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Overview

Consider a parameter estimation problem for an m-dimensional
stochastic differential equation (SDE) model:

Yt = Y0 +

∫ t

0

ψ(Xs, Ys, VsV
⊤
s , θ0)ds+

∫ t

0

VsdWs, (1)

Wt: r-dimensional Brownian motion (with independent increments
Wt −Ws ∼ N(0, (t− s)Ir))

We observe {(Xkhn
, Ykhn

)}nk=0 with hn → 0, nhn → ∞, and
nh2n → 0.

Unlike previous studies, we estimate the drift parameter θ0 when the
diffusion coefficient Vt is unknown. This model is a type of backward
SDE, and in many situations, Vt is unknown and unobserved.
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When Vt is parametric

We first consider cases where Vt can be written as

Vt = b(Yt, σ0), ψ(x, y, z, θ) = a(y, θ)

using Rm ⊗ Rr-valued function b(y, σ) and Rm-valued function a(y, θ),
and we observe {Ykhn

}nk=0.

Let tk = khn, then

∆kY := Ytk − Ytk−1

≈ ak(θ0)hn + bk(σ0)(Wtk −Wtk−1
)

∼ N(ak(θ0)hn, bkb
⊤
k (σ0)hn), (conditional on Ytk−1

)

Here ⊤ denotes matrix transpose, ak(θ) = a(Ytk−1
, θ),

bk(σ) = b(Ytk−1
, σ).
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Maximum Likelihood-type Estimation

Therefore, we can set up a quasi-log-likelihood function as follows:

H0
n(σ, θ) = −1

2

n∑
k=1

{
Ȳk(θ)

⊤(bkb
⊤
k (σ)hn)

−1Ȳk(θ) + log det(bkbk(σ)
⊤)

}
.

where Ȳk(θ) = ∆Yk − ak(θ)hn. (Local Gaussian approximation)

Define the maximum likelihood-type estimator as:

(σ̂0
n, θ̂

0
n) ∈ argmaxσ,θH

0
n(σ, θ).

Theorem 1 (Kessler (1997), Yoshida (2011))

Under appropriate conditions on the diffusion coefficients a and b
(smoothness, non-degeneracy, etc.), there exists a p.d. matrix Γ0 such
that as n→ ∞,

(
√
n(σ̂0

n − σ0),
√
nhn(θ̂

0
n − θ0))

d→ N(0,Γ−1
0 ).

4 / 18



Introduction Estimation for BSDEs MLE for BSDEs Example Numerical Experiment

Maximum Likelihood-type Estimation

Therefore, we can set up a quasi-log-likelihood function as follows:

H0
n(σ, θ) = −1

2

n∑
k=1

{
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When Vt is nonparametric

Consider the case where we don’t assume a parametric model for Vt, and
ψ includes VtV

⊤
t :

Yt = Y0 +

∫ t

0

ψ(Xs, Ys, VsV
⊤
s , θ0)ds+

∫ t

0

VsdWs.

Consider discrete observations {(Xkhn , Ykhn)}, k = 0, ..., n. Since Vt is
unknown and H0

n cannot be calculated, we approximate Vt using
observational data. This model is a type of backward SDE.

(A general expression of backward SDE):

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs,

where ξ is a known condition (terminal value), and Zt is an
unknown process.

5 / 18



Introduction Estimation for BSDEs MLE for BSDEs Example Numerical Experiment

When Vt is nonparametric

Consider the case where we don’t assume a parametric model for Vt, and
ψ includes VtV

⊤
t :

Yt = Y0 +

∫ t

0

ψ(Xs, Ys, VsV
⊤
s , θ0)ds+

∫ t

0

VsdWs.

Consider discrete observations {(Xkhn , Ykhn)}, k = 0, ..., n. Since Vt is
unknown and H0

n cannot be calculated, we approximate Vt using
observational data. This model is a type of backward SDE.

(A general expression of backward SDE):

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs,

where ξ is a known condition (terminal value), and Zt is an
unknown process.

5 / 18



Introduction Estimation for BSDEs MLE for BSDEs Example Numerical Experiment

Applications of BSDEs

(Optimal asset allocation)
When we model stock price processes with SDEs and consider some
specific utility function, the optimal wealth process Yt is given by

dYt = (−F (Xt, Vt) + λ)dt+ VtdWt

for some Xt, Vt, F and λ.

Then, optimal strategy is associated with the function F of BSDE.
(Chong et al. (2019))

Ergodic BSDEs also have applications in the field of stochastic
control problem. (Richou (2019))
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Proposed Estimator

We construct the maximum likelihood-type estimator θ̂n as follows: Let
(cn)

∞
n=1 be a positive integer sequence. Define

Ln = [n/cn], t
l
m = (m+ cnl)hn, and estimate Zt = VtV

⊤
t as follows:

Ẑl =
1

cnhn

cn∑
m=1

(Ytlm − Ytlm−1
)(Ytlm − Ytlm−1

)⊤, (0 ≤ l ≤ Ln − 1).

Using cn observations to create an estimator for Ztl0
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Proposed Estimator

Then, define the quasi-log-likelihood Hn(θ) as

Hn(θ) = −1

2

Ln−1∑
l=1

cn∑
m=1

(
Ȳ l
m

)⊤
(Ẑl−1hn)

−1Ȳ l
m1{det Ẑl−1>0}

where Ȳ l
m = Ytlm − Ytlm−1

− hnψ̂l,m(θ),

ψ̂l,m(θ) = ψ(Xtlm−1
, Ytlm−1

, Ẑl−1, θ).

Ẑl−1 corresponds to bkb
⊤
k in H0

n.

(cn)
∞
n=1 should satisfy

cnn
−ϵ → ∞, cnhnn

ϵ → 0, nc2nh
3
n → 0,

√
nhn
cn

→ 0 (2)

for some ϵ > 0. (For example, cn = 1 + [h
−1/2
n ])
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Ergodicity

Define the maximum likelihood-type estimator as: θ̂n ∈ argmaxθHn(θ).
Assume ergodicity.

1 When ψ(x, y, z, θ) does not depend on y: There exists a probability
distribution π(x, z) such that for any π-integrable function f ,

1

T

∫ T

0

f(Xt, VtV
⊤
t )dt

P→
∫
f(x, z)π(dxdz), (T → ∞).

2 Otherwise: There exists a probability distribution π(x, y, z) such
that for any π-integrable function f ,

1

T

∫ T

0

f(Xt, Yt, VtV
⊤
t )dt

P→
∫
f(x, y, z)π(dxdydz), (T → ∞).
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Main Theorem

Define
θ̂n ∈ argmaxθHn(θ),

Γ =

∫
∂θψ(x, y, z, θ0)

⊤z−1∂θψ(x, y, z, θ0)dπ

Theorem 2 (Asymptotic Normality)

Under ergodicity and conditions on smoothness, non-degeneracy of a, b,
and moment conditions of Xt, Vt, etc.,√

nhn(θ̂n − θ0)
d→ N(0,Γ−1), (n→ ∞).
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Remark

While Masuda (2005) proposed a least-square-type estimator for
drift term estimation when Vt is unknown, the advantage of the
proposed estimator is that it can estimate even when the unknown
Vt is included in the drift term ψ.

If we consider an auxiliary model observing (Zkhn
)nk=0 in addition to

(Xkhn
, Ykhn

)nk=0, it is included in the settings of previous studies by
Kessler (1997) and Yoshida (2011).

Gobet (2002) showed the local asymptotic normality of the auxiliary
model and proved that the optimal asymptotic variance of the
estimator is Γ−1.
In other words, the asymptotic variance of θ̂n is optimal in the sense
that it achieves the lower bound in the model with additional
observations.
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Key Points of the Proof

Unlike existing studies, even if we assume inft det(VtV
⊤
t ) > 0, the

approximation Ẑl of the volatility VtV
⊤
t is not guaranteed to satisfy

det Ẑl > 0 and may degenerate.

We handle this using control with stopping times and martingale
evaluations for sums with stopping times.

In the calculation of Ẑl, as cn increases, the approximation error of∫ tl+1
0

tl0
VtV

⊤
t dt decreases, but the error from using Ẑl−1 instead of Ẑl

increases.

Appropriate settings considering the trade-off of cn are necessary,
making it much more difficult than usual Euler approximation.
As a result, we obtain the same optimal variance as before, and can
prove it under the same condition nh2

n → 0 for hn.

12 / 18



Introduction Estimation for BSDEs MLE for BSDEs Example Numerical Experiment

Key Points of the Proof

Unlike existing studies, even if we assume inft det(VtV
⊤
t ) > 0, the
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Example (Stochastic Volatility Model)

Consider a stochastic process Yt satisfying the following:

dYt = ψ(t, Yt, θ)dt+ VtdWt.

Here, Vt is an unknown stochastic process, and (Xt, Vt) satisfies
ergodicity.

While there was no theory for maximum likelihood-type estimators of θ0
in such cases where Vt has no assumed parametric model, our proposed
estimator provides asymptotic normality and other theoretical results.

As this model includes stochastic volatility models commonly used for
stock prices, it enables the estimation of drift terms in stochastic
volatility.
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Example (Chong et al. (2019))

Chong et al. (2019) consider the following BSDE model to maximize the
utility function of a portfolio:

dYt = (F (Xt, Vt, γ)− λ)dt+ VtdWt.

Under assumptions such as ergodicity of (Xt, Vt) and smoothness of F ,
our proposed estimator enables the estimation of parameters γ and λ.
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Numerical Experiment

We conduct numerical experiments with the following model:

dYt = θ0

√
X2

t + 0.1dt+
√
X2

t + 0.1dWt,

dXt = a(b−Xt)dt+ σdWt.

The parameters are set as a = 2, b = 0.3, σ = 0.025, θ0 = 10, with initial
values X0 = 0.3, Y0 = 1.

We run 100 simulations and calculate the ML-type estimator, and its
error at n = 100, 000:

Error =
|θ̂n − θ0|

θ0
.
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Numerical Experiment

We define the observation width hn and the number of observations cn
for calculating Ẑl for integers k, l as follows:

cn = n0.05k, k = 1, 2, . . . , l − 1

hn = n−0.05l, l = 1, 2, · · ·

To satisfy the conditions (2) for cn, hn, l and k must satisfy:

11 ≤ l ≤ 19, 10− l

2
< k < 1.5l − 10.

( nc2nh
3
n → 0 ⇒ k < 1.5l − 10,

√
nhn

cn
→ 0 ⇒ 10− l

2 < k,

nh2n → 0 ⇒ 10 < l)
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Numerical Experiment

l
11 12 13 14 15

k 3 0.9295
4 0.3797 0.4404 0.4214
5 0.1308 0.1739 0.2274 0.2536 0.3065
6 0.0604 0.0868 0.1241 0.1743 0.2099
7 0.0810 0.1095 0.1630 0.1954
8 0.0765 0.1003 0.1281 0.1978
9 0.1165 0.1389 0.1978
10 0.1367 0.1753
11 0.1323 0.2178
12 0.2296

Table: The values of error for each k, l
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Numerical Experiment

We can confirm that the estimation error is kept small for many
combinations of k, l. The convergence rate (nhn)

−1/2 derived in
Theorem 2 is not very fast, being (nhn)

−1/2 = n−0.225 even for the
best case of l = 11.

The choice of l is shown to have a significant impact on the
estimation accuracy, which is consistent with the convergence rate
(nhn)

−1/2. The pair (l, k) = (11, 6) gives the minimum error,
providing the most accurate estimation of θ.

For l = 16, k = 13 is best with ERROR=0.2298,
For l = 17, k = 8 is best with ERROR=0.3160,
For l = 18, k = 13 is best with ERROR=0.3892,
For l = 19, k = 14 is best with ERROR=0.5232.
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Summary

We constructed a maximum likelihood-type estimator for the drift
parameter θ0 in a setting including backward SDEs, where the
volatility term Vt is unobserved and no parametric model is assumed.

Under assumptions such as ergodicity, we demonstrated the
consistency and asymptotic normality of the estimator, and
confirmed that it achieves the optimal asymptotic variance as in the
case where Vt is observed.

In numerical experiments, we confirmed that the estimation error
decreases for large sample sizes. While the theoretically optimal rate
for the number of observations cn used to estimate Vt is unknown,
numerical experiments suggest that a rate slightly larger than h

−1/2
n

tends to be best.
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