Xi ;φ)
+

(1− t)(1− Ti )

1− e(Xi ;φ)

))
.

e(x ;φ): a parametric model of the propensity score p(x).
φ̂: an estimator of a (true) parameter φ∗
µ̂t : an estimator of the outcome regression function mt .
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Doubly robust estimator for the GATE
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Figure: Illustration of DR representation of the GATE when e(x) = p(x).
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Doubly robust estimator for the GATE
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Figure: Illustration of DR representation of the GATE when µt(x) = mt(x).
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Doubly robust estimator for the GATE

In our real data analysis, we use

logistic regression for p(x) and

global Fréchet regression for mt (cf. Petersen and Müller (’19, AoS)):

µ̂t(x) := arg min
ν∈M

1

Nt

∑
i∈It

{1 + (Xi − X̄ )′Σ̂−1(x − X̄ )}d2(ν,Yi ).

It = {1 ≤ i ≤ n : Ti = t}.
Nt : the sample size of It .
X̄ = n−1

∑n
i=1 Xi .

Σ̂ = n−1
∑n

i=1(Xi − X̄ )(Xi − X̄ )′.

One can also use the local Fréchet regression for mt

(cf. Chen and Müller (’22, AoS)).
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Main resutls

Assumption 4.1
Let Φ ⊂ Rp be a compact set and let Me = {e(x ;φ) : x ∈ X , φ ∈ Φ} be a class
of parametric models for propensity score p(x). Additionally, let µ̂t(·), t ∈ {0, 1}
be estimators for the outcome regression functions mt(·), t ∈ {0, 1}.
(i) For φ1, φ2 ∈ Φ, assume that |e(x ;φ1)− e(x ;φ2)| ≤ Ce‖φ1 − φ2‖ for some

positive constant Ce > 0, and for all x ∈ X and φ ∈ Φ,
η0 ≤ e(x ;φ) ≤ 1− η0.

(ii) There exist φ∗ ∈ Φ and its estimator φ̂ such that ‖φ̂− φ∗‖ = Op(ϱn) with
ϱn → 0 as n → ∞.

(iii) There exist functions µt(·), t ∈ {0, 1} such that
supx∈X d(µ̂t(x), µt(x)) = Op(rn), t ∈ {0, 1} with rn → 0 as n → ∞.

Assumption 4.2
For any α1, α2 ∈ (M, d), it holds

sup
β∈M,κ∈[1/(1−η0),1/η0]

d (γα1,β(κ), γα2,β(κ)) ≤ C0d(α1, α2)

for some positive constant C0 depending only on η0.
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Main resutls
Let Θ

(DR)
t := arg min

ν∈M
Qt(ν;µt , φ∗), t ∈ {0, 1} where

Qt(ν;µ, φ) = E

[
d2

(
ν, γµ(X ),Y

(
tT

e(X ;φ)
+

(1− t)(1− T )

1− e(X ;φ)

))]
.

Assumption 4.3

Assume that for t ∈ {0, 1},
(i) the objects Θ

(DR)
t and Θ̂

(DR)
t exist and are unique, and for any ε > 0,

inf
d(ν,Θ

(DR)
t )>ε

Qt(ν;µt , φ∗) > Qt(Θ
(DR)
t ;µt , φ∗),

(ii) Θ
(DR)
t = E⊕[Y (t)].

Theorem 4.1 (Consistensy of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2 and 4.3 hold. Then

d(Θ̂
(DR)
t ,E⊕[Y (t)]) = op(1), t ∈ {0, 1}.
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Main resutls
Let (Ω, dΩ) be a metric space. For ω ∈ Ω, let Bδ(ω) be the ball of radius δ
centered at ω and N(ε,Bδ(ω), dΩ) be its covering number using balls of size ε.

Assumption 4.4
For t ∈ {0, 1},
(i) As δ → 0,

Jt(δ) :=

∫ 1

0

√
1 + logN(δε,Bδ(Θ

(DR)
t ), d)dε = O(1),

Jµt (δ) :=

∫ 1

0

√
1 + logN(δε,Bδ′1

(µt), d∞)dε = O(δ−ϖ)

for some δ′1 > 0 and ϖ ∈ (0, 1), where for ν, µ : X → M,
d∞(ν, µ) := supx∈X d(ν(x), µ(x)).

(ii) there exist constants η > 0, η1 > 0, C > 0, C ′ > 0, and β > 1 such that

inf
d∞(µ,µt)≤η1

∥φ−φ∗∥≤η1

inf
d(ν,Θ

(DR)
t )<η

{
Qt(ν;µ, φ)−Qt(Θ

(DR)
t ;µ, φ)

−Cd(ν,Θ
(DR)
t )β+C ′η

β
2(β−1)

1 d(ν,Θ
(DR)
t )

β
2

}
≥0.
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Main resutls

Theorem 4.2 (Convergence rates of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4 hold. Then for any
β′ ∈ (0, 1), we have

d(Θ̂
(DR)
t ,E⊕[Y (t)]) = Op

(
n−

1
2(β−1+ϖ) + (ϱn + rn)

β′
(β−1)

)
, t ∈ {0, 1}.

Typically, β = 2, ϱn = n−1/2, rn = n−α1 with any α1 > 1/2, ϖ,β′ ∈ (0, 1).

d(Θ̂
(DR)
t ,E⊕[Y (t)]) = Op(n

− 1
2(1+ϖ) + n−α1β

′
), t ∈ {0, 1}.

Network, Covariance matrix, Compositional data, Distribution.
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Real data analysis (S2
+, dg)

U.S. electricity generation data

Description of the dataset

Outcome : the composition of energy sources across 50 U.S. states in 2020

Yi = (
√
y1,i ,

√
y2,i ,

√
y3,i )

′ ∈ S2
+.

▶ y1,i : Natural Gas
▶ y2,i : Other Fossils

(coal, petroleum, and other gases)
▶ y3,i : Renewables and Nuclear

(hydroelectric conventional, solar thermal and photovoltaic, geothermal,
wind, wood and wood-derived fuels, other biomass, and nuclear)

Treatment : production of coal in each state in 2020. (Ti = 1 if the state
produced coal, Ti = 0 o.w.)

Covariates : GDP per capita (the millions of chained 2012 dollars), the
proportion of electricity generated from coal and petroleum in each state in
2010.

Sample size : n = 50 (n0 = 21, n1 = 29).
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Real data analysis (S2
+, dg)
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Figure: Mean potential outcomes for coal production using different methods.

dg (Θ̂
(DR)
0 , Θ̂

(DR)
1 ) = 0.133, 95% adaptive HulC : (0.112, 0.269).
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Real data analysis (L13, dF )

New York Taxi system after COVID-19 outbreak

Description of the dataset

Outcome : daily undirected network Gi = (Vi ,Ei )
▶ Nodes corresponding to the 13 regions in Manhattan.
▶ Edge weights representing the number of people who traveled between the

regions.
▶ Period: April 12, 2020 ∼ Sep. 30, 2020 (172 days).

Treatment : number of COVID-19 new cases in Manhattan area (Ti = 1 if
> 60 and Ti = 0 if ≤ 60)

Covariates : weekend indicator, temperature.

Sample size : n = 172 (n0 = 79, n1 = 93).
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Real data analysis (L13, dF )
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Figure: Left: Average treatment effects (differences between adjacency matrices)
represented as heatmaps using different methods.
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Real data analysis (L13, dF )

Regions with the largest differences:
(105, 106, 108)

▶ 105: Penn Station, Times Square,
The Museum of Modern Art.

▶ 106: Grand Central Station,
The United Nations HQs.

▶ 108: residential area.

dF (Θ̂
(DR)
0 , Θ̂

(DR)
1 ) = 5216,

95% adaptive HulC : (2362, 10979).

Figure: 13 regions in Manhattan
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Conclusion

In this project, we

introduced the geodesic average treatment effect (GATE) for the causal
analysis of random objects;

proposed four estimators for estimating the GATE
▶ doubly robust
▶ (cross-fitting)
▶ (outcome regression)
▶ (inverse probability weighting)

established consistency and convergence rates of the estimators;

applied the proposed methods to three datasets:
▶ U.S. electricity generation data
▶ New York Yellow Taxi data
▶ (Alzheimer’s disease data).

Kurisu, D., Zhou, Y., Otsu, T., and Müller, H.-G. (2024) Geodesic causal
inference. arXiv:2406.19604.
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