Exercise 1: Let Y be a $Gamma(n, \lambda)$ -distributed random variable with $n \ge 2$. Consequently, Y has the density

$$f(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} \mathbf{1}_{(0,\infty)}(x).$$

Furthermore, let X_1, \ldots, X_n be a random sample with $X_1 \sim Exp(\lambda)$.

- a) Find $E\left[\frac{1}{Y}\right]$
- b) Find the Expectation of \overline{X} as well as the expectation of $\frac{1}{\overline{X}}$. Is $\frac{1}{\overline{X}}$ an unbiased estimator for λ ? (Hint: Sheet 5 Exercise 2.)
- c) For which a_n is $\frac{a_n}{\overline{X}}$ an unbiased estimator for λ ?

Solution:

a) We can show that

$$E\left[\frac{1}{Y}\right] = \int_0^\infty \frac{1}{y} \lambda^n y^{n-1} e^{-\lambda y} \frac{1}{(n-1)!} dy$$
$$= \frac{\lambda}{n-1} \int_0^\infty \lambda^{n-1} y^{n-2} e^{-\lambda y} \frac{1}{(n-2)!} dy$$
$$= \frac{\lambda}{n-1}$$

b) For the expectation of \overline{X} we have

$$E[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{\lambda}.$$

We know that $\sum_{i=1}^{n} X_i \sim Gamma(n, \lambda)$. Thus,

$$E\left[\frac{1}{\overline{X}}\right] = nE\left[\frac{1}{\sum_{i=1}^{n} X_i}\right] = \frac{n}{n-1}\lambda$$

and $\frac{1}{\overline{X}}$ is not an unbiased estimator for λ .

c) With $a_n = \frac{n-1}{n}$ we know that $\frac{a_n}{\overline{X}}$ is an unbiased estimator for λ . Exercise 2: We consider the random sample (X_1, X_2, X_3) .

- a) Find expressions for
 - a) $Y_1 = \frac{1}{4}(X_1 + 3X_2)$
 - b) $Y_2 = \frac{1}{3}(X_1 + X_2 + X_3)$
 - c) $Y_3 = \frac{1}{9}(2X_1 + 3X_2 + 4X_3)$

only using the variance an the expectation of X_1 .

- b) Which of the statistics Y_1, Y_2, Y_3 are unbiased estimators for the expectation and the population?
- c) Which estimator you would use if you had to estimate the expectation?

Solution:

a) a) $E[Y_1] = E[X_1]$ and $Var(Y_1) = \frac{10}{16}Var(X_1)$ b) $E[Y_2] = E[X_1]$ and $Var(Y_2) = \frac{1}{3}Var(X_1)$ c) $E[Y_3] = E[X_1]$ and $Var(Y_3) = \frac{29}{81}Var(X_1)$

- b) all
- c) Y_2 (smallest variance = lowest risk)

Exercise 3: Like in Exercise 2 we consider a random sample (X_1, X_2, X_3) and let Y_2 be like in Exercise 2 $(Y_2 = \frac{1}{3}(X_1 + X_2 + X_3))$. Compute the variance and the expectation of

- a) $S_1 = \frac{1}{3} \{ (X_1 Y_2)^2 + (X_2 Y_2)^2 + (X_3 Y_2)^2 \}$
- b) $S_2 = \frac{1}{2} \{ (X_1 Y_2)^2 + (X_2 Y_2)^2 + (X_3 Y_2)^2 \}$
- c) Which of the estimators S_1 and S_2 is an unbiased estimator for $Var(X_1)$?

Solution:

a)
$$E[S_1] = \frac{2}{3} \operatorname{Var}(X_1)$$

b)
$$E[S_2] = \operatorname{Var}(X_1)$$

c) S_2

You do not have to compute the variances.

Exercise 4: The quality control of a company checks n products for their functionality.

- a) Based on an appropriate sample (X_1, \ldots, X_n) give an estimator for the fraction of faultily products of the whole production of the company.
- b) Verify whether the chosen estimator is unbiased and calculate the variance.

Solution:

a) $\hat{\pi} = Y/n$ where Y is the number of faultily products in the sample

b)

$$E[\hat{\pi}] = \frac{1}{n}np = p$$

p is the fraction of faultily products in the whole production. $Y \sim B(n, p)$

$$\operatorname{Var}(\hat{\pi}) = \frac{1}{n^2} \operatorname{Var}(\mathbf{Y}) = \frac{p(1-p)}{n}$$

since $Y \sim B(n, p)$ and therefore Var(Y) = np(1-p)

Exercise 5: Assume you want to determine the number of fishes in a lake, denoted as N. In order to do so, you first angle k fishes, mark them and throw them back in the lake. Now you fish until you catch a marked fish. Let X_1 be the number of fishes (after having caught the fishes you throw them back in the lake.) You repeat this procedure n-times which yields the results X_2, \ldots, X_n . Assume that the probability p for catching a marked fish is p = k/N.

a) Using only X_1 find an unbiased estimator for N and compute its variance.

- b) Now using X_1, \ldots, X_n find an unbiased estimator for N and compute its variance.
- c) Which estimator is better? a) or b)?

Solution:

a) Due to the experimental set-up we know that $X_1, X_2, \ldots, X_n \sim Geo(p)$ are independent and identically distributed. Since N = k/p we know that $k \cdot X_1$ is an unbiased estimator for N because

$$E[k \cdot X_1] = kE[X_1] = \frac{k}{p} = N.$$

The variance of the estimator is

$$\operatorname{Var}(kX_1) = k^2 \operatorname{Var}(X_1) = \frac{k^2(1-p)}{p^2}$$

b) $k \frac{X_1 + \dots + X_n}{n}$ is also an unbiased estimator for N since

$$E\left[k\frac{X_1+\ldots+X_n}{n}\right] = \frac{k}{n}\sum_{i=1}^n E[X_i] = \frac{k}{p} = N.$$

Due to the independency, the variance of this estimator is given by

$$\operatorname{Var}\left(k\frac{X_1 + \ldots + X_n}{n}\right) = \frac{k^2}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{k^2(1-p)}{np^2}$$

c) Both estimators are unbiased but the second one is the better one because its variance is smaller.