Uniform limit theorems for point processes

Giacomo Francisci ^a

joint work with Anand N. Vidyashankar b

aInstitute of Mathematical Finance, Ulm University **b**Department of Statistics, George Mason University

Fall School Time Series, Random Fields and Beyond September 26, 2024

Outline

[Uniform limit theorems](#page-2-0)

- [Point processes](#page-2-0)
- [Measurability conditions](#page-6-0)
- [Main results](#page-10-0)

2 [Applications](#page-16-0)

- **[Tree-indexed random elements](#page-16-0)**
- [Depth functions for point processes](#page-24-0)

Outline

1 [Uniform limit theorems](#page-2-0)

• [Point processes](#page-2-0)

- [Measurability conditions](#page-6-0)
- [Main results](#page-10-0)

[Applications](#page-16-0)

- **O** [Tree-indexed random elements](#page-16-0)
- [Depth functions for point processes](#page-24-0)

Empirical measure

Let $\{Y_i\}_{i=1}^{\infty}$ be a sequence of i.i.d. point processes, where

- $Y_i = \sum_{j=1}^{L_i} \delta_{X_{i,j}}$
- \bullet δ _x is the Dirac measure at x,
- \bullet $X_{i,j}$ are random elements in a Polish space, and
- L_i is a random variable in $\mathbb{N} = \{1, 2, \dots\}$.

The empirical measure is given by

$$
\mu_n = \frac{1}{n} \sum_{i=1}^n Y_i.
$$

The case $L_i \equiv 1$ is well-known (Giné and Nickl; 2016; [van der Vaart and](#page-32-2) [Wellner; 1996\)](#page-32-2).

Intensity measure

The intensity measure μ of the point process Y_1 is given for all Borel sets B by

$$
\mu(B)=\mathsf{E}[Y_1(B)].
$$

Let F be a uniformly bounded class of functions. Then, for all $f \in \mathcal{F}$

$$
\mu(f) = \mathbf{E}[Y_1(f)],
$$

where for any finite measure ν

$$
\nu(f):=\int f\,d\nu.
$$

We study convergence of the empirical process

$$
\mu_n-\mu=\{\mu_n(f)-\mu(f)\}_{f\in\mathcal{F}}.
$$

The space $\ell_{\infty}(\mathcal{F})$

- Since F is uniformly bounded, the empirical process $\mu_n \mu$ takes values on the space $\ell_{\infty}(\mathcal{F})$ of bounded functionals on $\mathcal F$ with cylindrical σ -algebra.
- The space $\ell_{\infty}(\mathcal{F})$ is endowed with the norm

$$
||H|| := ||H||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |H(f)|, \text{ where } H \in \ell_{\infty}(\mathcal{F}).
$$

- The (uncountable) supremum of random variables is not measurable in general.
- $\ell_{\infty}(\mathcal{F})$ is not separable unless $\mathcal F$ is finite.

Outline

• [Point processes](#page-2-0)

• [Measurability conditions](#page-6-0)

• [Main results](#page-10-0)

[Applications](#page-16-0)

- **O** [Tree-indexed random elements](#page-16-0)
- [Depth functions for point processes](#page-24-0)

Convergence in distribution

The outer expectation of any function T from a probability space $(\Omega, \Sigma, \mathbf{P})$ to the extended real numbers line $\overline{\mathbb{R}}$ is

 $\mathsf{E}^*[T] = \inf \{ \mathsf{E}[U] : U \geq T, U : \Omega \to \bar{\mathbb{R}} \text{ measurable and } \mathsf{E}[U] \text{ exists} \}.$

The infimum is achieved in the sense that there exists a measurable function $T^* \geq T$ such that $\mathsf{E}^*[T] = \mathsf{E}[T^*].$

Definition [\(Hoffmann-Jørgensen \(1991\)](#page-32-3))

Let E be a metric space and $X_n : \Omega \to E$ (not necessarily measurable). We say that X_n converges in distribution to X with Borel law ν on E, that is, $X_n \stackrel{d^*}{\longrightarrow} X$, if $\lim_{n \to \infty} \mathsf{E}^*[g(X_n)] = \int g \ d\nu$ for all bounded, continuous real functions g .

Measurability conditions

Definition (Giné and Zinn (1984))

A class of functions F is measurable if for each $a_1, \ldots, a_n, b \in \mathbb{R}$ and $n \in \mathbb{N}$, the quantity $\|\sum_{i=1}^n a_iY_i + b\mu\|$ is measurable on $(\Omega, \Sigma, \mathbf{P})$.

We make the following assumptions:

- (H1) $\mathsf{E}[L_1^2] < \infty$, and
- **(H2)** $\mathcal F$ is a uniformly bounded non-empty measurable class of real functions.

Entropy conditions

• For any $\epsilon > 0$ the covering number of a pseudo-metric space (T, e) is

$$
N(T, e, \epsilon) := \inf \{ N : \exists t_1, \ldots, t_N \in T : \min_{i=1,\ldots,N} e(t_i, t) \leq \epsilon \ \forall t \in T \}.
$$

Sufficient conditions are given in terms of random metric entropy, that is, logarithms of the covering numbers $N(\mathcal{F}, e_{n,p}, \epsilon)$ of $\mathcal F$ w.r.t. the L^p empirical pseudo-distance $e_{n,p}$ given by

$$
e_{n,p}^p(f,g):=\frac{1}{n}\sum_{i=1}^n Y_i(|f-g|^p), \quad f,g\in\mathcal{F}.
$$

• These conditions hold if F is a VC-subgraph class.

Outline

[Uniform limit theorems](#page-2-0)

- [Point processes](#page-2-0)
- [Measurability conditions](#page-6-0)
- **•** [Main results](#page-10-0)

[Applications](#page-16-0)

- **O** [Tree-indexed random elements](#page-16-0)
- [Depth functions for point processes](#page-24-0)

Uniform LLN

Theorem

Assume $(\textsf{H1})\text{-}(\textsf{H2})$. Then, $\|\mu_{\textsf{n}}-\mu\| \stackrel{\textsf{a.s.}}{\longrightarrow} 0$ if one of the following conditions hold: (i) for all $\epsilon > 0$ and some $p \geq 1$ $\frac{1}{p}$ $\frac{1}{n} \log(N^*(\mathcal{F},e_{n,p},\epsilon)) \stackrel{p}{\rightarrow} 0$, or (ii) for all $\delta > 0$

$$
\lim_{n\to\infty} \mathbf{E}[\min(1,\frac{1}{\sqrt{n}}\int_0^\delta \sqrt{\log(N^*(\mathcal{F},e_{n,2},\epsilon))}\,d\epsilon)] = 0.
$$

Proof idea

- Convergence in probability and in L^1 of $\|\mu_n-\mu\|$ is equivalent to convergence of $\|\mu_{\xi,n}\|$, where $\mu_{\xi,n}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n \xi_i Y_i$ and $\{\xi_i\}_{i=1}^\infty$ is a sequence of independent Rademacher random variables.
- Conditionally on $\{Y_i\}_{i=1}^{\infty}$, the process $\{\sqrt{n}\mu_{\xi,n}(f)\}_{f\in\mathcal{F}}$ is subgaussian w.r.t. the distance $e_{n,2}$, that is, for all $\lambda \in \mathbb{R}$

$$
\mathbf{E}_{\xi}[\exp(\lambda\sqrt{n}(\mu_{\xi,n}(f)-\mu_{\xi,n}(g)))] \leq \exp(\lambda^2 e_{n,2}^2(f,g)/2).
$$

- Inequalities for subgaussian processes in terms of metric entropy and condition (i) or (ii) yield convergence in probability.
- General results on convergence of averages of random elements in a Banach space (extended to cylindrical σ -algebra) yield equivalence between convergence in probability and almost sure convergence [\(Kuelbs and Zinn; 1979;](#page-32-5) [de Acosta; 1981\)](#page-32-6).

Uniform CLT

Let
$$
\mathcal{F}'_{\delta,p} := \{ (f-g)^p : f, g \in \mathcal{F} \text{ and } ||f-g||_{L^2(\mu)} \leq \delta \}.
$$

Theorem

Assume (H1)-(H2) and that the classes of functions $\mathcal{F}'_{\infty,2}$ and $\{\mathcal{F}'_{\delta,1}\}_{\delta>0}$ are measurable. If

$$
\lim_{\delta \to 0^+} \limsup_{n \to \infty} \mathbf{E}[\min(1, \int_0^\delta \sqrt{\log(N^*(\mathcal{F}, e_{n,2}, \epsilon))} \, d\epsilon)] = 0,
$$

then

$$
\sqrt{n}(\mu_n-\mu)\xrightarrow{d^*} W \text{ in } \ell_\infty(\mathcal{F}),
$$

where W is a Gaussian process with covariance function

 $Cov[W(f), W(g)] = \gamma(f, g) = E[(Y_1(f) - \mu(f))(Y_1(g) - \mu(g))].$

Proof idea

By Theorem 3.7.23 of Giné and Nickl (2016) it is enough to show that

- **■** the finite dimensional distributions of the process $W_n := \sqrt{n}(\mu_n \mu)$ converge in law,
- $\textbf{\textcolor{black}{\bullet}}$ the space $(\mathcal{F},\|\raisebox{.4ex}{.}\|_{\mathsf{L}^2(\mu)})$ is totally bounded, and
- **3** the process W_n is asymptotically equicontinuous, that is, for all $\epsilon > 0$

$$
\lim_{\delta \to 0^+} \limsup_{n \to \infty} \mathbf{P}^* \big(\sup_{f,g \in \mathcal{F}: \|f-g\|_{L^2(\mu)} \leq \delta} |W_n(f) - W_n(g)| \geq \epsilon \big) = 0.
$$

The proof of 2 uses the random metric condition and the uniform LLN for the class of functions $\mathcal{F}'_{\infty,2}.$ The proof of $\; \bullet \;$ uses inequalities for subgaussian processes and the random metric condition.

Uniform rates of convergence

- Let $\mathcal{F} = \{\mathbf{I}_D : D \in \mathcal{D}\}\$ be a class of indicators of a VC-class of sets D with VC-index **v**.
- Let $S_n := \sum_{i=1}^n L_i$ and $S_{n,2} := \sum_{i=1}^n L_i^2$.

Theorem

Assume (H1)-(H2). For all $\alpha,\beta,\epsilon>0$ and $n\geq 8\cdot \mathsf{E}[L_1^2]/\epsilon^2$ it holds that

$$
\mathbf{P}(\|\mu_n - \mu\| \ge \epsilon) \le 16 \cdot (\alpha n)^{\mathsf{v}-1} \cdot \exp\left(-\frac{\epsilon^2}{2^5} \cdot \frac{n}{\beta}\right) + \mathbf{P}(S_n > \alpha n) + \mathbf{P}(S_{n,2} > \beta n).
$$

Outline

1 [Uniform limit theorems](#page-2-0)

- [Point processes](#page-2-0)
- [Measurability conditions](#page-6-0)
- [Main results](#page-10-0)

2 [Applications](#page-16-0)

- **[Tree-indexed random elements](#page-16-0)**
- [Depth functions for point processes](#page-24-0)

Tree-indexed random elements I

Random elements $\{X_{\mathsf{v}_i}\}_{i=1}^n$ indexed by vertices $\mathsf{v}_1,\ldots,\mathsf{v}_n$ of a random tree starting from the vertex $v_1 = \emptyset$.

Tree-indexed random elements I

- Random elements $\{X_{\mathsf{v}_i}\}_{i=1}^n$ indexed by vertices $\mathsf{v}_1,\ldots,\mathsf{v}_n$ of a random tree starting from the vertex $v_1 = \emptyset$.
- Random elements coming from same ancestor in the tree may be dependent.

Tree-indexed random elements II

• Using Ulam-Harris notation we write

$$
\mathbb{V} = \{\emptyset\} \cup \cup_{k=1}^{\infty} \mathbb{N}^k
$$

for the set of all potential vertices.

- **The random elements associated with the direct descendants of** vertex v are given by the point process $\mathsf{Y}_\mathsf{v} = \sum_\mathsf{w} \delta_{\mathsf{X}_\mathsf{w}}.$
- \bullet $\{Y_v\}_{v\in\mathbb{V}}$ are independent and identically distributed (i.i.d.).
- The set of actual vertices is denoted by $V \subset V$.
- The vertices are ordered according to the breadth-first order induced by Ulam-Harris notation so that $V = \{v_1, v_2, \dots\}$.

Tree-indexed random elements III

- Let V_i be the vertex set at time j.
- $\left| V_j \right|$ is the cardinality of $V_j.$
- We obtain a Galton-Watson process $\{|V_j|\}_{j=0}^\infty$ with random elements attached to each vertex.
- By setting $Y_i = Y_{\nu_i}$ we obtain a sequence of i.i.d. point processes.

Lotka-Nagaev and Harris-type estimators

• The Lotka-Nagaev estimator $\hat{\mu}_i$ of the intensity measure μ is given by

$$
\hat{\mu}_j(f) = \frac{1}{|V_j|} \sum_{v \in V_j} Y_v(f).
$$

• The Harris-type estimator $\tilde{\mu}_i$ of μ is given by

$$
\tilde{\mu}_j(f) = \frac{1}{\sum_{l=0}^j |V_l|} \sum_{i=1}^{\sum_{l=0}^j |V_l|} Y_{v_i}(f).
$$

When $f\equiv 1$ one obtains $Y_{\mathsf{v}_i}(1)=L_i$ and the estimators reduce to the classical Lotka-Nagaev and Harris estimators of the mean of a supercritical Galton-Watson process, that is,

$$
\hat{\mu}_j(1) = \frac{|V_{j+1}|}{|V_j|} \text{ and } \tilde{\mu}_j(1) = \frac{\sum_{l=1}^{j+1} |V_l|}{\sum_{l=0}^{j} |V_l|}.
$$

Uniform converge for the Lotka-Nagaev estimator

Proposition

Assume (H1)-(H2), $E[L_1] > 1$, and that F is a VC-subgraph class of functions. The following holds: (i) $\|\hat{\mu}_j - \mu\| \xrightarrow{a.s.} 0$ and (ii) if $\mathcal{F}'_{\infty,2}$ and $\{\mathcal{F}'_{\delta,1}\}_{\delta>0}$ are measurable, then $|V_j|^{1/2}(\hat\mu_j-\mu)\stackrel{d^*}{\longrightarrow}W$,

where W is the Gaussian process in the uniform CLT.

Proof idea: We condition on $|V_j| = k$. Using the uniform CLT we see that $|V_j|^{1/2}(\hat{\mu}_j-\mu)$ is close to W for every large $k.$ On the other hand, $\mathbf{P}(|V_j|=k)\to 0$ as $j\to\infty$ for every fixed $k.$

Uniform converge for the Harris-type estimator

Proposition

Assume (H1)-(H2) and that $\mathcal F$ is a VC-subgraph class of functions. The following holds: (i) $\|\tilde{\mu}_j - \mu\| \stackrel{a.s.}{\longrightarrow} 0$ and (ii) if $\mathcal{F}'_{\infty,2}$ and $\{\mathcal{F}'_{\delta,1}\}_{\delta>0}$ are measurable, then $(\sum_{l=0}^j |V_l|)^{1/2} (\tilde{\mu}_j - \mu) \stackrel{d^*}{\longrightarrow} W.$

Part (ii) provides a uniform version of Theorem 3 of [Kuelbs and](#page-32-7) [Vidyashankar \(2011\)](#page-32-7) on convergence in law of Harris estimator. The proof requires an extension of the uniform CLT allowing for a random number of terms.

Outline

[Uniform limit theorems](#page-2-0)

- [Point processes](#page-2-0)
- [Measurability conditions](#page-6-0) \bullet
- [Main results](#page-10-0) \bullet

2 [Applications](#page-16-0)

- **O** [Tree-indexed random elements](#page-16-0)
- [Depth functions for point processes](#page-24-0)

Depth functions

- Depth functions specify a center-outward order with respect to a finite measure ν on \mathbb{R}^d (usually a probability measure).
- Depth functions contours yield multivariate quantiles.

Half-space depth

The half-space depth [\(Zuo and Serfling; 2000\)](#page-32-8) of $x\in\mathbb{R}^d$ with respect to a finite measure ν is

$$
D(x,\nu)=\inf_{u\in S^{d-1}}\nu(H_{x,u}),
$$

where \mathcal{S}^{d-1} is the unit sphere and

$$
H_{x,u} = \{y \in \mathbb{R}^d : \langle y, u \rangle \le \langle x, u \rangle\}
$$

is the closed half-space with outer normal u and x on the boundary.

Properties

 \bullet Affine-invariance: for any affine transformation T, that is, $T: \mathbb{R}^d \to \mathbb{R}^d$ given by $T(x) = Ax + b$ for a non-singular $d \times d$ matrix A and $b \in \mathbb{R}^d$,

$$
D(T(x),\nu_T)=D(x,\nu),\quad x\in\mathbb{R}^d,
$$

where ν_{τ} is the pushforward of ν .

 $\bullet\hskip2pt$ If ν is half-space symmetric about $y\in\mathbb{R}^d$, that is,

$$
\nu(H_{y,u})\geq \nu(\mathbb{R}^d)/2,\quad u\in S^{d-1},
$$

then

$$
D(y,\nu)\geq D(x,\nu),\quad x\in\mathbb{R}^d.
$$

Properties

 \bullet $D(\cdot,\nu)$ is monotonically non-increasing along rays from the point of maximum depth: if

$$
D(y,\nu)\geq D(x,\nu),\quad x\in\mathbb{R}^d,
$$

then

$$
D(y+\alpha(x-y),\nu)\geq D(x,\nu),\quad \alpha\in[0,1].
$$

4 Vanishing at infinity:

$$
\sup_{x\in\mathbb{R}^d\,:\,||x||\geq r}D(x,\nu)\to 0\,\,\text{as}\,\,r\to\infty.
$$

Half-space depth for point processes

• The half-space depth of $x \in \mathbb{R}$ w.r.t. the intensity measure μ is given by

$$
D(x,\mu)=\inf_{u\in S^{d-1}}\mu(H_{x,u})
$$

• Similarly, the empirical half-space depth is

$$
D(x,\mu_n)=\inf_{u\in S^{d-1}}\mu_n(H_{x,u}).
$$

The following assumption ensures that the infimum is obtained:

(H3) $\mu(\partial H) = 0$ for all half-spaces $H \subset \mathbb{R}^d$.

We let $\mathcal{R}(\mu)$ be the set of points $\mathsf{x} \in \mathbb{R}^{d}$ that have a unique minimizing direction $u_\mathsf{x} \in \mathcal{S}^{d-1}$. In particular, $D(\mathsf{x},\mu) = \mu(\mathsf{H}_{\mathsf{x},u_\mathsf{x}})$ (Massé; 2004).

Asymptotics for half-space depth

Proposition

Assume (H1). The following holds:

$$
(i) \sup_{x \in \mathbb{R}^d} |D(x,\mu) - D(x,\mu_n)| \stackrel{a.s.}{\longrightarrow} 0,
$$

(ii) If (H3) holds true and $A \neq \emptyset$ is a closed subset of $\mathcal{R}(\mu)$, then

$$
\sqrt{n}(D(\cdot,\mu)-D(\cdot,\mu_n))\xrightarrow{d^*} W \text{ in } \ell_{\infty}(A),
$$

where W is a Gaussian process. (iii) For all $\alpha, \beta, \epsilon > 0$ and $n \geq 8 \cdot \mathsf{E}[L_1^2]/\epsilon^2$ $\mathsf{P}(\sup|D(x,\mu)-D(x,\mu_n)|\geq\epsilon)\leq 16\cdot(\alpha n)^d\cdot\exp\biggl(-\frac{\epsilon^2}{25}\biggr)$ x∈R^d $rac{\epsilon^2}{2^5} \cdot \frac{n}{\beta}$ β \setminus $+$ P($S_n > \alpha n$) + P($S_{n,2} > \beta n$).

Summary

- **4** Motivated by applications to tree-indexed random elements and depth functions, we study empirical point processes indexed by a class \mathcal{F} .
- ² We provide sufficient conditions for the uniform LLN and CLT in terms of random metric entropy, which hold if $\mathcal F$ is VC-subgraph.
- ³ We derive uniform LLN and CLT for Lotka-Nagaev and Harris-type estimators.
- ⁴ We establish uniform consistency and asymptotic normality of the half-space depth based on the intensity measure of the point processes.

[Summary](#page-31-0)

References

- de Acosta, A. (1981). Inequalities for B-valued random vectors with applications to the strong law of large numbers, The Annals of Probability 9: 157-161.
- Francisci, G. and Vidyashankar, A. N. (2024). Functional limit laws for the intensity measure of point processes and applications, arXiv preprint 2402.05087.
- Giné, E. and Nickl, R. (2016). Mathematical foundations of infinite-dimensional statistical models. Cambridge University Press.
- Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes, The Annals of Probability 12: 929–998.
- Hoffmann-Jørgensen, J. (1991). Stochastic processes on Polish spaces, Matematisk Institut Århus: Various publications series, Inst., Univ.
- Kuelbs, J. and Vidyashankar, A. N. (2011). Weak convergence results for multiple generations of a branching process, Journal of Theoretical Probability 24: 376–396.
- Kuelbs, J. and Zinn, J. (1979). Some stability results for vector valued random variables, The Annals of Probability 7: 75–84.
- Massé, J.-C. (2004). Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean, Bernoulli 10: 397-419.
- van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes, Springer.
- Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function, The Annals of statistics 28: 461–482. Fall School Time Series, Random Fields and Beyond September 26, 2024