Causal Inference for Random Objects

Daisuke Kurisu (UTokyo), Yidong Zhou (UCDavis), Taisuke Otsu (LSE), Hans-Georg Müller (UCDavis)

Fall School Time Series, Random Fields and beyond Sep. 23-27, 2024@Ulm University

 Ω

メロトメ 倒 トメ ミトメ ミト

Outline

- Goal
- Examples of geodesic metric spaces
- Geodesic average treatment effect (GATE)
- Doubly robust estimator for the GATE
- **Main results**
	- \triangleright Consistency/Rate of convergence of DR estimator
- Real data analysis
	- \triangleright U.S. electricity generation data
	- ▶ New York Yellow Taxi data

Kurisu, D., Zhou, Y., Otsu, T., and Müller, H.-G. (2024) Geodesic causal inference. arXiv:2406.19604.

 Ω

メロトメ 倒 トメ ミトメ ミト

Outline

Goal:

- Extend the framework of causal inference for Euclidean data to general geodesic metric spaces.
	- ▶ Introduce geodesic averate treatment effect (GATE)
- Propose a doubly robust (DR) estimator for the GATE
	- \blacktriangleright Investigate asymptotic properties of the DR estimator.
	- ▶ Apply the proposed method to several real-world datasets.

 Ω

 \leftarrow \leftarrow

Geodesic metric space

(*M, d*): a uniquely geodesic metric space. $\forall \alpha, \beta \in \mathcal{M}$, the unique geodesic connecting α and β is a curve

 $\gamma_{\alpha,\beta} : [0,1] \mapsto \mathcal{M}$

such that $d(\gamma_{\alpha,\beta}(s), \gamma_{\alpha,\beta}(t)) = d(\alpha,\beta)|t-s|$ for $s, t \in [0,1].$

Extension of geodesics

- The space of interest is sometimes a subset of (M, d) , often closed and convex.
- Assume that the geodesic *γα,β* extends to the boundary point *ζ*. For *ρ >* 1, the scalar multiplication is defined as

$$
\rho \odot \gamma_{\alpha,\beta} = \{ \gamma_{\alpha,\zeta}(t) : t \in [0, h(\rho)] \},
$$

$$
h(\rho) = -\left(1 - \frac{d(\alpha,\beta)}{d(\alpha,\zeta)}\right)^{\rho} + 1.
$$

• Note that $\gamma_{\alpha,\zeta}(0) = \alpha$, $\gamma_{\alpha,\zeta}(h(1)) = \beta$, $\gamma_{\alpha,\zeta}(h(\infty)) = \zeta$. We write *γα,ζ* (*h*(*ρ*)) as *γα,β*(*ρ*).

 209

Geodesic metric space

Figure: Illustration of $\rho \odot \gamma_{\alpha,\beta}$ when $\rho > 1$.

∍

 299

メロメ メ御 メメ ヨメ メヨメ

Geodesic metric space (Examples of metric spaces)

1. **Finite dimensional sphere**

Finite dimensional case:

- \blacktriangleright directional data
- ▶ spherical simplex with geodesic distance $(\mathcal{S}_{+}^{d-1}, d_{g})$ *→* space for compositional data (Application 1).

$$
\Delta^{d-1}=\left\{\boldsymbol{y}\in\mathbb{R}^d: y_j\geq 0, j=1,\ldots,d, \text{ and } \sum_{j=1}^d y_j=1\right\}.
$$

 $\textsf{Consider a map } \Delta^{d-1} \to \mathcal{S}_+^{d-1} = \{ \mathsf{z} \in \mathcal{S}^{d-1} : z_j \geq 0, j = 1, \ldots, d \} \text{ s.t.}$

$$
(y_1,\ldots,y_d)' \mapsto (\sqrt{y_1},\ldots,\sqrt{y}_d)'
$$

For $y_1, y_2 \in S_+^{d-1}$, $d_g(y_1, y_2) = \arccos(y'_1y_2)$.

 Ω

イロト イ押 トイヨ トイヨ トー

Geodesic metric space (Examples of metric spaces)

2. **Space of graph Laplacians with Frobenius metric** (\mathcal{L}_m, d_F) (Application 2)

$$
G = (V, E):
$$
 an undirected weighted network.
\n
$$
V = \{v_1, \ldots, v_m\}:
$$
 a set of nodes.
\n
$$
E = \{w_{ij}, w_{ij} \ge 0, i, j = 1, \ldots, m\}:
$$
 a set of edge weights.
\n
$$
w_{ij} = 0 \Leftrightarrow v_i \text{ and } v_j \text{ are unconnected.}
$$

- 3. **Space of covariance/correlation matrices with Frobenius metric** (S_m, d_F) . (Application 3) *Sm*: symmetric and positive semidefinite matrices.
- 4. **Space of univariate distributions with** *L* 2 **-Wasserstein metric** $(W_2(I), d_W)$. For univariate distributions μ and ν , the Wasserstein metric is defined as

$$
d_{\mathcal{W}}(\mu,\nu)=\sqrt{\int_0^1(Q_\mu(s)-Q_\nu(s))^2ds},
$$

where Q_μ and Q_ν are quantile functions of μ and ν .

 209

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

Geodesic average treatment effect (GATE)

For each unit $i = 1, ..., n$, we observe $(Y_i, T_i, X_i) \in \mathcal{M} \times \{0, 1\} \times \mathbb{R}^p$.

- *T*_{*i*}: the indicator of a teatment. *T*_{*i*} = 1 if treated and *T*_{*i*} = 0 otherwise.
- *Yi* : the outcome

$$
Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0 \\ Y_i(1) & \text{if } T_i = 1, \end{cases}
$$

where $Y_i(0), Y_i(1) \in \mathcal{M}$ are potential outcomes

Xi : Euclidean covariates.

Geodesic average treatment effect

The geodesic average treatment effect (GATE) of *T* on *Y* is defined as

 $\gamma_{E_{\text{f}}}[Y(0)], E_{\text{f}}[Y(1)]$

 $E_{\text{A}}[A]$ denotes the Fréchet mean of the random object $A \in \mathcal{M}$, that is,

$$
E_{\oplus}[A] = \arg\min_{\nu \in \mathcal{M}} E[d^2(\nu, A)].
$$

 209

メロメメ 倒 メメ きょくきょう

Assumption 3.1

Let $p(x) = P(T_i = 1 | X_i = x)$ be the propensity score.

- (i) (M, d) is a uniquely extendable geodesic metric space.
- (ii) $\{Y_i, T_i, X_i\}^n$ are i.i.d. samples from a super-population of $(Y, T, X) \in \mathcal{M} \times \{0, 1\} \times \mathcal{X}$, where $\mathcal X$ is a compact subset of \mathbb{R}^p .
- (iii) There exists a positive constant $\eta_0 \in (0, 1/2)$ such that $\eta_0 \leq p(x) \leq 1 \eta_0$ for each $x \in \mathcal{X}$
- $(i\vee)$ T_i and $\{Y_i(0),Y_i(1)\}$ are conditionally independent given $X_i.$

Assumption 3.2

For $t \in \{0,1\}$, let $\mathcal{P}_t : \mathcal{M} \to \mathcal{M}$ be a random perturbation map and m_t be a function such that $m_t: \mathcal{X} \rightarrow \mathcal{M}$ and

(i)
$$
Y(t) = \mathcal{P}_t(m_t(X)),
$$

(ii)
$$
E_{\oplus}[\mathcal{P}_t(m_t(X))|X] = m_t(X)
$$
,

 $\text{E}_{\oplus}[\mathcal{P}_t(m_t(X))] = \text{E}_{\oplus}[m_t(X)].$

∍

メロトメ 倒 トメ ミトメ ミト

Definition (DR estimator)

DR estimator for the GATE is given as $\gamma_{\hat{\Theta}_0^{\rm (DR)}, \hat{\Theta}_1^{\rm (DR)}}$ where

$$
\hat{\Theta}_t^{(\text{DR})} := \argmin_{\nu \in \mathcal{M}} Q_{n,t}(\nu; \hat{\mu}_t, \hat{\varphi}),
$$

$$
Q_{n,t}(\nu; \mu, \varphi) = \frac{1}{n} \sum_{i=1}^n d^2 \left(\nu, \gamma_{\mu(X_i), Y_i} \left(\frac{tT_i}{e(X_i; \varphi)} + \frac{(1-t)(1-T_i)}{1-e(X_i; \varphi)} \right) \right).
$$

メロメメ 倒 メメ きょくきょう

 Ω

 $e(x; \varphi)$: a parametric model of the propensity score $p(x)$. *φ*ˆ: an estimator of a (true) parameter *φ[∗]* $\hat{\mu}_t$: an estimator of the outcome regression function m_t .

Figure: Illustration of DR representation of the GATE when $e(x) = p(x)$.

 QQ

メロメ メ御 メメ ヨメ メヨメ

Figure: Illustration of DR representation of the GATE when $\mu_t(x) = m_t(x)$.

KORK EXTERNS ORA

In our real data analysis, we use

- logistic regression for $p(x)$ and
- global Fréchet regression for m_t (cf. Petersen and Müller ('19, AoS)):

$$
\hat{\mu}_t(x) := \argmin_{\nu \in \mathcal{M}} \frac{1}{N_t} \sum_{i \in I_t} \{1 + (X_i - \bar{X})' \hat{\Sigma}^{-1}(x - \bar{X})\} d^2(\nu, Y_i).
$$

$$
l_{t} = \{1 \le i \le n : T_{i} = t\}.
$$

\n
$$
N_{t}: \text{ the sample size of } l_{t}.
$$

\n
$$
\bar{X} = n^{-1} \sum_{i=1}^{n} X_{i}.
$$

\n
$$
\hat{\Sigma} = n^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})(X_{i} - \bar{X})'.
$$

 \bullet One can also use the local Fréchet regression for m_t (cf. Chen and Müller ('22, AoS)).

 Ω

メロメ メ御 メメ ヨメ メヨメ

Main resutls

Assumption 4.1

 ${\sf Let}\,\, \Phi\subset \mathbb{R}^p$ be a compact set and let $\mathcal{M}_e=\{e(x;\varphi): x\in \mathcal{X}, \varphi\in \Phi\}$ be a class of parametric models for propensity score $p(x)$. Additionally, let $\hat{\mu}_t(\cdot)$, $t \in \{0, 1\}$ be estimators for the outcome regression functions $m_t(\cdot)$, $t \in \{0,1\}$.

- (i) For $\varphi_1, \varphi_2 \in \Phi$, assume that $|e(x; \varphi_1) e(x; \varphi_2)| \leq C_e ||\varphi_1 \varphi_2||$ for some positive constant $C_e > 0$, and for all $x \in \mathcal{X}$ and $\varphi \in \Phi$, $\eta_0 \le e(x;\varphi) \le 1 - \eta_0$.
- (ii) There exist $\varphi_* \in \Phi$ and its estimator $\hat{\varphi}$ such that $\|\hat{\varphi} \varphi_*\| = O_p(\rho_n)$ with $\rho_n \to 0$ as $n \to \infty$.
- (iii) There exist functions $\mu_t(\cdot)$, $t \in \{0, 1\}$ such that $\sup_{x \in \mathcal{X}} d(\hat{\mu}_t(x), \mu_t(x)) = O_p(r_n), t \in \{0, 1\}$ with $r_n \to 0$ as $n \to \infty$.

Assumption 4.2

For any
$$
\alpha_1, \alpha_2 \in (\mathcal{M}, d)
$$
, it holds
\n
$$
\sup_{\beta \in \mathcal{M}, \kappa \in [1/(1-\eta_0), 1/\eta_0]} d(\gamma_{\alpha_1, \beta}(\kappa), \gamma_{\alpha_2, \beta}(\kappa)) \le C_0 d(\alpha_1, \alpha_2)
$$
\nfor some positive constant C_0 depending only on η_0 .

Main resutls $\mathsf{Let} \; \Theta_{t}^{(\mathrm{DR})} := \argmin_{\omega \in M} \mathsf{Q}_{t}(\nu; \mu_{t}, \varphi_{*}), \; t \in \{0,1\} \; \text{where}$ *ν∈M*

$$
Q_t(\nu;\mu,\varphi)=\mathrm{E}\left[d^2\left(\nu,\gamma_{\mu(X),Y}\left(\frac{tT}{e(X;\varphi)}+\frac{(1-t)(1-T)}{1-e(X;\varphi)}\right)\right)\right].
$$

Assumption 4.3

Assume that for
$$
t \in \{0, 1\}
$$
,
\n(i) the objects $\Theta_t^{(DR)}$ and $\hat{\Theta}_t^{(DR)}$ exist and are unique, and for any $\varepsilon > 0$,
\n
$$
\inf_{d(\nu, \Theta_t^{(DR)}) > \varepsilon} Q_t(\nu; \mu_t, \varphi_*) > Q_t(\Theta_t^{(DR)}; \mu_t, \varphi_*),
$$
\n(ii) $\Theta_t^{(DR)} = E_{\oplus}[Y(t)].$

Theorem 4.1 (Consistensy of DR estimator)

Suppose that Assumptions 3.1, 3.2, 4.1, 4.2 and 4.3 hold. Then $d(\hat{\Theta}_{t}^{(\text{DR})}, \text{E}_{\oplus}[Y(t)]) = o_p(1), t \in \{0, 1\}.$

Kurisu, Zhou, Otsu, and Müller 2024/9/26 15 / 24 and 2024/9/26 2024/9/26 2024/9/26 2024/9/26 2024/9/26 2024/9/26

Main resutls

Let $(Ω, d_Ω)$ be a metric space. For $ω ∈ Ω$, let $B_δ(ω)$ be the ball of radius $δ$ centered at ω and $N(\varepsilon, B_\delta(\omega), d_\Omega)$ be its covering number using balls of size ε .

Assumption 4.4
\nFor
$$
t \in \{0,1\}
$$
,
\n(i) As $\delta \to 0$,
\n
$$
J_t(\delta) := \int_0^1 \sqrt{1 + \log N(\delta \varepsilon, B_\delta(\Theta_t^{(DR)}), d)} d\varepsilon = O(1),
$$
\n
$$
J_{\mu_t}(\delta) := \int_0^1 \sqrt{1 + \log N(\delta \varepsilon, B_{\delta_1^{\prime}}(\mu_t), d_{\infty})} d\varepsilon = O(\delta^{-\infty})
$$
\nfor some $\delta_1^{\prime} > 0$ and $\omega \in (0, 1)$, where for $\nu, \mu : \mathcal{X} \to \mathcal{M}$,
\n
$$
d_{\infty}(\nu, \mu) := \sup_{x \in \mathcal{X}} d(\nu(x), \mu(x)).
$$
\n(ii) there exist constants $\eta > 0$, $\eta_1 > 0$, $C > 0$, $C^{\prime} > 0$, and $\beta > 1$ such that
\n
$$
\inf_{\begin{subarray}{c} d_{\infty}(\mu, \mu_t) \leq \eta_1 d(\nu, \Theta_t^{(DR)}) < \eta \end{subarray}} \left\{ Q_t(\nu; \mu, \varphi) - Q_t(\Theta_t^{(DR)}; \mu, \varphi) - C_d(\nu, \Theta_t^{(DR)})^{\frac{\beta}{2}} \right\} \geq 0.
$$

Main resutls

Theorem 4.2 (Convergence rates of DR estimator) Suppose that Assumptions 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4 hold. Then for any *β ′ ∈* (0*,* 1), we have $d(\hat{\Theta}_{t}^{(DR)}, E_{\oplus}[Y(t)]) = O_p$ $\sqrt{2}$ $n^{-\frac{1}{2(\beta-1+\varpi)}} + (\varrho_n + r_n)^{\frac{\beta'}{(\beta-1)}}$, $t \in \{0,1\}$.

• Typically,
$$
\beta = 2
$$
, $\varrho_n = n^{-1/2}$, $r_n = n^{-\alpha_1}$ with any $\alpha_1 > 1/2$, $\varpi, \beta' \in (0, 1)$.

$$
d(\hat{\Theta}^{(\text{DR})}_t, E_{\oplus}[Y(t)]) = O_p(n^{-\frac{1}{2(1+\varpi)}} + n^{-\alpha_1\beta'}), \ t \in \{0,1\}.
$$

Network, Covariance matrix, Compositional data, Distribution.

メロトメ 伊 トメ ミトメ ミト

Real data analysis $(\mathcal{S}^2_+,d_{\mathcal{g}})$

U.S. electricity generation data

Description of the dataset

Outcome : the composition of energy sources across 50 U.S. states in 2020

$$
Y_i = (\sqrt{y}_{1,i}, \sqrt{y}_{2,i}, \sqrt{y}_{3,i})' \in S^2_+.
$$

- ▶ *y*1*,ⁱ* : Natural Gas
- ▶ *y*2*,ⁱ* : Other Fossils

(coal, petroleum, and other gases)

- \triangleright $y_{3,i}$: Renewables and Nuclear (hydroelectric conventional, solar thermal and photovoltaic, geothermal, wind, wood and wood-derived fuels, other biomass, and nuclear)
- Treatment : production of coal in each state in 2020. ($T_i = 1$ if the state produced coal, $T_i = 0$ o.w.)
- Covariates : GDP per capita (the millions of chained 2012 dollars), the proportion of electricity generated from coal and petroleum in each state in 2010.
- Sample size : $n = 50$ ($n_0 = 21$, $n_1 = 29$).

 209

イロト 不優 トイミト イミト 一番

Real data analysis $(\mathcal{S}^2_+,d_{\mathcal{g}})$

Figure: Mean potential outcomes for coal production using different methods.

 $d_g(\hat{\Theta}_0^{(DR)}, \hat{\Theta}_1^{(DR)}) = 0.133,95\%$ adaptive HulC : $(0.112, 0.269)$. K ロ × K 御 × K 差 × K 差 × … 差

Kurisu, Zhou, Otsu, and Müller 2024/9/26 19/24

 299

Real data analysis (\mathcal{L}_{13}, d_F)

New York Taxi system after COVID-19 outbreak

Description of the dataset

- Outcome : daily undirected network $G_i = (V_i, E_i)$
	- \blacktriangleright Nodes corresponding to the 13 regions in Manhattan.
	- \blacktriangleright Edge weights representing the number of people who traveled between the regions.
	- ▶ Period: April 12, 2020 *∼* Sep. 30, 2020 (172 days).
- \bullet Treatment : number of COVID-19 new cases in Manhattan area ($T_i = 1$ if *>* 60 and T_i = 0 if ≤ 60)
- Covariates : weekend indicator, temperature.

• Sample size :
$$
n = 172
$$
 ($n_0 = 79$, $n_1 = 93$).

 Ω

メロトメ 倒 トメ 君 トメ 君 トー

Real data analysis (\mathcal{L}_{13}, d_F)

(A) Doubly robust (B) 13 regions in Manhattan

イロト イ団ト イミト イ

Figure: Left: Average treatment effects (differences between adjacency matrices) represented as heatmaps using different methods.

 Ω

Real data analysis (\mathcal{L}_{13}, d_F)

- Regions with the largest differences: (105, 106, 108)
	- ▶ 105: Penn Station, Times Square, The Museum of Modern Art.
	- ▶ 106: Grand Central Station, The United Nations HQs.
	- \blacktriangleright 108: residential area.
- $d_{\mathsf{F}}(\hat{\Theta}_0^{(\mathrm{DR})}, \hat{\Theta}_1^{(\mathrm{DR})}) = 5216,$
- 95% adaptive HulC : (2362*,* 10979).

Figure: 13 regions in Manhattan

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Conclusion

In this project, we

- introduced the geodesic average treatment effect (GATE) for the causal analysis of random objects;
- **•** proposed four estimators for estimating the GATE
	- ▶ doubly robust
	- \triangleright (cross-fitting)
	- \blacktriangleright (outcome regression)
	- \blacktriangleright (inverse probability weighting)
- established consistency and convergence rates of the estimators;
- applied the proposed methods to three datasets:
	- \triangleright U.S. electricity generation data
	- ▶ New York Yellow Taxi data
	- ▶ (Alzheimer's disease data).

Kurisu, D., Zhou, Y., Otsu, T., and Müller, H.-G. (2024) Geodesic causal inference. arXiv:2406.19604.

 209

メロメメ 倒 メメ きょくきょう

References

- Chen, Y. and Müller, H.-G. (2022). Uniform convergence of local Fréchet regression with applications to locating extrema and time warping for metric space valued trajectries. *Annals of Statistics* **50**, 1573-1592.
- Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. *Annals of Statistics* **47**, 691-719.

 Ω

メロトメ 倒 トメ ミトメ ミト