Causal Inference for Random Objects

Daisuke Kurisu (UTokyo), Yidong Zhou (UCDavis), Taisuke Otsu (LSE), Hans-Georg Müller (UCDavis)

Fall School Time Series, Random Fields and beyond Sep. 23-27, 2024@Ulm University

< □ > < □ > < □ > < □ > < □ >

Outline

- Goal
- Examples of geodesic metric spaces
- Geodesic average treatment effect (GATE)
- Doubly robust estimator for the GATE
- Main results
 - Consistency/Rate of convergence of DR estimator
- Real data analysis
 - U.S. electricity generation data
 - New York Yellow Taxi data

Kurisu, D., Zhou, Y., Otsu, T., and Müller, H.-G. (2024) Geodesic causal inference. arXiv:2406.19604.

イロト イ団ト イヨト イヨト

Outline

Goal:

- Extend the framework of causal inference for Euclidean data to general geodesic metric spaces.
 - Introduce geodesic averate treatment effect (GATE)
- Propose a doubly robust (DR) estimator for the GATE
 - Investigate asymptotic properties of the DR estimator.
 - Apply the proposed method to several real-world datasets.

< □ > < 同 > < 回 > < 回 >

Geodesic metric space

 (\mathcal{M}, d) : a uniquely geodesic metric space. $\forall \alpha, \beta \in \mathcal{M}$, the unique geodesic connecting α and β is a curve

 $\gamma_{\alpha,\beta}: [0,1] \mapsto \mathcal{M}$

such that $d(\gamma_{\alpha,\beta}(s),\gamma_{\alpha,\beta}(t)) = d(\alpha,\beta)|t-s|$ for $s,t \in [0,1]$.

Extension of geodesics

- The space of interest is sometimes a subset of (*M*, *d*), often closed and convex.
- Assume that the geodesic γ_{α,β} extends to the boundary point ζ. For ρ > 1, the scalar multiplication is defined as

$$\rho \odot \gamma_{\alpha,\beta} = \{\gamma_{\alpha,\zeta}(t) : t \in [0, h(\rho)]\},\$$
$$h(\rho) = -\left(1 - \frac{d(\alpha, \beta)}{d(\alpha, \zeta)}\right)^{\rho} + 1.$$

Note that γ_{α,ζ}(0) = α, γ_{α,ζ}(h(1)) = β, γ_{α,ζ}(h(∞)) = ζ.
We write γ_{α,ζ}(h(ρ)) as γ_{α,β}(ρ).

Geodesic metric space

Figure: Illustration of $\rho \odot \gamma_{\alpha,\beta}$ when $\rho > 1$.

< □ > < □ > < □ > < □ > < □ >

Geodesic metric space (Examples of metric spaces)

1. Finite dimensional sphere

Finite dimensional case:

- directional data
- ▶ spherical simplex with geodesic distance $(\mathcal{S}^{d-1}_+, d_g)$

 \rightarrow space for compositional data (Application 1).

$$\Delta^{d-1} = \left\{ oldsymbol{y} \in \mathbb{R}^d : y_j \geq 0, j = 1, \dots, d, ext{ and } \sum_{i=1}^d y_j = 1
ight\}.$$

 $\mathsf{Consider} \text{ a map } \Delta^{d-1} \to \mathcal{S}^{d-1}_+ = \{ \textbf{z} \in \mathcal{S}^{d-1} : z_j \geq 0, j = 1, \dots, d \} \text{ s.t.}$

$$(y_1,\ldots,y_d)'\mapsto (\sqrt{y_1},\ldots,\sqrt{y_d})'.$$

For $y_1, y_2 \in \mathcal{S}^{d-1}_+$, $d_g(y_1, y_2) = \arccos(y'_1y_2)$.

イロト 不得 トイヨト イヨト

Geodesic metric space (Examples of metric spaces)

2. Space of graph Laplacians with Frobenius metric (\mathcal{L}_m, d_F) (Application 2)

$$G = (V, E)$$
: an undirected weighted network.
 $V = \{v_1, \dots, v_m\}$: a set of nodes.
 $E = \{w_{ij}, w_{ij} \ge 0, i, j = 1, \dots, m\}$: a set of edge weights.
 $w_{ij} = 0 \Leftrightarrow v_i$ and v_j are unconnected.

- Space of covariance/correlation matrices with Frobenius metric (S_m, d_F). (Application 3)
 S_m: symmetric and positive semidefinite matrices.
- 4. Space of univariate distributions with L^2 -Wasserstein metric $(\mathcal{W}_2(I), d_{\mathcal{W}})$. For univariate distributions μ and ν , the Wasserstein metric is defined as

$$d_{\mathcal{W}}(\mu,
u)=\sqrt{\int_0^1(Q_\mu(s)-Q_
u(s))^2}ds,$$

where Q_{μ} and Q_{ν} are quantile functions of μ and ν .

イロト 不得 トイヨト イヨト 二日

Geodesic average treatment effect (GATE)

For each unit i = 1, ..., n, we observe $(Y_i, T_i, X_i) \in \mathcal{M} \times \{0, 1\} \times \mathbb{R}^p$.

- T_i : the indicator of a teatment. $T_i = 1$ if treated and $T_i = 0$ otherwise.
- Y_i: the outcome

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0\\ Y_i(1) & \text{if } T_i = 1, \end{cases}$$

where $Y_i(0), Y_i(1) \in \mathcal{M}$ are potential outcomes

• X_i: Euclidean covariates.

Geodesic average treatment effect

The geodesic average treatment effect (GATE) of T on Y is defined as

 $\gamma_{\mathrm{E}_{\oplus}[Y(0)],\mathrm{E}_{\oplus}[Y(1)]}$

 $\mathrm{E}_\oplus[A]$ denotes the Fréchet mean of the random object $A\in\mathcal{M}$, that is,

$$\mathrm{E}_{\oplus}[A] = \operatorname*{arg min}_{\nu \in \mathcal{M}} \mathrm{E}[d^{2}(\nu, A)].$$

8/24

Assumption 3.1

Let $p(x) = P(T_i = 1 | X_i = x)$ be the propensity score.

- (i) (\mathcal{M}, d) is a uniquely extendable geodesic metric space.
- (ii) $\{Y_i, T_i, X_i\}_i^n$ are i.i.d. samples from a super-population of $(Y, T, X) \in \mathcal{M} \times \{0, 1\} \times \mathcal{X}$, where \mathcal{X} is a compact subset of \mathbb{R}^p .
- (iii) There exists a positive constant $\eta_0 \in (0, 1/2)$ such that $\eta_0 \leq p(x) \leq 1 \eta_0$ for each $x \in \mathcal{X}$.
- (iv) T_i and $\{Y_i(0), Y_i(1)\}$ are conditionally independent given X_i .

Assumption 3.2

For $t \in \{0,1\}$, let $\mathcal{P}_t : \mathcal{M} \to \mathcal{M}$ be a random perturbation map and m_t be a function such that $m_t : \mathcal{X} \to \mathcal{M}$ and

(i)
$$Y(t) = \mathcal{P}_t(m_t(X)),$$

(ii)
$$\operatorname{E}_{\oplus}[\mathcal{P}_t(m_t(X))|X] = m_t(X),$$

(iii) $\operatorname{E}_{\oplus}[\mathcal{P}_t(m_t(X))] = \operatorname{E}_{\oplus}[m_t(X)].$

イロト イ団ト イヨト イヨト

Definition (DR estimator)

DR estimator for the GATE is given as $\gamma_{\hat{\Theta}_n^{(\mathrm{DR})},\hat{\Theta}_1^{(\mathrm{DR})}}$ where

$$\hat{\Theta}_t^{(\mathrm{DR})} := \underset{\nu \in \mathcal{M}}{\operatorname{arg min}} Q_{n,t}(\nu; \hat{\mu}_t, \hat{\varphi}),$$

$$Q_{n,t}(\nu; \mu, \varphi) = \frac{1}{n} \sum_{i=1}^n d^2 \left(\nu, \gamma_{\mu(X_i), Y_i} \left(\frac{t T_i}{e(X_i; \varphi)} + \frac{(1-t)(1-T_i)}{1-e(X_i; \varphi)} \right) \right).$$

 $e(x; \varphi)$: a parametric model of the propensity score p(x). $\hat{\varphi}$: an estimator of a (true) parameter φ_* $\hat{\mu}_t$: an estimator of the outcome regression function m_t .

イロン イ団 とく ヨン イヨン

Figure: Illustration of DR representation of the GATE when e(x) = p(x).

< □ > < □ > < □ > < □ > < □ >

Figure: Illustration of DR representation of the GATE when $\mu_t(x) = m_t(x)$.

< □ > < □ > < □ > < □ > < □ >

In our real data analysis, we use

- logistic regression for p(x) and
- global Fréchet regression for m_t (cf. Petersen and Müller ('19, AoS)):

$$\hat{\mu}_t(x) := \operatorname*{arg\,min}_{\nu \in \mathcal{M}} \frac{1}{N_t} \sum_{i \in I_t} \{1 + (X_i - \bar{X})' \hat{\Sigma}^{-1}(x - \bar{X})\} d^2(\nu, Y_i).$$

$$I_{t} = \{1 \le i \le n : T_{i} = t\}.$$

$$N_{t}: \text{ the sample size of } I_{t}.$$

$$\bar{X} = n^{-1} \sum_{i=1}^{n} X_{i}.$$

$$\hat{\Sigma} = n^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})(X_{i} - \bar{X})'.$$

 One can also use the local Fréchet regression for m_t (cf. Chen and Müller ('22, AoS)).

(日) (同) (日) (日)

Main resutls

Assumption 4.1

Let $\Phi \subset \mathbb{R}^p$ be a compact set and let $\mathcal{M}_e = \{e(x; \varphi) : x \in \mathcal{X}, \varphi \in \Phi\}$ be a class of parametric models for propensity score p(x). Additionally, let $\hat{\mu}_t(\cdot)$, $t \in \{0, 1\}$ be estimators for the outcome regression functions $m_t(\cdot)$, $t \in \{0, 1\}$.

- (i) For $\varphi_1, \varphi_2 \in \Phi$, assume that $|e(x; \varphi_1) e(x; \varphi_2)| \leq C_e ||\varphi_1 \varphi_2||$ for some positive constant $C_e > 0$, and for all $x \in \mathcal{X}$ and $\varphi \in \Phi$, $\eta_0 \leq e(x; \varphi) \leq 1 - \eta_0$.
- (ii) There exist $\varphi_* \in \Phi$ and its estimator $\hat{\varphi}$ such that $\|\hat{\varphi} \varphi_*\| = O_p(\varrho_n)$ with $\varrho_n \to 0$ as $n \to \infty$.
- (iii) There exist functions $\mu_t(\cdot)$, $t \in \{0, 1\}$ such that $\sup_{x \in \mathcal{X}} d(\hat{\mu}_t(x), \mu_t(x)) = O_p(r_n)$, $t \in \{0, 1\}$ with $r_n \to 0$ as $n \to \infty$.

Assumption 4.2

For any $\alpha_1, \alpha_2 \in (\mathcal{M}, d)$, it holds

$$\sup_{\beta \in \mathcal{M}, \kappa \in [1/(1-\eta_0), 1/\eta_0]} d\left(\gamma_{\alpha_1, \beta}(\kappa), \gamma_{\alpha_2, \beta}(\kappa)\right) \leq C_0 d(\alpha_1, \alpha_2)$$

for some positive constant C_0 depending only on η_0 .

 $\begin{array}{l} \mbox{Main resulls} \\ \mbox{Let } \Theta_t^{(\mathrm{DR})} := \mathop{\mathrm{arg~min}}_{\nu \in \mathcal{M}} Q_t(\nu; \mu_t, \varphi_*), \ t \in \{0, 1\} \ \mbox{where} \end{array}$

$$Q_t(\nu;\mu,\varphi) = \mathbf{E}\left[d^2\left(\nu,\gamma_{\mu(X),Y}\left(\frac{tT}{e(X;\varphi)} + \frac{(1-t)(1-T)}{1-e(X;\varphi)}\right)\right)\right]$$

Assumption 4.3

Assume that for
$$t \in \{0, 1\}$$
,
(i) the objects $\Theta_t^{(DR)}$ and $\hat{\Theta}_t^{(DR)}$ exist and are unique, and for any $\varepsilon > 0$,

$$\inf_{d(\nu,\Theta_t^{(DR)}) > \varepsilon} Q_t(\nu; \mu_t, \varphi_*) > Q_t(\Theta_t^{(DR)}; \mu_t, \varphi_*),$$
(ii) $\Theta_t^{(DR)} = E_{\oplus}[Y(t)].$

Theorem 4.1 (Consistensy of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2 and 4.3 hold. Then $d(\hat{\Theta}_t^{(\mathrm{DR})}, \mathrm{E}_\oplus[Y(t)]) = o_\rho(1), t \in \{0,1\}.$

Kurisu, Zhou, Otsu, and Müller

Main resutls

Let (Ω, d_{Ω}) be a metric space. For $\omega \in \Omega$, let $B_{\delta}(\omega)$ be the ball of radius δ centered at ω and $N(\varepsilon, B_{\delta}(\omega), d_{\Omega})$ be its covering number using balls of size ε .

Assumption 4.4
For
$$t \in \{0, 1\}$$
,
(i) As $\delta \to 0$,

$$J_t(\delta) := \int_0^1 \sqrt{1 + \log N(\delta\varepsilon, B_\delta(\Theta_t^{(\mathrm{DR})}), d)} d\varepsilon = O(1),$$

$$J_{\mu_t}(\delta) := \int_0^1 \sqrt{1 + \log N(\delta\varepsilon, B_{\delta'_1}(\mu_t), d_{\infty})} d\varepsilon = O(\delta^{-\varpi})$$
for some $\delta'_1 > 0$ and $\varpi \in (0, 1)$, where for $\nu, \mu : \mathcal{X} \to \mathcal{M}$,

$$d_{\infty}(\nu, \mu) := \sup_{x \in \mathcal{X}} d(\nu(x), \mu(x)).$$
(ii) there exist constants $\eta > 0$, $\eta_1 > 0$, $C > 0$, $C' > 0$, and $\beta > 1$ such that

$$\inf_{\substack{d_{\infty}(\mu, \mu_t) \leq \eta_1 d(\nu, \Theta_t^{(\mathrm{DR})}) < \eta}} \left\{ Q_t(\nu; \mu, \varphi) - Q_t(\Theta_t^{(\mathrm{DR})}; \mu, \varphi) - Cd(\nu, \Theta_t^{(\mathrm{DR})})^{\beta} + C' \eta_1^{\frac{\beta}{2(\beta-1)}} d(\nu, \Theta_t^{(\mathrm{DR})})^{\frac{\beta}{2}} \right\} \ge 0.$$

Main resutls

Theorem 4.2 (Convergence rates of DR estimator) Suppose that Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4 hold. Then for any $\beta' \in (0, 1)$, we have $d(\hat{\Theta}_t^{(DR)}, E_{\oplus}[Y(t)]) = O_p\left(n^{-\frac{1}{2(\beta-1+\varpi)}} + (\varrho_n + r_n)^{\frac{\beta'}{(\beta-1)}}\right), t \in \{0, 1\}.$

• Typically,
$$\beta = 2$$
, $\varrho_n = n^{-1/2}$, $r_n = n^{-\alpha_1}$ with any $\alpha_1 > 1/2$, $\varpi, \beta' \in (0, 1)$.

$$d(\hat{\Theta}_t^{(\mathrm{DR})}, \mathrm{E}_\oplus[Y(t)]) = O_p(n^{-\frac{1}{2(1+\varpi)}} + n^{-\alpha_1\beta'}), \ t \in \{0, 1\}.$$

• Network, Covariance matrix, Compositional data, Distribution.

イロト イヨト イヨト イヨト

Real data analysis (\mathcal{S}^2_+, d_g)

U.S. electricity generation data

Description of the dataset

• Outcome : the composition of energy sources across 50 U.S. states in 2020

$$Y_i = (\sqrt{y}_{1,i}, \sqrt{y}_{2,i}, \sqrt{y}_{3,i})' \in \mathcal{S}^2_+.$$

- ► y_{1,i} : Natural Gas
- y_{2,i} : Other Fossils

(coal, petroleum, and other gases)

- y_{3,i}: Renewables and Nuclear (hydroelectric conventional, solar thermal and photovoltaic, geothermal, wind, wood and wood-derived fuels, other biomass, and nuclear)
- Treatment : production of coal in each state in 2020. ($T_i = 1$ if the state produced coal, $T_i = 0$ o.w.)
- Covariates : GDP per capita (the millions of chained 2012 dollars), the proportion of electricity generated from coal and petroleum in each state in 2010.
- Sample size : n = 50 ($n_0 = 21$, $n_1 = 29$).

<ロ> <四> <四> <四> <三</p>

Real data analysis (\mathcal{S}^2_+, d_g)

Figure: Mean potential outcomes for coal production using different methods.

• $d_g(\hat{\Theta}_0^{(\mathrm{DR})}, \hat{\Theta}_1^{(\mathrm{DR})}) = 0.133, 95\%$ adaptive HulC : (0.112, 0.269).

2024/9/26 19/24

э

ヘロン 人間 とくほど くほとう

Real data analysis (\mathcal{L}_{13}, d_F)

New York Taxi system after COVID-19 outbreak

Description of the dataset

- Outcome : daily undirected network $G_i = (V_i, E_i)$
 - Nodes corresponding to the 13 regions in Manhattan.
 - Edge weights representing the number of people who traveled between the regions.
 - ▶ Period: April 12, 2020 ~ Sep. 30, 2020 (172 days).
- Treatment : number of COVID-19 new cases in Manhattan area ($T_i = 1$ if > 60 and $T_i = 0$ if ≤ 60)
- Covariates : weekend indicator, temperature.

• Sample size :
$$n = 172 (n_0 = 79, n_1 = 93)$$
.

Real data analysis (\mathcal{L}_{13}, d_F)

(A) Doubly robust

(B) 13 regions in Manhattan

< □ > < □ > < □ > < □ > < □ >

Figure: Left: Average treatment effects (differences between adjacency matrices) represented as heatmaps using different methods.

Real data analysis (\mathcal{L}_{13}, d_F)

- Regions with the largest differences: (105, 106, 108)
 - 105: Penn Station, Times Square, The Museum of Modern Art.
 - 106: Grand Central Station, The United Nations HQs.
 - 108: residential area.
- $d_F(\hat{\Theta}_0^{(\mathrm{DR})}, \hat{\Theta}_1^{(\mathrm{DR})}) = 5216$,
- 95% adaptive HulC : (2362, 10979).

Figure: 13 regions in Manhattan

イロト イ団ト イヨト イヨト

Conclusion

In this project, we

- introduced the geodesic average treatment effect (GATE) for the causal analysis of random objects;
- proposed four estimators for estimating the GATE
 - doubly robust
 - (cross-fitting)
 - (outcome regression)
 - (inverse probability weighting)
- established consistency and convergence rates of the estimators;
- applied the proposed methods to three datasets:
 - U.S. electricity generation data
 - New York Yellow Taxi data
 - (Alzheimer's disease data).

Kurisu, D., Zhou, Y., Otsu, T., and Müller, H.-G. (2024) Geodesic causal inference. arXiv:2406.19604.

イロト イヨト イヨト イヨト

References

- Chen, Y. and Müller, H.-G. (2022). Uniform convergence of local Fréchet regression with applications to locating extrema and time warping for metric space valued trajectries. *Annals of Statistics* **50**, 1573-1592.
- Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. *Annals of Statistics* **47**, 691-719.

(日) (同) (日) (日)