troduction	Estimation for BSDEs 00	MLE for BSDEs 000000	Example 00	Numerical Experiment

Efficient drift parameter estimation for ergodic solutions of backward SDEs ¹

Teppei Ogihara

The University of Tokyo

September 26, 2024 Fall School Time Series, Random Fields and beyond

Joint work with Mitja Stadje (Ulm University)

¹Ogihara, T. and Stadje, M.: Efficient drift parameter estimation for ergodic solutions of backward SDEs, Scandinavian Journal of Statistics, 51(3), 1181–1205. (2024)

Introduction ●00	Estimation for BSDEs 00	MLE for BSDEs 000000	Example 00	Numerical Experiment	
Overview					

Consider a parameter estimation problem for an *m*-dimensional stochastic differential equation (SDE) model:

$$Y_{t} = Y_{0} + \int_{0}^{t} \psi(X_{s}, Y_{s}, V_{s}V_{s}^{\top}, \theta_{0})ds + \int_{0}^{t} V_{s}dW_{s}, \qquad (1)$$

 W_t : r-dimensional Brownian motion (with independent increments $W_t - W_s \sim N(0, (t-s)I_r)$)

Introduction ●00	Estimation for BSDEs 00	MLE for BSDEs	Example 00	Numerical Experiment	
Overview					

Consider a parameter estimation problem for an *m*-dimensional stochastic differential equation (SDE) model:

$$Y_{t} = Y_{0} + \int_{0}^{t} \psi(X_{s}, Y_{s}, V_{s}V_{s}^{\top}, \theta_{0})ds + \int_{0}^{t} V_{s}dW_{s}, \qquad (1)$$

 W_t : r-dimensional Brownian motion (with independent increments $W_t - W_s \sim N(0, (t-s)I_r))$

• We observe $\{(X_{kh_n}, Y_{kh_n})\}_{k=0}^n$ with $h_n \to 0$, $nh_n \to \infty$, and $nh_n^2 \to 0$.

Introduction ●00	Estimation for BSDEs 00	MLE for BSDEs	Example 00	Numerical Experiment	
Overview					

Consider a parameter estimation problem for an *m*-dimensional stochastic differential equation (SDE) model:

$$Y_{t} = Y_{0} + \int_{0}^{t} \psi(X_{s}, Y_{s}, V_{s}V_{s}^{\top}, \theta_{0})ds + \int_{0}^{t} V_{s}dW_{s}, \qquad (1)$$

 W_t : r-dimensional Brownian motion (with independent increments $W_t - W_s \sim N(0, (t-s)I_r)$)

- We observe $\{(X_{kh_n}, Y_{kh_n})\}_{k=0}^n$ with $h_n \to 0$, $nh_n \to \infty$, and $nh_n^2 \to 0$.
- Unlike previous studies, we estimate the drift parameter θ_0 when the diffusion coefficient V_t is unknown. This model is a type of backward SDE, and in many situations, V_t is unknown and unobserved.

Introduction ○●○	Estimation for BSDEs OO	MLE for BSDEs 000000	Example 00	Numerical Experiment 0000

When V_t is parametric

We first consider cases where V_t can be written as

 $V_t = b(Y_t, \sigma_0), \quad \psi(x, y, z, \theta) = a(y, \theta)$

using $\mathbb{R}^m \otimes \mathbb{R}^r$ -valued function $b(y, \sigma)$ and \mathbb{R}^m -valued function $a(y, \theta)$, and we observe $\{Y_{kh_n}\}_{k=0}^n$.

Introduction ○●○	Estimation for BSDEs OO	MLE for BSDEs 000000	Example 00	Numerical Experiment

When V_t is parametric

We first consider cases where V_t can be written as

 $V_t = b(Y_t, \sigma_0), \quad \psi(x, y, z, \theta) = a(y, \theta)$

using $\mathbb{R}^m \otimes \mathbb{R}^r$ -valued function $b(y, \sigma)$ and \mathbb{R}^m -valued function $a(y, \theta)$, and we observe $\{Y_{kh_n}\}_{k=0}^n$.

Let $t_k = kh_n$, then

$$\begin{aligned} \Delta_k Y &:= Y_{t_k} - Y_{t_{k-1}} \\ &\approx a_k(\theta_0)h_n + b_k(\sigma_0)(W_{t_k} - W_{t_{k-1}}) \\ &\sim N(a_k(\theta_0)h_n, b_k b_k^{\top}(\sigma_0)h_n), \quad \text{(conditional on } Y_{t_{k-1}}) \end{aligned}$$

Here \top denotes matrix transpose, $a_k(\theta)=a(Y_{t_{k-1}},\theta)$, $b_k(\sigma)=b(Y_{t_{k-1}},\sigma).$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	00	000000	OO	

Maximum Likelihood-type Estimation

Therefore, we can set up a quasi-log-likelihood function as follows:

$$H_n^0(\sigma,\theta) = -\frac{1}{2} \sum_{k=1}^n \left\{ \bar{Y}_k(\theta)^\top (b_k b_k^\top(\sigma) h_n)^{-1} \bar{Y}_k(\theta) + \log \det(b_k b_k(\sigma)^\top) \right\}.$$

where $\bar{Y}_k(\theta) = \Delta Y_k - a_k(\theta)h_n$. (Local Gaussian approximation)

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	00	000000	OO	

Maximum Likelihood-type Estimation

Therefore, we can set up a quasi-log-likelihood function as follows:

$$H_n^0(\sigma,\theta) = -\frac{1}{2} \sum_{k=1}^n \left\{ \bar{Y}_k(\theta)^\top (b_k b_k^\top(\sigma) h_n)^{-1} \bar{Y}_k(\theta) + \log \det(b_k b_k(\sigma)^\top) \right\}.$$

where $\bar{Y}_k(\theta) = \Delta Y_k - a_k(\theta)h_n$. (Local Gaussian approximation)

Define the maximum likelihood-type estimator as:

$$(\hat{\sigma}_n^0, \hat{\theta}_n^0) \in \operatorname{argmax}_{\sigma, \theta} H_n^0(\sigma, \theta).$$

Maximum Likelihood-type Estimation

Therefore, we can set up a quasi-log-likelihood function as follows:

$$H_n^0(\sigma,\theta) = -\frac{1}{2} \sum_{k=1}^n \left\{ \bar{Y}_k(\theta)^\top (b_k b_k^\top(\sigma) h_n)^{-1} \bar{Y}_k(\theta) + \log \det(b_k b_k(\sigma)^\top) \right\}.$$

where $\bar{Y}_k(\theta) = \Delta Y_k - a_k(\theta)h_n$. (Local Gaussian approximation)

Define the maximum likelihood-type estimator as:

 $(\hat{\sigma}_n^0, \hat{\theta}_n^0) \in \mathrm{argmax}_{\sigma, \theta} H_n^0(\sigma, \theta).$

Theorem 1 (Kessler (1997), Yoshida (2011))

Under appropriate conditions on the diffusion coefficients a and b (smoothness, non-degeneracy, etc.), there exists a p.d. matrix Γ_0 such that as $n \to \infty$,

$$(\sqrt{n}(\hat{\sigma}_n^0 - \sigma_0), \sqrt{nh_n}(\hat{\theta}_n^0 - \theta_0)) \stackrel{d}{\to} N(0, \Gamma_0^{-1}).$$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	●O	000000	00	0000

When V_t is nonparametric

Consider the case where we don't assume a parametric model for $V_t,$ and ψ includes $V_tV_t^\top$:

$$Y_t = Y_0 + \int_0^t \psi(X_s, Y_s, V_s V_s^\top, \theta_0) ds + \int_0^t V_s dW_s.$$

Consider discrete observations $\{(X_{kh_n}, Y_{kh_n})\}$, k = 0, ..., n. Since V_t is unknown and H_n^0 cannot be calculated, we approximate V_t using observational data. This model is a type of backward SDE.

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	●O	000000	00	0000

When V_t is nonparametric

Consider the case where we don't assume a parametric model for V_t , and ψ includes $V_t V_t^\top$:

$$Y_t = Y_0 + \int_0^t \psi(X_s, Y_s, V_s V_s^\top, \theta_0) ds + \int_0^t V_s dW_s.$$

Consider discrete observations $\{(X_{kh_n}, Y_{kh_n})\}$, k = 0, ..., n. Since V_t is unknown and H_n^0 cannot be calculated, we approximate V_t using observational data. This model is a type of backward SDE.

• (A general expression of backward SDE):

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dW_s,$$

where ξ is a known condition (terminal value), and Z_t is an unknown process.

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	○●	000000	00	0000

Applications of BSDEs

(Optimal asset allocation)

When we model stock price processes with SDEs and consider some specific utility function, the optimal wealth process Y_t is given by

$$dY_t = (-F(X_t, V_t) + \lambda)dt + V_t dW_t$$

for some X_t , V_t , F and λ .

- Then, optimal strategy is associated with the function F of BSDE. (Chong et al. (2019))
- Ergodic BSDEs also have applications in the field of stochastic control problem. (Richou (2019))

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	●00000	00	0000

Proposed Estimator

We construct the maximum likelihood-type estimator $\hat{\theta}_n$ as follows: Let $(c_n)_{n=1}^{\infty}$ be a positive integer sequence. Define $L_n = [n/c_n], t_m^l = (m + c_n l)h_n$, and estimate $Z_t = V_t V_t^{\top}$ as follows:

$$\hat{Z}_{l} = \frac{1}{c_{n}h_{n}} \sum_{m=1}^{c_{n}} (Y_{t_{m}^{l}} - Y_{t_{m-1}^{l}})(Y_{t_{m}^{l}} - Y_{t_{m-1}^{l}})^{\top}, \quad (0 \le l \le L_{n} - 1).$$

• Using c_n observations to create an estimator for $Z_{t_n^l}$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	O●OOOO	00	0000

Proposed Estimator

Then, define the quasi-log-likelihood $H_n(\theta)$ as

$$H_n(\theta) = -\frac{1}{2} \sum_{l=1}^{L_n - 1} \sum_{m=1}^{c_n} \left(\bar{Y}_m^l \right)^\top (\hat{Z}_{l-1}h_n)^{-1} \bar{Y}_m^l \mathbf{1}_{\{\det \hat{Z}_{l-1} > 0\}}$$

where
$$\bar{Y}_{m}^{l} = Y_{t_{m}^{l}} - Y_{t_{m-1}^{l}} - h_{n}\hat{\psi}_{l,m}(\theta)$$
,
 $\hat{\psi}_{l,m}(\theta) = \psi(X_{t_{m-1}^{l}}, Y_{t_{m-1}^{l}}, \hat{Z}_{l-1}, \theta)$.

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	O●OOOO	00	0000

Proposed Estimator

Then, define the quasi-log-likelihood $H_n(\theta)$ as

$$H_n(\theta) = -\frac{1}{2} \sum_{l=1}^{L_n - 1} \sum_{m=1}^{c_n} \left(\bar{Y}_m^l \right)^\top (\hat{Z}_{l-1} h_n)^{-1} \bar{Y}_m^l \mathbf{1}_{\{\det \hat{Z}_{l-1} > 0\}}$$

where
$$\bar{Y}_{m}^{l} = Y_{t_{m}^{l}} - Y_{t_{m-1}^{l}} - h_{n}\hat{\psi}_{l,m}(\theta),$$

 $\hat{\psi}_{l,m}(\theta) = \psi(X_{t_{m-1}^{l}}, Y_{t_{m-1}^{l}}, \hat{Z}_{l-1}, \theta).$
a \hat{Z}_{l-1} corresponds to $b_{k}b_{k}^{\top}$ in $H_{n}^{0}.$
b $(c_{n})_{n=1}^{\infty}$ should satisfy
 $c_{n}n^{-\epsilon} \rightarrow \infty, \quad c_{n}h_{n}n^{\epsilon} \rightarrow 0, \quad nc_{n}^{2}h_{n}^{3} \rightarrow 0, \quad \frac{\sqrt{nh_{n}}}{c_{n}} \rightarrow 0$ (2)

for some $\epsilon > 0$. (For example, $c_n = 1 + [h_n^{-1/2}]$)

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs	Example 00	Numerical Experiment 0000
		E a se al tartes a		

Ergodicity

Define the maximum likelihood-type estimator as: $\hat{\theta}_n \in \operatorname{argmax}_{\theta} H_n(\theta)$. Assume ergodicity.

1 When $\psi(x, y, z, \theta)$ does not depend on y: There exists a probability distribution $\pi(x, z)$ such that for any π -integrable function f,

$$\frac{1}{T} \int_0^T f(X_t, V_t V_t^{\top}) dt \xrightarrow{P} \int f(x, z) \pi(dx dz), \quad (T \to \infty).$$

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs	Example 00	Numerical Experiment 0000
		E a construction de la construct		

Ergodicity

Define the maximum likelihood-type estimator as: $\hat{\theta}_n \in \operatorname{argmax}_{\theta} H_n(\theta)$. Assume ergodicity.

$$\frac{1}{T} \int_0^T f(X_t, V_t V_t^{\top}) dt \xrightarrow{P} \int f(x, z) \pi(dx dz), \quad (T \to \infty).$$

2 Otherwise: There exists a probability distribution $\pi(x, y, z)$ such that for any π -integrable function f,

$$\frac{1}{T}\int_0^T f(X_t,Y_t,V_tV_t^{\top})dt \xrightarrow{P} \int f(x,y,z)\pi(dxdydz), \quad (T \to \infty).$$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	00	000€00	00	

Main Theorem

Define

$$\begin{split} \hat{\theta}_n \in \mathrm{argmax}_{\theta} H_n(\theta), \\ \Gamma = \int \partial_{\theta} \psi(x, y, z, \theta_0)^\top z^{-1} \partial_{\theta} \psi(x, y, z, \theta_0) d\pi \end{split}$$

Theorem 2 (Asymptotic Normality)

Under ergodicity and conditions on smoothness, non-degeneracy of a,b, and moment conditions of $X_t,V_t,\,{\rm etc.},$

$$\sqrt{nh_n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, \Gamma^{-1}), \quad (n \to \infty).$$

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs 0000€0	Example 00	Numerical Experiment 0000
Remark				

While Masuda (2005) proposed a least-square-type estimator for drift term estimation when V_t is unknown, the advantage of the proposed estimator is that it can estimate even when the unknown V_t is included in the drift term ψ.

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs 0000€0	Example 00	Numerical Experiment 0000
		Remark		

- While Masuda (2005) proposed a least-square-type estimator for drift term estimation when V_t is unknown, the advantage of the proposed estimator is that it can estimate even when the unknown V_t is included in the drift term ψ.
- If we consider an auxiliary model observing $(Z_{kh_n})_{k=0}^n$ in addition to $(X_{kh_n}, Y_{kh_n})_{k=0}^n$, it is included in the settings of previous studies by Kessler (1997) and Yoshida (2011).
 - Gobet (2002) showed the local asymptotic normality of the auxiliary model and proved that the optimal asymptotic variance of the estimator is Γ⁻¹.
 - In other words, the asymptotic variance of \(\heta_n\) is optimal in the sense that it achieves the lower bound in the model with additional observations.

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs 00000●	Example 00	Numerical Experiment 0000
			C	

Key Points of the Proof

- Unlike existing studies, even if we assume $\inf_t \det(V_t V_t^{\top}) > 0$, the approximation \hat{Z}_l of the volatility $V_t V_t^{\top}$ is not guaranteed to satisfy $\det \hat{Z}_l > 0$ and may degenerate.
 - We handle this using control with stopping times and martingale evaluations for sums with stopping times.

Introduction 000	Estimation for BSDEs OO	MLE for BSDEs 00000●	Example 00	Numerical Experiment 0000

Key Points of the Proof

- Unlike existing studies, even if we assume $\inf_t \det(V_t V_t^{\top}) > 0$, the approximation \hat{Z}_l of the volatility $V_t V_t^{\top}$ is not guaranteed to satisfy $\det \hat{Z}_l > 0$ and may degenerate.
 - We handle this using control with stopping times and martingale evaluations for sums with stopping times.
- In the calculation of \hat{Z}_l , as c_n increases, the approximation error of $\int_{t_0^{l}}^{t_0^{l+1}} V_t V_t^{\top} dt$ decreases, but the error from using \hat{Z}_{l-1} instead of \hat{Z}_l increases.
 - Appropriate settings considering the trade-off of c_n are necessary, making it much more difficult than usual Euler approximation.
 - As a result, we obtain the same optimal variance as before, and can prove it under the same condition $nh_n^2 \to 0$ for h_n .

Example (Stochastic Volatility Model)

Consider a stochastic process Y_t satisfying the following:

 $dY_t = \psi(t, Y_t, \theta)dt + V_t dW_t.$

Here, V_t is an unknown stochastic process, and $(\boldsymbol{X}_t, \boldsymbol{V}_t)$ satisfies ergodicity.

Example (Stochastic Volatility Model)

Consider a stochastic process Y_t satisfying the following:

$$dY_t = \psi(t, Y_t, \theta)dt + V_t dW_t.$$

Here, V_t is an unknown stochastic process, and $(\boldsymbol{X}_t, \boldsymbol{V}_t)$ satisfies ergodicity.

While there was no theory for maximum likelihood-type estimators of θ_0 in such cases where V_t has no assumed parametric model, our proposed estimator provides asymptotic normality and other theoretical results.

Example (Stochastic Volatility Model)

Consider a stochastic process Y_t satisfying the following:

 $dY_t = \psi(t, Y_t, \theta)dt + V_t dW_t.$

Here, V_t is an unknown stochastic process, and $(\boldsymbol{X}_t, \boldsymbol{V}_t)$ satisfies ergodicity.

While there was no theory for maximum likelihood-type estimators of θ_0 in such cases where V_t has no assumed parametric model, our proposed estimator provides asymptotic normality and other theoretical results.

As this model includes stochastic volatility models commonly used for stock prices, it enables the estimation of drift terms in stochastic volatility.

Introduction 000	Estimation for BSDEs 00	MLE for BSDEs 000000	Example O●	Numerical Experiment 0000
	Example (Chang at al	(2010))	
		Chong et al.	(2019))	

Chong et al. (2019) consider the following BSDE model to maximize the utility function of a portfolio:

$$dY_t = (F(X_t, V_t, \gamma) - \lambda)dt + V_t dW_t.$$

Under assumptions such as ergodicity of (X_t, V_t) and smoothness of F, our proposed estimator enables the estimation of parameters γ and λ .

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	000000	OO	●000

We conduct numerical experiments with the following model:

$$\begin{split} dY_t &= \theta_0 \sqrt{X_t^2 + 0.1} dt + \sqrt{X_t^2 + 0.1} dW_t, \\ dX_t &= a(b-X_t) dt + \sigma dW_t. \end{split}$$

The parameters are set as a = 2, b = 0.3, $\sigma = 0.025$, $\theta_0 = 10$, with initial values $X_0 = 0.3$, $Y_0 = 1$.

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	00	000000	00	●000

We conduct numerical experiments with the following model:

$$dY_t = \theta_0 \sqrt{X_t^2 + 0.1} dt + \sqrt{X_t^2 + 0.1} dW_t,$$

$$dX_t = a(b - X_t) dt + \sigma dW_t.$$

The parameters are set as a = 2, b = 0.3, $\sigma = 0.025$, $\theta_0 = 10$, with initial values $X_0 = 0.3$, $Y_0 = 1$.

We run 100 simulations and calculate the ML-type estimator, and its error at n = 100,000:

$$\mathsf{Error} = \frac{|\hat{\theta}_n - \theta_0|}{\theta_0}.$$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	00	000000	OO	0●00

We define the observation width h_n and the number of observations c_n for calculating \hat{Z}_l for integers k, l as follows:

$$c_n = n^{0.05k}, \quad k = 1, 2, \dots, l-1$$

$$h_n = n^{-0.05l}, \quad l = 1, 2, \cdots$$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	000000	00	O●OO

We define the observation width h_n and the number of observations c_n for calculating \hat{Z}_l for integers k, l as follows:

$$c_n = n^{0.05k}, \quad k = 1, 2, \dots, l-1$$

 $h_n = n^{-0.05l}, \quad l = 1, 2, \cdots$

To satisfy the conditions (2) for c_n, h_n , l and k must satisfy:

$$11 \le l \le 19, \quad 10 - \frac{l}{2} < k < 1.5l - 10.$$

$$(nc_n^2 h_n^3 \to 0 \Rightarrow k < 1.5l - 10, \quad \frac{\sqrt{nh_n}}{c_n} \to 0 \Rightarrow 10 - \frac{l}{2} < k,$$

$$nh_n^2 \to 0 \Rightarrow 10 < l)$$

Introduction	Estimation for BSDEs	MLE for BSDEs	Example	Numerical Experiment
000	OO	000000	00	00●0

		l				
		11	12	13	14	15
k	3					0.9295
	4			0.3797	0.4404	0.4214
	5	0.1308	0.1739	0.2274	0.2536	0.3065
	6	0.0604	0.0868	0.1241	0.1743	0.2099
	7		0.0810	0.1095	0.1630	0.1954
	8		0.0765	0.1003	0.1281	0.1978
	9			0.1165	0.1389	0.1978
	10				0.1367	0.1753
	11				0.1323	0.2178
	12					0.2296

Table: The values of error for each k, l

Introduction 000	Estimation for BSDEs OO	MLE for BSDEs 000000	Example 00	Numerical Experiment 000●

• We can confirm that the estimation error is kept small for many combinations of k, l. The convergence rate $(nh_n)^{-1/2}$ derived in Theorem 2 is not very fast, being $(nh_n)^{-1/2} = n^{-0.225}$ even for the best case of l = 11.

Introduction 000	Estimation for BSDEs OO	MLE for BSDEs 000000	Example OO	Numerical Experiment 000●
	N 1	and the second		

- We can confirm that the estimation error is kept small for many combinations of k, l. The convergence rate $(nh_n)^{-1/2}$ derived in Theorem 2 is not very fast, being $(nh_n)^{-1/2} = n^{-0.225}$ even for the best case of l = 11.
- The choice of l is shown to have a significant impact on the estimation accuracy, which is consistent with the convergence rate $(nh_n)^{-1/2}$. The pair (l,k) = (11,6) gives the minimum error, providing the most accurate estimation of θ .

Introduction 000	Estimation for BSDEs OO	MLE for BSDEs 000000	Example OO	Numerical Experiment 000●

- We can confirm that the estimation error is kept small for many combinations of k, l. The convergence rate $(nh_n)^{-1/2}$ derived in Theorem 2 is not very fast, being $(nh_n)^{-1/2} = n^{-0.225}$ even for the best case of l = 11.
- The choice of l is shown to have a significant impact on the estimation accuracy, which is consistent with the convergence rate $(nh_n)^{-1/2}$. The pair (l,k) = (11,6) gives the minimum error, providing the most accurate estimation of θ .

• For
$$l = 16$$
, $k = 13$ is best with ERROR=0.2298,
For $l = 17$, $k = 8$ is best with ERROR=0.3160,
For $l = 18$, $k = 13$ is best with ERROR=0.3892,
For $l = 19$, $k = 14$ is best with ERROR=0.5232.

Summary

- We constructed a maximum likelihood-type estimator for the drift parameter θ_0 in a setting including backward SDEs, where the volatility term V_t is unobserved and no parametric model is assumed.
- Under assumptions such as ergodicity, we demonstrated the consistency and asymptotic normality of the estimator, and confirmed that it achieves the optimal asymptotic variance as in the case where V_t is observed.
- In numerical experiments, we confirmed that the estimation error decreases for large sample sizes. While the theoretically optimal rate for the number of observations c_n used to estimate V_t is unknown, numerical experiments suggest that a rate slightly larger than $h_n^{-1/2}$ tends to be best.

References

- Chong, W. F., Hu, Y., Liang, G., & Zariphopoulou, T. (2019). An ergodic BSDE approach to forward entropic risk measures: Representation and large-maturity behavior. Finance and Stochastics, 23(1), 239-273.
- 2 Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24(2), 211-229.
- 3 Masuda, H. (2005). Simple estimators for parametric Markovian trend of ergodic processes based on sampled data. Journal of the Japan Statistical Society, 35(2), 147-170.
- 4 Ogihara, T. and Stadje, M. (2024). Efficient drift parameter estimation for ergodic solutions of backward SDEs, Scandinavian Journal of Statistics, 51(3), 1181–1205.
- S Richou, A. (2009). Ergodic BSDEs and related PDEs with Neumann boundary conditions. Stochastic Processes and their Applications, 119(9), 2945–2969.
- G Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431-479.