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Abstract. It is shown that the spectrum of a uniformly elliptic operator on LP(Q) with Dirichlet 
or Neumann boundary conditions is independent of p e [1, oo). 

0. Introduction. Let Q C RN be an open set and let Tp = (Tp(t))t>0 be 
consistent Co-semigroups on LP(Q) with generators Ap (1 < p < oo). It is natural 
to ask whether the spectrum cr(Ap) of Ap is independent of p e [1, oo). This is not 
the case in general (see Hempel-Voigt [13], [14], Davies [9, 4.3], Jorgens [15]); here 
we give a particularly simple example: if 

(Apf)(x) = -x f \ x ) 

on Lp(0, oo), then cr(Ap) Pi cr(Aq) = 0 for p ^ q\ see Section 3. 
Our main result is the following: assume that A2 is self-adjoint and T2 satisfies an 

upper Gaussian estimate. Then cr(Ap) is independent of p e [1, oo). 
Gaussian estimates have been studied extensively; see the books of Davies [9], 

Robinson [21] and Varopoulos, Saloff-Coste, Coulhon [27]. In particular, if Ap is a 
self-adjoint second order differential operator with Dirichlet or Neumann boundary 
conditions such estimates are known to hold, and thus, by our result, cr(Ap) is inde-
pendent of p e [1, oo). Also, if Ap — A — V is a Schrodinger operator on LP(RN) 
Gaussian estimates have been established (see [24]). Thus our result generalizes that 
of Hempel-Voigt [14] who prove p-independence in that case. In fact, we use the 
same strategy as Hempel and Voigt, and show that the resolvent consists of integral 
operators whose kernels can be estimated. But instead of regularizing by considering 
powers of the resolvent as in [14] we regularize by the semigroup (see (6.9)). This 
simplifies the proof and gives more precise results : we obtain that the resolvent 
consists entirely of regular integral operators (cf. [4]). 

The paper is organized as follows. In Section 1 we consider the much easier case 
where Q is bounded. Consistency of the resolvents is studied in Section 2. In fact, 
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the counterexamples in Section 3 show not only that the spectrum may vary with p 
but also that R(X, Ap) and R{X, Aq) may not be consistent for X e p(Ap) Pi p(Aq) 
(see also [6] and [12]). The main results are formulated in Section 4 and proved in 
Section 6. Examples are described in Section 5. 

1. Subspaces. Let E,F be Banach spaces such that F E (by this we mean 
that F is a subspace of E and the inclusion is continuous). Let A be an operator on E. 
By a (A) we denote the spectrum and by p(A) = C\cr (A) the resolvent set of A. The 
resolvent of A in A. e p (A) is denoted by R(A., A) = (X — A) - 1 . We denote by A F the 
partof A in F, i.e., AF is given by D(AF) = {x e D(A)DF : Ax e F j , AFx = Ax. 

Proposition 1.1. Assume that there exists /x € p(A) such that R(JJL, A)F C F 
and that there exists k e N such that D{Ak) C F. Then cr(A) = cr(AF) and 
R(X, AF) = R(X, A)\F for all X E p(A). 

Proof, a) Let X 6 p(A). Iteration of the resolvent equation R(X, A) = #(/x, A) + 
(/x - X)R(fj,, A)R(X, A) yields 

k 
R(X, A) = ] T ( / x - X)j-{R(n, A)j + ( f j . - X)k R(/JL, A)k R(X, A) . (1.1) 

j=i 

This shows that R(X, A)F c F. It is now obvious that X e p(AF) and R(X, AF) = 
R{X,A)\F. 

b) Conversely, let X e p(AF). The space D(Ak) is a Banach space for the norm 
IWID(A') = IIO - A)kx\\E and D(Ak) E. Since F E it follows from the 
closed graph theorem that D(Ak) ^ F. Note that R(fi, A)k is an isomorphism of E 
onto D(Ak). Thus 

k 
Qx := £ ] ( /x - A)jx + (/x - X)kR(X, AF) tf(/x, A)kx (x e E) 

defines a bounded operator on E. Moreover, for x e E, Qx e D(A) and 

k 
(X - A)Qx = ^ { ( / x - X)j-lR(pi, A)j~xx - (/x - XV A ) M 

7 = 1 
+ (p-X)kR(p,,A)kx = x. 

Since for x e D(A), AQx = QAx, it follows that A e p(A) and Q = A). 

Remark. The situation described in Proposition 1.1 had been considered in [5] in 
order to study regularity of the Cauchy problem. 

Examples 1.2. Let £2 c be a bounded open set. Assume that Tp = (Tp(t))t>Q 

are consistent C0-semigroups on LP(Q) with generator Ap, 1 < p < oo. Assume 
furthermore that for some K N , D(Ak) C L°°{Q). Then cr(Ap) is independent 
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of p € [1, oo). A concrete case is A the Dirichlet Laplacian or Neumann Laplacian 
(assuming that Q has the extension property in the latter case). Then the hypothesis 
is fulfilled for k > 0 (cf. Section 5). In that case one can also use Proposition 2.6 
below since the resolvent is compact (cf. [9, Theorem 1.6.4]). 

2. Consistency of the resolvent. Let E, F be two Banach spaces. We assume 
that there exists a topological vector space G such that E G and F G. 

Definition 2.1. Two operators BE e £{E) and Bp e £ ( F ) are consistent if 

Bex = BfX (.xeEDF). 

Let TE and 7> be Co-semigroups on E and F, respectively, with generators A E and 
AF, respectively. We assume that TE and 7> are consistent, i.e., that 7^ (0 and 7>(f) 
are consistent for all t > 0. We will see below (Section 3) that this does not imply in 
general that R(\, AE) and R(A., AF) are consistent for all k e p{AE) n p(AF). 

Proposition 2.2. The set U of all k e p(AE) H p{AF) such that R(k, AE) and 
R(A., Ap) are consistent is open and closed in p(AE) f! p(Ap). 

Note that E 4- F is a Banach space for the norm 

|\u\\E+F = inf{||x|U + \\y\\F ' x e E, y e F, u = x + y} 

and E O F is a Banach space for the norm 

INUnp = I M I E + \\V\\F-

The injections E(1F^E^-+E + F, E C\ F ^ F E + F are continuous. In 
particular, if xn e E 0 F, xn —• x in E and xn —• y in F, then x = y and x„ -> x in 
E H F. 

Proof of Proposition 2.2. It follows from the remark above that U is closed in 
p(AE) O p(A/r). Let A.o e U. Let e > 0 such that {k e C : |A. - k0\ < s] C 
p ( A £ ) H p ( A F ) . Then for x e EOF, 

oo 
AE)x = ^ ( A o - Azr)n+lx 

n=0 

and 00 
A f)X = ^ ( A o - X)n/?(X0l Ap)n+\ 

n=0 

where \k — X0| < s. Since R(k0, AE)n+{ and R(k0, AF)n+[ are consistent, it follows 
from the remark above that R(k, AE) and R(k, Ap) are consistent. • 

Recall that for x, y e E, 

x € D{Ae), Aex = y iff f TE(s)yds = TE(t)x - x (f > 0). (2.1) 
Jo 

In the following we assume that E Pi F is dense in E and in F. 
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Proposition 2.3. Let X e p(AE). Assume that there exists Q e C{F) which is 
consistent with R{X, AE). Then X e p(AF) and R(X, AF) = Q. 

Proof. We can assume that X = 0 (considering AE — X otherwise). It follows from 
(2.1) that 

L 
Hence 

' TE(s)yds = TE(t)A~E
{y - A~E

ly 0> € E, t > 0). 
o 

f TF(s)yds = TF{t)Qy - Qy (f > 0) 
Jo 

for all y e E 0 F, and by density, for all y e F. It follows from (2.1) (with E replaced 
by F) that Qy e D(AF) and AFQy = y for all y e F. Since QTF(t)y = TF(t)Qy 
if y e E O F, it follows that Q and TF{t) commute (t > 0). Hence AFQy = QAFy 
if y e D(AF). • 

The following is a converse of Proposition 2.3. 

Proposition 2.4. Let X e p(AE) n p(AF). If R(X, AF)(E n F) c E n F, tfzerc 
(A., A#) and R(X, AF) are consistent. 

Proof. We can assume that X = 0. Let x e E fl F. By hypothesis AJ[x e E O F. 
Hence 

f Te(S)X ds = f Tf(S)X ds = TF(t)A-F
xx-A-F

lx = TE(t)A~F
{x-A-lx (t > 0) . 

Jo Jo 

It follows from (2.1) that A ^ x E D(AE) and AjE(A^1X) = x ; i.e., AJlx = A^JC. 

Proposition 2.5. Assume that 
(a) T £ ( 0 F C F /or some * > 0 or 
(b) D(A* ) C F /or some k e N. 

Then R(X, A E) and R(X, A F) are consistent for all X e p(AE) D p(AF). 

Proof, (a) Let X e p(AE) 0 p(A F ) . We can assume that X = 0. Let x e E n F. 
Then by (2.1), 

Aglx = TE(t)AE
lx — f TE(s)xds = TE(t)Azlx- [ TF(s)x ds e E n F. 

Jo Jo 

It follows from Proposition 2.4 that A^1 and A^1 are consistent. 
(b) If is larger than the type of TE and 7>, then R(/JL, AE) and R(/JL, AF) are 

consistent since they are the Laplace transforms of the consistent semigroups. Let 
X e p(AE) n p(AF). It follows from (1.1) that R(X, AE)(E n F) c E fl F. Thus 
the claim follows from Proposition 2.4. 
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Proposition 2.6. Assume that AE and AF have compact resolvent. Then cr(AE) = 
cr(AF). 

Proof. Since p(AE) fl p{AF) is convex, /?(/z, AE) and AF) are consistent for 
ail /x 6 p{AF) H p(AF). 

Let Xo 6 p(AF). Since a (A F) consists of isolated points, there exists e > 0 such 
that [X e C : 0 < |A. - XQ\ < £} C p(AE) n p(AF). Since A.0 e P (A f ) , one has 

[ R(X,AF)dX = 0. 

By consistency, it follows that 

f R{X,AE)dX = 0. 

Hence, XQ e P(AE). 

3. Counterexamples. In [13], [14] an example of a generator on Lp is given 
whose spectrum depends on p e [1, oo). However, the spectrum of the resolvent is 
computed, reducing the problem to bounded operators which have been investigated 
in detail (see Jorgens [15, p. 194, 195], Boyd [7], Auterhoff [6], Schaefer [23]). Here 
we give an easy direct example (see also [1] for relations with the asymptotic behavior 
of the semigroup). 

1. Define the consistent Co-groups Tp on Lp{0, oo) by 

(Tp(t)f)(x) = f(e-(x) {te R), 

1 < p < oo and denote by Ap the generator of Tp. Then 
( a ) a ( A p ) = { A e C : R e A = l } ; 

(b) R(\, Ap) and R{X, Aq) are not consistent whenever p < q and ~ < Re X < ^ ; 

(c) Ap is given by ( A p f ) ( x ) = - x f ( x ) , 

D(AP) = {f e Lp{ 0 , oo) : x f \ x ) G Lp(0, OO)}. 

Proof. For / e Lp(0, oo) one has a00 l 
\f{e~'x)\"dx)P =ehf\\P-

Hence (e p Tp(t))t<=w is an isometric group on Lp(0, oo). It follows that its generator 
Ap — j has spectrum in /R, i.e., cr(Ap) C j + iR. Let ^ < X < Since the type 
of Tq is ^ and the type of (Tp(—t))t>o is — ̂  we have 

roo 
R(X,Aq)= e~k'Tq(t)dt>0 

Jo 
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R(k, Ap) = —/?(—X, —Ap) = - / e~Xt Tq(—t)dt < 0. 
Jo 

Thus R(X, Ap) and Aq) are not consistent. It follows from Proposition 2.2 that 
cr(AP) = = ^-H'M and that/? (A, Ap)and/?(A., A9) are not consistent 
either if ^ < Re X < We have shown (a) and (b). The last point (c) will become 
clear from 2. • 

2. Let 
(Cpf)(x) = - f f(y)dy, l<p<w. 

x J o 

Then Cp is abounded operator on Lp(0, oo), ||CP|| < , and 

cx(Cp) = { T r ^ — : s e M } u { 0 } , P 

so that (7(Cp) fl <j(C9) = {0} if 1 < p, g < oo, p ± q. 
This has been proven by Boyd [7]. The norm estimate of Cp is known as Hardy's 

inequality. We obtain both as an easy consequence of 1. 

Proof. Let 1 < p < oo. Then by 1., 1 e p(Ap) and 

nco } rx 
(R( 1, Ap)f)(x) = / e~tf{e-tx)dt = - / /(y)Jy. 

Jo x Jo 

Hence Cp = /?(1, Ap). Since || 7^(011 = we have 

f°° , < 1 p 
Jo 1 - - P ~ I 

Since by [18, p. 67], <r(/?(l, Ap)) = { y ^ : X e a(Ap)} U {0} the assertion on 
the spectrum of Cp follows from 1. Now 1(c) is an immediate consequence of 
R(\,AP) = CP. • 

3. Let Bp = (Ap — \)2. Then Bp generates a holomorphic semigroup since 
Ap — \ generates a C0-group on Lp(0, oo) (see e.g. [18, Corollary p. 36]). The group 
generated by A2 — j is isometric, thus B2 is self-adjoint. By the spectral mapping 
theorem, one has 

G(B2) = ( -oo ,0 ] , A(BP) = { ( 1 - 1 + is)2 : s eR] 

(1 < p < oo). Hence a(Bp) fl cr(Bq) = 0 whenever 1 < p, g < 2, p ^ q . 
This follows immediately from 1. 
It is easy to see that Bp is given by 

(Bpf)(x)=x2f" + 2xf' + £ 
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D{BP) = {f e 1 / (0 , 1) : x f ' e Lp(0, 1), x1 f" e Lp(0, oo)}. 

Thus Bp is a degenerate elliptic operator of second order. (It is precisely this example, 
up to addition of a constant, which is mentioned by Hempel-Voigt [14, p. 243]). 

We will see below that the spectrum of second order uniformly elliptic operators 
on euclidean spaces is /^-independent. 

4. Define Ap on Lp(R, exdx) by 

APf = /', 

DiAp) = {f e Lp{R, exdx) : f e Lp{R, exdx). 

Then Ap generates a Co-group and cr(Ap) = j + iR. Thus, the Laplacian A2
p on 

LP(R, exdx) generates a holomorphic semigroup and 

a(Aj) = { ( i + is)2 : s e R}; 1 < p < oo. 

Proof. In fact, the mapping / / o log defines an isometric isomorphism [/ of 
LP(R, onto 1 / (0 , oo) (1 < p < oo). Let Tp be the C0-group on Z/(0, oo) 
considered in Example 1. Then Tp(t) = U~lTp(t)U defines a Co-semigroup on 
Lp(R,exdx) given by (Tp(t)f)(x) = (Tp{t)Uf){ex) = = f ( x - t). 
The operator Ap is the generator of Tp. The result follows now from 1. by similarity. 

Remark. Davies, Simon and Taylor [10] show that the spectrum of the Laplacian 
on hyperbolic space and on many Kleinian groups does depend on p. On the other 
hand Sturm [25] has shown p -independence of the spectrum of the Laplace-Beltrami 
operator on certain Riemannian manifolds. 

5. Let Tp on Lp{ 1, oo) be given by ( T p ( t ) f ) ( x ) = f(elx). Then it is not difficult 
to show that a(Ap) = {X e C : Re A < Moreover, D(AP) c L°° fl Lp C 
Lq(\, oo), 1 < p < co(cf. [1]). Thus in Proposition 1.1, the assumption that F C E 
is essential. 

4. The main results. Let Q cRN be an open set and let T be a C0-semigroup on 
L2(Q) with generator A. We identify L2(Q) with a subspace of L 2 ( R N ) by extending 
functions by 0. 

Denote by Gp the Gaussian semigroup on Lp(RN), i.e., Gp is given by Gpf — 
kt * f where 

Definition 4.1. We say that T satisfies an upper Gaussian estimate if there exist 
c > 1, b > 0 such that 

\T(t)f\ <cG2{bt) | / | ( 0 < f < l ) (4.1) 
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for all / e L2(Q). 

In the following we assume that (4.1) holds. Let w = log c. Then 

\T(t)f\<cew,G2(bt)\f\ (t>0,feL2). (4.2) 

Proof. It follows from (4.1) that 

\T(n)f\ = \T(l)nf\ < cnG(bn)\f\ (n e N). 

Let t > 1. Choose n e N such that s := t - n e [0, 1). Then 

\T(t)f\ = \T(n)T(s)f\ < cnG(bn) c G(bs)\f\ 

= cn+lG(bt)\f\ = cenwG(bt)\f\ < cetwG(bt) |/|. • 

As a consequence there exist consistent semigroups Tp on LP(Q), 1 < p < oo, 
such that T = T2 and 

Proof. Since G2(t) has bounded extensions to LP(RN), it follows that there exist 
consistent operators Tp(t) e C(LP) such that T2(t) = T(t) (t > 0). The semigroup 
property follows by density. It remains to prove strong continuity. Let 1 < p < oo. 
It suffices to show that T(t)f f (t ± 0) in Lp for f e Lp n L2 . Let f eLpHL2 

and let tn 0. Let /„ = T(tn)f, gn = cewt"G(btn)\f\. Since it suffices to show that 
every subsequence of fn has a subsequence which converges to / , we can assume 
that fn—>f almost everywhere (observe that fn -> f in L2). Taking a subsequence 
again we can assume that \\gn — gn-\ ||p < 2~n. Let 

Then h e Lp{RN) and \ f n \ < gn < h (n e N). Now it follows from the dominated 
convergence theorem that fn -> / in Lp. 

Remark. Here strong continuity follows from domination. It is not obvious from 
the consistency property alone; cf. Voigt [28]. 

We denote by Ap the generator of Tp. By p(Ap) — C\a(Ap) we denote the 
resolvent set of Ap and by Poo(Ap) the connected component of p(Ap) which contains 
a right semi-plane {X e C : Re X > w} for some we R. 

Our main results are the following. 

Theorem 4.2. Assume that T admits an upper Gaussian estimate. Then poo(Ap) is 
independent of p € [1, oo). 

\TP{t)f\ < cewt Gp(bt)\f\ (f 6 Lp, t > 0). (4.3) 

n>2 
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Corollary 4.3. Assume that A is self-adjoint and that T admits an upper Gaussian 
estimate. Then a{Ap) is independent of p e [1, oo). 

Proof. Since a (A2) C Rone has PooOh) = p(A2). It follows from Theorem 4.2 that 
Poo(Ap) = p(A2), p 6 [1, oo). Hence a(Ap) c R and so Poo{Ap) = p(Ap). • 

It will be seen in the proof of Theorem 4.2 that the resolvent of Ap consists of 
regular integral operators. Here we use the following definition. 

Let 1 < p, q < oo. An operator B e C(LP, Lq) is called an integral operator if 
there exists a measurable function K : Q x £2 C such that for all / € LP(Q), 

K(x,.)/(.) <s x — a.e. and 

(Bf)(x) = [ K(x, y)f(y)dy, x - a.e. 
./a 

In that case we say that B is represented by the kernel K and we write B ~ K. If in 
addition also \ K\ defines an integral operator in £(LP(Q), Lq(Q)) we say that B is a 
regular integral operator (see [4]). If B ~ K, then B > 0 if and only if K(x, y) > 0, 

y almost everywhere. 
Moreover, if B~ K and if B0 e£(Lp,Lq) satisfies 

\B0f\<B\f\ ( f e L p ) , 

then Bq is an integral operator and its kernel Âo satisfies (*>)>)I < K(x,y) x,y 
almost everywhere (see [22, IV. 9]). 

Now we are able to formulate the above mentioned assertion precisely. 

Theorem 4.4. Let A be self-adjoint and assume that T admits an upper Gaussian 
estimate. Then R(X, Ap) is a regular integral operator for all X e p(Ap) = p(A) 
(1 < p < oo). Moreover, if N = 1 then the kernel of R(X, Ap) is bounded (X e 
p(Ap) , 1 < p < oo). 

Remark 4.5. It has been shown in [19] that Tp is a holomorphic Co-semigroup of 
angle n/2 (I < p < oo) whenever A is self-adjoint and T admits an upper Gaussian 
estimate. Regularity results for the Cauchy problem defined by i Ap are obtained in 
[11]. 

5. Examples. Here we describe the class of operators to which our results can be 
applied. Let Q c R^ be an open set. 

Example 5.1 (the Laplacian). a) The Dirichlet-Laplacian is defined on L2(Q) by 
£>(A) = { / € (£2) : A / € L 2 (^)}, A / = A / (see [8] for the definition of the 
Sobolev spaces Hl(Q), 
_ b) Tfoe Pseudo-Dirichlet-Uiplacian is defined or^L2(Q) by D(A) = {f e L2(Q) : 
7 e Hl(R"), A / G L2(£2)}, A / = A/ , where / denotes the extension by 0 of / 
to R ^ and A / is defined as an element of X>(Q)'. See [2], [3] for this example. Note 
that the Pseudo-Dirichlet and the Dirichlet-Laplacian coincide if Q is of class C1 . 
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c) The Neumann-Laplacian is the operator A on L2(£2) such that — A is associated 
with the form 

a(u,v)= / VuVvdx 
Jn 

on L2(Q) with D(a) = H[{Q). 
If A is any one of these three operators, then A is self-adjoint and generates a 

Co-semigroup T on L2(£2) which satisfies an upper Gaussian estimate. (In the case-
c) we assume in addition that £2 has the extension property (see [9])). In fact, in the 
cases a) and b) one has 0 < T(t) < G(t) (t > 0); see [2], [3], [9], [20]. In the case 
c) we refer to [9, Theorem 3.2.9 p. 90]. 

Let Tp be the consistent semigroups on LP(Q) such that T^ — T and denote by 
Ap the generator of Tp. We conclude from Corollary 4.3 that o(Ap) = <T(A2) ( p e 
[1, oo)). Moreover, R(X, Ap) is a regular kernel operator for all A. e p(Ap) (with 
bounded kernel if N = 1). 

Remark. 1) The p-independence of the spectrum in the case a) and b) follows also 
from Schreieck-Voigt [26] ; in fact, in that case the operator is of the form "A — /x" 
with pi a suitable measure. 

2) It has been proved before in [4] that R(X, Ap) is a regular integral operator for 
all X e p(Ap) if £2 is bounded. 

3) If Q is bounded one can also use Proposition 1.1 to obtain p-independence of 
the spectrum. 

Example 5.2 (Uniformly elliptic operators of second order). Let a^ e Lloc(£2) 
such that ay = a-}i and 

N 

i j = 1 

for all £ e M.N, where a, f$ > 0. Define the bilinear form 

N C 
a(u,v)= ^ / aij(x)DiuDjv dv. 

i J 

a) Let D(a) = Then a is closable. Let - A be the operator on L2(Q) 
which is associated with a. We call A a uniformly elliptic operator with Dirichlet 
boundary conditions. 

b)Le tD(a ) = Hl(Q). Then a is a closed form. L e t - A be the operator on L2(Q) 
associated with a. We call A a uniformly elliptic operator with Neumann boundary 
conditions. 

Let A be a uniformly elliptic operator with Dirichlet or Neumann boundary con-
ditions. Then A is self-adjoint and generates a positive semigroup T on L2 . Assume 
that Q has the extension property if Neumann boundary conditions are considered 
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(but Q may be arbitrary in the case of Dirichlet boundary conditions). Then T sat-
isfies an upper Gaussian estimate (see [9, Corollary 3.2.8 p. 89 and Theorem 3.2.9 
p. 90]). Let Tp be the consistent semigroup on Lp such that T2 = T and denote by 
Ap the generator of Tp (1 < p < oo). Then cr(Ap) is independent of p e [1, oo). 
Moreover, R(X, Ap) is a regular integral operator for all X e p(Ap). 

Example 5.3 (Schrodinger operators). Let A = A - V on L2(RN) where V : 
RN R is measurable such that is in Kato's class and V+ e L / ^ R * ) . Then A 
(with suitable domain) is a self-adjoint operator which generates a Co-semigroup T 
on L2(RN). Then by [24, Prop. B.6.7], T satisfies an upper Gaussian estimate. Let 
Tp be the consistent Co-semigroup on Lp such that T2 = T and Ap the generator 
of Tp. Then by Corollary 4.3, cr(Ap) = cr(A2) (1 < p < oo). This result is due to 
Hempel and Voigt [14]. 

Example 5.4 (Non-selfadjoint examples). Let A be any of the above operators and 
let Mp e C(LP) be given by Mpf = mf where m : £2 -> C is a bounded measurable 
function. Then by Theorem 4.2 the set Poo(Ap + Mp) is independent of p e [1, oo). 

6. Proofs of the main results. Let Q c RN be open. The following criterion is 
well-known (see, e.g., [4] or [17] for a proof and references). 

Proposition 6.1. The formula 

(BKf)(x)= [ K(x, y)f(y)dy (feL[(Q)) (6.1) 
JQ 

establishes an isometric isomorphism K BK of L°°(£2 x £2) onto 

We also use the following fact (see [22, Chap. IV]). 

Proposition 6.2. Let 1 < p, q < oo. Let B e £(LP(Q), Lq(Q)) be an integral 
operator, B ~ K. Let B0 e £(LP(Q), Lq(Q)) such that 

\B0f\<B\f\ ( f e L p m . 

Then BO is a regular integral operator and \ KQ(X, y)\ < K(x, y) x, y almost every-
where, where Ko ~ Bo. 

In the following we keep the hypotheses and notations of §4. In particular, Tp, 
1 < p < oo is a family of consistent Co-semigroups of LP(Q) such that the estimate 
(4.3) holds. The generator of Tp is denoted by Ap. 

For e e R " , x e RN we let 

N 
ex = ^ T s j X e . 

i 
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Let LP = Lp(£l), Le = LP(Q, e~P£Xdx) := { / : £2 C : \f{x)\Pe~PXEdx < 
00}, where 1 < p < 00, e e RN. Then (Uepf)(x) = e~£X f ( x ) defines an isometric 
isomorphism of Lp

e onto Lp. Hence Te^p{t) = U~pTp(t)Ue,p defines a Co-semigroup 
fs%ponL§. 

It follows from (4.3) and Proposition 6.2 that Tp{t) is an integral operator, say 
Tp(t) ~ K(t, . , . ) ; it is obvious that the kernel does not depend on p. Consequently, 

where 

Ks(t,x,y) = ee{x-y)K(t,x,y). (6.2) 

Example 6.3. Let & > 0 and consider the semigroup Sp(t) = Gp(bt). Let e e R ^ . 
Let ? f i i P (0 = U~l

pTp(t)U£,p. Then 

S8tP(f) = exp (bte2) Gp(bt) V(2bte) {t > 0), (6.3) 

where (V(a)f)(x) = f ( x -a) (x e R^ , a e R N ) . In fact, 

which is (6.3). 

Proposition 6.4. 1. Lef e € R^ , 1 < p < 00. 77ien 

(a) f f f i P(r)(Lf H L") c L? n L p (r > 0) ; 
(b) there exists a C^-semigroup TEiP on Lp such that TBtP(t)f = Te,p(t)f (/ e 

Lp r\Lp
e). 

2. There exist M\ > 0, w\ > 0 swc/i tfzar 

l|7i iP(0ll ( f > 0 ) (6.4) 

for all |e| < 1, 1 < p < 00. 

3. Fork > one has 

lim ||R(K, AE,P) - R(K, AP)|| = 0, (6.5) 
|e||0 

where A£iP denotes the generator of Te,p on Lp(£2), 1 < p < 00. 

Proof. It follows from (4.3) that 

\Te,p(t)f\<cew%p(t)\f\ (6.6) 
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(r > 0, f e Lp
e{n) H LP(Q)), where SE,P\s given by (6.3). This implies 1(a). 

Moreover, it follows from (6.3) and (6.6) that TEiP(t) is bounded for the Lp(£2)-norm. 
Thus, there exist TSiP(t) e C(LP) such that TE,p(t)f = TStP^)f (/ e Lp n LE). It 
is clear that TEiP(t + s) = TEiP(t)TEiP(s) (s, t > 0). In order to prove 1(b) it remains 
to show that TEiP(t)f f {t 4- 0) in Lp($l) for all / € LP(Q). Since 7 ^ ( 0 is 
bounded for t e [0, 1], it suffices to consider functions with compact support. 

Let f e Lp such that f ( x ) = 0 for > r, where r > 0. Then 

limsup \\TE,p(t)f-f\\p 

ti o 

< limsup [ (e£X\(Tpme-£ f))(x) - f(x)\)pdx + lim [ (TEp(t)\f\)(x)pdx 

: lim{e,£|r/7 [ 
' ao j\x 

\(Tp(t)(e~£'f))(x) - e~£X f(x)\pdx 
| x | < r 

+ / (cewtSE,p(t)\mx)pdx) 
J\x\>r 

<lim{el£lrp\\Tp(t)(e-£f) - e~£-f\\p + f \cem (SE,p(t)\f\)(x) - \f(x)\pdx} 
J\x\>r 

< 1 ^ 1 1 ^ ^ ( 0 1 / 1 - 1 / 1 1 1 ^ = 0. 

2. Follows from (6.6) and (6.3). 
3. We first show that for 1 > <5 > 0, 

limsup sup | |7i i P(0 - rp(OII = 0. (6.7) 
| e | | 0 8 < t < \ / 8 

In fact, Tp(t) - Te,p(t) ~ K(t, x, y)( 1 - e£{x~y)) (see (6.2)). Since 

|K(t, x, y)(l - e«x-»)\ < ce"' I1 " 

one has for 8 < t < 1/8, 1 ( 7 ^ ( 0 - Tp(t))f\ < const 2*1/1 ( / € Lp), where 
Qeg = g*q£ with q£(x) = e~8x2/4b\l - eBX\. But q£ e Ll(RN) and \\q£\\ 0 
(\e\ ^ 0) by the dominated convergence theorem. Since ||r£)P(r) — 7*p(f)|| < 
const ||ge|| i for 8 < t < (6.7) follows. 

Now let A. > W\. Then for all <5 > 0, 
roo 

limsup | |R(X, Ae,p) - R(k, Ap)\\ < limsup / e~Xt\\Tp(t) - Ts,p(t)\\dt 
\e\i0 JO 

< 2Mi{( f + f° )e~Xtew'tdt} < 2M{{8 + ^ — 
Jo J\/( 

1 

h/s'' ' ~ ' X — u)[ 
Since 5 > 0 is arbitrary, (6.5) follows. • 

It is clear from the construction that the semigroups TEIP on LP and TE^P on 
LE are consistent. Consequently, R(X, Ae^p) and R(X, ASiP) are consistent for 
Re A. > max(cL>(A£I/7); CL>(A£iP)), where a)(B) denotes the type of a semigroup S 
with generator B. Thus we obtain from Proposition 2.2 the following. 
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Proposition 6.5. The operators R(X,AStP) and R(X, Ae,p) are consistent for all 
oo-

Here, for 0 C C open, we let Oqo be the connected component of 0 which contains 
a right halfplane {X € C : Re X > w} for some w e R. 

Remark. We do not know whether the resolvents R(X, AStP) and R(Xt ACtP) are 
consistent for all X e (p(Ae>p) 0 p(A6tP)). Also in the proof of [14, Proposition 3.8] 
a connectedness argument is needed, even though it is not carried out there explicitly. 

Note that by construction, p(Ae,p) = p(Ap) and 

AStP)f = e£X(R(X, Ap)){e~£xf) (/ € L>) 

for all X e p{Ap). Thus Proposition 6.5 can be reformulated by saying 

R&,A£,p)f = e£X(R(X,Ap)(e-exf)) (6.8) 

w h e n e v e r / , e~£x f E Lp, X e ( p ( A S Y P ) f ! P(AP))OQ. 

The following proposition expresses the upper semicontinuity of the spectrum for 
unbounded operators (cf. [16, p. 212]). 
Proposition 6.6. Let A be an operator on X, X e p(A). Let K he a compact 
subset of p(A). Then there exist e > 0 and c > 0 such that for M operators-B 
on X with X e p(B) and ||/?(A., B) - R(k, A)|| < e one has K C p(B) and 
suV^eK \\R(^B)\\<c. • 

Proof. We can assume X = 0. Let M = supMeA: \\p - p2R(p, A)|| and e 
Assume that B is an operator such that 0 e p{B) and || A"1 — B~l || < e. Let \L e 

Then (^ — A - 1 ) - 1 = [^(A —/x)A - 1] - 1 = —pAR(p, A) = /x —/x2i?(/x, A). 
Hence || ( I - A " 1 ) " 1 . ( i? - 1 — A - 1 ) | | < ± ; thus Q = ( / - ( I - A " 1 ) " 1 ^ " 1 - A"1)) 
is invertible and || Q~l || < 2 . Consequently, 

( p - B ) = - B~l)B = - A"1 + A"1 - B~[)B 
PI P 

= " A~{){I - ( - - A~l)~l(B~l - A~l)}B 

is invertible and R(p, B) = —B~lQ~l(I - pR(p, A)). Moreover, | | R ( p , 5) | | < 
P - 1 I | 2 supXeJf ||J - A)|| = : c. • 

We use the following notation. Let 1 < p,q, r < oo, B e C(LP). Then we set 

I|5||£(LUO •= sup {\\Bf\\r : / € Lp n L\ \\f\\q < 1}. 

Proof of Theorem 4.2. Let I < p,q < oo, p, e POO(Ap). We have to show that 
p, G p(Aq). By Proposition 2.3 it suffices to show that Ap)\\c{U) < oo. Since 

R(P,AP)= [ E-^TPWDT + E-FITPIDRFAAP), • (6 .9) 
Jo 
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it suffices to show that 

\\Tpa)R(fjL, Ap)\\C{LQ) <cxd. (6.10) 

Let K be the image of a continuous path relating fi with a point in {1 G C : 
Re X > u;i}. By Proposition 6.4.3 and Proposition 6.6 there exists £q > 0 such that 
K C p(ASxP) whenever |e| < s0. Consequently, \x e [p(A8tP)f)p(Ap)]00-. It follows 
from (6.3), (6.6) that 

s u p \\T£TP(^)\\C(0,LP) < o o a n d s u p < o o . 
|e|<e0 kl<eo 

Since T8tP(l)R(n, Ae%p) = Ae,p)TetP$), it follows that 

c{ := sup \\Ts,p(l)R(fi, Ab%p)\\c{lkl^) < oo. (6.11) 
\e\<eo 

It follows from Proposition 6.1 that 7"e, p (1) R Qx, A Ci p) is given by a kernel Ks such that 
\Ke(x,y)\ <c\ (x,y e Q) almost everywhere. In particular, K0 ~ Tp(l)R(/j,, Ap). 
Since by (6.8), 

Te,p(l)R(^ AStP)f = eEXTp(l)[e-£x(e£XR(K Ap)(e~£x f))] 

= e£X(Tp(l)R(k,Ap))(e~£Xf) 

whenever / , e~EX f e Lp, it follows that 

KE(x,y) = K0(x,y)e£(x->) x,y- a.e. 

Hence \Ko(x, y)%e£{x~y)\ < c\ (x, y) almost everywhere whenever \e\ < £q. Conse-
quently, \K0(x, y)| < c{e-Eo{x-yl (x, y) almost everywhere. This implies (6.10). 

Proof of Theorem 4.4. We use the identity (6.9). It has been shown above that 
e^TpiDRfa, Ap) is given by a kernel K0 satisfying \K0(x, y)| < conste~e° lx~yl 

(x, y e Q), where £o > 0. 
On the other hand, since Tp{t) is a positive integral operator, it follows from 

[4, Theorem 2.1] that / J e"lltTp(t)dt is a regular integral operator. Thus, by (6.9), 
R(fi, Ap) is a regular integral operator. Finally, if N = 1, then the kernel K(t,x, y) 
of Tp(t) is dominated by const. t~~i(x,y e > 0). Thus ^ ( O H ^ i ^ c o ) < 
const 2. It follows that II / ; e'"'Tp(t)dt\\C(L\ < oo. Thus, by Proposition 6.1 
the kernel of /Q

l e'^Tp^dt is bounded and identity (6.9) implies that R(jll, Ap) has 
a bounded kernel as well. 
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