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Outline

Goal
Examples of geodesic metric spaces
Geodesic average treatment effect (GATE)

Doubly robust estimator for the GATE
Main results

» Consistency/Rate of convergence of DR estimator
@ Real data analysis

» U.S. electricity generation data
> New York Yellow Taxi data

Kurisu, D., Zhou, Y., Otsu, T., and Miiller, H.-G. (2024) Geodesic causal
inference. arXiv:2406.19604.
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Outline

Goal:

@ Extend the framework of causal inference for Euclidean data to general
geodesic metric spaces.

> Introduce geodesic averate treatment effect (GATE)
@ Propose a doubly robust (DR) estimator for the GATE

> Investigate asymptotic properties of the DR estimator.
» Apply the proposed method to several real-world datasets.
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Geodesic metric space

(M, d): a uniquely geodesic metric space.
Va, B € M, the unique geodesic connecting o and 3 is a curve

Yo, ° [0,1] = M

such that d(74,5(5), Va,5(t)) = d(a, B)|t — s| for s, t € [0, 1].
Extension of geodesics

@ The space of interest is sometimes a subset of (M, d), often closed and
convex.

@ Assume that the geodesic ~, g extends to the boundary point . For p > 1,
the scalar multiplication is defined as

PO Yas = {Varc(t): t €0, h(p)]},

- (- 2o

@ Note that v, ¢(0) = @, Ya,c(h(1)) = B, Ya,c(h(0)) = ¢.
o We write 7a.c(h(p)) a5 a3(p).

Kurisu, Zhou, Otsu, and Miiller 2024/9/26

4/24



Geodesic metric space
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Figure: lllustration of p ® 74,5 when p > 1.
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Geodesic metric space (Examples of metric spaces)

1. Finite dimensional sphere
Finite dimensional case:

> directional data
» spherical simplex with geodesic distance (S¢7!, d;)
— space for compositional data (Application 1).

d
A‘H:{yeRd:yjzo,jzl,...,m and Zy,-:l}.
j=1
Consider a map A9~! —>Sifl ={ze8":z>0,j=1,...,d} st.

(yl,...,yd)ll—)(\/ﬁ,...,\/yd)l.

For y1,y2 € S{%, dg(y1,y2) = arccos(yiy).
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Geodesic metric space (Examples of metric spaces)

2. Space of graph Laplacians with Frobenius metric (L, dr)
(Application 2)

G = (V, E): an undirected weighted netwrork.
V ={wv,...,vn}: aset of nodes.
E ={wj,w; >0,i,j=1,...,m}: a set of edge weights.

wj =0 & v; and v; are unconnected.

3. Space of covariance/correlation matrices with Frobenius metric
(Sm, dr). (Application 3)
Sm: symmetric and positive semidefinite matrices.

4. Space of univariate distributions with [2-Wasserstein metric
(Wx(1), dy). For univariate distributions 1 and v, the Wasserstein metric is
defined as

1
dw(p,v) = \//0 (Qu(s) — Qu(s))?ds,

where Q. and @, are quantile functions of 1 and v.
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Geodesic average treatment effect (GATE)
For each unit i = 1,..., n, we observe (Y;, T;, X;) € M x {0,1} x RP.
@ T;: the indicator of a teatment. T; = 1 if treated and T; = 0 otherwise.

@ Y;: the outcome

P =

Yi(0) if Ty =0

where Y;(0), Y;(1) € M are potential outcomes
@ X;: Euclidean covariates.

Geodesic average treatment effect
The geodesic average treatment effect (GATE) of T on Y is defined as

TEg[Y(0)],Eg[Y(1)]-

Eg[A] denotes the Fréchet mean of the random object A € M, that is,
Eg[A] = arg min E[d?(v, A)].
veEM
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Doubly robust estimator for the GATE

Assumption 3.1
Let p(x) = P(T; = 1|.X; = x) be the propensity score.
(i) (M, d) is a uniquely extendable geodesic metric space.

(ii) {Y;, Ti, Xi}7 are i.i.d. samples from a super-population of
(Y, T,X) e M x{0,1} x X, where X is a compact subset of RP.

(iii) There exists a positive constant 7o € (0,1/2) such that 79 < p(x) <1 —1mp
for each x € X.

(iv) T; and {Y;(0), Yi(1)} are conditionally independent given X;.

Assumption 3.2

For t € {0,1}, let P, : M — M be a random perturbation map and m; be a
function such that m; : X — M and

(i) Y(t) = Pe(me(X)),
(i) Eg[Pe(m:(X))|X] = m:(X),
(iii) Eg[P(m:(X))] = Eg[m:(X)]-
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Doubly robust estimator for the GATE

Definition (DR estimator)

DR estimator for the GATE is given as YH(PR) HOR) where
0 1

6P .= arg min Qn,t(v; fie, §),
veEM
R tT; 1-t)1-T))
. _ = d2 : . 1 ! .
Qne(vip ) = 2 ; (V’ TulX,),Y; (e(X,-;<p) (X o)

e(x; ¢): a parametric model of the propensity score p(x).
@: an estimator of a (true) parameter ¢,
il:: an estimator of the outcome regression function m;.
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Doubly robust estimator for the GATE
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Figure: lllustration of DR representation of the GATE when e(x) = p(x).
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Doubly robust estimator for the GATE
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Figure: lllustration of DR representation of the GATE when p¢(x) = m(x).

Kurisu, Zhou, Otsu, and Miiller 2024/9/26 12 /24



Doubly robust estimator for the GATE

In our real data analysis, we use
@ logistic regression for p(x) and
o global Fréchet regression for m; (cf. Petersen and Miiller ('19, AoS)):

fe(x) = arg min Ni {1+ (X — X)E 1 (x— X))o, V).
veM t ich,

L={1<i<n:T; =t}
N;: the sample size of /;.
X=n1 27:1 X;.
£ = n 0L (X - X)X - X).
@ One can also use the local Fréchet regression for m;
(cf. Chen and Miiller ('22, AoS)).
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Main resutls

Assumption 4.1

Let ® C RP be a compact set and let M, = {e(x; ) : x € X, € &} be a class

of parametric models for propensity score p(x). Additionally, let fi.(-), t € {0,1}

be estimators for the outcome regression functions m,(-), t € {0,1}.

(i) For ¢1,¢92 € ®, assume that |e(x; p1) — e(x; v2)| < Cellp1 — 2| for some
positive constant C, > 0, and for all x € X and ¢ € ¢,
mo < e(x;¢) <1—no.

(i) There exist ¢, € ® and its estimator ¢ such that ||¢ — .|| = Op(0n) with
on — 0 as n— oo.

(iii) There exist functions (), t € {0,1} such that
sup,cx d(fie(x), pe(x)) = Op(ry), t € {0,1} with r, — 0 as n — oo.

Assumption 4.2
For any a1, an € (M, d), it holds

sup d (7041,5(”)7’7&2,5(5)) < Cod(alv a2)
BEM,KE[L/(1—n0),1/m0]

for some positive constant Cy depending only on 7.

= = = — Ty

Kurisu, Zhou, Otsu, and Miiller 2024/9/26 14 /24



Main resutls

Let "% .= arg min Qe(v; pe, px), t € {0,1} where
veM

Q:(v;p, ) =E [dz (1/, Yu(X),Y (e(;—go) + (11__28<—<p;_)>)] .

Assumption 4.3

Assume that for t € {0,1},

(i) the objects @ (PR) 3nd @ (DR) exist and are unique, and for any € > 0,

inf Qe e, 0x) > QO™ e, ),
d(u,@(tDR))>s

(i) ©P°N = Eg[Y(1)].

Theorem 4.1 (Consistensy of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2 and 4.3 hold. Then
(6", Eg[Y(1)]) = 05(1), t € {0, 1}.

A
= = Ty
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Main resutls

Let (€2, dq) be a metric space. For w € Q, let Bs(w) be the ball of radius §
centered at w and N(e, Bs(w), dq) be its covering number using balls of size ¢.
Assumption 4.4
For t € {0,1},

(i) As§ — 0,

Jx(8) : /\/1+IogN(6s Bs(0\"™), d)de = 0(1),

J(6) / /1 108 N(8=, By (1) dc)d= = O(5~)
for some 671 > 0 and w € (0,1), where for v, : X — M,
doo(”: N) ‘= SUpyecx d(V(X)“u(X))
(i) there exist constants 7 >0, 73 >0, C >0, C' > 0, and 8 > 1 such that

inf inf {Qt(V:u,w)—Qt(eﬁDR):u,w)
oo (11,146) S (1,0PM)) <y
lo—pull<m

8
—Cd(l/, egDR))B‘i' C/nf(ﬁfl) d(V, egDR))g}Z 0.
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Main resutls

Theorem 4.2 (Convergence rates of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4 hold. Then for any
B’ € (0,1), we have

d(OPM EglY(8)]) = O, (,,—zw_am + (on + rn)w’%) , te {0,1}.

o Typically, 8 =2, 0, = n"Y2 r, = n=® with any a; > 1/2, @, 3’ € (0,1).

d(&M E[Y(1)]) = Op(n~ = + n=#), t € {0,1},

@ Network, Covariance matrix, Compositional data, Distribution.
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Real data analysis (82, d,)

U.S. electricity generation data

Description of the dataset

@ Outcome : the composition of energy sources across 50 U.S. states in 2020

Y = (ﬁlﬂ" W2,i7 \fy3,i)l € 8—25-
> y1,i : Natural Gas
> yoi  Other Fossils
(coal, petroleum, and other gases)
> y3,i : Renewables and Nuclear
(hydroelectric conventional, solar thermal and photovoltaic, geothermal,
wind, wood and wood-derived fuels, other biomass, and nuclear)

@ Treatment : production of coal in each state in 2020. (T; = 1 if the state
produced coal, T; =0 o.w.)

o Covariates : GDP per capita (the millions of chained 2012 dollars), the

proportion of electricity generated from coal and petroleum in each state in
2010.

e Sample size : n =50 (ny = 21, ny = 29).
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Real data analysis (82, d,)

Method Other fossil
@ Doubly robust
@ Cross-fiting
@ Outcome regression
@ Inverse probability weighting

Coal production
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Figure: Mean potential outcomes for coal production using different methods.

o d (6P &PR)Y = 0.133, 95% adaptive HulC : (0.112,0.269).
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Real data analysis (L3, dr)

New York Taxi system after COVID-19 outbreak

Description of the dataset
@ Outcome : daily undirected network G; = (V;, E;)

» Nodes corresponding to the 13 regions in Manhattan.

» Edge weights representing the number of people who traveled between the
regions.

» Period: April 12, 2020 ~ Sep. 30, 2020 (172 days).

@ Treatment : number of COVID-19 new cases in Manhattan area (T; =1 if
> 60 and T; =0 if < 60)

o Covariates : weekend indicator, temperature.
@ Sample size : n =172 (ng = 79, ny = 93).
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Real data analysis (L3, dr)
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Figure: Left: Average treatment effects (differences between adjacency matrices)
represented as heatmaps using different methods.
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Real data analysis (L3, dr)

@ Regions with the largest differences:
(105, 106, 108)

» 105: Penn Station, Times Square,
The Museum of Modern Art.

» 106: Grand Central Station,
The United Nations HQs.

» 108: residential area.
o dr(6M 6PM) = 5216,
@ 95% adaptive HulC : (2362,10979).

Figure: 13 regions in Manhattan
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Conclusion

In this project, we
@ introduced the geodesic average treatment effect (GATE) for the causal
analysis of random objects;
@ proposed four estimators for estimating the GATE
> doubly robust
> (cross-fitting)
» (outcome regression)
> (inverse probability weighting)
@ established consistency and convergence rates of the estimators;
@ applied the proposed methods to three datasets:

» U.S. electricity generation data
» New York Yellow Taxi data
> (Alzheimer’s disease data).

Kurisu, D., Zhou, Y., Otsu, T., and Miiller, H.-G. (2024) Geodesic causal
inference. arXiv:2406.19604.
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