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Introduction

(a) 2D cross-section of
(binarized) 3D CT of soil.

(b) 3D rendering of
(binarized) 3D CT of soil.

Diffusion in soils
Diffusive processes play an important role in nutrient transport in soil. How are these processes
linked to geometric descriptors of pore space?
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Model description

Two independent stationary and isotropic Gaussian random fields {X1(t), t ∈ R3} and
{X2(t), t ∈ R3}
▶ with mean values µi and covariance functions Ci : [0,∞) → R with i ∈ {1, 2}
▶ normalized, i.e., µi = 0 and C1(0) = C2(0) = 1

Matern covariance functions:

Ci (d) =
21−νi

Γ(νi )

(√
2νi

d

ρi

)νi

Kνi

(√
2νi

d

ρi

)
,

with νi > 0 and pi > 0.
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Model description

Random closed sets Ξi = {t ∈ R3 : Xi (t) ≥ ai} (level sets) for some ai ∈ R
▶ with volume fractions εi > 0

▶ εi = 1− Φ(ai ), where Φ : R → [0, 1] denotes the cumulative distribution function of the
univariate standard normal distribution

Model the solid phase as Ξ = Ξ1 ∪ Ξ2

▶ with volume fraction ε = ε1 + ε2 − ε1ε2

The resulting model has six parameters: εi , ρi , νi for i ∈ {1, 2}
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Model description
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(a) Illustration of X for different values of ρ and ν.
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(b) Level set Ξ for ε = 0.5.
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Model description

2D slice of a realization of the model.
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Model fitting: Chord length distribution

For a random closed set Ξ ⊂ R2, the distribution of chord lengths
in direction e2 is usually defined as

Le2(r) = 1− E(X (((Ξ ∩ g(R))⊖ g([0, r ])) ∩ [0, 1]2))

E(X (Ξ ∩ g([0, 1])))
,

for r > 0, where g(A) = {0} × A for A ∈ B(R) and X (B) denotes
the number of connected components of B ∈ B(R). Essentially,
this is ”counting”chords of at most length r .

Using this definition, short chords are overrepresented in comparison to long chords.
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Model fitting: Chord length distribution – length weighted

The overrepresentation of short chords can be overcome by
considering the length-weighted chord length distribution.
Essentially, this is

L̃e2(r) = P(le2(0) ≤ r) ,

where le2(x) is the length of the chord in direction e2 through x .
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Model fitting

Consider the probability densities

ldata,pore , ldata,solid , lξ,pore , lξ,solid : [0,∞) → R

corresponding to the (length-weighted) chord length distributions estimated for the pore and
solid phase of measured data and a simulated model realization ξ, respectively. Then, define a
cost function

H(ξ) = ∥ldata,pore − lξ,pore∥2L2 + ∥ldata,solid − lξ,solid∥2L2 .

For the given data, optimiziation inspired by simulated annealing yields the parameters
ε1 = 0.04, ε2 = 0.57, ρ1 = 70.07, ν1 = 44.63, ρ2 = 2.86, ν2 = 82.14.
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Model validation

(a) 2D cross-section of CT data of sand. (b) 2D cross-section of simulated structure.
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Model validation

Validation using geometric descriptors:

descriptor measured simulated
ε 0.586 0.583
S 0.215 0.212
µ(C ) (pore) * 7.845 7.775
µ(C ) (solid) * 10.955 10.883
µ(τ) 1.090 1.098
σ(τ) 0.00674 0.00957
β = (rmin/rmax)

2 0.514 0.452

* used for fitting

(a) Volume
fraction ε

(b) Specific
surface area S

(c) Chord length C

(d) Tortuosity τ (e) rmax (f) rmin

Illustrations of geometric descriptors.
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Microstructure-property relationships

Investigate how diffusion is linked to microstructure descriptors:
▶ Consider data of loam and sand
▶ Fit parametric prediction formulas

(a) 2D cross-section of CT data
of sand.

(b) 2D cross-section of CT data
of loam.
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Microstructure-property relationships

The datasets of loam and sand were split into a total of 2676 non-overlapping cutouts.

On each cutout, geometric descriptors were computed. The effective diffusion tensor D ∈ R3×3

was calculated by numerically solving the Laplace equation and the M-factor was obtained by

M =
1

3Dm
(D1,1 + D2,2 + D3,3) ∈ [0, 1] ,

where Dm > 0 is the molecular diffusivity.
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Statistical description of data

Histograms of various geometric
descriptors and M-factors computed
on small cutouts from CT data of
loam (blue) and sand (orange).
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Statistical description of data

M-factor (color) as
a function of pairs
of geometric
descriptors.
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Functional relationships

Various candidates for prediction formulas for the M-factor are fitted to the data:

M̂1 = εc1 , M̂2 = c1ε
c2 , M̂3 = c1e

c2ε, M̂4 = εc1βc2µ(τ)c3 ,

M̂5 = εc1+c2βµ(τ)c3 , M̂6 = c1µ(τ)
c2σ(τ)c3εc4 , M̂7 = εc1Sc2r c3max

For evaluation, the R2 and mean average percentage error are computed for each formula.



Page 18 Microstructure-property relationships Modeling loam and sand | Fall School Time Series, Random Fields and beyond | 26th September 2024

Functional relationships: Evaluation
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M-factor versus predicted M-factor
M̂i . The colors of data points
represent loam (blue) and sand
(orange), respectively. The
parameter values of regression
formulas have been fitted on the
entire training data (left), loam
(center) and sand (right).
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Functional relationships: Evaluation
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Functional relationships: Evaluation
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Conclusion

Summary
▶ Level sets of Gaussian random fields were used to model the 3D microstructure of soil.

▶ By considering a wide variety of soil samples, formulas were be obtained which predict
diffusion based on geometric descriptors.

Outlook
▶ As only a limited amount of measured data is available, the model can be used to simulate

virtual, yet realistic soil structures with an even wider range of properties.

▶ Using this data, the prediction formulas can be validated and improved for not yet seen
soil types.
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