Optimal tests for the absence of random individual effects in large n and small T dynamic panels

Yuichi Goto Nezar Bennala Marc Hallin Kyushu University Université libre de Bruxelles Université libre de Bruxelles

Time Series, Random Fields and beyond Fall School September 23 -- 27, 2024 Ulm University

Panel Data (or longitudinal data):

Panel data are multi- or high- dimensional time series in econometrics.

Dynamic panel data models with serial correlation (Lillard & Willis (1978)):

$$y_{it} = x_{it}\beta + \mu + \alpha_i + e_{it}$$
 $i = 1, ..., n, t = 1, ..., T,$

where x_{it} : an explanatory variable, α_i : a fixed or random effect, e_{it} : a time series.

Many studies for panel data analysis focus on estimation or testing for $\boldsymbol{\beta}$.

local asymptotic normality (LAN) base-optimal tests for the existence of
random autoregressive coefficients of AR(p): Akharif & Hallin 2003
random coefficients of regression: Fihri et al. 2020, Akharif et al. 2020
random individual effects of panel data: Bennala et al (2012)

A test for the existence of random effects in time series one- & two-way models: Goto et al. 2020 (a,b)

 $\boldsymbol{y}_{it} = \boldsymbol{\mu} + \boldsymbol{\alpha}_i + \boldsymbol{e}_{it}, \quad i = 1, \dots, n \text{ (fixed)}; \ t = 1, \dots, T_i \ (\rightarrow \infty),$

For i.i.d. disturbances, local asymptotic normality does not hold under the asymptotic regime $T_i \rightarrow \infty, n : \text{fixed}$: Goto et al. 2022

 \rightarrow We would like develop an optimal test for the existence of individual effects in dynamic panel data

Local asymptotic normality is introduced by LeCam (1960) And this concept plays a vital role in optimal inference and testing.

Roussas (1972) showed LAN for Markov process. Roussas (1979) extended Roussas (1972) to non-Markov process.

Kreiss (1987): LAN for ARMA model

Linton (1993): LAN for ARCH model

Garel and Hallin (1995): LAN for multiple-output linear model with VARMA error term

Benghabrit and Hallin (1996): LAN for bilinear models

Hallin, Taniguchi, Serroukh, & Choy (1999): LAN for regression model with long memory error

Kato, Taniguchi, & Honda (2006): LAN for CHARN model

Cutting, Paindaveine, & Verdebout (2017): LAN for rotationally symmetric densities (directional statistics)

Books: Roussas (1972), Ibragimov & Khasminskii (1981), Taniguchi & Kakizawa (2000), Ley and Verdebout (2017)

For a sequence of statistical experiments $\mathcal{E}^{(n)} = \left\{ \mathcal{X}^{(n)}, \mathcal{F}^{(n)}, \left\{ P_{\theta}^{(n)} : \theta \in \Theta \subset \mathbb{R}^p \right\} \right\}$ the statistical experiments is local asymptotic normal (LAN) if there exists, $\Delta^{(n)}$ such that $\Delta^{(n)} \Rightarrow N(\mathbf{0}, \mathbf{I}(\mathbf{\theta}))$ under $P_{n, \mathbf{\theta}}$ and for every sequence $\mathbf{h}_n \to \mathbf{h}$,

$$\Lambda(\boldsymbol{\theta}, \boldsymbol{\theta}_n) = \log \frac{\mathrm{d}P_{n, \boldsymbol{\theta}_n}}{\mathrm{d}P_{n, \boldsymbol{\theta}}} = \mathbf{h}^T \mathbf{\Delta}^{(n)} - \frac{1}{2} \mathbf{h}^T \boldsymbol{I}(\boldsymbol{\theta}) \mathbf{h} + o_p(1) \quad \text{as } n \to \infty \text{ under } P_{n, \boldsymbol{\theta}},$$

here $\boldsymbol{I}(\boldsymbol{\theta})$ is a Eisber information and $\boldsymbol{\theta} = \boldsymbol{\theta} + \mathbf{h}/\sqrt{n}$

where $I(\theta)$ is a Fisher information and $\sigma_n = \theta + n / \sqrt{n}$.

 $\Delta^{(n)}$ is called the central sequence

 $\hat{\boldsymbol{\theta}}_n$ is said to be an efficient estimator (at $\boldsymbol{\theta}$) if $\sqrt{n}(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) - \boldsymbol{I}(\boldsymbol{\theta})^{-1} \boldsymbol{\Delta}^{(n)} = o_{P_{n,\boldsymbol{\theta}}}(1)$

Once the LAN property is shown,

we can construct,

$$I(\boldsymbol{\theta}_0)^{-1/2} \Delta^{(n)} > z_{1-\alpha}$$

(i, univariate) for the null $\theta \leq \theta_0\,$ and the alternative $\theta > \theta_0$,

a locally and asymptotically uniformly most powerful test

and

(ii) for the null $\mathbf{\theta} = \mathbf{\theta}_0$ and the alternative $\mathbf{\theta} \neq \mathbf{\theta}_0$,

a locally and asymptotically maximin test

by using the central sequence

$$\boldsymbol{\Delta}^{(n)}\boldsymbol{I}(\boldsymbol{\theta}_0)^{-1}\boldsymbol{\Delta}^{(n)} > \boldsymbol{\chi}_p^2[1-\alpha]$$

Regarding to estimation, it holds that

an asymptotically centering estimator is efficient among the regular estimators.

Dynamic panel data model with AR(p) disturbances

 $y_{it} = \mu + \boldsymbol{\beta}^{\top} \mathbf{x}_{it} + \sigma_u u_i + \nu_{it} \quad i = 1, \dots, n, \quad t = 1, \dots, T$ with $\nu_{it} = \sum_{j=1}^{p} \rho_j \nu_{i(t-j)} + \sigma_{\epsilon} \varepsilon_{it}$

where

 $\mathbf{x_{it}}$: explanatory variables

- u_i : individual effect with pdf h
- ε_{it} : disturbance with pdf f_1

Suppose $E(u_i) = E(\epsilon_{it}) = 0$, $Var(u_i) = Var(\epsilon_{it}) = 1$ (for identifiability)

 f_1 is possibly non-differentiable but $f_1^{1/2}$ is quadratic mean differentiable

Test for the absence of individual effect

Null:

$$\mathcal{H}_{f_1}^{(n)} := \left\{ \mathcal{P}_{\mu,\beta,\rho,\sigma_{\epsilon}^2,\mathbf{0};f_1}^{(n)}; (\mu,\beta,\rho,\sigma_{\epsilon}^2) \in \mathbb{R}^{1+K+p} \times \mathbb{R}_+ \right\}$$

Alternative:

$$\mathcal{K}_{f_1}^{(n)} := \left\{ \mathcal{P}_{\mu, \boldsymbol{\beta}, \boldsymbol{\rho}, \sigma_{\epsilon}^2, \sigma_{\boldsymbol{u}}^2; f_1}^{(n)}; (\mu, \boldsymbol{\beta}, \boldsymbol{\rho}, \sigma_{\epsilon}^2, \sigma_{\boldsymbol{u}}^2) \in \mathbb{R}^{1+K+p} \times \mathbb{R}_+^2 \right\}$$

Consider

$$\boldsymbol{\vartheta}_0 := (\mu, \boldsymbol{\beta}^{\top}, \sigma_{\epsilon}, \boldsymbol{\rho}^{\top}, 0)^{\top}$$

and a local parameter sequence

$$\boldsymbol{\vartheta}_0 + n^{-1/2} \boldsymbol{\iota}^{(n)} \boldsymbol{\tau}^{(n)} = \boldsymbol{\vartheta}_0 + \frac{1}{\sqrt{n}}$$

$$egin{pmatrix} au_1^{(n)} \ \mathbf{K}^{(n)} m{ au}_2^{(n)} \ au_3^{(n)} \ au_4^{(n)} \ m{ au}_4^{(n)} \ au_5^{(n)} \end{pmatrix}$$

Likelihood ratio (conditionally on $y_{i0}, \ldots, y_{i(1-p)}$ for all $i = 1, \ldots, p$) $\Lambda_{f_1}^{(n)} = \log \prod_{i=1}^{n} \prod_{t=1}^{T} \frac{\left(\gamma_{n,2} \int_{\mathbb{R}} f_1\left(\gamma_{n,1}u + \gamma_{n,2}Z_{it} + \gamma_{i,t,n,3}\right) h(u) \mathrm{d}u\right)}{f_1\left(Z_{it}\right)}$

where
$$Z_{it} := Z_{it}(\vartheta_0) := \frac{y_{it} - \mu - \boldsymbol{\beta}^\top \mathbf{x}_{it} - \sum_{j=1}^p \rho_j(y_{it-j} - \mu - \boldsymbol{\beta}^\top \mathbf{x}_{i(t-j)})}{\sigma_{\epsilon}},$$

$$\gamma_{n,1} := \frac{\left(-1 + \sum_{j=1}^{p} \left(\rho_j + \frac{\tau_{4j}^{(n)}}{\sqrt{n}}\right)\right) \sqrt{\frac{\tau_5^{(n)}}{\sqrt{n}}}}{\sigma_\epsilon + \frac{\tau_3^{(n)}}{\sqrt{n}}}, \quad \gamma_{n,2} := \frac{\sigma_\epsilon}{\sigma_\epsilon + \frac{\tau_3^{(n)}}{\sqrt{n}}},$$

$$\gamma_{i,t,n,3} := \frac{-\tau_1^{(n)} - \tau_2^{(n)^{\top}} \mathbf{K}^{(n)^{\top}} \mathbf{x}_{it} + \sum_{j=1}^p \left(\rho_j + \frac{\tau_{4j}^{(n)}}{\sqrt{n}} \right) \left(\tau_1^{(n)} + \tau_2^{(n)^{\top}} \mathbf{K}^{(n)^{\top}} \mathbf{x}_{i(t-j)} \right)}{\sqrt{n} (\sigma_{\epsilon} + \frac{\tau_{3}^{(n)}}{\sqrt{n}})} - \frac{\sum_{j=1}^p \tau_{4j}^{(n)} \left(y_{i(t-j)} - \mu - \boldsymbol{\beta}^{\top} \mathbf{x}_{i(t-j)} \right)}{\sqrt{n} (\sigma_{\epsilon} + \frac{\tau_{3}^{(n)}}{\sqrt{n}})}.$$

Quadratic mean differentiability (qmd)

$$\frac{1}{h^2} \int_{\mathbb{R}} \left\{ f_1^{1/2} \left(v + h \right) - f_1^{1/2} \left(v \right) - \frac{h}{2} \frac{\dot{f}_1 \left(v \right)}{f_1^{1/2} \left(v \right)} \right\}^2 \mathrm{d}v = o_p(1),$$

where $\dot{f}_{1}(v)$: a.e. derivative of $f_{1}(v)$.

Multivariate qmd \Leftrightarrow partial qmd (Lind & Roussas 1972)

Our case:

 $v \to Z_{it}$

 $h \rightarrow {\rm highly \ non-linear}$, even involving integral

Theorem (Local asymptotic normality) Under $P_{\theta_0,f_1}^{(n)}$,

the following asymptotic expansion holds true

$$\Lambda_{f_1}^{(n)} = \prod_{i=1}^{n} \prod_{t=1}^{T} \frac{\left(\gamma_{n,2} \int_{\mathbb{R}} f_1\left(\gamma_{n,1}u + \gamma_{n,2}Z_{it} + \gamma_{i,t,n,3}\right)h(u)du\right)}{f_1\left(Z_{it}\right)}$$
$$= \boldsymbol{\tau}^{(n)^{\top}} \boldsymbol{\Delta}_{f_1}^{(n)}(\boldsymbol{\vartheta}_0) - \frac{1}{2} \boldsymbol{\tau}^{(n)^{\top}} \boldsymbol{\Gamma}_{f_1}(\boldsymbol{\vartheta}_0) \boldsymbol{\tau}^{(n)} + o_p(1) \quad \text{as } n \to \infty,$$

and

$$\boldsymbol{\Delta}_{f_1}^{(n)}(\boldsymbol{\vartheta}_0) \Rightarrow N\left(\mathbf{0}, \boldsymbol{\Gamma}_{f_1}(\boldsymbol{\vartheta}_0)\right),$$

where

$$\boldsymbol{\vartheta} := (\mu, \boldsymbol{\beta}^{\top}, \sigma_{\epsilon}, \boldsymbol{\rho}^{\top}, \sigma_{u}^{2})^{\top} \text{ and } \boldsymbol{\vartheta}_{0} := (\mu, \boldsymbol{\beta}^{\top}, \sigma_{\epsilon}, \boldsymbol{\rho}^{\top}, 0)^{\top}.$$

the central sequence

$$\begin{split} \mathbf{\Delta}_{f_{1}}^{(n)}(\boldsymbol{\vartheta}_{0}) &\coloneqq \left(\Delta_{f_{1};1}^{(n)}(\boldsymbol{\vartheta}_{0}), \mathbf{\Delta}_{f_{1};2}^{(n)}(\boldsymbol{\vartheta}_{0}), \Delta_{f_{1};3}^{(n)}(\boldsymbol{\vartheta}_{0}), \mathbf{\Delta}_{f_{1};4}^{(n)}(\boldsymbol{\vartheta}_{0}), \Delta_{f_{1};5}^{(n)}(\boldsymbol{\vartheta}_{0}) \right)^{\top} \\ &= \begin{pmatrix} \frac{(1-\sum_{j=1}^{p}\rho_{j})}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \Phi_{f_{1}}\left(Z_{it}\right) \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \mathbf{K}^{(n)^{\top}}\left(\mathbf{x}_{it} - \sum_{j=1}^{p}\rho_{j}\mathbf{x}_{i(t-j)}\right) \phi_{f_{1}}\left(Z_{it}\right) \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \sum_{t=1}^{T} (Z_{it}\phi_{f_{1}}\left(Z_{it}\right) - 1) \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{i(t-1)} - \mu - \boldsymbol{\beta}^{\top}\mathbf{x}_{i(t-1)}, \dots, y_{i(t-p)} - \mu - \boldsymbol{\beta}^{\top}\mathbf{x}_{i(t-p)})^{\top}\phi_{f_{1}}\left(Z_{it}\right) \\ \frac{(1-\sum_{j=1}^{p}\rho_{j})^{2}}{2\sigma_{\epsilon}^{2}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \psi_{f_{1}}\left(Z_{it}\right) \end{split}$$

the Fisher information matrix

$$\Gamma_{f_1}(\vartheta) := \begin{pmatrix} \Gamma_{f_1;11}(\vartheta) & \mathbf{0}_K^\top & \Gamma_{f_1;13}(\vartheta) & \mathbf{0}_p^\top & \Gamma_{f_1;15}(\vartheta) \\ \mathbf{0}_K & \mathbf{\Gamma}_{f_1;22}(\vartheta) & \mathbf{0}_K & \mathbf{O}_{K\times p} & \mathbf{0}_K \\ \Gamma_{f_1;13}(\vartheta) & \mathbf{0}_K^\top & \Gamma_{f_1;33}(\vartheta) & \mathbf{0}_p^\top & \Gamma_{f_1;35}(\vartheta) \\ \mathbf{0}_p & \mathbf{O}_{p\times K} & \mathbf{0}_p & \mathbf{\Gamma}_{f_1;44}(\vartheta) & \mathbf{0}_p \\ \Gamma_{f_1;15}(\vartheta) & \mathbf{0}_K^\top & \Gamma_{f_1;35}(\vartheta) & \mathbf{0}_p^\top & \Gamma_{f_1;55}(\vartheta) \end{pmatrix}.$$

h does not appear in $\Delta_{f_1}^{(n)}(\boldsymbol{\vartheta}_0)$ nor in $\Gamma_{f_1}(\boldsymbol{\vartheta})$

Unspecified parameter case:

 $\begin{aligned} \sigma_{u}^{2} \text{-efficient central sequence} \\ \Delta_{f_{1};5}^{*(n)}(\vartheta) &:= \Delta_{f_{1};5}^{(n)}(\vartheta) - \begin{pmatrix} \Gamma_{f_{1},15}(\vartheta) & \Gamma_{f_{1},35}(\vartheta) \end{pmatrix} \begin{pmatrix} \Gamma_{f_{1},11}(\vartheta) & \Gamma_{f_{1},13}(\vartheta) \\ \Gamma_{f_{1},13}(\vartheta) & \Gamma_{f_{1},33}(\vartheta) \end{pmatrix}^{-1} \begin{pmatrix} \Delta_{f_{1};1}^{(n)}(\vartheta) \\ \Delta_{f_{1};3}^{(n)}(\vartheta) \end{pmatrix} \\ &= \Delta_{f_{1};5}^{(n)}(\vartheta) - \Gamma_{f_{1},15}^{*}(\vartheta) \Delta_{f_{1};1}^{(n)}(\vartheta) - \Gamma_{f_{1},35}^{*}(\vartheta) \Delta_{f_{1};3}^{(n)}(\vartheta), \end{aligned}$

efficient information matrix $\Gamma_{f_1,55}^* := \Gamma_{f_1,55}(\vartheta) - \Gamma_{f_1,15}^*(\vartheta)\Gamma_{f_1,15}(\vartheta) - \Gamma_{f_1,35}^*(\vartheta)\Gamma_{f_1,35}(\vartheta)$

Suppose that

 $n^{1/2}\boldsymbol{\iota}^{(n)^{-1}}\left(\hat{\boldsymbol{\vartheta}}^{(n)}-\boldsymbol{\vartheta}_{0}\right)=O_{p}(1), \text{ where } \hat{\sigma}_{u}^{2}=0, \text{ under } P_{\boldsymbol{\theta}_{0},f_{1}}^{(n)}.$ $\hat{\boldsymbol{\vartheta}}^{(n)} \text{ is locally discrete (Kreiss 1987)}$ $\text{asymptoic linearity: for } \boldsymbol{\vartheta}_{n} \text{ such that } \left\|n^{1/2}\boldsymbol{\iota}^{(n)^{-1}}(\boldsymbol{\vartheta}_{n}-\boldsymbol{\vartheta}_{0})\right\|\leq C,$ $\boldsymbol{\Delta}_{f_{1}}^{(n)}(\boldsymbol{\vartheta}_{n})-\boldsymbol{\Delta}_{f_{1}}^{(n)}(\boldsymbol{\vartheta}_{0})+\boldsymbol{\Gamma}_{f_{1}}(\boldsymbol{\vartheta})n^{1/2}\boldsymbol{\iota}^{(n)^{-1}}(\boldsymbol{\vartheta}_{n}-\boldsymbol{\vartheta}_{0})=o_{p}(1) \text{ under } P_{\boldsymbol{\theta}_{0},f_{1}}^{(n)}$

A test statistic:

 $T_{f_1}^{*(n)}\left(\hat{\boldsymbol{\vartheta}}^{(n)}\right) := \left(\Gamma_{f_1,5}^*\left(\hat{\boldsymbol{\vartheta}}^{(n)}\right)\right)^{-1/2} \Delta_{f_1;5}^{*(n)}\left(\hat{\boldsymbol{\vartheta}}^{(n)}\right).$

A test which rejects $\mathcal{H}_{f_1}^{(n)}$ whenever $T_{f_1}^{*(n)}\left(\hat{\vartheta}^{(n)}\right) > \Phi^{-1}(1-\alpha)$ is locally asymptotically most stringent, against $\mathcal{K}_{f_1}^{(n)}$.

Pseudo-Gaussian test: f_1 is generally unknown

 \rightarrow use the central sequence for Gaussian density

Gaussian versions of the central sequence

$$\begin{split} \boldsymbol{\Delta}_{\mathcal{N}}^{(n)}(\boldsymbol{\vartheta}_{0}) &:= \left(\Delta_{\mathcal{N};1}^{(n)}(\boldsymbol{\vartheta}_{0}), \boldsymbol{\Delta}_{\mathcal{N};2}^{(n)}(\boldsymbol{\vartheta}_{0}), \Delta_{\mathcal{N};3}^{(n)}(\boldsymbol{\vartheta}_{0}), \boldsymbol{\Delta}_{\mathcal{N};4}^{(n)}(\boldsymbol{\vartheta}_{0}), \Delta_{\mathcal{N};5}^{(n)}(\boldsymbol{\vartheta}_{0}) \right)^{\top} \\ &= \left(\begin{array}{c} \frac{(1-\sum_{j=1}^{p}\rho_{j})}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} Z_{it} \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \mathbf{K}^{(n)^{\top}} \left(\mathbf{x}_{it} - \sum_{j=1}^{p}\rho_{j}\mathbf{x}_{i(t-j)} \right) Z_{it} \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \sum_{t=1}^{T} \left(Z_{it}^{2} - 1 \right) \\ \frac{1}{\sigma_{\epsilon}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} (y_{i(t-1)} - \mu - \boldsymbol{\beta}^{\top} \mathbf{x}_{i(t-1)}, \dots, y_{i(t-p)} - \mu - \boldsymbol{\beta}^{\top} \mathbf{x}_{i(t-p)})^{\top} Z_{it} \\ \frac{\left(1-\sum_{j=1}^{p}\rho_{j}\right)^{2}}{2\sigma_{\epsilon}^{2}\sqrt{n}} \sum_{i=1}^{n} \sum_{t=1}^{T} \left(Z_{it}^{2} - 1 \right) \end{array} \right) \end{split}$$

And its Fisher information under the unknown density g

$$\boldsymbol{\Gamma}_{N;g}(\boldsymbol{\vartheta}) := \begin{pmatrix} \Gamma_{\mathcal{N};g;11}(\boldsymbol{\vartheta}) & \mathbf{0}_{K}^{\top} & \Gamma_{\mathcal{N};g;13}(\boldsymbol{\vartheta}) & \mathbf{0}_{p}^{\top} & \Gamma_{\mathcal{N};g;15}(\boldsymbol{\vartheta}) \\ \mathbf{0}_{K} & \boldsymbol{\Gamma}_{\mathcal{N};g;22}(\boldsymbol{\vartheta}) & \mathbf{0}_{K} & \boldsymbol{O}_{K\times p} & \mathbf{0}_{K} \\ \Gamma_{\mathcal{N};g;13}(\boldsymbol{\vartheta}) & \mathbf{0}_{K}^{\top} & \Gamma_{\mathcal{N};g;33}(\boldsymbol{\vartheta}) & \mathbf{0}_{p}^{\top} & \Gamma_{\mathcal{N};g;35}(\boldsymbol{\vartheta}) \\ \mathbf{0}_{p} & \boldsymbol{O}_{p\times K} & \mathbf{0}_{p} & \boldsymbol{\Gamma}_{\mathcal{N};g;44}(\boldsymbol{\vartheta}) & \mathbf{0}_{p} \\ \Gamma_{\mathcal{N};g;15}(\boldsymbol{\vartheta}) & \mathbf{0}_{K}^{\top} & \Gamma_{\mathcal{N};g;35}(\boldsymbol{\vartheta}) & \mathbf{0}_{p}^{\top} & \Gamma_{\mathcal{N};g;55}(\boldsymbol{\vartheta}) \end{pmatrix} \end{pmatrix}$$

However, $\Delta_{\mathcal{N};3}^{(n)}(\boldsymbol{\vartheta}_0)$ and $\Delta_{\mathcal{N};5}^{(n)}(\boldsymbol{\vartheta}_0)$ are collinear...

Possible reasons:

Conditional likelihood could be a problem:

$$\begin{split} &\prod_{i=1}^{a} p_{y_{i1},\dots,y_{iT}|y_{i0},\dots,y_{i(1-p)}} \left(z_{i1},\dots,z_{iT}|z_{i0},\dots,z_{i(1-p)} \right) \\ &= \prod_{i=1}^{a} \prod_{t=1}^{T} p_{y_{it}|y_{i(t-1)},\dots,y_{i(1-p)}} \left(z_{it}|z_{i(t-1)},\dots,z_{i(1-p)} \right) \\ &= \frac{1}{\sigma_{\epsilon}^{T}} \prod_{i=1}^{a} \prod_{t=1}^{T} \int_{\mathbb{R}} h(u) f_{1} \left(\frac{z_{it} - \mu - \beta^{\top} \mathbf{x}_{it} - \sum_{j=1}^{p} \rho_{j}(y_{it-j} - \mu - \beta^{\top} \mathbf{x}_{i(t-j)}) - \sigma_{u}(1 - \sum_{j=1}^{p} \rho_{j})u_{i}}{\sigma_{\epsilon}} \right) du \end{split}$$

it seems that y_{it} is $y_{it'}$ independent even if u_i is non-degenerate.

Relation with (full) likelihood:

$$\prod_{i=1}^{a} p_{y_{i1},\dots,y_{iT}} (z_{i1},\dots,z_{iT})$$

=
$$\prod_{i=1}^{a} p_{y_{i0},\dots,y_{i(1-p)}} (z_{i0},\dots,z_{i(1-p)}) \prod_{t=1}^{T} p_{y_{i1},\dots,y_{iT}|y_{i0},\dots,y_{i(1-p)}} (z_{i1},\dots,z_{iT}|z_{i0},\dots,z_{i(1-p)})$$

Possible reasons:

Full likelihood, provided $y_{i0}, \ldots, y_{i(1-p)}$ as constants, works:

$$\begin{split} &\prod_{i=1}^{a} p_{y_{i1},\dots,y_{iT}} \left(z_{i1},\dots,z_{iT} \right) \\ &= \frac{1}{\sigma_{\epsilon}^{T}} \prod_{i=1}^{a} \int_{\mathbb{R}} h(u) \prod_{t=1}^{T} f_{1} \left(\frac{z_{it} - \mu - \boldsymbol{\beta}^{\top} \mathbf{x}_{it} - \sum_{j=1}^{p} \rho_{j}(y_{it-j} - \mu - \boldsymbol{\beta}^{\top} \mathbf{x}_{i(t-j)}) - \sigma_{u}(1 - \sum_{j=1}^{p} \rho_{j})u_{i}}{\sigma_{\epsilon}} \right) \mathrm{d}u \end{split}$$

Then, the central sequence $\Delta_{\mathcal{N};5}^{(n)}(\boldsymbol{\vartheta}_0)$ is not collinear to $\Delta_{\mathcal{N};3}^{(n)}(\boldsymbol{\vartheta}_0)$.

The difference is how to deal with initial values (constants or random variables)

Future works:

LAN for full likelihood, prove asymptotic linearity, a rank-based test \rightarrow Acquire LAN-based inference and test

Thank you so much for your time and kind attention.