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1 Introduction

The term entropy, which will be (as the Reader may expect) the leading concept, the key
idea of the course, was born in 1865 by the mind of Rudolf Clausius, who used this word
to denote the amount of energy which is no longer usable for physical work (e.g. heat
produced by friction). In 1877, Ludwig Boltzmann suggested a statistical interpretation
of the concept of entropy, stating the the entropy S of an ideal gas is proportional to the
logarithm of the number of microstates W corresponding to the gas macrostate, i.e. S =
kB logW (carved on his gravestone in Vienna’s Zentralfriedhof). Here kB ≈ 1.38064852×
10−23m2 kg s−2K−1 is the well-known Boltzmann constant, a recurring object in statistical
mechanics. Willard Gibbs gave a similar definition of entropy: S = −kB

∑
i pi log pi, where

pi is the probability of the microstate i, and the summation is on all the microstates
associated to the macrostate.

One of the most celebrated results by Boltzmann is the H-theorem, which states that
the H-function:

H[f ] =

∫
Rd

∫
Rd
f(x, v, t) log f(x, v, t)dxdv. (1)

is nonincreasing in time along the solutions f os the Boltzmann equation. However, since
the entropy S of the system is proportional to −H[f ], this implies that S is nondecreasing
in time, which can be seen as a formulation of the second law of thermodynamics (the
physical entropy of a closed system cannot decrease in time). We will see that the H-
theorem is a kind of prototype for the entropy methods for PDEs.

Before we go on, let us introduce the mathematical convention of “putting a minus in
front of the entropy”: the mathematical entropy equals minus the physical entropy. For
us, an entropy will be, tipically, a convex Lyapounov functional for some PDE, that is,
a functional which will be nonincreasing along the solutions of some partial differential
equation (or system of them).

The results hereby presented can be found in [32].

1.1 A few applications of the concept of entropy

There are many examples which display the usefulness of the concept of entropy in math-
ematics. We discuss here some of them.

Hyperbolic conservation laws. When dealing with systems of hyperbolic conservation
laws, i.e. PDEs like

∂tu+ div f(u) = 0, x ∈ Rd, t > 0, (2)

where f : Rn → Rn×d is the flux, the fact that the equation has no strong solution,
while weak solutions are not unique, can be really annoying. Luckily, the entropy lends
us a hand in such a difficult predicament. An entropy solution of (2) is a weak solution
u : Rd × (0,∞) → Rn of (2) such that for all convex functions h : Rn → R a function
q : Rn → Rd exists such that

∂th(u) + div q(u) ≤ 0
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in some distributional sense. The function h is called entropy density, while q is the entropy
flux. Moreover, the entropy H(u) =

∫
Rd h(u)dx is nonincreasing in time. It turns out that

the entropy solutions are unique.

Kinetic theory. Take the Boltzmann equation

∂tf + v · ∇xf = Q(f, f), (x, v) ∈ Rd × Rd, t > 0, (3)

where f = f(x, v, t) is the system distribution function and Q(f, f) is the (binary) collision
operator. Recall the definition (1) of H, which we will call simply “entropy”. The entropy
production P [f ] is defined as P [f ] := − d

dt
H[f ]. The properties of Q ensure that P [f ] ≥ 0,

and that P [f ] = 0 if and only if f = M , where

M(v) = ρ

(
m

2πkBT

)d/2
e−m|v−u|

2/2kBT

is the so-called Maxwellian, ρ is the particle density, u is the mean velocity, and T is the
temperature. As a consequence d

dt
H[f ] ≤ 0, i.e. H[f ] is nonincreasing in time.

You, curious Reader, may ask: is it true what they say, that f(t)→M as t→∞? If so,
how fast? The usual idea is to consider the relative entropy H[f |M ] := H[f ]−H[M ] ≥ 0
and see if it can be dominated by the entropy production, that is

Φ(H[f |M ]) ≤ P [f ] for some increasing Φ : R→ R such that Φ(0) = 0. (4)

Replacing P [f ] inside (4) with its definition leads to

d

dt
H[f ] + Φ(H[f ]−H[M ]) ≤ 0 t > 0.

Let us assume that H[f(t)] > H[M ] (otherwise f = M , since M can be shown to be a
strict minimum point). Therefore∫ H[f0]−H[M ]

H[f(t)]−H[M ]

ds

Φ(s)
≥ t t > 0.

The integral on the left-hand side of the above inequality must explode as t → ∞. Since
the only singularity of 1/Φ(s) is at s = 0, we conclude that H[f ] → H[M ], and therefore
f → M since H[M ] = minf H[f ]. If Φ(s) = λs, then we deduce that H[f(t)] − H[M ] ≤
e−λt(H[f0]−H[M ]), t > 0.

Bakry-Emery technique. An idea developed first by Barky and Emery in 1985 consists
in estimating the second time derivative of the entropy by means of the first time derivative.
Assume we can prove

d2

dt2
H[f ] ≥ −κ d

dt
H[f ] t > 0,
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for some constant κ > 0. Assume moreover that both d
dt
H[f ], H[f ] tend to zero as t→∞.

Integrating the above inequality in the time interval (t,∞) leads to

− d

dt
H[f ] ≥ κH[f ], t > 0.

Again, Gronwall’s Lemma implies that H[f(t)] ≤ e−κtH[f0].

Cross-diffusion systems. A system of PDEs of the form

∂tu = div (A(u)∇u) x ∈ Ω ⊂ Rd, t > 0, (5)

where u : Ω × (0,∞) → Rn is the vector of the unknowns and A : Rn → Rn×n is the
diffusion matrix, is called a cross-diffusion system. In applications u models chemical
concentrations or population densities, and the matrix A is often not symmetric nor positive
(semi)definite, making any analytical study of (5) tricky. For example, tools like maximum
principles or parabolic regularity theory cannot be applied. However, not everything is lost,
as sometimes cross-diffusion systems have an entropy, i.e. a Lyapounov functional. This
fact provides us with useful a-priori estimates, while it also allows us to make a change of
variables which yields a (often symmetric) positive definite diffusion matrix and makes it
possible to prove nonnegativity and even uniform boundedness of the original variables u
without exploiting any maximum principle. These new variables, which we will call entropy
variables, are simply what is thermodynamics is termed chemical potentials.

1.2 Some ideas involving entropy

We sketch here a few mathematical uses of the entropy.

Long-time behaviour. Let us consider, as a toy problem, the heat equation on the
d−dimensional torus Td = (0, 1)d:

∂tu = ∆u x ∈ Td, t > 0, u(x, 0) = u0(x) x ∈ Td, (6)

where u0 ∈ L1(Td), u0 ≥ 0 in Td is the initial datum. It is well known that (6) has a unique
smooth solution u = u(x, t) having the same mass as u0, i.e.

∫
Td u(x, t)dx =

∫
Td u0(x)dx,

t > 0. Let u∞ =
∫
Td u0(x)dx be this mass, which coincides with the average of u0 since

Td has measure 1. We call u∞ the steady state of the system. We want to show that
u(t)→ u∞ as t→∞ in some sense. How do we proceed?

We can, for example, define the convex, nonnegative functional

H2[u] =

∫
Td

(u− u∞)2dx. (7)

Clearly H2[u] is just the square L2 norm of the difference between u and the steady state
u∞. If we can find an upper bound for H2[u(t)], where u(t) is the solution of (7), and such
upper bound tends to 0 as t→∞, then we have achieved our goal.
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In order to find this upper bound for H2[u(t)], we ask ourselves: How does H2 vary
along the solutions of (6)? The answer is easily found by computing the time derivative
of H2[u(t)]:

d

dt
H2[u(t)] = 2

∫
Td

(u(t)− u∞)∆u(t)dx = −2

∫
Td
|∇u(t)|2dx ≤ 0, (8)

where, in order to obtain the second equality, we integrated by parts and exploited the
periodic boundary conditions. Now we should find an upper bound for the right-hand side
of (8). Poincaré-Wirtingen inequality provides us with the following result:∫

Td
(u(t)− u∞)2dx ≤ CP

∫
Td
|∇u(t)|2dx. (9)

Now we just have to put (8), (9) together to obtain

d

dt
H2[u(t)] ≤ − 2

CP
H2[u(t)] t > 0. (10)

The Gronwall Lemma implies

‖u(t)− u∞‖2
L2(Td) = H2[u(t)] ≤ H2[u0]e−2t/CP t > 0. (11)

Therefore, we proved that u(t)→ u∞ in L2(Td) as t→∞ exponentially with a rate equal
to 1/CP .

What about other metrics? Can we prove, for example, a convergence result in L1(Td)
with a different (possibly bigger) rate? Well, of course we can.

Let us consider the Boltzmann entropy:

H1[u] =

∫
Td
u log

u

u∞
dx =

∫
Td

(
u log

u

u∞
− u+ u∞

)
dx. (12)

Since u log u
u∞
− u+ u∞ = h(u)− h(u∞)− h′(u∞)(u− u∞) with h(u) = u log u− u and h

is convex in (0,∞), we deduce that u log u
u∞
− u + u∞ ≥ 0 and therefore H1[u] ≥ 0. We

take the time derivative of H1[u(t)] and get

d

dt
H1[u(t)] =

∫
Td

log
u(t)

u∞
∆u(t) dx = −4

∫
Td
|∇
√
u(t)|2dx ≤ 0.

Now we need to bound the left-hand side of the above inequality by something proportional
to −H1[u(t)]. This time we exploit the logarithmic Sobolev inequality:∫

Td
u(t) log

u(t)

u∞
dx ≤ CL

∫
Td
|∇
√
u(t)|2dx. (13)

So we deduce
d

dt
H1[u(t)] ≤ − 4

CL
H1[u(t)] t > 0,
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which, thannk to Gronwall’s Lemma, implies

H1[u(t)] ≤ e−4t/CLH1[u0] t > 0.

To get a convergence rate in L1(Td) we can apply Csiszár-Kullback inequality:

‖u(t)− u∞‖L1(Ω) ≤ u∞
√

2H1[u(t)],

and conclude
‖u(t)− u∞‖L1(Ω) ≤ Ce−2t/CL t > 0,

where C > 0 is a suitable constant, depending on H1[u0] and u∞. Therefore, we proved
that u(t)→ u∞ in L1(Td) as t→∞ exponentially with a rate equal to 2/CL.

What about nonlinear equations? The technique works in this context, too. Con-
sider for example the DLSS (Derrida-Lebowitz-Speer-Spohn) equation, modeling quantum
electron transport in a semiconductor under suitable assumptions:

∂tu = −div

(
u∇∆

√
u√
u

)
t > 0, u(0) = u0 ≥ 0 in Td. (14)

Differentiate H1[u] in time along a (nonnegative) solution u(t) of (14):

d

dt
H1[u(t)] = −

∫
Td

log u div

(
u∇∆

√
u√
u

)
dx

=

∫
Td
∇u · ∇∆

√
u√
u
dx = −

∫
Td

∆u
∆
√
u√
u
dx.

It is possible to prove that ∫
Td

∆u
∆
√
u√
u
dx ≥ κ

∫
Td

(∆
√
u)2dx,

where κ = 4d−1
d(d+2)

. At this point we employ the higher-order log-Sobolev inequality∫
Td
u log

u

u∞
dx ≤ 1

8π4

∫
Td

(∆
√
u)2dx.

Let us put everything together to get

d

dt
H1[u(t)] ≤ −4π4κH1[u(t)] t > 0,

which, by Gronwall’s lemma, implies that H1[u(t)]→ 0 exponentially as t→∞ with rate
4π4κ.

At this point we can summarize the above ideas into a general strategy to prove con-
vergence of solutions to PDEs towards a steady state. Let us imagine we have an evolution
equation with the form

∂tu+ A(u(t)) = 0 t > 0, u(0) = u0,
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where u : (0,∞) → B, B is some Banach space with dual B∗, and A : B → B∗ is
some (nonlinear) mapping. Furthermore imagine that we are given some (relative) entropy
functional H = H[u] and a steady state u∞ (i.e. a solution of A(u) = 0). What we have
to do is to compute the entropy production, i.e. (minus) the time derivative of H[u] along
the solutions on the evolution equation, and then find a (possibly linear) relation between
the entropy production and the entropy itself. Finally, Gronwall’s lemma will allow us to
conclude that H[u(t)]→ 0 with some rate (exponential, algebraic. . . ) as t→∞.

Global existence and boundedness of weak solutions. Entropy methods can also be
employed to prove existence of (positive, uniformely bounded) weak solutions to systems
of reaction-diffusion and cross-diffusion PDEs. For example, consider (5) with n = 2 A(u)
given by

A(u) =
1

2 + 4u1 + u2

(
1 + 2u1 u1

2u2 2 + u2

)
.

The considered equations are a special case of a Maxwell-Stefan system and describe a fluid
mixture of 3 components with equal molar masses under isobaric, isothermal conditions;
ui is the mass fraction of the component i, for i = 1, 2, 3. The mass fractions must be
nonnegative, i.e. the constraints u1 ≥ 0, u2 ≥ 0, u1 + u2 ≤ 1 must be satisfied. One can
prove the nonnegativity of u1, u2 with a minimum principle, but no maximum principle is
available which allows for the proof of the uniform boundedness of u1 + u2.

But we need no maximum principle. First we have to derive an entropy balance in-
equality for the entropy

H[u] =

∫
Rd
h(u)dx, h(u) =

3∑
i=1

(ui log ui − ui).

One can show (the main obstacle is to find a uniform lower bound for some u−dependent
quadratic form) that

d

dt
H[u] ≤ −2

∫
Rd

(|∇
√
u1|2 + |∇

√
u2|2)dx ≤ 0.

So we have a nice a-priori estimate which would prove itself to be quite useful in an
analytical study of the system. However, having an entropy also means that we can define
new variables, called entropy variables:

wi =
∂h

∂ui
= log

ui
u3

i = 1, 2.

What’s the use of these new variables? First, (5) can be rewritten as

∂tu = div (B(w)∇w), B(w) ≡ A(u(w))(h′′(u(w)))−1.

It turns out that B is symmetric and positive definite. This, of course, would prove invalu-
able in the analysis.
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Second, let us have a look at u(w):

ui(w) =
ewi

1 + ewi + ew2
, i = 1, 2.

Clearly ui ≥ 0 for i = 1, 2, 3, that is, we would have positivity and uniform boundedness
for the physical variables without using any maximum (or minimum) principle.

Therefore, if we can turn these a-priori estimates and smart ideas into a rigorous proof,
we can have global existence of nonnegative, uniformely bounded weak solutions for a sys-
tem of nonlinear PDEs with a diffusion matrix which is neither symmetric nor positive
semidefinite. That doesn’t sound too bad, does it?

Uniqueness of weak solutions. Let us spend a few words about how entropy can help
in showing uniqueness of weak solutions to PDEs. We can e.g. consider the drift-diffusion
model in the d−dimensional torus

∂tu = div (∇u+ u∇V ) x ∈ Td, t > 0, u(x, 0) = u0(x) x ∈ Td. (15)

The model describes the (semiclassical) transport of electrons in a semiconductor under
certain simplifying assumptions. Here u ≥ 0 is the electron density and V is a given electric
potential.

We want to prove that (15) has at most one solution. The most natural thing to do
would be to test (15) against u1 − u2 (the difference of two solutions with the same initial
datum) and try to control the drift term by means of the diffusion term (plus some Sobolev
embedding). However, this strategy works only as long as the potential is smooth enough,
e,g. ∇V ∈ Lp(Td) with p > 2 big enough. But what if this is not true?

Actually, we can achieve our goal by means of an entropy-based idea. Let us define

F [u1, u2] = H[u1] +H[u2]− 2H

[
u1 + u2

2

]
, H[u] =

∫
Td

(u log u− u) dx.

Taking the time derivative of F [u1, u2] leads to

d

dt
F [u1, u2] = −4

∫
Td

(
|∇
√
u1|2 + |∇

√
u2|2 − |

√
u1 + u2|2

)
dx. (16)

However, it is possible to prove that the so-called Fisher information F [u] ≡
∫
Td |∇

√
u|2dx

is a convex functional, ands therefore the right-hand side of (16) is nonpositive. This means
that, for t > 0, F [u1(t), u2(t)] ≤ F [u1(0), u2(0)] = 0 since u1 = u2 at initial time. However,
the strict convexity of H also implies that F [u1, u2] ≥ 0 and the equality holds if and only
if u1 = u2. Therefore u1(t) = u2(t) for t > 0.
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2 The Bakry-Emery approach

The method that we are going to present in this section was first developed by D. Bakry
and M. Emery in the 1980s [5] and consists in computing the second derivative of the
entropy (with respect to time) and estimating it by means of the first derivative of the
entropy, that is, the entropy production.

2.1 The linear Fokker-Planck equation

The Barky-Emery method is usually explained by applying it to the linear Fokker-Planck
equation:

ut = div (∇u+ u∇V ), t > 0, x ∈ Rd, (17)

u(x, 0) = u0(x) x ∈ Rd, (18)

which arises from many applications, e.g. semiconductor transport, plasma physics, stellar
dynamics. The function V depends only on x and represents a potential, while the unknown
function u = u(x, t) ≥ 0 is a density.

Existence results for (17), (18) are available in literature; see e.g. [45]. For the purpose
of these lecture notes, we will assume that the solution exists and is sufficiently smooth to
justify the computations that will be carried out.

We assume that the initial datum is nonnegative and has mass equal to 1:
∫
Rd u0dx = 1.

Since (17) is in divergence form the mass is conserved:∫
Rd
u(x, t)dx =

∫
Rd
u0(x)dx = 1 for t > 0.

Concerning the potential V , we assume that V is smooth enough and1

e−V ∈ L1(Rd), ∃λ > 0 :
d∑

i,j=1

∂xixjV (x)wiwj ≥ λ|w|2 x ∈ Rd, w ∈ Rd. (19)

The steady state u∞ of (17) is defined as the only positive constant-in-time solution u = u∞
of∇u+u∇V = 0 (in Rd) such that

∫
Rd u∞dx =

∫
Rd u0dx. Since∇u+u∇V = u∇(log u+V )

and we are looking for positive solutions, this implies that log u∞+ V must be constant in
Rd, and therefore

u∞(x) =
e−V (x)∫

Rd e
−V (y)dy

x ∈ Rd. (20)

Let now φ : (0,∞)→ [0,∞) a smooth function such that

φ(1) = φ′(1) = 0, φ′′(1) = 1, φ′′ > 0, (1/φ′′)′′ ≤ 0 in [0,∞). (21)

1Constraint (19)2 on the Hessian of V is called Bakry-Emery condition.
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Examples of functions φ satisfying (21) are

φ(s) = s log s− s+ 1, φ(s) =
sα − 1

α(α− 1)
α ∈ (1, 2].

The function φ generates the following relative entropy

Hφ[u] =

∫
Rd
φ

(
u

u∞

)
u∞dx. (22)

We are going to prove the following

Theorem 2.1. Assume (19)–(21) hold, and let H[u0] < ∞. Then any smooth solution
u : Rd × (0,∞) → [0,∞) to (17), (18) converges exponentially to the steady state u∞, in
the sense that

‖u(t)− u∞‖L1(Rd) ≤ e−λt
√

2Hφ[u0] t > 0.

Proof. We begin by differentiating Hφ[u] with respect to t. Let ρ = u/u∞, so that (17)
takes the form

ut = div (u∞∇ρ) = u∞∆ρ+∇u∞ · ∇ρ. (23)

The entropy production can be computed through an integration by parts as follows:

Pφ[u] = − d

dt
Hφ = −

∫
Rd
φ′(ρ)utdx =

∫
Rd
φ′′(ρ)|∇ρ|2u∞dx ≥ 0. (24)

The nonnegativity of P results from the convexity of φ.
It is now time to compute the second time derivative of the entropy:

d2

dt2
Hφ = −

∫
Rd

(φ′′′(ρ)|∇ρ|2∂tu+ 2φ′′(ρ)∇ρ · ∇(∂tρ)u∞)dx = I1 + I2, (25)

I1 ≡ −
∫
Rd
φ′′′(ρ)|∇ρ|2∂tu dx, I2 ≡ −2

∫
Rd
φ′′(ρ)∇ρ · ∇(∂tρ)u∞ dx. (26)

In the following we will denote with ∇2f the Hessian with respect to x of a scalar function
f = f(x, . . .). Moreover, for any matrix A ∈ Rd×d, we define |A|2 ≡ tr(A>A) =

∑d
i,j=1 A

2
ij.

Let us compute I1 by using (23) and integrating by parts:

I1 =

∫
Rd
∇(φ′′′(ρ)|∇ρ|2) · ∇ρ u∞dx

=

∫
Rd

(φ′′′′(ρ)|∇ρ|4 + 2φ′′′(ρ)∇ρ · (∇2ρ)∇ρ)u∞dx.

Before computing I2, let us first deal with the term ∇ρ · ∇(∂tρ):

∂tρ =
1

u∞
div (u∞∇ρ) = ∆ρ+∇ρ · ∇ log u∞ = ∆ρ−∇ρ · ∇V,

11



∇ρ · ∇(∂tρ) = ∇ρ · ∇∆ρ−∇ρ · (∇2ρ)∇V −∇ρ · (∇2V )∇ρ,

and by writing ∇ρ · ∇∆ρ = div ((∇2ρ)∇ρ)− |∇ρ|2 we get

∇ρ · ∇(∂tρ) = div ((∇2ρ)∇ρ)− |∇ρ|2 −∇ρ · (∇2ρ)∇V −∇ρ · (∇2V )∇ρ.

Therefore I2 becomes

I2 = −2

∫
Rd
φ′′(ρ)div ((∇2ρ)∇ρ)u∞dx+ 2

∫
Rd
φ′′(ρ)(|∇ρ|2 +∇ρ · (∇2ρ)∇V )u∞dx (27)

+ 2

∫
Rd
φ′′(ρ)∇ρ · (∇2V )∇ρ u∞dx.

We integrate by parts the first integral on the right-hand side of (27), while using (19) to
estimate the third integral:

I2 ≥ 2

∫
Rd
φ′′′(ρ)∇ρ · (∇2ρ)∇ρ)u∞dx

+ 2

∫
Rd
φ′′(ρ)(u∞|∇ρ|2 +∇ρ · (∇2ρ)(∇u∞ + u∞∇V ))dx

+ 2λ

∫
Rd
φ′′(ρ)|∇ρ|2u∞dx.

Since u∞ is the steady state, then ∇u∞ + u∞∇V = 0; moreover the last integral on the
right-hand side of the above equation equals the entropy production. Therefore

I2 ≥ 2

∫
Rd
φ′′′(ρ)∇ρ · (∇2ρ)∇ρ)u∞dx+ 2

∫
Rd
φ′′(ρ)|∇ρ|2u∞ dx+ 2λPφ[u].

Summing I1, I2 and applying (25) leads to

− d

dt
Pφ[u] ≥

∫
Rd

(φ′′′′(ρ)|∇ρ|4 + 4φ′′′(ρ)∇ρ · (∇2ρ)∇ρ+ 2φ′′(ρ)|∇ρ|2)u∞dx.+ 2λPφ[u]

By adding and subtracting 2
∫
Rd

φ′′′(ρ)
φ′′(ρ)
|∇ρ|4u∞dx to the right-hand side of the above in-

equality we deduce

− d

dt
Pφ[u] ≥ 2

∫
Rd
φ′′(ρ)

∣∣∣∣∇2ρ+
φ′′′(ρ)

φ′′(ρ)
∇ρ⊗∇ρ

∣∣∣∣2 u∞dx
+

∫
Rd

(
φ′′′′(ρ)− 2

φ′′′(ρ)

φ′′(ρ)

)
|∇ρ|4u∞dx+ 2λPφ[u].

However, thanks to (21),

φ′′′′(ρ)− 2
φ′′′(ρ)

φ′′(ρ)
= −φ′′(ρ)

(
1

φ′′(ρ)

)′′
≥ 0,

12



so

− d

dt
Pφ[u] ≥ 2λPφ[u]. (28)

Gronwall’s lemma allows us to deduce that limt→∞ P [u(t)] = 0. We would like to deduce
that limt→∞H[u(t)] = 0, too, but the proof of this claim is quite technical; see [4, Sect. 2]
for details.2 Therefore let us just assume that limt→∞H[u(t)] = 0 and go on with the
proof. . .

Let us integrate (28) in the time interval [t,∞) and use the definition of Pφ[u] and well
as the relations limt→∞ P [u(t)] = limt→∞H[u(t)] = 0:

Pφ[u(t)] = − d

dt
Hφ[u(t)] ≥ 2λHφ[u(t)]. (29)

Applying Gronwall’s Lemma leads to

Hφ[u(t)] ≤ Hφ[u0]e−2λt t > 0.

The above estimate, together with Csiszár-Kullback-Pinsker inequality [47]

‖u− u∞‖2
L1(Rd) ≤ 2Hφ[u],

allows us to conclude the proof.

2.2 Convex Sobolev inequalities

The Reader, lost in the computational details of the proof of Theorem 2.1, may have
not noticed that in the previous section we actually proved something more than the
exponential decay of the solution to the linear Fokker-Planck equation towards the steady
state. As a matter of fact, we showed also the following

Corollary 2.1 (Convex Sobolev inequalities). Let φ, V satisfy (19)–(21), and let u∞ be
given by (20). Then∫

Rd
φ

(
u

u∞

)
u∞dx ≤

1

2λ

∫
Rd
φ′′
(
u

u∞

) ∣∣∣∣∇ u

u∞

∣∣∣∣2 u∞dx, (30)

for all functions u : Rd → [0,∞) such that the above integrals are convergent.

Proof. The left-hand side of (30) equals Hφ[u], while the right-hand side equals Pφ[u(t)]
(see eq. (24)). Therefore eq. (30) can be obtained from (29) by replacing the solution u(t)
of (17), (18) with a generic function u : Rd → [0,∞).

Ineq. (30) is actually a family of integral inequalities. By choosing φ is suitable ways
we can obtain specific inequalities.

2There is, however, an intuitive argument which allows us to understand why that limit holds. Eq. (24)
provides us with a handy expression for Pφ[u]. If we assume that limt→∞ ρ(t) exists in some suitable sense,
then it should be equal to some function ρ̄ such that

∫
Rd φ

′′(ρ̄)|∇ρ̄|2u∞dx = 0. Since φ′′ > 0 in [0,∞),
this implies that ρ̄ must be constant, and given the fact that

∫
Rd ρ̄u∞dx = 1 this means that ρ̄ = 1, i.e.

limt→∞ u(t) = u∞. Therefore, we expect that limt→∞H[u(t)] = 0.

13



2.2.1 Logarithmic Sobolev inequality

Let φ(s) = s log s− s+ 1, s > 0. Let u ∈ L1(Rd), u ≥ 0. Assume that
∫
Rd udx = 1. Then

(30) becomes the log-Sobolev inequality:∫
Rd
u log

u

u∞
dx ≤ 2

λ

∫
Rd

∣∣∣∣∇√ u

u∞

∣∣∣∣2 u∞dx. (31)

Letting f =
√
u/u∞, dµ = u∞dx into (31) yields the so-called “Gaussian form” of the

log-Sobolev inequality:3 ∫
Rd
f 2 log

f 2∫
Rd f

2dµ
dµ ≤ 2

λ

∫
Rd
|∇f |2 dµ. (32)

We point out that we added the factor 1/
∫
Rd f

2dµ inside the logarithm in order to get rid
of the constraint

∫
f 2dµ = 1. Moreover, the Reader should notice an interesting fact: the

constant 2/λ inside (32) does not depend on the dimension d of the space. However, the
measure dµ depends on d through its normalization factor.

If V (x) = |x|2/2 (and therefore λ = 1), then the log-Sobolev inequality can be rewritten
in another, more explicit form. In fact, in this case u∞ = (2π)−d/2e−λ|x|

2/2,∫
Rd
u log

u

u∞
dx =

∫
Rd
u log udx+

d

2
log(2π) +

∫
Rd

|x|2

2
udx,

2

∫
Rd

∣∣∣∣∇√ u

u∞

∣∣∣∣2 u∞dx = 2

∫
Rd

∣∣∣∣∇√u√
u∞
−
√
u

√
u∞
∇ log

√
u∞

∣∣∣∣2 u∞dx
= 2

∫
Rd
|∇
√
u|2dx− 2

∫
Rd
∇u · ∇ log

√
u∞dx+ 2

∫
Rd
u|∇ log

√
u∞|2dx

= 2

∫
Rd
|∇
√
u|2dx+ 2

∫
Rd

(∆ log
√
u∞ + |∇ log

√
u∞|2)u dx,

which implies∫
Rd
u log udx+

d

2
log(2π) +

∫
Rd
u

(
|x|2

2
−∆ log u∞ −

1

2
|∇ log u∞|2

)
dx

≤
∫
Rd
|∇
√
u|2dx.

However, since
|x|2

2
−∆ log u∞ −

1

2
|∇ log u∞|2 = d,

we conclude ∫
Rd
u log udx+

d

2
log(2π) + d ≤ 2

∫
Rd
|∇
√
u|2dx. (33)

Ineq. (33) constitutes the so-called “Euclidean form” of the log-Sobolev inequality.

3The reason why it is called “Gaussian form” probably lies in the fact that the simplest possible choice
for potential, i.e. V (x) = |x|2/2, leads to the Gaussian measure dµ = (2π)−d/2e−|x|

2/2dx.

14



2.2.2 Weighted Poincaré inequality

What happens if we choose φ(s) = s2 − 1 in (30)? We obtain∫
Rd

(
u2

u2
∞
− 1

)
u∞dx ≤

1

λ

∫
Rd

∣∣∣∣∇ u

u∞

∣∣∣∣2 u∞dx.
However, since f = u/u∞ and

∫
Rd u∞dx = 1 =

∫
Rd fu∞dx =

(∫
Rd fu∞dx

)2
it follows∫

Rd
f 2u∞dx−

(∫
Rd
fu∞dx

)2

≤ 1

λ

∫
Rd
|∇f |2u∞dx, (34)

which is known as the weighted Poincaré inequality.

2.2.3 Beckner inequality

More in general, what if we choose φ(s) = sα − 1 in (30) with α ∈ (1, 2]? With the same
procedure as before we find the Beckner inequalities:

1

α− 1

(∫
Rd
fαu∞dx−

(∫
Rd
fu∞dx

)α)
≤ α

2λ

∫
Rd
fα−2|∇f |2u∞dx. (35)

Clearly by choosing α = 2 we recover (34). On the other hand, by taking the limit α→ 1
in (35)4 we obtain the log-Sobolev inequality (31).

2.3 The heat equation: convergence to the self-similar solution

I bet the Reader has seen this thing before:

ut = ∆u t > 0, u(0) = u0 in Rd. (36)

It’s the heat equation (of course). We take the initial datum u0 to be nonnegative (of
course) and with unit mass. From the well-known explicit expression for u:

u(x, t) = (4πt)−d/2
∫
Rd
e−|x−y|

2/2u0(y)dy, t > 0,

it follows immediately that

‖u(t)‖L1(Rd) = 1, ‖u(t)‖L∞(Rd) ≤ (4πt)−d/2,

and therefore∫
Rd
u(t) log u(t)dx ≤

∫
Rd
u(t) log ‖u(t)‖L∞(Rd)dx ≤ −

d

2
log(4πt)→ −∞ as t→∞.

4To take the limit in the right-hand side of (35), one can use e.g. l’Hopital theorem.
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So, the Boltzmann entropy of u tends to −∞ as t→∞. In particular, the entropy method
cannot be applied to determine a convergence rate for the solution towards the steady state
(this is reasonable, since the steady state is 0, which does not have unit mass).

However, we can use the entropy to study the so-called intermediate asymptotic of the
equation, that is, the rate of convergence of the solution towards the self-similar solution

U(x, t) = (2π(2t+ 1))−d/2 exp

(
− |x|2

2(2t+ 1)

)
, x ∈ Rd, t > 0. (37)

We are going to show the following

Theorem 2.2 (Relaxation to self-similarity). Let u0 : Rd → [0,∞) such that
∫
Rd u0dx = 1,∫

Rd |x|
2u0(x)dx <∞,

∫
Rd u log udx <∞. Let u be the solution to (36), U be given by (37),

H[u] be the Boltzmann entropy. Then

‖u(t)− U(t)‖L1(Rd) ≤
√

2H[u0]

2t+ 1
, t > 0. (38)

Proof. Let us do the following rescaling:

y =
x√

2t+ 1
, s =

1

2
log(2t+ 1), v(y, s) = edsu(esy,

1

2
(e2s − 1)).

As a consequence, v satisfies

vs = div y(∇yv + yv) s > 0, v(0) = u0 in Rd. (39)

Eq. (39) is a linear Fokker-Planck with quadratic potential V (y) = |y|2/2. The only steady
state of (39) is the Gaussian

v∞(y) = (2π)−d/2e−|y|
2/2 = (2t+ 1)2/dU(x, t).

Theorem 2.1 implies that

‖v(s)− v∞‖L1(Rd) ≤ e−s
√

2H[u0], s > 0.

It is time to go back to the original variables (x, t). Since

‖v(s)− v∞‖L1(Rd) = ‖u(t)− U(t)‖L1(Rd), e−s = (2t+ 1)−1/2,

ineq. (38) follows. This finishes the proof.

2.4 Linear Fokker-Planck equation: generalizations.

The results presented in this Section about the long-time behaviour of the solution to the
linear Fokker-Planck equation can be generalized in several ways. Here we present three
possible generalizations: Fokker-Planck equation with variable diffusion, non-symmetric
Fokker-Planck equation, degenerate Fokker-Planck equation.
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2.4.1 Fokker-Planck equation with variable diffusion

Let us consider an equation of this kind:

ut = div (D(x)(∇u+ u∇V )) t > 0, u(0) = u0 in Rd, (40)

where D : Rd → (0,∞) is a smooth function. We assume u0 : Rd → (0,∞) is an L1(Rd)
function such that

∫
Rd u0dx = 1, while e−V ∈ L1(Rd). Moreover, we assume that(

1

2
− d

4

)
1

D
∇D ⊗∇D +

1

2
(∆D −∇D · ∇V )I

+D∇2V +
1

2
(∇D ⊗∇V +∇V ⊗∇D)−∇2D ≥ λI in Rd. (41)

The steady state of (40) is unique and given by (20). The entropy Hφ is again given by
(22) where φ : (0,∞)→ R satisfies (21).

Theorem 2.3 (Long-time behaviour of (40)). If the above-stated assumptions hold, and if
Hφ[u0] <∞, then any smooth solution u(t) to (40) satisfies

Hφ[u(t)] ≤ Hφ[u0]e−2λt t > 0. (42)

Furthermore, the following convex Sobolev inequality holds:

Hφ[u] ≤ 1

2λ

∫
Rd
φ

(
u

u∞

) ∣∣∣∣∇( u

u∞

)∣∣∣∣2D(x)dx. (43)

Hints of the proof. Let ρ = u/u∞, so that we can rewrite (40) as ut = div (Du∞∇ρ). The
first time derivative of the entropy reads as

d

dt
Hφ[u(t)] = −

∫
Rd
φ′′(ρ)|∇ρ|2u∞D(x)dx.

The second time derivative of Hφ[u] can be estimated as

d2

dt2
Hφ[u(t)] ≥

∫
Rd

tr(AB)u∞dx+ 2λ

∫
Rd
φ′′(ρ)|∇ρ|2u∞D(x)dx,

where

A =

(
2φ′′(ρ) 2φ′′′(ρ)
2φ′′′(ρ) φ′′′′(ρ)

)
and B is a suitable 2 × 2 matrix depending on D, ρ and their derivatives up to order 2.
By using Sylvester’s criterion it is straightforward to see that (21), (41) imply the positive
semidefiniteness of A, B, respectively (actually, constraints φ′′ > 0, (1/φ′′)′′ ≤ 0 and (41)
are equivalent to the nonnegativity of det(A), det(B)). As a consequence tr(AB) ≥ 0 and
therefore

d2

dt2
Hφ[u(t)] ≥ 2λ

∫
Rd
φ′′(ρ)|∇ρ|2u∞D(x)dx = −2λ

d

dt
Hφ[u(t)].

Integrating the above inequality in the time interval (t,∞) and exploiting the relations
limt→∞Hφ[u(t)] = 0, limt→∞

d
dt
Hφ[u(t)] = 0 (again, the second limit follows straight-

forwardly from Gronwall’s lemma, while the first one is more difficult to prove) lead to
d
dt
Hφ[u(t)] + 2λHφ[u(t)] ≤ 0, which imply both (42) and (43). This finishes the proof.
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2.4.2 Non-symmetric Fokker-Planck equation

What happens when we consider a Fokker-Planck equation with a nonconstant diffusion
coefficient AND a non-conservative force? I’m talking about something like this:

ut = div (D(x)(∇u+ uF)) t > 0, u(0) = u0 in Rd, (44)

with D a positive smooth function. The idea to deal with an equation like that is to
decompose the force F as sum of a gradient term an a perturbation, i.e.

F = ∇V + F, div (D(x)Fu∞) = 0 in Ω, t > 0, (45)

where u∞ is given again by (20). To this decomposition there corresponds a splitting of the
Fokker-Planck operator L into a symmetric part Ls[u] and a skew-symmetric part Lss[u],
defined as

Ls[u] = div

(
D(x)u∞∇

u

u∞

)
, Lss[u] = div (D(x)Fu).

It’s clear that Ls[u∞] = Lss[u∞] = 0, right?
Let us verify that Ls, Lss are symmetric and skew-symmetric with respect to L2(u−1

∞ dx),
respectively. We start with Ls. For arbitrary u, v it follows

(Ls[u], v)L2(u−1
∞ dx) =

∫
Rd
Ls[u]vu−1

∞ dx = −
∫
Rd
u∞D(x)∇ u

u∞
· ∇ v

u∞
dx

which is symmetric in u, v. Therefore Ls is symmetric in L2(u−1
∞ dx). Now let us deal with

Lss. Eq. (45) implies that Lss[u] = D(x)Fu∞ · ∇(u/u∞), thus

(Lss[u], v)L2(u−1
∞ dx) + (Lss[v], u)L2(u−1

∞ dx) =

∫
Rd
D(x)Fu∞ · ∇

(
uv

u2
∞

)
dx = 0,

where the last equality follows from an integration by parts and (45). Therefore Lss is
skew-symmetric in L2(u−1

∞ dx).
The decomposition L = Ls + Lss helps a lot in the proof of

Theorem 2.4 (Long-time behaviour of (44)). Under the above-stated assumptions and the
hypothesis that (41) holds with ∇V replaced by ∇V − F , any smooth solution u(t) to (44)
having finite initial entropy (Hφ[u0] <∞) satisfies

Hφ[u(t)] ≤ Hφ[u0]e−2λt t > 0.

Hints of the proof. Let ρ = u/u∞. The first time derivative of Hφ[u(t)] reads as

d

dt
Hφ[u(t)] = −

∫
Rd
φ′′(ρ)|∇ρ|2u∞D(x)dx+

∫
Rd
φ′(ρ)div (DFu)dx.

The second integral on the right-hand side of the above equation is actually zero. In fact,∫
Rd
φ′(ρ)div (DFu)dx =

∫
Rd
φ′(ρ)D(x)Fu∞ · ∇ρ dx =

∫
Rd
D(x)Fu∞ · ∇φ(ρ) dx
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which vanishes after an integration by parts since (45) holds.
So, it seems that the nonsymmetric perturbation does not change the form of the en-

tropy dissipation. However, F plays a role in the computation of the second time derivative
of Hφ[u(t)]. Such a computation is similar to the one carried out in the proof of Thr. 2.1,
but more involved, and will not be presented here.

2.4.3 Degenerate Fokker-Planck equation

We present here a class of Fokker-Planck equations whose diffusion coefficient D is a
(possibly singular) matrix:

ut = div (D∇u+ uCx) t > 0, u(0) = u0 in Rd. (46)

We assume that D ∈ Rd×d is constant and positive semidefinite, while C ∈ Rd×d is a
constant matrix. Since D has not full rank, the entropy production can vanish for functions
other than the steady state, and the second time derivative of the entropy might not have
a constant sign. The idea to deal with (46) is to employ a modified entropy; see [3] for
details.

We assume that:

{v ∈ Rd | v is an eigenvector of C>} ∩ ker(D) = ∅, (47)

all eigenvalues of C> have positive real part. (48)

Assumption (47) is a technical hypothesis which ensures existence of smooth, positive
solutions to (46), provided that the initial datum u0 is positive and L1. Assumption (48)
implies the existence of a confinement potential.

The steady state u∞ is given by

u∞(x) =
e−x·Kx/2∫

Rd e
−y·Ky/2dy

x ∈ Rd,

where K ∈ Rd×d is the unique symmetric and positive definite solution to the Lyapounov
equation CK +KC> = 2D.

We decompose the Fokker-Planck operator L as L = Ls+Lss with Ls[u] = div (u∞D∇ρ)
and Lss[u] = div (u∞R∇ρ), where R = 1

2
(CK −KC>). It is possible to show that Ls, Lss

are symmetric and skew-symmetric in L2(u−1
∞ dx), respectively.

Furthermore, let us define

µ = min{<(λ) | λ is an eigenvalue of C}.

Theorem 2.5 (Long-time behaviour for (46)). Assume the same hypothesis of Thr. 2.3.
Moreover assume that (47), (48) hold. Let u(t) be the smooth solution to (46).

(i) If for all eigenvalues λ of C such that <(λ) = µ it holds

geometric multiplicity of λ = algebraic multiplicity of λ
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then there exists a constant κ > 0 such that

Hφ[u(t)] ≤ κHφ[u0]e−2µt t > 0.

(ii) If there exists an eigenvalue λ0 of C such that <(λ0) = µ and

geometric multiplicity of λ0 6= algebraic multiplicity of λ0

then for every ε > 0 there exists a constant κε > 0 such that

Hφ[u(t)] ≤ κεHφ[u0]e−2(µ−ε)t t > 0.

Sketch of the proof. We only show (i). It is possible to prove that a symmetric, positive
definite matrix D0 ∈ Rd×d exists such that

(KC>K−1)D0 +D0(KC>K−1)> ≥ 2µD0.

Let us define the functional

P ∗[u] =

∫
Rd
φ′′(ρ)∇ρ ·D0∇ρ u∞dx.

Since D0 is positive definite, we can find a constant η > 0 such that D0 ≥ ηD; therefore
P ∗[u(t)] ≥ ηP [u(t)] = − d

dt
Hφ[u(t)]. So, if we can find a suitable upper bound for P ∗[u(t)],

then we are done.
It is possible to see that

d

dt
P ∗[u] = −

∫
Rd
φ′′(ρ)∇ρ · ((D −R)K−1D0 +D0K

−1(D +R))∇ρ u∞dx

− 2

∫
Rd

tr(AB)u∞dx

where

A =

(
2φ′′(ρ) 2φ′′′(ρ)
2φ′′′(ρ) φ′′′′(ρ)

)
and B is a suitable 2 × 2 matrix depending on D, ρ and their derivatives up to order 2.
Again, both the matrices A, B are positive semidefinite, so tr(AB) ≥ 0. Furthermore, it
holds

(D −R)K−1D0 +D0K
−1(D +R) = (KC>K−1)D0 +D0(KC>K−1)> ≥ 2µD0.

This leads to

d

dt
P ∗[u(t)] ≤ −2µP ∗[u(t)] ⇒ P ∗[u(t)] ≤ P ∗[u(δ)]e−2µ(t−δ) t > δ ≥ 0.
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A suitable convex Sobolec inequality implies

Hφ[u(t)] ≤ 1

2λP
P ∗[u(t)] ≤ 1

2λP
P ∗[u(δ)]e−2µ(t−δ).

We wish to set δ = 0 in the above inequality, but if we do it, we get an estimate for Hφ[u(t)]
depending on P ∗[u0], which is not optimal. However, from [3, Thr. 4.8] it follows that

P ∗[u(t)] ≤ c1t
−(1+c2)Hφ[u0] t > 0,

for some c1, c2 > 0. It follows

Hφ[u(t)] ≤ e−2µ(t−δ)

2λP
c1δ
−(1+c2)Hφ[u0] = c(δ)e−2µtHφ[u0] t > δ (49)

with c(δ) = e2µδ

2λP
c1δ
−(1+c2). Estimate (49) only holds for t > δ; however, since Hφ[u(t)] ≤

Hφ[u0] and e−2µt ≥ e−2µδ for 0 ≤ t ≤ δ, we conclude that

Hφ[u(t)] ≤ κe−2µtHφ[u0] t > 0

for some positive constant κ. This finishes the proof.

2.5 Nonlinear Fokker-Planck equations

The Bakry-Emery method, applied successfully to the linear Fokker-Planck equation, can
be extended to the case of nonlinear Fokker-Planck equations. We consider here equations
of the form

ut = div (∇f(u) + u∇V ) t > 0, u(0) = u0 in Ω, (50)

where Ω ⊂ Rd is a bounded and convex domain. We consider no-flux boundary conditions:

(∇f(u) + u∇V ) · ν = 0 on ∂Ω, t > 0. (51)

Equations similar to (50) are employed e.g. in the study of porous-media flow, charge
transport in semiconductors and population dynamics.

While (50) has been studied for more general functions f(u) and V (x), we will consider
here (for the sake of simplicity) the case of power functions, that is

V (x) = λ
|x|2

2
x ∈ Ω, f(u) = um u ≥ 0, m ≥ 1− 1

d
, m 6= 1. (52)

Such an ansatz leads e.g. to the porous medium equation [48]. The cases m < 1 and m > 1
are referred to as slow diffusion and fast diffusion, respectively. The steady state is unique
and given by the Barenblatt profile:

u∞(x) =

(
N − λ(m− 1)

2m
|x|2
)1/(m−1)

+

, (53)
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where (y)+ ≡ max{y, 0}, y ∈ R, while N > 0 is a constant which can be determined by
imposing the constraint of mass conservation:

∫
Ω
u∞dx =

∫
Ω
u0dx. At this point, we would

like to define the relative entropy as in (22), but we run into trouble: the steady state
given by (53) has compact support. Therefore, we define the relative entropy H[u|u∞] as

H[u|u∞] = H[u]−H[u∞], H[u] =

∫
Ω

u

(
um−1

m− 1
+
λ

2
|x|2
)
dx. (54)

The following result holds:

Theorem 2.6. Let (52), (53) hold, and let u0 ∈ L1(Ω) be nonnegative such that H[u0] <
∞. If u(t) is a solution of (50), (51), then

‖u(t)− u∞‖L1(Ω) ≤ Ce−λt t > 0, (55)

where C > 0 is a suitable positive constant.

Hints of the proof. We are not going to present all the details of the proof, since the ideas
are basically the same as in the proof of Thr. 2.1. For the complete picture see [32, pp. 33-
36].

We define the so-called entropy variable µ = mum−1/(m− 1) + λ|x|2/2. We point out
that µ is simply the partial derivative of the integrand in (54) with respect to u. As a
consequence (50) can be rewritten (in gradient-flow form) as

ut = div (u∇µ) in Ω, t > 0. (56)

Moreover, (51) implies ν · ∇µ = 0 on ∂Ω, t > 0. Therefore by testing (56) against µ we
obtain

d

dt
H[u(t)|u∞] = −

∫
Ω

u|∇µ|2dx ≤ 0, t > 0. (57)

The next step in the proof is to compute the second time derivative of H[u(t)|u∞]. We
omit the lengthy computations, which are quite similar (philosophically speaking) to the
ones carried out to show (28), and simply state that the following inequality holds:

d2

dt2
H[u(t)|u∞] + 2λ

d

dt
H[u(t)|u∞] ≥ −

∫
∂Ω

um∇(|∇µ|2) · ν dσ. (58)

So, it seems that working with a proper subdomain of Rd is not without consequences:
now we have to deal with a surface integral. This is actually the main difference between
this proof and the proof of Thr. 2.1. Is the right-hand side of (58) nonnegative? Of course
it is. To see this, we just need to apply the following lemma, whose proof can be found
e.g. in [26, Lemma 5.1]:

Lemma 2.1. Let Ω ⊂ Rd (d ≥ 1) be a convex domain with C2 boundary and let µ ∈ H3(Ω)
satisfy ∇µ · ν = 0 on ∂Ω. Then ∇(|∇µ|2) · ν ≤ 0 on ∂Ω.
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Now we just have to integrate (58) in the time interval (t,∞) and exploit the facts
that limt→∞

d
dt
H[u(t)|u∞] = 0 and limt→∞H[u(t)|u∞] = 0. While the second limit follows

directly from (58) through a Gronwall argument, the proof of the first limit is more technical
and will be skipped in these lecture notes. The curious Reader can find more details in
[32, p. 35].

Therefore we are left with

d

dt
H[u(t)|u∞] + 2λH[u(t)|u∞] ≤ 0,

which implies, thanks to Gronwall’s Lemma

H[u(t)|u∞] ≤ e−2λtH[u0|u∞] t > 0. (59)

Now we wish to apply Csiszár-Kullback-Pinsker inequality, but there is a problem: the
steady state u∞ might vanish in a positive measure set. Therefore we cannot apply the
aforementioned inequality in a straightforward way; however, it can be showed (see [38,
pp. 30-31] for details) that a similar result holds:

‖u− u∞‖L1(Ω) ≤ C
√
H[u|u∞],

for some constant C > 0. This finishes the proof.

It is now natural, given what we have seen in the linear case, to ask the question: is
the nonlinear Fokker-Planck equation with f , V given by (52) related to some functional
inequality? The answer is yes (of course):

Proposition 2.1 (Gagliardo-Nirenberg inequality (one of many)). Let either d = 2, p > 1
or d ≥ 3, 1 < p < d/(d− 2). Moreover let q = (p+ 1)/(p− 1),

C =

(
q(1− p)2

2πd

)θ/2(
2q − d

2q

)θ/2(
Γ(q)

Γ(q − d/2)

)θ/2
, θ =

d(1− 1/p)

d+ 2− (d− 2)p
,

where Γ is the Euler Gamma function. Then

‖v‖L2p(Rd) ≤ C‖∇v‖θL2(Rd)‖v‖
1−θ
Lp+1(Rd)

, v ∈ H1(Rd) ∩ Lp+1(Rd). (60)

Furthermore, if v(x) = (N + |x− x0|2)
1/(1−p)
+ for any N > 0, x0 ∈ Rd, then equality holds

in (60). In particular, the constant C is optimal.
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3 Cross-Diffusion PDEs

Many physical systems coming from the applied sciences (e.g. physics, biology, chemistry)
can be modeled through a set of reaction-diffusion PDEs with cross-diffusion:

ut = div (A(u)∇u+D(u)∇φ) + f(u), t > 0, u(0) = u0 in Ω. (61)

In (61) Ω ⊂ Rd (d ≥ 1) is a bounded domain with smooth boundary, the vector-valued
function u : Ω × (0,∞) → D ⊂ Rn is the unknown of the system, tipically representing
densities or concentrations of a multicomponent physical system, D is the domain of the
physical variables, A : D → Rn×n is the diffusion matrix, D : D → Rn×n is the drift matrix,
φ : Ω→ R is a potential, and f : D → Rn is the reaction term. The notation div (A(u)∇u)
is to be understood as

(div (A(u)∇u))i =
d∑

k=1

n∑
j=1

∂

∂xk

(
Aij(u)

∂uj
∂xk

)
i = 1, . . . , n.

We impose homogeneous Neumann boundary conditions, which describe the conservation
of the species:

(A(u)∇u+D(u)∇φ) · ν = 0 t > 0, on ∂Ω. (62)

3.1 Examples of cross-diffusion PDEs.

Let us see a few examples of cross-diffusion PDEs coming from the applied sciences.

3.1.1 Population dynamics: the SKT model.

Shigesada et alii proposed in [42] a famous model for a system of two populations which
share the same environment and are subject to intra-specific and inter-specific population
pressures. The evolution of the densities u1, u2 of the populations species is described by
(61), (62) with

A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + 2a21u1 + a22u2

)
, D =

(
u1 0
0 u2

)
, (63)

while the reaction term is of Lotka-Volterra type:

f(u) =

(
(b10 − b11u1 − b12u2)u1

(b20 − b21u1 − b22u2)u2

)
. (64)

In (63), (64), the parameters aij, bi are nonnegative. The potential φ describes inhomo-
geneities of the environment (e.g. if it is favorable to the species or not).

Under certain assumptions on the coefficients (roughly speaking, a10, a20 should be
small compared to a12, a21), eqs. (61) admit nonconstant steady state, which biologically
represent pattern formation.
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We point out that the diffusion matrix A given by (63) is in general not symmetric nor
positive semidefinite; it has, however, positive eigenvalues. Due to this fact, the derivation
of a-priori estimates is tricky, and the global existence of solutions has been an open
problem for decades, until the 2000s [13, 14, 25].

3.1.2 Ion transport.

If you wish to describe the transport of ions in biological cells or in multicomponent fluid
mixtures, you would probably use the Poisson-Nernst-Planck equations for the ion concen-
trations and the electric potential. The derivation of the equations works fine under the
assumption that the concentrations levels are far from the saturation points (no volume-
filling case); however, the concentrations are allowed to saturate (which may happen in
reality), different equations are to be employed. An alternative set of equations is consti-
tuted by (61) with

Aij(u) = Di(ui + unδij), Dij(u) = uiunδij i, j = 1, . . . , n, (65)

where un ≡ 1−
∑n−1

k=1 uk and D1, . . . , Dn are positive constants. The functions u1, . . . , un−1

are the ion concentrations, un is the solvent concentration, while φ is the electric potential,
which is either a solution to the Poisson equation or a given function.

Again, A is not symmetric nor positive semidefinite. The upper bound
∑n−1

i=1 ui <
1 should hold for consistency with the physics (volume-filling case), but in general no
maximum principle is available for system of PDEs with cross-diffusion. Derivation of
suitable a-priori estimates is also challenging. Global existence of bounded weak solutions
to (61), (65) was proved in the two species case (n = 2) in [7] and for arbitrary n in absence
of potential in [31, 52].

3.1.3 Tumor-growth models.

There are three stages in the process of tumor growth. The first stage is the avascular
growth: the tumor cells proliferate by relying on the body’s healthy blood vessels for oxygen
and nutritional substances supply. However, as the tumor grows bigger, the amount of
available oxygen at its center decreases, which means that the tumor cannot grow in size
more than a millimeter or so without its own blood supply. The second phase of the tumor
growth is the vascular growth: the tumor starts developing an independent blood supply by
stimulating the formation of new blood vessels inside the tumor. The third and final stage
of tumor growth is the metastatic phase, during which the tumor cells are able to escape
from the tumor via the circulatory system and lead to the formations of other tumors in
the body.

Avascular tumor growth can be described by fluid-dynamic models. For example, in [28]
a continuous model is derived for avascular tumor growth in one space dimension, under
the assumption that the tumor-host environment consists of tumor cells, the extracellular
matrix (ECM), which provides support for the tumor cells, and water. The volume fractions
of tumor cells, ECM and water are denoted with u1, u2, u3 (respectively) and sum up to
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one: u1 + u2 + u3 = 1 (volume-filling case). From the mass and momentum balance
equations for the system a set of PDEs is derived, which has the structure (61) with A, f
given by

A(u) =

(
2u1(1− u1)− βθu1u

2
2 −2βu1u2(1 + θu1)

−2u1u2 + βθ(1− u2)u2
2 2βu2(1− u2)(1 + θu1)

)
, (66)

f(u) =

(
α1u1(1− u1 − u2)− α2u1

α3u1u2(1− u1 − u2)

)
, (67)

where β > 0, θ > 0, α1, α2, α3 ≥ 0 are parameters. There is no potential. Again, the
diffusion matrix is in general neither symmetric not positive definite. Relation u1 +u2 ≤ 1
should be fulfilled for consistency with the physics.

3.1.4 Multicomponent fluid mixtures.

The well-known Maxwell-Stefan equations describe the evolution of a multicomponent
gaseous mixture under some suitable assumptions: ideal gas, zero baricentric velocity, iso-
baric and isothermal conditions, same molar mass for all components. They were suggested
by J. C. Maxwell in 1866 for dilute gases and by J. Stefan in 1871 for fluids. The Maxwell-
Stefan equations are constituted by the mass and reduced force balance equations for the
mixture and read as

∂tui + div Ji = fi(u), ∇ui =
n∑
k=1
k 6=i

uiJk − ukJi
Dij

, i = 1, . . . , n. (68)

Maxwell-Stefan’s model represents a generalization of Fick’s law: while in the latter the flux
Ji depends (linearly) only on ∇ui, in the former ∇ui depends on all the fluxes J1, . . . , Jn.
The Maxwell-Stefan equations can predict phenomena that are beyond the reach of Fick’s
law, i.e. osmotic diffusion in multicomponent mixtures.

The mathematical difficulties that one has to deal with when solving (68) are three.
First, the matrix associated with the linear relations (J1, . . . , Jn) 7→ (∇u1, . . . ,∇un) is
singular, and therefore expressing the fluxes J1, . . . , Jn in terms of the concentrations gra-
dients ∇u1, . . . ,∇un is not straightforward. Second, the diffusion matrix A(u) that one
obtains after carrying out the aforementioned inversion process is in general not symmetric
nor positive semidefinite, Third, nonnegativity and boundedness of u1, . . . , un have to be
proved for consistency with the physics, and this is far from simple for the lack of general
minimum/maximum principles for systems of cross-diffusion PDEs.

3.2 Derivation of some cross-diffusion models.

At this point, the curious Reader might ask: but how to derive the cross-diffusion presented
above from other models? What will now follow aims at (partially) answering this question.
In fact, cross-diffusion PDEs can be obtained by performing all kind of nefarious activities
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on other, more basic models, like for example random walk lattices, fluid models, kinetic
equations, stochastic PDEs, et cetera. We are going to focus on two methods, which involve
taking suitable limits in space-discrete random walk equations and continuous fluid models,
repsectively.

3.2.1 Derivation from random-walk lattice models.

Let us consider a one-dimensional lattice, whose cell j ∈ Z has a uniform size h > 0 and
midpoint xj, so that xj−xj−1 = h, for j ∈ Z. Moreover, let u1, . . . , un population densities
defined on the lattice {xj : j ∈ Z}, i.e. ui(xj, t) represents the proportion of population
i in the cell j at time t. The species can move from cell j to one of the neighbouring cell
j ± 1 with transition rates T j±i . The densities u1, . . . , un evolve according to the following
master equation:

∂tui(xj) = T j−1,+
i ui(xj−1) + T j+1,−

i ui(xj+1)− (T j,+i + T j,−i )ui(xj), (69)

for i = 1, . . . , n, j ∈ Z, t > 0. How to model the rates T j,±i ? The basic idea is that, if the
departure cell is more crowded than the arrival cell, then the tendency of the species to
leave the cell is higher. Therefore, a possible expression for the rate is

T j,±i = σ0(h)pi(u1(xi), . . . , un(xi))qi(un+1(xj±1)). (70)

In the above equality, σ0(h) > 0 is a suitable scaling constant, un+1 ≡ 1 −
∑n

i=1 ui is
the volume fraction unoccupied by the species, pi, qi are suitable functions. Expression
pi(u1(xi), . . . , un(xi)), qi(un+1(xj±1)) measures the tendency of species i to leave cell j,
while qi(un+1(xj±1)) represents a damping of this tendency due to the crowding of the two
neighbouring cells j + 1, j − 1. We are going to see that, if σ0(h) is chosen wisely, then
(69), (70) converge in the limit h→ 0 to the cross diffusion system

∂tu = ∂x(A(u)∂xu) x ∈ R, t > 0, (71)

Aij(u) = δijpi(u)qi(un+1) + uipi(u)q′i(un+1) + uiqi(un+1)
∂pi
∂uj

(u)

= qi(un+1)2 ∂

∂uj

(
uipi(u)

qi(un+1)

)
i, j = 1, . . . , n. (72)

This argument is the same of [52, Appendix].
It is convenient to introduce the following abbreviations:

pji = pi(u1(xj), . . . , un(xj)), qji = qi(un+1(xj)),

∂kp
j
i =

∂pi
∂uk

(u1(xj), . . . , un(xj)), ∂qji = q′i(un+1(xj)).

Thus, we can rewrite the master equation as

σ−1
0 ∂tu

j
i = qji (p

j−1
i uj−1

i + pj+1
i uj+1

i )− pjiu
j
i (q

j+1
i + qj−1

i ). (73)
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Set D = ∂x. We compute the Taylor expansions of pi and qi (i = 1, . . . , n) and replace
uj±1
k − ujk by the Taylor expansion ±hDujk + 1

2
h2D2uji +O(h3). Then, collecting all terms

up to order O(h2), we arrive at

pj±1
i = pji + h

n∑
k=1

∂kp
j
iDu

j
k +

h2

2

(
n∑
k=1

∂kp
j
iD

2ujk +
n∑

k,`=1

∂2
k`p

j
iDu

j
kDu

j
`

)
+O(h3),

qj±1
i = qji ± h∂p

j
iDu

j
n+1 +

h2

2

(
∂qjiD

2ujn+1 + ∂2qji (Du
j
n+1)2

)
+O(h3)

= qji ∓ h∂q
j
i

n∑
k=1

Dujk +
h2

2

(
−∂qji

n∑
k=1

D2ujk + ∂2qji

n∑
k,`=1

DujkDu
j
`

)
+O(h3).

In the last step, we have used un+1 = 1 −
∑n

k=1 uk. We insert these expressions into (73)
and rearrange the terms. It turns out that the terms of order O(1) and O(h) cancel, and
we end up with

σ−1
0 h−2∂tu

j
i =

n∑
k=1

D2ujk(q
j
i p
j
iδik + qjiu

j
i∂kp

j
i + pjiu

j
i∂q

j
i )

+
n∑

k,`=1

DujkDu
j
`(2q

j
i ∂kp

j
iδi` + qjiu

j
i∂

2
k`p

j
i − p

j
iu
j
i∂

2qji ).

We choose σ0 = h−2 and pass to the limit h→ 0:

∂tui =
n∑
k=1

D2uk

(
qipiδik + qiui

∂pi
∂uk

+ piuiq
′
i

)
+

n∑
k,`=1

DukDu`

(
2qi

∂pi
∂uk

δi` + qiui
∂2pi

∂uk∂u`
− piuiq′′i

)
.

A lenghty but straightforward computation shows that the last sum equals

n∑
k=1

DukD

(
qipiδik + qiui

∂pi
∂uk

+ piuiq
′
i

)
,

and we end up with

∂tui = D
n∑
k=1

Duk

(
qipiδik + qiui

∂pi
∂uk

+ piuiq
′
i

)
,

which is identical to (71), (72).

Volume-filling and non-volume-filling models. If we do not want to incorporate
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volume-filling effects in the model, then qi ≡ 1 for i = 1, . . . , n is the right choice. Then
Aij(u) = ∂

∂uj
(uipi(u)) and therefore (71) becomes

∂tui = ∆(uipi(u)) i = 1, . . . , n.

Choosing n = 2, pi(u) = ai0 +ai1u1 +ai2u2 (i = 1, 2) yields the SKT model (61), (63) (with
no potential). So we can state that the basic assumption of the SKT model is the linear
dipendence of the transition rates on the species densities.

If we want to incorporate volume-filling effects, then qi must be nonconstant and vanish
at zero. A (relatively) simple model of this kind can be obtained by setting pi ≡ 1,
qi(s) = Dis for i = 1, . . . , n, s > 0, where D1, . . . , Dn are positive constants. The equations
we obtain constitute the ion transport model (61), (65) (without potential).

3.2.2 Derivation from fluid models.

Let us consider a fluid of n components. The mass and momentum balance equations for
the fluid read as

∂tui + div (uivi) = ri, (74)

∂t(uivi) + div (uivi ⊗ vi − Si) = p∇ui + uibi + fi (75)

for i = 1, . . . , n. Here ui, vi are the mass density and drift velocity of species i, respectively,
ri is the mass production rate (e.g. die to chemical reactions), Si is the stress tensor, p
is the phase pressure, fi the momentum production rate. The sum p∇ui + uibi represents
the force acting on species i: p∇ui is the interphase force coming from the phase pressure,
while biui is the body force.

We are going to derive a cross-diffusion model from (74), (75). We impose the following
hypothesis:

1. the total mass density is constant:
∑n

i=1 ui = 1;

2. the baricentric velocity is zero:
∑n

i=1 uivi = 0;

3. all species have the same molar masses;

4. the total body force is zero:
∑n

i=1 biui = 0;

5. the stress Si is made up by the contributions of the phase pressure p and the partial
pressures Pi = Pi(u): Si = −ui(p+ Pi(u))I;

6. the partial pressure of the n−th components vanishes: Pn(u) ≡ 0;

7. the momentum production is proportional to the velocity differences:

fi =
n∑
j=1

kijuiuj(vj − vi) i = 1, . . . , n,

with symmetric positive coefficients kij = kji.
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It follows that the total mass production rate and the total momentum production vanish,
too:

∑n
i=1 ri = 0,

∑n
i=1 fi = 0. Furthermore

−divSi − p∇ui = ∇(uiPi) + ui∇p i = 1, . . . , n. (76)

We consider now a large time scale and a small velocity scale, which means neglecting
inertial effects: t 7→ ε−1t, v 7→ εv. Under this scaling (75) becomes

ε2∂t(uivi) + ε2div (uivi ⊗ vi)− divSi = p∇ui + uibi + fi, i = 1, . . . n.

Taking the limit ε→ 0 in the above equation results in

−divSi − p∇ui = uibi + fi i = 1, . . . , n. (77)

From (76), (77) it follows

∇(uiPi) + ui∇p = uibi + fi i = 1, . . . , n. (78)

Summing the above equalities for i = 1, . . . , n and using assumptions 1, 6, as well as the
fact that

∑n
i=1 fi = 0, lead to

∇p = −
n−1∑
i=1

∇(uiPi).

Therefore,

∇(uiPi)− ui
n−1∑
j=1

∇(ujPj) = uibi + fi. (79)

The left-hand side of (79) can be explicitly computed to obtain the following relations:

n∑
j=1

Aij(u)∇uj = uibi +
n∑
j=1

kijuiuj(vj − vi), (80)

Aii(u) = (1− ui)
(
Pi + ui

∂Pi
∂ui

)
− ui

n−1∑
k=1
k 6=i

uk
∂Pk
∂ui

, (81)

Aij(u) = ui

(1− ui)
∂Pi
∂uj
− Pi −

n−1∑
k=1
k 6=i

uk
∂Pk
∂ui

 , j 6= i. (82)

An even simpler set of equations can be obtained by setting p = 0:

∇(uiPi(u)) = uibi +
n∑
j=1

kijuiuj(vj − vi). (83)
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Coupling (74) with (80)–(82) or (83) yields a cross-diffusion system in which the fluxes
Ji = uivi are implicitly given in terms of the gradients of the mass densities. From this set
of equations we will now derive, under simplifying assumptions, the tumor-growth model
(61), (66), (67) and the Maxwell-Stefan model (68).

Tumor growth model. Let n = 3, P1(u) = u1, P2(u) = βu2(1 + θu1), kij = k, bi = 0.
Then the matrix A in (81), (82) coincides with (66). Furthermore,

uibi +
n∑
j=1

kijuiuj(vj − vi) = k

n∑
j=1

uiuj(vj − vi) = −kuivi,

and therefore we recover the tumor-growth model (61), (66), (67) .

Maxwell-Stefan equations. Let us now choose p = 0, bi = 0, Pi(u) = 0, kii = 0 for
i = 1, . . . , n, and mini 6=j kij > 0. Eqs. (80)–(82) become

∂tui + div Ji = ri, ∇ui =
n∑
j=1

kij(uiJj − ujJi), i = 1, . . . , n, (84)

with Ji = uivi. We can write the second relation in (84) as

∇u = MJ, Mij = kijui − δij
n∑
s=1

kisus i, j = 1, . . . , n. (85)

In the following argument, we assume that ui > 0 for i = 1, . . . , n.
We must now ask ourself: what’s the rank of M? Clearly M is singular, since Mu = 0
(easy to verify). Thus (85) has a solution if and only if ∇u ∈ Ker(M>)⊥ (Fredholm’s
alternative). So, let us find Ker(M>). Since (M>)ij = kijuj − δij

∑n
s=1 kisus, there is no

doubt that Span(1) ⊂ Ker(M>), where 1 = (1, . . . , 1) ∈ Rn. Now, let v ∈ Ker(M>). It
follows

vi

n∑
s=1

kisus =
n∑
j=1

kijujvj, i = 1, . . . , n.

Assume v /∈ Span(1), which means that it exists î ∈ {1, . . . , n} such that vî < vj for j 6= î.
We can assume w.l.o.g. that î = 1. Since kii = 0 and kij > 0 for i 6= j, as well as ui > 0,
it holds

v1

n∑
s=1

k1sus =
n∑
j=1

k1jujvj >

n∑
j=1

k1jujv1

which is absurd. Therefore v ∈ Span(1). This means that Span(1) = Ker(M>), that
is, (85) has a solution if and only if ∇u ∈ Span(1)⊥, i.e. if and only if

∑n
i=1∇ui = 0.

However,
∑n

i=1 ui = 1, so this constraint is satisfied.

As a consequence, the kernel of the matrix G defined as Gij = −u−1/2
i Miju

1/2
j is gener-

ated by
√
u ≡ (

√
u1, . . . ,

√
un). Since Gij = kij

√
uiuj − δij

∑n
s=1 kisus, it is immediate to
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see that G is symmetric. Moreover, u
−1/2
i Giju

1/2
j = (−M>)ij is diagonally dominant, i.e.

(−M>)ii −
∑

j 6=i |(−M>)ij| = 0 ≥ 0 for i = 1, . . . , n. Therefore all the complex eigenval-

ues of −M> have nonnegative real part. However, since G is similar to −M>, the same
property holds for G; being G symmetric, this implies that G is positive semidefinite; fur-
thermore, again due to its symmetry, G is positive definite on Span(

√
u)⊥. We can rewrite

the relation between ∇u and J as

−∇ui√
ui

=
n∑
s=1

Gis
Js√
us

i = 1, . . . , n. (86)

To solve (86) we replace equation n (i.e. the one with i = n) with the constraint
∑n

k=1 Jk =
0. This means solving the linear problem:

G̃w =


−∇u1/

√
u1

...
−∇un−1/

√
un−1

0

 , G̃ij =

{
Gij i < n
√
uj i = n

, Ji =
√
uiwi. (87)

We point out that G̃ is nonsingular since
√
u ∈ Ker(G) = Ker(G>).

3.3 Entropy structure

We have seen some examples of cross-diffusion systems, i.e. nonlinear PDEs with the form

∂tu = div (A(u)∇u) + f(u) in Ω ⊂ Rd, t > 0, (88)

with a diffusion matrix A(u) ∈ Rn×n which might be not symmetric nor positive semidef-
inite. Such involved structure prevents the application of maximum/minimum principles
to (88), so that proving lower and/or upper bounds (often required by physical arguments)
for the solution u : Ω × (0,∞) → Rn to (88) is challenging. Moreover, unlike what hap-
pens for scalar PDEs, there is no regularity theory for (88): for instance, there are smooth
solutions to certain cross-diffusion systems which exhibit blow-up in finite time [43]. This
means that additional assumptions are needed to ensure that (88) has global-in-time weak
solutions, that is, to show that the local-in-time solutions can be prolonged to the time
interval (0,∞).

There are several approaches to this problem. Ladyženskaya et al. [35, Chap. VII]
showed that a-priori estimates of local-in-time solutions to quasilinear parabolic systems
follow from suitable L∞ bounds for u and ∇u, and proved global existence of classical
solutions under some growth conditions on the nonlinearity. Amann [2] defined the concept
of W 1,p weak solutions and showed their global existence under the hypothesis that their
W 1,p norm (with p > d) can be controlled. Pierre [39] proved that if the nonnegativity
of the solution is preserved, the total mass of the components does not blowup in finite
time, the reaction term f(u) grows at most linearly in u and the diffusion matrix A(u) is
diagonal, then global existence of solutions follows.
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We will present here another approach. The basic assumption is that (88) has a
gradient-flow (entropy) structure:

∂tu = div (B∇H ′[u]) + f(u) in Ω ⊂ Rd, t > 0, (89)

where B = B(u) ∈ Rn×n is a positive semidefinite matrix and H ′[u] is the Fréchet derivative
of the entropy functional H[u]. If H[u] has the usual structure

H[u] =

∫
Ω

h(u)dx

then H ′[u] ≡ h′(u) =
(
∂h
∂u1
, . . . , ∂h

∂un

)
by the Riesz representation theorem. Let w ≡ h′(u).

The vector-valued quantity w is called entropy variable. It is immediate to see that (88) has
a gradient-flow structure if B ≡ A(u)(h′′(u))−1 is positive semidefinite (or, equivalently, if
h′′(u)A(u) is positive semidefinite), since (88) can be rewritten as

∂tu = div (B∇w) + f(u) in Ω ⊂ Rd, t > 0. (90)

We point out that in (90) u is a function of w; to be precise, it is the inverse of u 7→ h′(u).
In light of this remark, we propose the following:

Definition 1 (Entropy). We call the function h : D → Rn and entropy density for (88)
and H[u] =

∫
Ω
h(u)dx the corresponding entropy if h′′(u) is positive definite and h′′(u)A(u)

is positive semidefinite for a.e. u ∈ D.

As a consequence of the above definition, the entropy H[u] is nonincreasing in time
along solutions (provided that suitable boundary conditions are imposed; possible choices
are e.g. homogeneous Neumann and periodic boundary conditions):

d

dt
H[u] = −

∫
Ω

∇u · h′′(u)A(u)∇u dx = −
n∑

i,j,k=1

d∑
`=1

∫
Ω

∂ui
∂x`

∂2h

∂ui∂uj
Ajk(u)

∂uk
∂x`

dx ≤ 0.

Furthermore, if h′ : D → Rn is invertible and D is bounded, then u = (h′)−1(w) ∈ D is
uniformely bounded. That is, L∞ bounds for u follow straightforwardly from the entropy
structure of (88). A simple example is given by

h(u) =
n+1∑
i=1

(ui log(ui)− ui), un+1 = 1−
n∑
i=1

ui,

D =

{
u ∈ (0,∞)n :

n∑
i=1

ui < 1

}
.

We will see that the above function constitutes an entropy for the ion transport, tumor
growth, and Maxwell-Stefan models.
The entropy variables read as

wi =
∂h

∂ui
= log

ui
un+1

, i = 1, . . . , n.
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Inverting the above relation leads to

ui =
ewi

1 +
∑n

j=1 e
wj
, i = 1, . . . , n.

If the solution w to (90) belongs to some Sobolev or Lebesgue space, then it is a.e. finite,
and so u ∈ D. In particular u is bounded with bounds independent of time or any
approximation/truncation parameters.

Clearly, the above argument is not true for all entropies. The function h : (0,∞)→ Rn,
h(u) =

∑2
i=1 ui log ui, is an entropy for the SKT model. However, since wi = log ui for

i = 1, 2, the variables u1, u2 are positive, but can be unbounded.

3.3.1 Relation to thermodynamics.

We are going to argue that entropy variables are strongly related to the chemical potentials
from thermodynamics. To see this, consider a fluid consisting of n components with the
same molar masses in isobaric and isothermal conditions. The system evolves according to
the mass balance equations for the mass densities u1, . . . , un:

∂tui + div Ji = 0 i = 1, . . . , n.

In the above equation J1, . . . , Jn are the diffusion fluxes. We assume that the baricentric
velocity vanishes, there are no chemical reactions, and the total mass density is constant,
say equal to one:

∑n
i=1 ui = 1.

Let s = s(u) be the thermodynamic entropy density of the system. The chemical
potentials µ1, . . . , µn are defined as

µi
T

= − ∂s

∂ui
i = 1, . . . , n,

where T is the (constant) system temperature. Writing un = 1 −
∑n−1

i=1 ui, we can define
the mathematical entropy density as

h(u1, . . . , un−1) = −Ts

(
u1, . . . , un−1, 1−

n−1∑
i=1

ui

)
, u1, . . . , un−1 > 0,

n−1∑
i=1

ui < 1.

The entropy variables w1, . . . , wn relate to the chemical potentials through

wi =
∂h

∂ui
= −T ∂s

∂ui
+ T

∂s

∂un
= µi − µn, i = 1, . . . , n− 1.

For an ideal gas µi = µ0
i + log ui, i = 1, . . . , n, where µ0

i is the Gibbs energy, which is a
function of temperature and pressure. Since we are considering isobaric and isothermal
conditions, µ0

i is constant. Therefore, wi = log(ui/un) (up to an additive constant) for
i = 1, . . . , n − 1, which corresponds to the mathematical entropy h(u) =

∑n
i=1 ui log ui,

un = 1 −
∑n−1

i=1 ui. As we have said at p. 33, this is a mathematical entropy for the
Maxwell-Stefan, ion transport, tumor growth models.
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3.3.2 Relation to hyperbolic conservation laws.

Now we will see that the entropy formulation of (88) is related also to the hyperbolic
conservation laws

∂tu+
d∑
j=1

∂

∂xj
fj(u) = 0 in Rd, t > 0, (91)

where u : Rd × (0,∞) → Rn and fj : Rn → Rn, j = 1, . . . , d. Let h : Rn → R smooth
function such that h′′(u) is positive definite for u ∈ Rn. Assume that the matrix/vector
product f ′j(u)>h′(u) (where f ′j is the Jacobian matrix of fj) can be written as the gradient
of some suitable scalar function qj : Rn → R, i.e.

q′j(u) = f ′j(u)>h′(u) for u ∈ Rn, j = 1, . . . , d. (92)

Then H[u] ≡
∫
Rd h(u)dx is an entropy for (91) in the sense that

d

dt
H[u] =

∫
Rd
h′(u) · ∂tu dx = −

d∑
j=1

∫
Rd
h′(u) · f ′j(u)

∂u

∂xj
dx

= −
d∑
j=1

∫
Rd
q′j(u) · ∂u

∂xj
dx = −

∫
Rd

d∑
j=1

∂qj(u)

∂xj
dx = 0.

Therefore H[u] is constant in time along the solutions of (91). Furthermore, assume that
h′ : Rn → Rn is (globally) invertible, and let us define the entropy variables w = h′(u). It
follows that (91) can be rewritten as

A0(w)∂tw +
d∑
j=1

Aj(w)
∂w

∂xj
= 0, (93)

where A0(w) = h′′(u)−1|u=(h′)−1(w), Aj(w) = f ′j(u)h′′(u)−1|u=(h′)−1(w), j = 1, . . . , d. Clearly
A0 is symmetric and positive definite. Let us prove that Aj is symmetric, for j = 1, . . . , d.
It suffices to prove that h′′(u)Aj(w)|w=h′(u)h

′′(u) = h′′(u)f ′j(u) is symmetric. It holds

(h′′(u)f ′j(u))αβ =
n∑
γ=1

∂2h

∂uα∂uγ

∂(fj)γ
∂uβ

=
∂

∂uα

n∑
γ=1

∂(fj)γ
∂uβ

∂h

∂uγ
−

n∑
γ=1

∂2(fj)γ
∂uα∂uβ

∂h

∂uγ

=
∂

∂uα
(f ′j(u)>h′(u))β −

n∑
γ=1

∂2(fj)γ
∂uα∂uβ

∂h

∂uγ
.

From (92) it follows

(h′′(u)f ′j(u))αβ =
∂2qj
∂uαuβ

−
n∑
γ=1

∂2(fj)γ
∂uα∂uβ

∂h

∂uγ
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and therefore h′′(u)f ′j(u) is symmetric, for u ∈ Rn, j = 1, . . . , d.
The property that (91) can be rewritten as (93) with A0 symmetric and positive def-

inite, and A1, . . . , Ad symmetric, is referred to, in the theory of hyperbolic conservation
laws, as symmetrizability. Thus we have seen that, if (91) admits an entropy, then it is
symmetrizable. This is interesting, since symmetrizable systems of conservation laws have
good properties (i.e. uniqueness of smooth solutions, energy estimates).

3.3.3 About the symmetry of B and the eigenvalues of A.

Remember that the transformed matrix B(w) = A(u)h′′(u)|u=(h′)−1w is positive semidefinite
if h is an entropy density for (88). In many applications B is also symmetric. This is nice,
but it’s a case of good luck: it is not true in general. In fact, consider zero reaction f ≡ 0
and

A(u) =

(
1 −u1

1 1

)
, h(u) = u1(log u1 − 1) +

1

2
u2

2.

The corresponding system of equations (88) is a modified Keller-Segel, with an additional
diffusion term which prevents blowup of solutions. The entropy balance equation reads as

d

dt

∫
Ω

h(u)dx = −
∫

Ω

(4|∇
√
u1|2 + u2

2)dx ≤ 0,

and so the entropy is decreasing along solutions as it should be; however,

A(u)h′′(u)−1 =

(
u1 −u1

u1 1

)
is not symmetric (it is, of course, positive semidefinite).

The symmetry of B requires that A has additional properties. To see this, assume that
B is symmetric and positive definite. Then A(u) = h′′(u)−1(h′′(u)A(u)) is the product
of the symmetric, positive definite matrix h′′(u)−1 and h′′(u)A(u) = h′′(u)B(w(u))h′′(u)
which is symmetric (given the symmetry of B). However, the following result holds [41,
Prop. 6.1]:

Lemma 3.1. Let H ∈ Cn×n Hermitian and positive definite, and let K ∈ Cn×n Hermitian.
Then the product HK (or KH as well) is diagonalizable with real eigenvalues. The number
of positive (respectively, negative) eigenvalues of HK equals that for K.

Applling the above lemma to our case implies that A is diagonalizable with real eigen-
values, and the number of positive eigenvalues of A equals that for h′′(u)A(u). However,
being B symmetric and positive definite, so is h′′(u)A(u), meaning that h′′(u)A(u) has only
real positive eigenvalues. Summarizing up, we have proved the following

Claim 3.1. If B(w) is symmetric and positive definite, than A(u) is diagonalizable with
real positive eigenvalues for w = h′(u).
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3.4 The Boundedness-by-Entropy Method

In this section we will make more precise the idea that the entropy structure of a system
of nonlinear PDEs can be exploited to get a-priori estimates and uniform L∞ bounds for
the solutions. The goal is to prove global-in-time existence of bounded weak solutions to
cross-diffusion systems

∂tu− div (A(u)∇u) = f(u), t > 0, u(0) = u0 in Ω, (94)

with homogeneous Neumann boundary conditions

ν · ∇u = 0 on ∂Ω, t > 0. (95)

The domain Ω ⊂ Rd is assumed to be bounded and the space dimension d ≥ 1 is arbitrary.
We make the following assumptions.

H1 There exist a bounded domain D ⊂ (0, 1)n, n ≥ 1, and a function h ∈ C2(D,R) such
that h′′(u) is positive definite for u ∈ D and h′ : D → Rn is invertible.

H2’ There exists a ≥ −1/2 such that

z · h′′(u)A(u)z ≥
n∑
i=1

u2a
i z

2
i z ∈ Rn, u ∈ D.

H2” For i, j = 1, . . . , n, the function u 7→ Aij(u)u−aj is C0(D). We define

a∗ ≡ sup
u∈D\{0}

max
i,j=1,...,n

|Aij(u)|
|uj|a

<∞.

H3 A ∈ C0(D,Rn×n), f ∈ C0(D,Rn), and

Cf ≡ sup
u∈D

f(u) · h′(u)

1 + h(u)
<∞.

Hypothesis H1 means that the transformation u 7→ w = h′(u) is invertible. In particular, if
w(t) solves the system in the entropy variable formulation, then u(t) = (h′)−1(w(t)) ∈ D for
t > 0, implying a uniform (in t and in any truncation/regularization parameter) L∞ bound
for u. Constraint D ⊂ (0, 1)n is actually equivalent to the assumption of boundedness and
positivity of D, since a simple rescaling of the entropy density (i.e. h̃(u) = h(λu) for a
suitable λ > 0) will transform an arbitrary bounded domain D ⊂ (0,∞)n into a domain
D̃ ⊂ (0, 1)n.
Hypothesis H2’ is required to obtain a gradient estimate for the solution. The power
function u2a

i can be replaced by a more general expression αi(ui)
2, where αi : D → (0,∞)

is a suitable monotone function, e.g. αi(s) = s or αi(s) = 1− s.
Hypothesis H2” is employed to find an estimate for the (discrete) time derivative of u, since
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it allows to control the term div (A(u)∇u) in some Sobolev space with negative index. If
the previous assumption H2’ is generalized as explained above, then H2” is relaxed in a
similar way by replacing the term |uj|a with αj(uj).
Hypothesis H3 is a growth condition which is used to estimate the source term: for example,
the contribution of f(u) in the entropy balance equation is controlled, thanks to H3, by
the entropy itself.

It is now time to state clearly what we mean for weak solution of (94).

Definition 2 (Weak solution to (94), (95)). We call u : Ω× (0,∞)→ Rn a weak solution
to (94), (95) if, for all T > 0,

1. ua+1 ∈ L2(0, T ;H1(Ω,Rn)), ∂tu ∈ L2(0, T ;H1(Ω,Rn)′);

2. for all φ ∈ L2(0, T ;H1(Ω,Rn)),∫ T

0

〈∂tu, φ〉dt+

∫ T

0

∫
Ω

∇φ : A(u)∇u dxdt =

∫ T

0

∫
Ω

f(u)φ dxdt; (96)

3. limt→0 u(·, t) = u0 in H1(Ω)′.

We point out that point 3 of the above definition makes sense thanks to the continuous
Sobolev embedding H1(0, T ;H1(Ω,Rn)′) ↪→ C([0, T ], H1(Ω,Rn)′). The bracket 〈·, ·〉 denote
the dual product between H1(Ω,Rn)′ and H1(Ω,Rn).

The following result holds (and we are going to prove it).

Theorem 3.1 (Global existence of solutions to (94), (95)). Let u0 : Ω → D a Lebesgue-
measurable function, and assume that hypothesis H1, H2’, H2”, H3 hold. Then there exists
a weak solution to (94), (95) such that u(x, t) ∈ D a.e. x ∈ Ω, t > 0. In particular
u ∈ L∞(Ω× (0,∞)).

This is a rather general result about the global existence and boundedness of weak
solutions to a system of strongly coupled (cross-diffusion) nonlinear PDEs with entropy
structure. We point out that the boundedness of the weak solutions derive from the entropy
structure itself, rather than from a maximum principle (which is in general not available
for systems like (94)).

3.4.1 Proof of the general existence theorem for cross-diffusion systems in the
volume-filling case.

Let us first explain the key steps of the proof.
We first discretize (94) in time through an implicit Euler scheme. In this way we will

deal with an elliptic, stationary problem, thus avoiding issues about time regularity of
the solutions. Moreover, we rewrite the equation in terms of the entropy variable w; in
particular, the physical variable u is to be considered a function of w.

We also add a higher order regularizing term proportional to w + (−∆)mw, where w
is the entropy variable and m is an integer. We choose m > d/2 so that the Sobolev
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embedding Hm(Ω) ↪→ L∞(Ω) holds, which implies that the entropy variable w will be
bounded and the physical variable u will lie strictly inside the domain D.5

This discretization/regularization procedure will leave us with 2 parameters: a discrete
timestep τ > 0, and a regularization parameter ε > 0.

The next step consists in proving the existence of solutions to the discretized/regularized
problem. Since this is a nonlinear elliptic problem, this result is achieved by first formu-
lating the equations as a fixed-point problem for some operator F : X → X, where X is
a suitable Banach space, and then showing the existence of a fixed point through Leray-
Schauder’s theorem.

The problem of proving the well-posedness of the operator F is equivalent to the so-
lution of a system of linear PDEs, which is achieved through a Lax-Milgram argument.
Furthermore, suitable (uniform) estimates on the set of fixed points and other properties
of F are showed (mainly) by means of a discrete entropy inequality. We point out that
such discrete entropy inequality is available because the discretization we choose preserves
the entropy structure.

At this point we have existence of sulutions to the discretized/regularized problem, as
well as a discrete entropy inequality, which provides us with some estimates. The fact that
some of these estimates are uniform in τ , ε allows us to apply a discrete version of the
Aubin-Lions Lemma, therefore perfoming the limit (ε, τ) → 0 and obtaining a solution
u(x, t) the (94), (95). In particular, since u is a limit of functions having image contained
into D, it follows that u(x, t) ∈ D for x ∈ Ω, t > 0.

Step 1: definition of the approximated problem. Let T > 0, n ∈ N, τ = T/N , m ∈
N ∩ (d/2,∞). Assume wk−1 ∈ L∞(Ω,Rn) is given (notice that for k = 1 the function w0

is determinated by the initial datum, i.e. w0 = h′(u0)). We define the following nonlinear
problem:

Find wk ∈ Hm(Ω,Rn) such that, for all φ ∈ Hm(Ω,Rn), (97)∫
Ω

(
u(wk)− u(wk−1)

τ
· φ+∇φ : B(wk)∇wk

)
dx+ ε(wk, φ)Hm =

∫
Ω

f(u(wk)) · φ dx,

where (wk, φ)Hm ≡
∫

Ω

∑
|α|≤mD

αwk · Dαφ dx is the scalar product between wk and φ in

Hm(Ω,Rn), and u(w) = (h′)−1(w). Notice that the homogeneous Neumann boundary
conditions are implicitly specified in (97).

Step 2: linearized approximated problem. Let y ∈ L∞(Ω,Rn) and δ ∈ [0, 1] given. We
define the following linear problem:

Find w ∈ Hm(Ω,Rn) such that, for all φ ∈ Hm(Ω,Rn), (98)∫
Ω

(
δ
u(y)− u(wk−1)

τ
· φ+∇φ : B(y)∇w

)
dx+ ε(w, φ)Hm = δ

∫
Ω

f(u(y)) · φ dx.

5To be precise, the image of Ω× [0, T ] through u will be compactly contained into D.
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Clearly (98) can be simply rewritten as

a(w, φ) = F (φ) φ ∈ Hm(Ω,Rn),

with

a(w, φ) =

∫
Ω

∇φ : B(y)∇w dx+ ε(w, φ)Hm ,

F (φ) = δ

∫
Ω

(
−u(y)− u(wk−1)

τ
+ f(u(y))

)
· φ dx

Since y is bounded and the functions f , B are smooth in D (Hypothesis H3) it follows that
the forms a, F are bounded on Hm(Ω,Rn). Moreover, the positive semidefiniteness of B
implies that a is also coercive:

a(w,w) ≥ ε(w,w)Hm = ε‖w‖2
Hm w ∈ Hm(Ω,Rn).

Hence Lax-Milgram lemma implies the existence of a unique solution w ∈ Hm(Ω,Rn) ↪→
L∞(Ω,Rn) to (98).

Step 3: solution of the nonlinear approximated problem. The previous step allows us to
define an operator S : L∞(Ω,Rn) × [0, 1] → L∞(Ω,Rn) as follows: for y ∈ L∞(Ω,Rn),
δ ∈ [0, 1], w = S(y, δ) ∈ Hm(Ω,Rn) is the solution to (98). The Reader has surely noticed
that any fixed point of S(·, 1), i.e. and solution w to S(w, 1) = w, is a solution to the
nonlinear problem (97). So, let us prove the existence of such a fixed point, shall we? We
plan to apply Leray-Schauder’s fixed point theorem. What we need is:

1. continuity of S;

2. compactness of S;

3. S(·, 0) must be constant;

4. the set of the fixed points of S(·, δ) must be bounded in L∞(Ω,R3) uniformely w.r.t.
δ ∈ [0, 1].

Clearly S(·, 0) ≡ 0 since the operator F of Step 2 vanishes. Let us now show that S is
compact. We choose φ = w in (98).∫

Ω

(
δ
u(y)− u(wk−1)

τ
· w +∇w : B(y)∇w

)
dx+ ε(w,w)Hm = δ

∫
Ω

f(u(y)) · w dx. (99)

The positive semidefiniteness of B and the boundedness of y, wk−1 implies (just use Cauchy-
Schwartz):

‖w‖Hm(Ω,Rn) ≤
δ

ε

(
‖f(u(y))‖L2(Ω,Rn) + τ−1‖u(y)‖L2(Ω,Rn) + τ−1‖u(wk−1)‖L2(Ω,Rn)

)
≤ Cε,τ .
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The implies that S : L∞(Ω,Rn) × [0, 1] → Hm(Ω,Rn) is bounded. In particular S :
L∞(Ω,Rn)× [0, 1]→ L∞(Ω,Rn) is compact due to the Sobolev compact embedding
Hm(Ω,Rn) ↪→ L∞(Ω,Rn).

The proof that S is (sequentially) continuous is quite standard. Take a sequence
(yk, δk)k∈N ⊂ L∞(Ω,Rn) × [0, 1]. Assume that yk → y in L∞(Ω,Rn) and δk → δ. Define
wk = S(yk, δk). We know that S is compact, therefore wk admits a convergent subse-
quence, which we will denote again (notation abuse!) as wk. So, let wk → w in L∞(Ω,Rn).
Moreover, since wk is bounded in Hm(Ω,Rn), then in particular wk ⇀ w in Hm(Ω,Rn) (up
to subsequences). Finally, u(yk)→ u(y), B(yk)→ B(y), f(u(yk))→ f(u(y)) in L∞(Ω,Rn)
by (uniform) continuity. At this point, write (98) with y, δ, w replaced by yk, δk, wk
(respectively) and take the limit k →∞. You will find that w solves (98), i.e. w = S(y, δ).
So, S is continuous.

Now, the most interesting part (actually, the key part): let us show that the set of fixed
points of S(·, δ) is bounded in L∞(Ω,Rn) uniformely w.r.t. δ ∈ [0, 1]. Let 0 ≤ δ ≤ 1, and
w ∈ Hm(Ω,Rn) be such that w = S(w, δ). Then (99) holds with y = w:∫

Ω

(
δ
u(w)− u(wk−1)

τ
· w +∇w : B(w)∇w

)
dx+ ε(w,w)Hm = δ

∫
Ω

f(u(w)) · w dx.

(100)

The convexity of h implies that h(u)− h(v) ≤ h′(u) · (u− v) for u, v ∈ Rn. This implies∫
Ω

u(w)− u(wk−1)

τ
· wdx ≥ τ−1

∫
Ω

(h(u(w))− h(u(wk−1)))dx.

The right-hand side of (100) can be bound by using Hypothesis H3:∫
Ω

f(u(w)) · w dx ≤ Cf

∫
Ω

(1 + h(u(w)))dx.

Therefore (100) leads to

δ(1− Cfτ)

∫
Ω

h(u(w))dx+ τ

∫
Ω

∇w : B(w)∇wdx+ ετ‖w‖2
Hm(Ω,Rn)

≤ Cfτδ|Ω|+ δ

∫
Ω

h(u(wk−1))dx.

Choosing τ < 1/Cf and recalling that 0 ≤ δ ≤ 1 leads to

ετ‖w‖2
Hm(Ω,Rn) ≤ |Ω|+

∫
Ω

h(u(wk−1))dx.

We have found the desired uniform bound on the fixed points of S(·, δ). As a consequence,
Leray-Schauder’s fixed point theorem implies the existence of a fixed point wk ∈ L∞(Ω,Rn)
to S(·, 1), that is, a solution to (97). This solution satisfies the discrete entropy inequality

(1− Cfτ)

∫
Ω

h(u(wk))dx+ τ

∫
Ω

∇wk : B(wk)∇wkdx+ ετ‖wk‖2
Hm(Ω,Rn) (101)
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≤ Cfτ |Ω|+
∫

Ω

h(u(wk−1))dx.

Step 4: uniform estimates. Time to fix a new notation. To be precise, we define piecewise-
constant-in-time functions from the sequences wk, u(wk). For 0 ≤ t ≤ T let

w(τ)(x, t) = w0(x)χ{0}(t) +
N∑
k=1

wk(x)χ((k−1)τ,kτ ](t),

u(τ)(x, t) = u0(x)χ{0}(t) +
N∑
k=1

u(wk(x))χ((k−1)τ,kτ ](t).

Moreover, let us define the discrete backward time derivative operator Dτ as (Dτf)(x, t) =
τ−1(f(x, t)− f(x, t− τ)), for τ ≤ t ≤ T and for any function f = f(x, t). Taking the sum
of (97) for k = 1, . . . , N yields∫

Ω

u(wN)− u(w0)

τ
· φ dx+

N∑
k=1

∫
Ω

∇φ : B(wk)∇wkdx+
N∑
k=1

ε(wk, φ)Hm

=
N∑
k=1

∫
Ω

f(u(wk)) · φ dx.

Multiplying the above equality times τ and applying the new notation we deduce∫ T

0

∫
Ω

Dτu
(τ) · φ dxdt+

∫ T

0

∫
Ω

∇φ : B(w(τ))∇w(τ)dxdt+

∫ T

0

ε(w(τ), φ)Hmdt

=

∫ T

0

∫
Ω

f(u(τ)) · φ dxdt,

which, since B(w) = A(u(w))(h′′(u(w)))−1 and w = h′(u), becomes∫ T

0

∫
Ω

Dτu
(τ) · φ dxdt+

∫ T

0

∫
Ω

∇φ : A(u(τ))∇u(τ)dxdt+

∫ T

0

ε(w(τ), φ)Hmdt (102)

=

∫ T

0

∫
Ω

f(u(τ)) · φ dxdt,

for piecewise constant functions φ : [0, T ] → Hm(Ω,Rn). However, a density argument
ensures that (102) holds true for all φ ∈ L2(0, T ;Hm(Ω,Rn)). Furthermore. summing the
discrete entropy inequality (101) for k = 1, . . . , j, j ≤ N arbitrary, leads to

(1− Cfτ)

∫
Ω

h(u(wj))dx+ τ

j∑
k=1

∫
Ω

∇wk : B(wk)∇wkdx+ ετ

j∑
k=1

‖wk‖2
Hm(Ω,Rn) (103)
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≤ Cfτj|Ω|+ Cfτ

j−1∑
k=1

∫
Ω

h(u(wk))dx+

∫
Ω

h(u(w0))dx.

At this point, we need the following

Lemma 3.2 (Discrete Gronwall inequality). Let a ≥ 0, bk ≥ 0, zk ∈ R (for k ∈ N) such
that

zj ≤ a+

j−1∑
k=1

bkzk, j ≥ 1.

Then

zj ≤ a exp

(
j−1∑
k=1

bk

)
, j ≥ 1.

Since τj ≤ T , the above lemma can be applied to zk =
∫

Ω
h(u(wk))dx to find∫

Ω

h(u(wj))dx ≤ CfT |Ω| exp (Cfτ(j − 1)) ≤ CfT |Ω|eCfT ,

which allows us to control the right-hand side of (103), yielding

(1− Cfτ)

∫
Ω

h(u(wj))dx+ τ

j∑
k=1

∫
Ω

∇wk : B(wk)∇wkdx+ ετ

j∑
k=1

‖wk‖2
Hm(Ω,Rn) (104)

≤ CT +

∫
Ω

h(u(w0))dx,

for some positive constant CT depending on T , |Ω|. Moreover, Hypothesis H2’ implies

∇wk : B(wk)∇wk = ∇u(τ) : h′′(u(τ))A(u(τ))∇u(τ) ≥
n∑
i=1

(u
(τ)
i )2a|∇u(τ)

i |2

=
1

(a+ 1)2

n∑
i=1

|∇(u
(τ)
i )a+1|2.

Therefore, (104) and the above estimate lead to∫
Ω

h(u(τ))dx+

∫ T

0

∫
Ω

n∑
i=1

|∇(u
(τ)
i )a+1|2dxdt+ ε

∫ T

0

‖w(τ)‖2
Hm(Ω,Rn)dt (105)

≤ CT +

∫
Ω

h(u0)dx.

The above inequality and the L∞ bounds for u imply

‖u(τ)‖L∞(Ω×(0,T )) +
n∑
i=1

‖(u(τ)
i )a+1‖L2(0,T ;H1(Ω)) +

√
ε‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ CT . (106)
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Now we find a uniform estimate for the discrete time derivative Dτu
(τ) of u(τ). Let φ ∈

L2(0, T ;Hm(Ω,Rn)). It holds (just use Cauchy-Schwartz)∣∣∣∣∫ T

0

∫
Ω

Dτu
(τ) · φdxdt

∣∣∣∣ ≤ ‖A(u(τ))∇u(τ)‖L2(Ω×(0,T ))‖∇φ‖L2(Ω×(0,T ))

+ ε‖w(τ)‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω)) + ‖f(u(τ))‖L2(Ω×(0,T ))‖φ‖L2(Ω×(0,T )).

Clearly ε‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ CT from (106), while ‖f(u(τ))‖L2(Ω×(0,T )) ≤ C thanks to
Hypothesis H3. Concerning the remaining term,

‖A(u(τ))∇u(τ)‖2
L2(Ω×(0,T )) =

n∑
i=1

‖(A(u(τ))∇u(τ))i‖2
L2(Ω×(0,T ))

≤ C
n∑

i,j=1

‖Aij(u(τ))∇u(τ)
j ‖2

L2(Ω×(0,T ))

= C
n∑

i,j=1

∥∥∥∥∥Aij(u(τ))

(u
(τ)
j )a

∇(u
(τ)
j )a+1

∥∥∥∥∥
2

L2(Ω×(0,T ))

≤ C
n∑

i,j=1

∥∥∥∥∥Aij(u(τ))

(u
(τ)
j )a

∥∥∥∥∥
2

L∞(Ω×(0,T ))

∥∥∥∇(u
(τ)
j )a+1

∥∥∥2

L2(Ω×(0,T ))
.

Hypothesis H2” and (106) lead to

‖A(u(τ))∇u(τ)‖2
L2(Ω×(0,T )) ≤ C

n∑
j=1

∥∥∥∇(u
(τ)
j )a+1

∥∥∥2

L2(Ω×(0,T ))
≤ CT . (107)

Therefore∣∣∣∣∫ T

0

∫
Ω

Dτu
(τ) · φdxdt

∣∣∣∣ ≤ CT‖φ‖L2(0,T ;Hm(Ω)) φ ∈ L2(0, T ;Hm(Ω,Rn)),

that is,
‖Dτu

(τ)‖L2(0,T ;Hm(Ω)′) ≤ CT . (108)

Step 5: limit (ε, τ)→ 0. The uniform estimates (106), (108) allow us to apply the following
generalization of the well-known Aubin’s Lemma:

Lemma 3.3 (Nonlinear Aubin’s Lemma). Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with
Lipschitz boundary. Let (u(τ))τ>0 be a family of nonnegative, piecewise constant in time
functions with uniform time step size τ > 0. Furthermore, let α ≥ 1/2, m ≥ 0, and assume
there exists C > 0 such that for all τ > 0,

‖(u(τ))α‖L2(0,T ;H1(Ω)) + ‖Dτu
(τ)‖L2(τ,T ;Hm(Ω)′) ≤ C.

Finally, assume that p ≥ 1 is such that the embedding H1(Ω) ↪→ Lp(Ω) is continuous.
Then, up to subsequences, u(τ) is strongly convergent in L2α(0, T ;Lpα(Ω)).
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The above Lemma implies that, up to a subsequence, u(τ) → u strongly in L1(Ω×[0, T ])
as (τ, ε)→ 0. Notice that the restriction a ≥ −1/2 comes from the hypothesis α ≥ 1/2 of
the above lemma: in our case α = a+1. Since u(τ) is uniformely bounded in L∞(Ω×[0, T ]),
by Lp interpolation we deduce that u(τ) → u strongly in Lp(Ω × [0, T ]) as (τ, ε) → 0, for
any p ∈ [1,∞). Moreover, up to a subsequence, u(τ) → u a.e. in Ω× [0, T ].

By the dominated convergence theorem f(u(τ)) → f(u) strongly in Lp(Ω × [0, T ]) as
(τ, ε)→ 0, for any p ∈ [1,∞). Bounds (106), (108) imply that, up to subsequences,

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)),

Dτu
(τ) ⇀ ∂tu weakly in L2(0, T ;Hm(Ω)′).

The weak convergence of ∇(u
(τ)
i )a+1 and the a.e. convergence of u(τ) imply that

∇(u
(τ)
i )a+1 ⇀ ∇ua+1

i weakly in L2(Ω × [0, T ]). Furthermore, from Hypothesis H2” it

follows that Aij(u
(τ))(u

(τ)
j )−a → Aij(u)u−aj strongly in Lp(Ω × [0, T ]), for any p < ∞

and i, j = 1, . . . , n. Since (A(u(τ))∇u)i = (a + 1)−1
∑n

j=1 Aij(u
(τ))(u

(τ)
j )−a∇(u

(τ)
j )a+1, this

implies that A(u(τ))∇u(τ) ⇀ A(u)∇u weakly in Lp(Ω× [0, T ]) for any 1 ≤ p < 2. This fact
and (107) lead to

A(u(τ))∇u(τ) ⇀ A(u)∇u weakly in L2(Ω× [0, T ]).

At this point, by taking the limit (τ, ε) → 0 in (102) we find that (96) is satisfied for
φ ∈ L2(0, T ;Hm(Ω)). However, a standard density argument implies that (96) actually
holds for φ ∈ L2(0, T ;H1(Ω)). The initial condition u(·, 0) = u0 is satisfied in the sense of
H1(Ω)′ since H1(0, T ;H1(Ω)′) ↪→ C0(0, T ;H1(Ω)′). This finishes the proof.

3.4.2 A few examples.

Theorem 3.1 can be applied to some examples of cross-diffusion equations from the previous
sections.

Tumor-growth model. Let us begin with the tumor growth model (with no source terms,
for the sake of simplicity):

∂tu = div (A(u)∇u) in Ω, t > 0,

A(u) =

(
2u1(1− u1)− βθu1u

2
2 −2βu1u2(1 + θu1)

−2u1u2 + βθ(1− u2)u2
2 2βu2(1− u2)(1 + θu1)

)
, u ∈ D,

where the domain D of the physical variables is defined as

D = {(u1, u2) ∈ (0,∞)2 : u1 + u2 < 1}.

We define the entropy density as

h(u) = u1 log u1 + u2 log u2 + (1− u1 − u2) log(1− u1 − u2), u ∈ D.
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The Reader knows already that h is a strictly convex function such that the mapping
h′ : D → R2 is invertible, and its inverse reads as

(h′)−1(w)i =
ewi

1 + ew1 + ew2
, i = 1, 2, w ∈ R2.

This, in particular, means that Hypothesis H1 is fulfilled. What the Reader probably does
not know, however, is that

z · h′′(u)A(u)z = 2z2
1 + βθu2z1z2 + 2β(1 + θu1)z2

2 z ∈ R2, u ∈ D.

It is straightforward to see that the right-hand side of the above quadratic form is positive
definite if θ < θ∗ ≡ 4β−1/2. This condition guarantees that Hypothesis H2’ holds with
a = 0. The boundedness of D, as well as the fact that a = 0 and f ≡ 0, imply that Hy-
potheses H2”, H3 are satisfied. Therefore, Theorem 3.1 yields the global-in-time existence
of nonnegative, bounded weak solutions u = u(x, t) to the tumor-growth model such that
u(x, t) ∈ D for x ∈ Ω, t > 0.

Maxwell-Stefan model. Remember that the Maxwell-Stefan equations are given by

∂tui + div Ji = fi(u), ∇ui =
n∑
k=1
k 6=i

uiJk − ukJi
Dij

, i = 1, . . . , n.

Choosing n = 3 and Inverting the relations between ∇u1, ∇u2 and j1, J2 yields the 2× 2
cross-diffusion model

∂tu = div (A(u)∇u) in Ω, t > 0,

A(u) =
1

a(u)

(
d2 + (d0d2)u1 (d0d1)u1

(d0d2)u2 d1 + (d0d1)u2

)
, u ∈ D,

where di+j−2 = Dij and a(u) = d1d2(1 − u1 − u2) + d0(d1u1 + d2u2), and D is defined as
in the tumor-growth model. The entropy density h is also identical to the one from the
previous example (in particular, Hypothesis H1 holds true). Moreover, let us compute the
quadratic form

z · h′′(u)A(u)z =
1

a(u)

(
d2
z2

1

u1

+ d1
z2

2

u2

+ d0
(z1 + z2)2

1− u1 − u2

)
z ∈ R2, u ∈ D.

The definition of D and a(u) implies that u ∈ D 7→ a(u) ∈ R is bounded, and hence a
constant γ > 0 exists such that

z · h′′(u)A(u)z ≥ γ(u−1
1 z2

1 + u−1
2 z2

2) z ∈ R2, u ∈ D.

This means that Hypothesis H2’ is satisfied with a = −1/2. Since a < 0 and f ≡ 0
then Hypothesis H2”, H3 are fulfilled, too. Therefore we have global existence of bounded,
nonnegative weak solutions u = u(x, t) to the Maxwell-Stefan equations such that u(x, t) ∈
D for x ∈ Ω, t > 0. We point out that such existence result can be generalized to an
arbitrary n ≥ 3.
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3.4.3 Population Models.

We are going to consider a problem to which the previous existence theorem cannot be
applied; however, we can still obtain an existence result for such a problem by exploiting
similar techniques. We are referring to the SKT model:

∂tu = div (A(u)∇u) + f(u) in Ω, t > 0, (109)

∇u · ν = 0 on ∂Ω, t > 0, (110)

u(·, 0) = u0 in Ω, (111)

where

A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + 2a22u2

)
(112)

and f is given by the Lotka-Volterra model

fi(u) = (bi0 − bi1u1 − bi2u2)ui, i = 1, 2. (113)

The coefficients aij, bij are nonnegative. An entropy density for the system is given by

h(u) = a−1
12 (u1 log u1 − u1 + 1) + a−1

21 (u2 log u2 − u2 + 1), u1, u2 > 0.

In fact, if H[u] ≡
∫

Ω
h(u)dx, it follows

dH[u(t)]

dt
+ 4

∫
Ω

(
a10

a12

|∇
√
u1|2 +

a20

a21

|∇
√
u2|2 +

a11

2a12

|∇u1|2 +
a22

2a21

|∇u1|2
)
dx

≤ max {a12b10, a21b20}H[u(t)] +

(
b10 + b20 +

b2
10

b11

+
b2

20

b22

)
|Ω|.

The above inequality follows from the fact that h′′(u)A(u) = M I(u) +M II(u) +M III(u),
where

M I(u) =

(a10
a12

1
u1

0

0 a20
a21

1
u2

)
, M II(u) =

(2a11
a12

0

0 2a22
a21

)
, M III(u) =

(u2
u1

1

1 u1
u2

)
.

the terms containing |∇√u1|2, |∇√u2|2 come from M I , the terms with |∇u1|2, |∇u2|2 come
from M II , while M III is positive semi-definite by Sylvester’s criterion. The right-hand side
derives from a straightforwad estimate of

∫
Ω
f(u) · h′(u)dx. Gronwall’s Lemma allows us

to bound the right-hand side by a suitable constant depending on the final time T .
We will prove the following

Theorem 3.2 (Global existence for SKT). Let ai0 ≥ 0, bi0 ≥ 0, aij > 0, bij ≥ 0 for
i, j = 1, 2. Let u0 : Ω → [0,∞)2 be a Lebesgue-measurable function such that H[u0] < ∞.
Then there exists a weak solution u = (u1, u2) : Ω × [0,∞) → [0,∞)2 to the SKT model
(109)–(113) such that

u ∈ L2
loc(0,∞;H1(Ω)) ∩W 1,q′

loc (0,∞;W 1,q(Ω)′), q = 2(d+ 1).
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Proof. Let T > 0, N ∈ N, τ = T/N .We define, as always, the entropy variables as
wi = ∂h/∂ui = log ui, i = 1, 2. The transformation u 7→ w is invertible and its inverse is
u(w) = (ew1 , ew2). We also define the matrix B(w) = A(u(w))(h′′(u(w))−1.

Step 1 of the general existence theorem (Thr. 3.1) holds for the SKT model, too. We
obtain the existence of solutions wk ∈ Hm(Ω) to∫

Ω

(
u(wk)− u(wk−1)

τ
· φ+∇φ : B(wk)∇wk

)
dx+ε(wk, φ)Hm =

∫
Ω

f(u(wk))·φ dx, (114)

for all φ ∈ Hm(Ω). Moreover, the following discrete entropy inequality holds, which follows
from the positivity of the coefficients aii, i = 1, 2:∫

Ω

h(u(wk))dx+ τ

k∑
j=1

∫
Ω

|∇u(wj)|2dx+ ετ
k∑
j=1

‖wj‖2
Hm ≤ C. (115)

We can define, as in the proof of Thr. 3.1, a piecewise-constant-in-time function u(τ)(x, t)
which interpolates in time the sequence u(wk) and a discrete time derivation operator Dτ

(Dτf(t) = (f(t) − f(t − τ))/τ). In this case we do not have L∞ bounds for u; however,
we can exploit other bounds. In fact, from the entropy inequality a uniform bound for the
entropy density h(u(τ)) in L∞(0, T ;L1(Ω)) follows, which implies (through Csiszar-Kullback
inequality) a uniform bound for u(τ) in L∞(0, T ;L1(Ω)). From Poincaré inequality it follows
that u(τ) is uniformely bounded in L2(0, T ;H1(Ω)). Thus in the end we are left with

‖u(τ)‖L2(0,T ;H1(Ω)) +
√
ε‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ C. (116)

Let p = 2+2/d, θ = 2d(p−1)/((d+2)p) ∈ [0, 1]. Notice that θp = 2. Gagliardo-Nirenberg
inequality implies

‖u(τ)‖Lp(Ω) ≤ C‖u(τ)‖1−θ
L1(Ω)‖u

(τ)‖θH1(Ω),

and so

‖u(τ)‖pLp(Ω×(0,T )) =

∫ T

0

‖u(τ)‖pLp(Ω)dt ≤ C

∫ T

0

‖u(τ)‖(1−θ)p
L1(Ω) ‖u

(τ)‖pθH1(Ω)dt

= C

∫ T

0

‖u(τ)‖p−2
L1(Ω)‖u

(τ)‖2
H1(Ω)dt

≤ C‖u(τ)‖p−2
L∞(0,T ;L1(Ω))‖u

(τ)‖2
L2(0,T ;H1(Ω)) ≤ C.

This means that u(τ) is uniformely bounded in L2+2/d(Ω × (0, T )). Now we have to find
a bound for Dτu

(τ). Let φ ∈ Lq(0, T ;Wm,q(Ω)) with q = 2(d + 1) be a test function. If
q′ = q/(q − 1) (as usual) It follows∣∣∣∣∫ T

0

∫
Ω

Dτu
(τ) · φdxdt

∣∣∣∣ ≤ ‖A(u(τ))∇u(τ)‖Lq′ (Ω×(0,T ))‖∇φ‖Lq(Ω×(0,T ))

+ ε‖w(τ)‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω)) + ‖f(u(τ))‖Lq′ (Ω×(0,T ))‖φ‖Lq(Ω×(0,T )).
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Since each component Aij(u) of A(u) is a first-order polynomial in u1, u2, we deduce that
|A(u)∇u| ≤ C(1 + |u|)|∇u|. Since 1/q′ = 1/p+ 1/2 Hölder inequality implies

‖A(u(τ))∇u(τ)‖Lq′ (Ω×(0,T )) ≤ C(1 + ‖u(τ)‖Lp(Ω×(0,T )))‖∇u(τ)‖L2(Ω×(0,T )) ≤ C.

Moreover ε‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ C
√
ε ≤ C. Finally, since f(u) depends at most quadrati-

cally on u and 2q′ < p,

‖f(u(τ))‖Lq′ (Ω×(0,T )) ≤ C(1 + ‖u(τ)‖2
L2q′ (Ω×(0,T ))

) ≤ C(1 + ‖u(τ)‖2
Lp(Ω×(0,T ))) ≤ C.

By putting together all the previous estimates we conclude

‖Dτu
(τ)‖Lq′ (0,T ;Wm,q(Ω)′ ≤ C.

We are in the condition to apply the Aubin-Lions lemma: up to a subsequence,

u(τ) → u strongly in L2(0, T ;L2(Ω)), (117)

u(τ) ⇀ u weakly in L2(0, T ;H1(Ω)), (118)

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)), (119)

Dτu
(τ) ⇀ ∂tu weakly in Lq

′
(0, T ;Wm,q(Ω)′). (120)

Since u(τ) is strongly convergent in L2(Ω× (0, T )) and uniformely bounded in L2+2/d(Ω×
(0, T )) it follows (by Lp interpolation) that

u(τ) → u strongly in Lr(Ω× (0, T )) for any r < 2 + 2/d. (121)

Since f depends at most quadratically on u and (121) holds,

f(u(τ))→ f(u) strongly in Lr(Ω× (0, T )) for any r < 1 + 1/d. (122)

Moreover, since A depends at most linearly on u and (118), (121), hold,

A(u(τ))∇u(τ) ⇀ A(u)∇u weakly in Ls(Ω× (0, T )) for any s < 1 +
1

1 + 2d
. (123)

From (120), (122), (123) it follows that we can pass to the limit τ → 0 in (114) and find
that u satisfies∫ T

0

〈∂tu, φ〉dt+

∫ T

0

∫
Ω

∇φ : A(u)∇udxdt =

∫ T

0

∫
Ω

f(u) · φdxdt, (124)

for φ smooth enought. However, since ∂tu ∈ Lq
′
(0, T ;W 1,q(Ω)′), a standard density ar-

gument yields that (124) actually holds for any φ ∈ Lq(0, T ;W 1,q(Ω)). Again, since
u ∈ W 1,q′(0, T ;W 1,q(Ω)′) ↪→ C([0, T ],W 1,q(Ω)′), the initial condition is satisfied in the
sense of W 1,q(Ω)′, i.e. limt→0 u(·, t) = u0 in W 1,q(Ω)′. This finishes the proof.
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Nonlinear SKT. The SKT model can be rewritten as

∂tui = ∆(uipi(u)), pi(u) = ai0 +
2∑
j=1

aijuj, i = 1, 2.

We can generalize the model by consider nonlinear functions pi, like e.g.

pi(u) = ai0 +
2∑
j=1

aiju
s
j , i = 1, 2.

The diffusion matrix A becomes

A(u),=

(
a10 + (1 + s)a11u

s
1 + a12u

s
2 sa12u1u

s−1
2

sa21u
s−1
1 u2 a20 + a21u

s
1 + (1 + s)a22u

s
2

)
.

The global existence of weak solutions was shown by Desvilletes et al. [19] for 0 < s < 1.
Jüngel [31] extended the result to the range 1 < s < 4 under the weak cross-diffusion
condition (

1− 1

s

)2

a12a21 ≤ a11a22.

The restriction s < 4 is needed in the approximation procedure. Desvilletes et al. [20]
employed another approximation method removed the restriction on s and relaxed the
weak cross-diffusion condition to(

s− 1

s+ 1

)2

a12a21 ≤ a11a22.

The function

h(u) =
a21u

s
1 + a12u

s
2

s(s− 1)

is an entropy density for the system, and it holds

v · h′′(u)A(u)v ≥ a21a11u
2(s−1)
1 v2

1 + a12a22u
2(s−1)
2 v2

2.

If a11, a22 > 0 the above inequality yields a bound for ∇(usi ) in L2(Ω× (0, T )) and for usi
in L∞(0, T ;L1(Ω)).

n-species population model. Let us consider the linear SKT model for n ≥ 3 species:

∂tui = ∆(uipi(u)), pi(u) = ai0 +
n∑
j=1

aijuj, i = 1, . . . , n.

The analysis of the above model is much more difficult than the case n = 2. Chen, Daus
and Jüngel [10] showed that under the so-called detailed balance condition

∃π ∈ (0,∞)n : πiaij = πjaji i, j = 1, . . . , n,
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the function

h(u) =
n∑
i=1

πiui(log ui − 1)

is an entropy density for the system. In fact, the matrix h′′(u)A(u) is symmetric and
positive semidefinite (and a suitable lower bound for it is available). As a matter of fact,
the detailed balance condition is equivalent to the symmetry of h′′(u)A(u). We also wish
to point out that such condition imposes constraints on the coefficients of A. For example,
for n = 3 it must hold

a12a23a31 = a13a32a21.

Without the detailed balance condition h is not an entropy density: in fact, initial data
can be chosen such that the functional H[u] =

∫
Ω
h(u)dx is increasing for small times.

However, the detailed balance condition is not necessary for existence of solutions. In fact,
under the weak cross-diffusion hypothesis

s

2(s+ 1)

n∑
j=1

(
√
aij −

√
aji)

2 < aii i = 1, . . . , n,

a surrogate entropy inequality can be obtained, which implies the same gradient estimates
that follow from the entropy inequality under the detailed balance condition.

3.4.4 Ion-Transport Models.

We will prove the global existence of bounded weak solutions to the two-species ion-
transport model:

∂tu− div (A(u)∇u) = 0 in Ω, t > 0, (125)

ν · ∇u = 0 on ∂Ω, t > 0, (126)

u(·, 0) = u0 in Ω, (127)

and the diffusion matrix A given by

A(u) =

(
D1(1− u2) D1u1

D2u2 D2(1− u1)

)
. (128)

Up to exchanging u1 and u2, we can assume D2 ≥ D1. Burger et al. [8] have showed that
(125)–(128) admits the entropy density:

h(u) =
3∑
i=1

ui log ui, u3 ≡ 1−u1−u2, (u1, u2) ∈ D ≡ {(u1, u2) ∈ (0, 1)2 : u1 +u2 < 1}.

In fact, it holds

v · h′′(u)A(u)v
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= D1u3

(
v2

1

u1

+
v2

2

u2

)
+D1

1 + u3

u3

(v1 + v2)2 + (D2 −D1)
u2

u3

(
v1 +

1− u1

u2

v2

)2

. (129)

Since we assumed D2 ≥ D1, it follows that h′′(u)A(u) is positive semidefinite for (u1, u2) ∈
D. However, Hypothesis H2’ is not satisfied due to the factor u3 in front of the first term
on the right-hand side of (129). There is a “degeneracy”, that is, we lose control on the
gradient of the solution near u3 = 0. Anyway, even if we cannot apply the general existence
result (Thr. 3.1) we can still employ a similar technique to show the following

Theorem 3.3 (Global existence for the ion-transport model). Let D1, D2 be positive
constants, and let u0 : Ω → D be a Lebesgue-measurable function such that H[u0] < ∞.
Then there exists a weak solution u : Ω× (0, T )→ D to (125)–(128) such that

u
1/2
3 ui, u

1/2
3 ∈ L2

loc(0,∞;H1(Ω)), ∂tui ∈ L2
loc(0,∞;H1(Ω)′), (130)

with u3 = 1 − u1 − u2. The function u satisfies the following weak formulation of (125)–
(128):

2∑
i=1

∫ T

0

〈∂tui, φi〉dt+
2∑
i=1

Di

∫ T

0

∫
Ω

(
u

1/2
3 ∇(u

1/2
3 ui)− 3u

1/2
3 ui∇u1/2

3

)
· ∇φidxdt = 0 (131)

for all φ = (φ1, φ2) ∈ L2
loc(0, T ;H1(Ω)) and T > 0.

Proof. We present here only the main ideas of the proof, since the full proof, which can be
found in [8], is rather technical. Let T > 0, N ∈ N, τ = T/N (timestep), wi = ∂h/∂ui =
log(ui/u3) for i = 1, 2 (entropy variables), ui(w) = ewi/(ew1 + ew2) for i = 1, 2 (the inverse
of the transformation u 7→ w), B(w) = A(u(w))h′′(u(w))−1. Notice that B(w) is positive
semidefinite. Thanks to this fact, by proceeding like in the Step 1 of the proof of Thr. 3.1
we can show the existence of a weak solution to the truncated-regularized problem (97).
Moreover, from (129) it follows∫

Ω

h(u(w(τ)(x, T )))dx+

∫ T

0

∫
Ω

u
(τ)
3

2∑
i=1

|∇(u
(τ)
i )1/2|2dxdt

+

∫ T

0

∫
Ω

|∇(u
(τ)
3 )1/2|2dxdt+ ε

∫ T

0

‖w(τ)‖2
Hmdt ≤ C. (132)

We cannot get from (132) any bound for ∇ui alone, since u3 might vanish. To overcome the
troubles caused by this lack of gradient estimates we will exploit a generalized Aubin-Lions
Lemma; however, this result requires a bound for the discrete time derivative Dτu

(τ) of
u(τ) in L2(0, T ;H1(Ω)′). As a consequence, we cannot take the limit (ε, τ)→ 0. Therefore,
we will first take the limit ε→ 0, and then τ → 0.

We do not write down here the details about the limit ε→ 0, since the main difficulties
lie in the limit limit τ → 0. We just state that the limit ε → 0 leads to the following
equation:∫ T

0

∫
Ω

Dτu
(τ) · φdxdt
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+
2∑
i=1

Di

∫ T

0

∫
Ω

(u
(τ)
3 )1/2

(
∇((u

(τ)
3 )1/2u

(τ)
i )− 3u

(τ)
i ∇(u

(τ)
3 )1/2

)
· ∇φ dxdt = 0 (133)

for suitable test functions φ. Estimate (132) and the uniform L∞ bounds for u(τ) lead to

‖(u(τ)
3 )1/2u

(τ)
i ‖L2(0,T ;H1(Ω)) + ‖(u(τ)

3 )1/2‖L2(0,T ;H1(Ω)) ≤ C, i = 1, 2. (134)

From (133), (134) it follows

‖Dτu
(τ)
i ‖L2(0,T ;H1(Ω)) ≤ C, i = 1, 2, 3. (135)

Aubin-Lion’s Lemma implies that u
(τ)
3 → u3 strongly in L2(0, T ;L2(Ω)) (up to a subse-

quence). Furthermore,

(u
(τ)
3 )1/2 → u

1/2
3 strongly in L4(0, T ;L4(Ω)), (136)

∇(u
(τ)
3 )1/2 ⇀ ∇u1/2

3 weakly in L2(0, T ;L2(Ω)). (137)

The L∞ bounds allows us to write that u
(τ)
i ⇀∗ ui weakly* in L∞(0, T ;L∞(Ω)), i = 1, 2.

We apply now [32, Thr. A.6] with y(τ) = (u
(τ)
3 )1/2 and z(τ) = u

(τ)
i and deduce

(u
(τ)
3 )1/2u

(τ)
i → u

1/2
3 ui strongly in L2(0, T ;L2(Ω)).

As a consequence

3(u
(τ)
3 )1/2u

(τ)
i ∇(u

(τ)
3 )1/2 ⇀ 3u

1/2
3 ui∇u1/2

3 weakly in L1(0, T ;L1(Ω)).

Moreover, since (u
(τ)
3 )1/2u

(τ)
i is bounded in L2(0, T ;H1(Ω)), we deduce that

∇((u
(τ)
3 )1/2u

(τ)
i ) ⇀ ∇(u

1/2
3 ui) weakly in L2(0, T ;L2(Ω)).

Therefore we can take the limit τ → 0 in (133) and obtain that (131) holds for φ smooth
enough. As usual, a density argument allows us to deduce that (131) holds for all φ =
(φ1, φ2) ∈ L2

loc(0, T ;H1(Ω)). This finishes the proof.

Theorem 3.3 can be generalized in various ways.

• Drift terms depending on the electric potential V can be included in the model, and
the proof can be adjusted to cover this case. The entropy density will contain an
additional term proportional to (u1 + u2)∇V .

• Eq. (128) describes the case of linear transition rates qi(u3) = Diu3. Nonlinear
transition rates can be employed; for example, the power-law case qi(u3) = Diu

s
3,

s > 0, was considered in [31, Sect. 4].

• The n−species case was considered in [52]. The techniques are similar to those
employed in the proof of Thr. 3.3, but the computations are more involved.

• Source terms f(u) on the right-hand side of (125) can be considered, as long as they
have the form f(u) = f (0)(u3) + u1f

(1)(u3) + u2f
(2)(u3), since we only have weak

convergence for u
(τ)
1 , u

(τ)
2 .
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3.4.5 About uniqueness of weak solutions.

At this point, after having considered the problem of existence of weak solutions to cross-
diffusion equations, the Reader might ask: what are we going to do about uniqueness? The
part that follows is meant as an answer to this fairly legittimate question.

For the sake of simplicity, let us first consider the problem of showing uniqueness of
weak solutions for the Fokker-Planck equation

∂tu− div (∇u+ u∇V ) = 0 in Ω, t > 0, (138)

(∇u+ u∇V ) · ν = 0 on ∂Ω, t > 0, u(·, 0) = u0 in Ω, (139)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain and the potential V = V (x, t) is a given
function. Our goal is to prove a uniqueness result under minimal assumptions on V . We
present two ways of doing it. In what follows, we assume for the sake of simplicity that
the considered solutions of the Fokker-Planck are bounded.

First method: naive solution. This is the strategy that immediately comes to mind.

1. Consider two solutions u, v to (138), (139) with the same initial datum u0;

2. take the difference of the equations satisfied by u, v;

3. test this newly found equation against u− v;

4. use integral inequalities and similar stuff to get something that would allow us to
apply Gronwall’s Lemma;

5. apply Gronwall’s Lemma.

It is straightforward to see that after the third step in this strategy what we get is∫
Ω

(u(x, t)− v(x, t))2

2
dx+

∫ t

0

∫
Ω

|∇(u− v)|2dxdt = −
∫ t

0

∫
Ω

(u− v)∇V · ∇(u− v)dxdt.

(140)

Let us consider the right-hand side of the above inequality:

−
∫ t

0

∫
Ω

(u− v)∇V · ∇(u− v)dxdt ≤
∫ t

0

‖u− v‖Lp(Ω)‖∇V ‖Lq(Ω)‖∇(u− v)‖L2(Ω)dt,

where p, q ∈ (2,∞) are such that 1/p + 1/q = 1/2. We estimate the right-hand side of
the above inequality by replacing ‖∇V ‖Lq(Ω) with ‖∇V ‖L∞(0,t;Lq(Ω)) and by exploiting the
following Gagliardo-Nirenberg inequality:

‖u− v‖Lp(Ω) ≤ C‖∇(u− v)‖θL2(Ω)‖u− v‖1−θ
L2(Ω), θ =

d(p− 2)

2p
.
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It follows

−
∫ t

0

∫
Ω

(u− v)∇V · ∇(u− v)dxdt

≤ C‖∇V ‖L∞(0,t;Lq(Ω))

∫ t

0

‖∇(u− v)‖1+θ
L2(Ω)‖u− v‖

1−θ
L2(Ω)dt

≤ C‖∇V ‖L∞(0,t;Lq(Ω))‖u− v‖1−θ
L2(0,t;L2(Ω)) · ‖∇(u− v)‖1+θ

L2(0,t;L2(Ω)).

At this point we must assume θ < 1 in order to control the right-hand side of (140),
otherwise we would need an assumption of smallness on ‖∇V ‖L∞(0,t;Lq(Ω)). If θ < 1 then
we can apply Young inequality and obtain

−
∫ t

0

∫
Ω

(u− v)∇V · ∇(u− v)dxdt

≤ C‖∇V ‖2/(1−θ)
L∞(0,t;Lq(Ω))‖u− v‖

2
L2(0,t;L2(Ω)) +

1

2
‖∇(u− v)‖2

L2(0,t;L2(Ω)).

Therefore we must assume that∇V ∈ L∞loc(0,∞;Lq(Ω)). If this is true, the above inequality
and (140) allow us to apply Gronwall’s inequality and deduce that ‖u(t) − v(t)‖L2(Ω) = 0

for any t > 0. How much is q? Since 1/p + 1/q = 1/2 and θ = d(p−2)
2p

, we deduce q = d/θ.

Being θ ∈ (0, 1), this means q > d. Summarizing up, this first method allows us to show
uniqueness of weak solutions provided that ∇V ∈ L∞loc(0,∞;Lq(Ω)) for some q > d.

Second method: entropy method. This idea is due to Gajewski [23]. Recall the Boltz-
mann entropy density h(u) = u log u. Given two solutions u, v of (138), (139), define the
“relative entropy between u, v”

S(u, v) =

∫
Ω

(
h(u) + h(v)− 2h

(
u+ v

2

))
dx.

Since h is strictly convex it follows that h(u)+h(v)−2h
(
u+v

2

)
≥ 0 a.e. in Ω, t > 0. Clearly

S(u(t), v(t)) = 0 if u(t) = v(t) a.e. in Ω. On the other hand, Let S(u(t), v(t)) = 0. It

follows that h(u(t)) + h(v(t))− 2h
(
u(t)+v(t)

2

)
= 0 a.e. in Ω. Again, the strict convexity of

h implies that u(t) = v(t) a.e. in Ω. 6

We wish to show that t 7→ S(u(t), v(t)) is nonincreasing in time. Being u(·, 0) = v(·, 0)
this will imply uniqueness of solutions. Let us assume, for the sake of simplicity, that
u, v > 0 a.e. in Ω× (0,∞) (this condition can be removed). Taking the time derivative of
S(u(t), v(t)) leads to

d

dt
S(u(t), v(t)) = 〈∂tu, log u〉+ 〈∂tv, log v〉 − 〈∂t(u+ v), log(u+ v)〉

= −4

∫
Ω

(|∇
√
u|2 + |∇

√
v|2 − |∇

√
u+ v|2)dx, t > 0.

6Furthermore, by means of a Taylor expansion it is possible to see that S(u(t), v(t)) ≥ c‖u(t)−v(t)‖2L2(Ω)

with c depending on the L∞ norm of u, v.
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It turns out that the right-hand side of the above equality in nonpositive. In fact, define
the function F : [0, 1]→ R,

F (s) =

∫
Ω

(|∇
√
u|2 + |∇

√
sv|2 − |∇

√
u+ sv|2)dx 0 ≤ s ≤ 1.

Clearly F (0) = 0. Moreover, a few straightforward computations lead to

F ′(s) =

∫
Ω

∣∣∣∣∇√v −√ v

u+ sv
∇
√
u+ sv

∣∣∣∣2 dx ≥ 0 0 ≤ s ≤ 1.

As a consequence F (1) ≥ F (0) = 0. In particular d
dt
S(u(t), v(t)) ≤ 0 for t > 0, thus

showing uniqueness.
What kind of condition did we impose on V ? Actually, V does not appear in the

expression for d
dt
S(u(t), v(t)), for all the contributions coming from the drift term cancel

out. However, since in the computations integrals of the form
∫

Ω
∇u · ∇V dx appear, and

it is reasonable to expect that ∇u ∈ L2(0, T ;L2(Ω)), so we must assume that ∇V ∈
L2(0, T ;L2(Ω)). This is the only assumption on V , which represents an improvement with
respect to the first method of showing uniqueness.

Finally, what happens if u, v are only nonnegative? A possible solution is to replace
the function h inside S(u, v) with its regularized version hε(u) = h(u + ε). The argument
presented in the previous case works in this situation, too.

Can we apply this argument to the ion-transport model (125)–(128)? Yes, if we assume
that Di = 1 for i = 1, 2. Under this assumption the equations take the form

∂tui = div (u3∇ui − ui∇u3) i = 1, 2. (141)

Summing up the equations in (141) we deduce that u3 satisfies the heat equation: ∂tu3 =
∆u3. Of course, uniqueness for this equation is immediate. The uniqueness for the other
components is shown by means of the entropy argument that we have presented just now.
The following result is proved in [52].

Theorem 3.4. Let D1 = D2 = 1. Then there exists at most one bounded weak solution to
(125)–(128) in the class of functions satisfying (130).

Proof. Given two solutions u = (u1, u2), v = (v1, v2) to (125)–(128) with the same initial
datum, let S(u(t), v(t)) be the relative entropy between u, v, in the same way as in the
previous argument. Moreover define

Sε(u, v) =
2∑
i=1

∫
Ω

(
hε(ui) + hε(vi)− 2hε

(
ui + vi

2

))
dx, hε(s) = h(s+ ε),

and h(s) = s log s, s > 0. Computing and estimating the time derivative of Sε(u(t), v(t))
and then integrating in time leads to

Sε(u(t), v(t)) ≤ 2
2∑
i=1

∫ t

0

∫
Ω

(
ui

ui + ε
− ui + vi
ui − vi + 2ε

)
√
un∇
√
un · ∇uidx
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+ 2
2∑
i=1

∫ t

0

∫
Ω

(
vi

vi + ε
− ui + vi
ui − vi + 2ε

)
√
un∇
√
un · ∇vidx.

The dominated convergence theorem and (130) imply that the right-hand side tends to 0
as ε → 0. From this fact and Fatou’s Lemma we deduce that S(u(t), v(t)) = 0 for t > 0,
i.e. u = v a.e. in Ω, t > 0. This finishes the proof.

The above result can also be proved for an arbitrary number of species by following the
same strategy.

3.5 Further examples of cross-diffusion PDEs.

In the part that follows, a couple more examples of cross-diffusion PDEs will be pre-
sented: a class of energy-transport equations describing the evolution of charge density
and temperature of a fluid of particles in a semiconductor, and a cross-diffusion system
with Laplacian structure derived from a Fokker-Planck equation for a probability density
associated to some stochastic process. For both models, existence of nonnegative weak
solutions will be shown, and the long-time behaviour of solutions will be studied.

3.5.1 Energy-transport models.

We refer to [53] for this part.
We aim to prove the global well-posedness of the energy-transport equations

∂tn = ∆(nθ1/2−β), ∂t(nθ) = κ∆(nθ3/2−β) +
n

τ
(1− θ) in Ω, t > 0, (142)

where −1
2
≤ β < 1

2
, κ = 2

3
(2 − β), and Ω ⊂ Rd with d ≤ 3 is a bounded domain. This

system describes the evolution of a fluid of particles with density n(x, t) and temperature
θ(x, t). The parameter τ > 0 is the relaxation time, which is the typical time of the system
to relax to the thermal equilibrium state of constant temperature. The system arises in
the modeling of semiconductor devices in which the elastic electron-phonon scattering is
dominant. The above model is a simplification for vanishing electric fields. The full model
was derived from the semiconductor Boltzmann equation in the diffusion limit using a
Chapman-Enskog expansion around the equilibrium distribution [6]. The parameter β
appears in the elastic scattering rate [30, Section 6.2]. Certain values were used in the
physical literarure, for instance β = 1

2
[15], β = 0 [37], and β = −1

2
[30, Chapter 9]. The

choice β = 1
2

leads in our situation to two uncoupled heat equations for n and nθ and does
not need to be considered. We impose physically motivated mixed Dirichlet-Neumann
boundary and initial conditions

n = nD, θ = θD on ΓD, ∇(nθ1/2−β) · ν = ∇(nθ3/2−β) · ν = 0 on ΓN , t > 0, (143)

n(0) = n0, θ(0) = θ0 in Ω, (144)
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where ΓD models the contacts, ΓN = ∂Ω\ΓD the union of insulating boundary segments,
and ν is the exterior unit normal to ∂Ω which is assumed to exist a.e.

The mathematical analysis of (142)-(144) is challenging since the equations are not in
the usual divergence form, they are strongly coupled, and they degenerate at θ = 0 (in this
regard they are similar to the ion-transport model (125)–(128)). The strong coupling makes
impossible to apply maximum principle arguments in order to conclude the nonnegativity
of the temperature θ.

On the other hand, this system possesses an interesting mathematical structure. First,
it can be written in “symmetric” form by introducing the so-called entropy variables w1 =
log(n/θ3/2) and w2 = −1/θ. Then, setting w = (w1, w2)> and ρ = (n, 3

2
nθ)>, (142) is

formally equivalent to

∂tρ = div (A(n, θ)∇w) +
1

τ

(
0

n(1− θ)

)
,

where the diffusion matrix

A(n, θ) = nθ1/2−β
(

1 (2− β)θ
(2− β)θ (3− β)(2− β)θ2

)
is symmetric and positive semi-definite. Second, system (142) possesses the entropy (or
free energy)

S[n(t), (nθ)(t)] =

∫
Ω

n log
n

θ3/2
dx,

which is nonincreasing along smooth solutions to (142). Even more entropy functionals
exist; see [34] and below. However, they do not provide a lower bound for θ when n
vanishes. We notice that both properties, the symmetrization via entropy variables and
the existence of an entropy, are strongly related [17, 30].

Equations (142) resemble the diffusion equation ∂tw = ∆(a(x, t)w), which was analyzed
by Pierre and Schmitt [40]. By Pierre’s duality estimate, an L2 bound for

√
aw in terms

of the L2 norm of
√
a has been derived. In our situation, we obtain even H1 estimates for

w = n and w = nθ.
In spite of the above structure, there are only a few analytical results for (142)-(144).

• Drift-diffusion equations with temperature-dependent mobilities but without tem-
perature gradients [51] (also see [49]) or nonisothermal systems containing simplified
thermodynamic forces [1] have been studied.

• Xu included temperature gradients in the model but he truncated the Joule heating
to allow for a maximum principle argument [50].

• Later, existence results for the complete energy-transport equations (including elec-
tric fields) have been achieved, see [22, 27] for stationary solutions near thermal
equilibrium, [11, 12] for transient solutions close to equilibrium, and [16, 18] for sys-
tems with uniformly positive definite diffusion matrices (this assumption on the
diffusion matrix avoids the degeneracy at θ = 0).
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• A degenerate energy-transport system was analyzed in [33], but only a simplified
(stationary) temperature equation was studied.

All these results give partial answers to the well-posedness problem only. In [53] Jüngel
and Zamponi proved for the first time a global-in-time existence result for any data and
with physical transport coefficients.

Surprisingly, the logarithmic entropy structure does not help. Our key idea is to use
the new variables u = nθ1/2−β and v = nθ3/2−β and nonlogarithmic entropy functionals.
Then system (142) becomes

∂tN(u, v) = ∆u, ∂tE(u, v) = κ∆v +R(u, v),

where N(u, v) = u3/2−βvβ−1/2, E(u, v) = u1/2−βvβ+1/2, and R(u, v) = τ−1N(u, v)(1− v/u).
Discretizing this system by the implicit Euler method and employing the Stampacchia trun-
cation method and a particular cut-off test function, we are able to prove the nonnegativity
of u, v, and θ.

In the following, we detail our main results and explain the ideas of the proofs. Let
∂Ω ∈ C1, meas(ΓD) > 0, and ΓN is relatively open in ∂Ω. Furthermore, let

nD, θD ∈ L∞(Ω) ∩H1(Ω), inf
ΓD
nD > 0, inf

ΓD
θD > 0, (145)

n0, θ0 ∈ L∞(Ω) ∩H1(Ω), inf
Ω
n0 > 0, inf

Ω
θ0 > 0. (146)

We define the space H1
D(Ω) as the closure of C∞0 (Ω ∪ ΓN) in the H1 norm [46, Section

1.7.2]. This space can be characterized by all functions in H1(Ω) which vanish on ΓD in
the weak sense. This space is the test function space for the weak formulation of (142).
Our first main result reads as follows.

Theorem 3.5 (Global existence). Let T > 0, d ≤ 3, −1
2
≤ β < 1

2
, τ > 0 and let (145)-

(146) hold. Then there exists a weak solution (n, θ) to (142)-(144) such that n > 0, nθ > 0
in Ω, t > 0, satisfying

n, nθ, nθ1/2−β, nθ3/2−β ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

∂tn, ∂t(nθ) ∈ L2(0, T ;H1
D(Ω)′).

The idea of the proof is to employ the implicit Euler method with time step h > 0 and
the new variables uj = njθ

1/2−β
j and vj = njθ

3/2−β
j , which approximate u = nθ1/2−β and

v = nθ3/2−β at time tj = jh, respectively. We wish to solve

(nj − nj−1)− h∆uj = 0,
1

κ
(njθj − nj−1θj−1)− h∆vj =

hnj
κτ

(1− θ). (147)

To simplify the presentation, we ignore the boundary conditions and a necessary truncation
of the temperature. A nice feature of this formulation is that we can apply a Stampacchia
truncation procedure to prove the strict positivity of uj and vj.
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We point out a significant difference between this approach and the one employed in the
existence proof of the ion-transport model (125)–(128). While in the latter a regularising
term of the form ∆mw (with w being the entropy variable) was added to the discretized
equation, in (147) no such regularization in considered; indeed, u, v are not even entropy
variables. As a consequence, the boundedness of uj, vj is not guaranteed; in particular,
we don’t know if the ratio θj = vj/uj is strictly positive. As a matter of fact, to show the
strict positivity of θj is one of the main difficulties of the proof.

We define a nondecreasing smooth cut-off function φ such that φ(x) = 0 if x ≤M and
φ(x) > 0 if x > M for some M > 0. We use the test functions ujφ(1/θj) and vjφ(1/θj) in
the weak formulation of (147), respectively, and we subtract both equations to find after
a straightforward computation (see Step 3 in the proof of Theorem 3.5) that

0 =

∫
Ω

((
1− 1

κ
− h

κτ

)
njvjφ

(
1

θj

)
+
vj
κ
nj−1θj−1

(
1

θj
− κ

θj−1

)
φ

(
1

θj

)
+
h

v2
j

∣∣vj∇uj − uj∇vj∣∣2φ′( 1

θj

)
+
hnjθjvj
κτ

φ

(
1

θj

))
dx.

Since κ > 1, there exists h > 0 sufficiently small such that the first summand becomes
nonnegative. The third and last summands are nonnegative, too. (Recall that we need
to truncate θj with positive truncation.) Hence, the integral over the second term is
nonpositive. Then, choosing M ≥ κ/θj−1,

0 ≥
∫

Ω

vjnj−1θj−1

(
1

θj
− κ

θj−1

)
φ

(
1

θj

)
dx ≥

∫
Ω

vjnj−1θj−1

(
1

θj
−M

)
φ

(
1

θj

)
dx.

Because φ(1/θj) = 0 for 1/θj ≤M , this is only possible if 1/θj −M ≤ 0 or θj ≥ 1/M > 0.
Clearly, the bound M depends on j, and in the de-regularization limit h→ 0, the limit of
θj becomes nonnegative only.

A priori estimates which are uniform in the approximation parameter h > 0 are obtained
by proving an entropy inequality for the an entropy functional having the structure

Sb1,b2 [n, nθ] =

∫
Ω

n2(θb1 + θb2)dx (148)

for suitable exponents b1, b2 ∈ (−∞, 2), which looks like

Sb1,b2 [nj, njθj] + h

∫
Ω

(p1(θj)|∇nj|2 + n2p2(θj)|∇θj|2)dx ≤ Sb1,b2 [nj−1, nj−1θj−1], j ≥ 1,

where p1(θ), p2(θ) are sums of power functions with different exponents. This inequality

allows us to derive gradient estimates for nj, njθ
1/2−β
j , and njθ

3/2−β
j . Together with Aubin’s

lemma and weak compactness arguments, the limit h→ 0 can be performed.
We point out another interesting difference between this energy-transport model and

the cross-diffusion systems that we have previously studied. One of the requirement of the
general existence result (Thr. 3.1) was the (global) invertibility of the mapping h′ : D → Rn.
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In all the systems we studied before, such hypothesis (H1) was always satisfied. However,
in the proof of Thr. 3.5 we have employed the entropy functional (148), which does not
satisfy this assumption.7 In light of this fact we can understand why no regularization was
used in (147): if a high-order regularizing term was added in (147), algebraic bounds for
the entropy variables would have to be showed, and that would be either impossible or
quite tricky.

Theorem 3.5 can be generalized in different ways. First, the boundary data may depend
on time. We do not consider this case here to avoid technicalities. We refer to [16] for the
treatment of time-dependent boundary functions. Second, we may allow for temperature-
dependent relaxation times,

τ(θ) = τ0 + τ1θ
1/2−β, (149)

where τ0 > 0 and τ1 > 0. This expression can be derived by using an energy-dependent
scattering rate [30, Example 6.8]. For this relaxation time, the conclusion of Theorem 3.5
holds.

Corollary 3.1 (Global existence). Let the assumptions of Theorem 3.5 hold except that
the relaxation time is given by (149). Then there exists a weak solution to (142)-(144) with
the properties stated in Theorem 3.5.

However, we have not been able to include electric fields in the model. For instance, in
this situation, the first equation in (142) becomes

∂tn = div (∇(nθ1/2−β) + nθ−1/2−β∇V ),

where V (x, t) is the electric potential which is a given function or the solution of the Poisson
equation [30]. The problem is the treatment of the drift term nθ−1/2−β∇V for which the
techniques developed for the standard drift-diffusion model (see, e.g., [24]) do not apply.

It is possible to prove the following result about the long-time behavior of the solutions.

Theorem 3.6 (Long-time behavior). Let d ≤ 3, 0 ≤ β < 1
2
, τ > 0, and nD = const.,

θD = 1. Let (n, θ) be the weak solution constructed in Theorem 3.5. Then there exist
constants C1, C2 > 0, which depend only on β, nD, n0, and θ0, such that for all t > 0,

‖n(t)− nD‖2
L2(Ω) + ‖n(t)θ(t)− nD‖2

L2(Ω) ≤
C1

1 + C2t
.

The proof of this theorem is based on discrete entropy inequality estimates. The main
difficulty is to bound the entropy dissipation. Usually, this is done by employing a convex
Sobolev inequality (e.g. the logarithmic Sobolev or Beckner inequality). However, these
tools are not available for the cross-diffusion system at hand, and we need to employ
another technique. Our idea is to estimate the entropy dissipation by using a power-like

7For example, the entropy density s = s(n, nθ) associated to (148) with (b1, b2) = (β − 1/2, 5) (as it is
used in the existence proof) satisfies s′((0,∞)2) ∩ (−∞, 0)2 = ∅, therefore s′ : (0,∞)2 → R2 cannot be a
bijection.
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entropy like (148). Denoting the discrete (nonlogarithmic) entropy at time tj by S[nj, njθj],
we arrive at the inequality

S[nj, njθj]− S[nj−1, nj−1θj−1] ≤ ChS[nj, njθj]
2,

where C > 0 is independent of the time step size h. A discrete nonlinear Gronwall lemma
then shows that S[nj, njθj] behaves like 1/(hj) = 1/tj, and in the limit h → 0, we obtain
the result.

We will only prove the global existence theorem, i.e. Thr. 3.5; the proof of the above
result concerning the long-time behaviour of solutions will be skipped. The curious Reader
can find it in [53].

Proof of Thr. 3.5. We prove here the existence theorem. We will skip some technical
details; for the full proof see [53].

Step 1: Reformulation. Let T > 0, N ∈ N, and set h = T/N . We consider the semi-discrete
equations

1

h
(nj − nj−1) = ∆(njθ

1/2−β
j ), j = 1, . . . , N, (150)

1

h
(njθj − nj−1θj−1) = κ∆(njθ

3/2−β
j ) +

1

τ
nj(1− θj) (151)

with the boundary conditions (143). The idea is to reformulate the elliptic equations in
terms of the new variables

uj = njθ
1/2−β
j , vj = njθ

3/2−β
j .

Observing that nj = u
3/2−β
j v

β−1/2
j and θj = vj/uj, equations (150)-(151) are formally

equivalent to

u
3/2−β
j v

β−1/2
j − h∆uj = u

3/2−β
j−1 v

β−1/2
j−1 , (152)

u
1/2−β
j v

β+1/2
j − κh∆vj −

h

τ
u

1/2−β
j v

β−1/2
j−1 (uj − vj) = u

1/2−β
j−1 v

β+1/2
j−1 . (153)

The boundary conditions become

uj = uD := nDθ
1/2−β
D , vj = vD := nDθ

3/2−β
D on ΓD, (154)

∇uj · ν = ∇vj · ν = 0 on ΓN . (155)

In order to show the existence of weak solutions to this discretized system, we need to
truncate. For this, let j ≥ 1 and let uj−1, vj−1 ∈ L2(Ω) be given such that infΩ uj−1 > 0,
infΩ vj−1 > 0, supΩ uj−1 < +∞, and supΩ vj−1 < +∞. We define

M = max

{
κ sup

Ω

uj−1

vj−1

,
1

infΓD θD

}
(156)
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and ε = 1/M . The truncated problem reads as

ujθ
β−1/2
j,ε − h∆uj = u

3/2−β
j−1 v

β−1/2
j−1 , (157)(

1 +
h

τ

)
vjθ

β−1/2
j,ε − κh∆vj −

h

τ
ujθ

β−1/2
j,ε = u

1/2−β
j−1 v

β+1/2
j−1 , (158)

where θj,ε = max{ε, vj/uj}. Note that if uj > 0 and vj/uj ≥ ε in Ω then (157)-(158) are
equivalent to (152)-(153).

Step 2: Solution of the truncated semi-discrete problem. We define the operator F : L2(Ω)×
[0, 1]→ L2(Ω) by F (θ, σ) = v/u, where (u, v) ∈ H1(Ω)2 is the unique solution to the linear
system

σuθβ−1/2
ε − h∆u = σu

3/2−β
j−1 v

β−1/2
j−1 = σuj−1

(
uj−1

vj−1

)1/2−β

, (159)

σ

(
1 +

h

τ

)
vθβ−1/2

ε − κh∆v − σh
τ
uθβ−1/2

ε = σu
1/2−β
j−1 v

β+1/2
j−1 = σvj−1

(
uj−1

vj−1

)1/2−β

, (160)

where θε = max{ε, θ}, with the boundary conditions

u = 1 + σ(uD − 1), v = σvD on ΓD, ∇u · ν = ∇v · ν = 0 on ΓN . (161)

We have to prove that the operator F is well defined.
First, observe that (159) does not depend on v and that the right-hand side is an element

of L2(Ω). Therefore, by standard theory of elliptic equations, we infer the existence of a
unique solution u ∈ H1(Ω) to (159) with the corresponding boundary conditions in (161).
With given u, there exists a unique solution v ∈ H1(Ω) to (160) with the corresponding
boundary conditions. It remains to show that u and v are strictly positive in Ω such that
the quotient v/u is defined and an element of L2(Ω).

To this end, we employ the Stampacchia truncation method. Let

m1 = min

{
inf
ΓD
uD, ε

1/2−β inf
Ω
u

3/2−β
j−1 v

β−1/2
j−1

}
> 0.

Note that m1 > 0 because of our boundedness assumptions on infΩ uj−1 and supΩ vj−1.
Then (u − m1)− = min{0, u − m1} ∈ H1

D(Ω) is an admissible test function in the weak
formulation of (159) yielding

h

∫
Ω

|∇(u−m1)−|2dx+ σ

∫
Ω

θβ−1/2
ε (u−m1)2

−dx

= σ

∫
Ω

(
u

3/2−β
j−1 v

β−1/2
j−1 −m1θ

β−1/2
ε

)
(u−m1)−dx

≤ σ

∫
Ω

(
u

3/2−β
j−1 v

β−1/2
j−1 −m1ε

β−1/2
)
(u−m1)−dx ≤ 0,
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taking into account θ
β−1/2
ε ≤ εβ−1/2 (observe that β < 1/2) and the definition of m1. This

implies that (u−m1)− = 0 and consequently u ≥ m1 > 0 in Ω. Defining

m2 = min

{
inf
ΓD
vD,

(
1 +

h

τ

)−1

ε1/2−β inf
Ω
u

1/2−β
j−1 v

β+1/2
j−1

}
> 0

and employing the test function (v −m2)− ∈ H1
D(Ω) in the weak formulation of (160), a

similar computation as above and θ
β−1/2
ε ≤ εβ−1/2 yield

κh

∫
Ω

|∇(v −m2)−|2dx+ σ

(
1 +

h

τ

)∫
Ω

θβ−1/2
ε (v −m2)2

−dx−
σh

τ

∫
Ω

uθβ−1/2
ε (v −m2)−dx

= σ

∫
Ω

(
(u

1/2−β
j−1 v

β+1/2
j−1 −

(
1 +

h

τ

)
m2θ

β−1/2
ε

)
(v −m2)−dx ≤ 0.

Since the integrals on the left-hand side are nonnegative, we conclude that v ≥ m2 > 0 in
Ω. This shows that u and v are strictly positive with a lower bound which depends on ε
and j. Because of 1/u ∈ L∞(Ω) and u, v ∈ H1(Ω) ↪→ L6(Ω), v/u ∈ W 1,3/2(Ω) ↪→ L2(Ω)
for d ≤ 3. Hence, the operator F is well defined and its image is contained in W 1,3/2(Ω).

Standard arguments and the compact embedding W 1,3/2(Ω) ↪→ L2(Ω) ensure that F
is continuous and compact. When σ = 0, it follows that u = 1 and v = 0 and thus,
F (θ, 0) = 0. Let θ ∈ L2(Ω) be a fixed point of F (·, σ). Then v/u = θ. By standard elliptic
estimates, we obtain H1 bounds for u and v independently of σ. Since u is strictly positive,
we infer an L2 bound for θ independently of σ. Thus, we may apply the Leray-Schauder
fixed-point theorem to conclude the existence of a fixed point of F (·, 1), i.e. of a solution
(u, v) = (uj, vj) ∈ H1(Ω)2 to (157)-(158) with boundary conditions (154)-(155).

In order to close the recursion, we need to show that supΩ uj < +∞ and supΩ vj < +∞.
We employ the following result which is due to Stampacchia [44]: Let w ∈ H1(Ω) be the
unique solution to −∆w+ a(x)w = f with mixed Dirichlet-Neumann boundary conditions
and let a ∈ L∞(Ω) be nonnegative and f ∈ Ls(Ω) with s > d/2. Then w ∈ L∞(Ω) with a
bound which depends only on f , Ω, and the boundary data. Since the right-hand side of
(159) is an element of L2(Ω) and d ≤ 3, we find from the above result that the solution u
to (159) is bounded. Furthermore, v solves (see (160))

σ

(
1 +

h

τ

)
vθβ−1/2

ε − κh∆v = σ
h

τ
uθβ−1/2

ε + σu
1/2−β
j−1 v

β+1/2
j−1 ∈ L∞(Ω),

taking advantage of the L∞ bound for u. By Stampacchia’s result, v ∈ L∞(Ω). This shows
the desired bounds.

Step 3: Removing the truncation. We introduce the function

φ(x) =


0 if x ≤M,
1 + cos(πx/M) if M ≤ x ≤ 2M,
2 if x ≥ 2M,
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where we recall the definition (156) of M . In particular, φ ∈ C1(R) satisfies φ′ ≥ 0 in R.
Since M ≥ 1/ infΓD θD, we have φ(uj/vj) = φ(uD/vD) = φ(1/θD) = 0 on ΓD. Because
φ′ vanishes outside of the interval [M, 2M ], it holds that ujφ(uj/vj), vjφ(uj/vj) ∈ H1(Ω).
Consequently, vjφ(uj/vj) and κ−1ujφ(uj/vj) are admissible test functions in H1

D(Ω) for
(157) and (158), respectively, which gives the two equations∫

Ω

ujθ
β−1/2
j,ε vjφ

(
uj
vj

)
dx+ h

∫
Ω

∇uj · ∇
(
vjφ

(
uj
vj

))
dx =

∫
Ω

u
3/2−β
j−1 v

β−1/2
j−1 vjφ

(
uj
vj

)
dx,

1

κ

(
1 +

h

τ

)∫
Ω

vjθ
β−1/2
j,ε ujφ

(
uj
vj

)
dx+ h

∫
Ω

∇vj · ∇
(
ujφ

(
uj
vj

))
dx

− h

κτ

∫
Ω

u2
jθ
β−1/2
j,ε φ

(
uj
vj

)
dx =

1

κ

∫
Ω

u
1/2−β
j−1 v

β+1/2
j−1 ujφ

(
uj
vj

)
dx.

We take the difference of these equations:(
1− 1

κ

(
1 +

h

τ

))∫
Ω

ujvjθ
β−1/2
j,ε φ

(
uj
vj

)
dx

+ h

∫
Ω

(vj∇uj − uj∇vj) · ∇φ
(
uj
vj

)
dx+

h

κτ

∫
Ω

u2
jθ
β−1/2
j,ε φ

(
uj
vj

)
dx

+
1

κ

∫
Ω

u
1/2−β
j−1 v

β+1/2
j−1 vjφ

(
uj
vj

)(
uj
vj
− κuj−1

vj−1

)
dx = 0. (162)

Since β < 1/2, we have κ = 2
3
(2 − β) > 1. Therefore, we can choose 0 < h < (κ − 1)τ

which implies that 1 − κ−1(1 + h/τ) > 0, and the first integral is nonnegative. The same
conclusion holds for the second integral in (162) since

(vj∇uj − uj∇vj) · ∇φ
(
uj
vj

)
=

1

v2
j

φ′
(
uj
vj

)
|vj∇uj − uj∇vj|2 ≥ 0.

Also the third integral in (162) is nonnegative. Hence, the fourth integral is nonpositive,
which can be equivalently written as∫

Ω

u
1/2−β
j−1 v

β+1/2
j−1 vjφ

(
uj
vj

)(
uj
vj
−M

)
dx ≤

∫
Ω

u
1/2−β
j−1 v

β+1/2
j−1 vjφ

(
uj
vj

)(
κ
uj−1

vj−1

−M
)
dx.

Taking into account definition (156) of M , we infer that the integral on the right-hand side
is nonpositive, which shows that∫

Ω

u
1/2−β
j−1 v

β+1/2
j−1 vjφ

(
uj
vj

)(
uj
vj
−M

)
+

dx = 0,

where z+ = max{0, z} for z ∈ R, employing φ(uj/vj) = 0 for uj/vj ≤M . Now, φ(uj/vj) >
0 for uj/vj > M , and we conclude that (uj/vj −M)+ = 0 and uj/vj ≤ M in Ω. Since
ε = 1/M , this means that vj/uj ≥ ε and θj,ε = vj/uj. Consequently, we have proven
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the existence of a weak solution (vj, uj) to the discretized problem (152)-(153) with the
boundary conditions (154)-(155), which also yields a weak solution (nj, θj) to (150)-(151)
with the boundary conditions (143).

Step 4: Entropy estimates. Let b ∈ R and define the functional

φb[n, nθ] =

∫
Ω

(
fb(n, nθ)− fb,D −

∂fb,D
∂n

(n− nD)− ∂fb,D
∂(nθ)

(nθ − nDθD)

)
dx, (163)

where fb(n, nθ) = n2−b(nθ)b and we have employed the abbreviations

fb,D = fb(nD, nDθD),
∂fb,D
∂n

=
∂fb
∂n

(nD, nDθD),
∂fb,D
∂(nθ)

=
∂fb
∂(nθ)

(nD, nDθD).

The function fb is convex if b ≥ 2 or b ≤ 0 since detD2fb(n, nθ) = b(b − 2)θ2(β−1) and
trD2fb(n, nθ) = (b− 1)(b− 2)θb + b(b− 1)θb−2. We wish to derive a priori estimates from
the so-called entropy functionals

Sb1,b2 [n, nθ] =
1

|b1|
φb1 [n, nθ] +

1

|b2|
φb2 [n, nθ].

The parameters (b1, b2) are not completely arbitrary, but must be chosen in a smart way.
As a matter of fact, it holds:

Lemma 3.4 (Discrete entropy inequality). A subset Nβ ⊂ R2 exists such that, if (b1, b2) ∈
Nβ, then

Sb1,b2 [nj, njθj] + C1h

∫
Ω

(
θ
b1+1/2−β
j + θ

b2+1/2−β
j

)
|∇nj|2dx

+ C1h

∫
Ω

n2
j

(
θ
b1−3/2−β
j + θ

b2−3/2−β
j

)
|∇θj|2dx

≤ C2h+ Sb1,b2 [nj−1, nj−1θj−1], (164)

where C1 > 0 depends on b and β and C2 > 0 depends on τ , nD, and θD. The constant C2

vanishes if nD = const. and θD = 1. Moreover (β − 1
2
, 5) ∈ Nβ.

The proof of the above lemma is quite technical and will be skipped; the curious Reader
can find it in [53].

Step 5: The limit h→ 0. We define the piecewise constant functions nh(x, t) = nj(x) and
θh(x, t) = θj(x) for x ∈ Ω and t ∈ ((j − 1)h, jh], where 0 ≤ j ≤ N = T/h. The discrete
time derivative of an arbitrary function w(x, t) is defined by (Dhw)(x, t) = h−1(w(x, t) −
w(x, t− h)) for x ∈ Ω, t ≥ h. Then (150)-(151) can be written as

Dhnh = ∆(nhθ
1/2−β
h ), Dh(nhθh) = κ∆(nhθ

3/2−β
h ) +

nh
τ

(1− θh). (165)
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The entropy inequality (164) for (b1, b2) = (β − 1
2
, 5) ∈ Nβ becomes, after summation over

j,

Sb1,b2 [nh(t), nh(t)θh(t)] + C1

∫ t

0

∫
Ω

(
(1 + θ

11/2−β
h )|∇nh|2 + n2

h(θ
−2
h + θ

7/2−β
h )|∇θh|2

)
dx ds

≤ C2t+ Sb1,b2 [n0, n0θ0]. (166)

It is possible to exploit this inequality to derive h-independent estimates for (nh) and
(nhθh).

Lemma 3.5. There exists a constant C > 0 such that for all h > 0,

‖nh‖L∞(0,T ;L2(Ω)) + ‖nhθh‖L∞(0,T ;L2(Ω)) ≤ C, (167)

‖nhθ1/2−β
h ‖L∞(0,T ;L2(Ω)) + ‖nhθ3/2−β

h ‖L∞(0,T ;L2(Ω)) ≤ C, (168)

‖nh‖L2(0,T ;H1(Ω)) + ‖nhθh‖L2(0,T ;H1(Ω)) ≤ C, (169)

‖nhθ1/2−β
h ‖L2(0,T ;H1(Ω)) + ‖nhθ3/2−β

h ‖L2(0,T ;H1(Ω)) ≤ C, (170)

‖Dhnh‖L2(h,T ;H1
D(Ω)′) + ‖Dh(nhθh)‖L2(h,T ;H1

D(Ω)′) ≤ C. (171)

Again, the proof of the above lemma is quite technical and will therefore be skipped.
The basic idea is that it is always possible to bound a power of θ by means of the sum of
two other powers with different exponents: θα ≤ C(θβ1 + θβ2) with β1 < α < β2. Therefore
one can derive suitable estimates for nhθ

α
h from (164) as long as the exponent α is chosen

in the right range. The interested Reader can find the proof in [53].
Aubin’s Lemma and Lemma 5 imply that, up to subsequences,

nh → n, nhθh → w strongly in L2(0, T ;L2(Ω)), (172)

nh ⇀ n, nhθh ⇀ w, nhθ
1/2−β
h ⇀ y, nhθ

3/2−β
h ⇀ z weakly in L2(0, T ;H1(Ω)),

(173)

Dhnh ⇀ ∂tn, Dh(nhθh) ⇀ ∂tw weakly in L2(0, T ;H1
D(Ω)′). (174)

In order to identify the functions w, y, z appearing in (172)–(174) we show first that
n,w > 0 a.e. in Ω× (0, T ). Let us define the discrete entropy functional:

Λ[nh, nhθh] =

∫
Ω

(
− log nh −

1

κ
log(nhθh) +

nh
nD

+
1

κ

nhθh
nDθD

)
dx, (175)

where nD, θD are the values of nh, θh (respectively) on ΓD. We point out that Λ is well
defined since nh, nhθh are bounded and strictly positive. By finding a suitable upper bound
for DhΛ[nh, nhθh] and applying a discrete Gronwall argument, it is possible to prove (we
do not do it here; see [53] for details) that

sup
t∈[0,T ]

Λ[nh(t), nh(t)θh(t)] ≤ Λ[n0, n0θ0]

+ CD
(
1 + ‖nhθ1/2−β

h ‖2
L2(0,T ;H1(Ω)) + ‖nhθ3/2−β

h ‖2
L2(0,T ;H1(Ω)) + ‖nh‖2

L2(0,T ;L2(Ω))

)
,
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where n0, θ0 are the values of nh, θh at initial time, respectively. The strong convergence
(172) and Fatou’s Lemma allow us to conclude that, for some C > 0,

sup
t∈[0,T ]

Λ[n(t), w(t)] ≤ C. (176)

From the definition (175) of Λ and (176), we deduce that

− log n(x, t)− 1

κ
logw(x, t) <∞ for a.e. (x, t) ∈ Ω× (0, T ). (177)

Since n,w ∈ L2(0, T ;L2(Ω)), they are a.e. finite. This fact, together with (177), implies
that n > 0, w > 0 a.e. in Ω× (0, T ).

From the convergence (172) it follows also that nh → n, nhθh → w a.e. in Ω × (0, T ).
The positivity of n implies that θh = (nhθh)/nh → w/n a.e. in Ω × (0, T ). Let us define
θ := w/n. Since n and w are finite and positive a.e. in Ω× (0, T ), then 0 < θ <∞ a.e. in

Ω × (0, T ). Clearly nhθ
1/2−β
h → nθ1/2−β, nhθ

3/2−β
h → nθ3/2−β a.e. in Ω × (0, T ), recalling

that β < 1/2; thus from the weak convergence (173) we obtain y = nθ1/2−β, z = nθ3/2−β.
These relations, together with (172)–(174), allow us to perform the limit h → 0 in the
equations for Dnh, D(nhθh). This finishes the proof.

3.5.2 A cross-diffusion system derived from a Fokker-Planck equation.

We refer to [29] for the part that follows.
We are now going to study the following cross-diffusion system

∂tui = ∆
(
a(u1/u2)ui

)
+ µiui, t > 0, ui(0) = u0

i ≥ 0 in Td, i = 1, 2, (178)

where Td is the d-dimensional torus with d ≥ 1, a : (0,∞) → (0,∞) is a continuously
differentiable function, and µi ∈ R.

Eq. (178) can be rewritten in divergence form:

∂tu− div (A(u)∇u) = f(u), t > 0, u(0) = u0 in Td,

where f(u) = (µ1u1, µ2u2)> and the diffusion matrix A(u) reads as

A(u) =

(
a(u1/u2) + (u1/u2)a′(u1/u2) −(u1/u2)2a′(u1/u2)

a′(u1/u2) a(u1/u2)− (u1/u2)a′(u1/u2)

)
. (179)

This system can be formally derived [36] from a (d+1)-dimensional Fokker-Planck equation
for the probability density f(x, y, t), where x ∈ Rd, y ∈ R. The function ui is obtained
from f by partial averaging,

ui(x, t) =

∫
R
f(x, y, t)eλiydy, i = 1, 2,

µi is a function of λi, and a(u1/u2) is related to the diffusion coefficients in the Fokker-
Planck equation. Strictly speaking, equation (178) holds in Rd (or on some subset of Rd)
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but we consider this equation on the torus for the sake of simplicity (and to avoid possible
issues with boundary conditions). The curious Reader can find the derivation of the model
in [29].

System (178) has been suggested by P.-L. Lions in [36], and the global-in-time existence
of (weak) solutions has been identified as an open problem. In this paper, we solve this
problem by applying the entropy method for diffusive equations.

The underlying Fokker-Planck equation for f(x, y, t) models the time evolution of the
value of a financial product in an idealized financial market, depending on various under-
lying assets or economic values. The function ui is an average with respect to the variable
y, which may be interpreted as the value of an economic parameter, and the exponential
weight emphasizes large positive or large negative values of y, depending on the sign of λi.

We assume that there exist a0 > 0 and p ≥ 0 such that for all r > 0,

a(r) ≥ r|a′(r)|, a(r) ≥ a0

rp + r−p
. (180)

The first condition means that a grows at most linearly. The second condition is a tech-
nical assumption needed for the entropy method. Examples are a(r) = 1, which leads to
uncoupled heat equations for u1 and u2, a(r) = rα with 0 < α ≤ 1, a(r) = rβ/(1 + rβ−1)
with β > 0, and a(r) = 1/r. The last example gives the equations

∂tu1 = ∆u2, ∂tu2 = ∆

(
u2

2

u1

)
. (181)

Surprisingly, this system corresponds (up to a factor) to an energy-transport model for
semiconductors. Indeed, introducing the electron density n := u1 and the electron temper-
ature θ := u2/u1, equations (181) can be written as

∂tn = ∆(nθ), ∂t(nθ) = ∆(nθ2),

which correspond to (178) with β = −1/2.
Another class of models which resembles (178) are the equations

∂tui = ∆(pi(u)ui), i = 1, . . . ,m, (182)

modeling the time evolution of population densities ui. These systems are analyzed in,
e.g., [20, 31], essentially for m = 2. In this application, pi is often given by the sum
pi1(u1) + pi2(u2), and consequently, the results of [20, 31] do not apply and we need to
develop new ideas.

We will prove the global-in-time existence of weak solutions to (178).

Theorem 3.7 (Existence of weak solutions). Let (180) hold and let T > 0, α ≥ p+ 4, µ1,
µ2 ∈ R, 0 ≤ a ∈ C1(0,∞), u0 = (u0

1, u
0
2) ∈ L2(Td)2 with u0

1, u0
2 ≥ 0 in Td and H[u0] <∞.

Then there exists a solution u = (u1, u2) to (178) satisfying ui > 0 in Td, t > 0, i = 1, 2,
and

ui, a(u1/u2)ui ∈ L∞(0, T ;L2(Td)),
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∇ui, ∇
(
a(u1/u2)ui

)
∈ L2(0, T ;L2(Td)), ∂tui ∈ L2(0, T ;H1(Td)′), i = 1, 2.

If additionally µi ≤ 0 for i = 1, 2, we have the uniform bounds

ui, a(u1/u2)ui ∈ L∞(0,∞;L2(Td)), ∇ui, ∇
(
a(u1/u2)ui

)
∈ L2(0,∞;L2(Td)). (183)

The key idea of the proof is to employ the entropy functional

H[u] =

∫
Td
h(u)dx, h(u) =

(
u1

u2

)α
u2

1 +

(
u1

u2

)−α
u2

2 + u1 − log u1 + u2 − log u2, (184)

where α ≥ p+ 4 and u = (u1, u2) ∈ (0,∞)2. We will show that

d

dt
H[u] +

∫
Td

((
u1

u2

)α−p
+

(
u1

u2

)p−α)(
|∇u1|2 + |∇u2|2

)
dx ≤ CH[u] (185)

for some constant C > 0 which vanishes if µ1 = µ2 = 0. In this situation, the mapping
t 7→ H[u(t)] is nonincreasing; otherwise, for µi 6= 0, t 7→ H[u(t)] is bounded on finite time
intervals. We infer from the inequality x+ x−1 ≥ 2 for all x > 0 uniform bounds for ui(t)
in H1(Td), which are needed for the compactness argument.

Some auxiliary results. We state here some algebraic properties of the matrices h′′(u) and
A(u) and some estimates related to the entropy density h(u) and the components of A(u).
Recall that h(u) is defined in (184) and A(u) in (179).

Lemma 3.6 (Properties of h). Let α > 0. The function h : (0,∞)2 → R2, defined in
(184), is convex, its derivative h′ is invertible, and there exists Ch > 0 such that for all
u = (u1, u2) ∈ (0,∞)2,

h(u) ≥ 1

2
(u2

1 + u2
2),

2∑
i=1

µiui∂ih(u) ≤ Chh(u), (186)

where we recall that ∂ih = ∂h/∂ui.

Lemma 3.7 (Positive semidefiniteness of h′′A). Let condition (180) hold. If α(α+ 2) > 1,
the matrix h′′(u)A(u) is positive semidefinite in (0,∞)2. Furthermore, if additionally α ≥
p, there exists a constant κ = κ(α) > 0 such that for all u = (u1, u2) ∈ (0,∞)2 and z ∈ R2,

z>h′′(u)A(u)z ≥ κ

((
u1

u2

)α−p
+

(
u1

u2

)p−α)
|z|2.

Lemma 3.8. Let α ≥ 2. Then, for all u1, u2 > 0,

a

(
u1

u2

)2

(u2
1 + u2

2) ≤ Ca

(
u2

1 + u2
2 +

u4
1

u2
2

)
≤ ξαCa

((
u1

u2

)α
u2

1 +

(
u1

u2

)−α
u2

2

)
≤ ξαCah(u),

where Ca = a(1)2 and ξα > 0 is a suitable constant which only depends on α.
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Lemma 3.9. There exists CA > 0 such that for all u1, u2 > 0,

|A(u)| ≤ CA

(
1 +

(
u1

u2

)2

+

(
u1

u2

)−2)
.

Proof of Thr. 3.7. Let T > 0, N ∈ N, τ = T/N , and m ∈ N with m > d/2. Then
the embedding Hm(Td) ↪→ L∞(Td) is compact. Furthermore, let wk−1 = (wk−1

1 , wk−1
2 ) ∈

L∞(Td)2 be given and let uk−1 = (h′)−1(wk−1). By Lemma 3.6, the pair uk−1 = (uk−1
1 , uk−1

2 )
is well defined and we have uk−1 ∈ L∞(Td)2. We wish to find wk = (wk1 , w

k
2) ∈ Hm(Td)2

such that for all φ = (φ1, φ2) ∈ Hm(Td)2,

1

τ

∫
Td

(uk − uk−1) · φdx+

∫
Td
∇φ : B(wk)∇wkdx

+ τ

∫
Td

(Dmwk ·Dmφ+ wk · φ)dx =
2∑
i=1

µi

∫
Td
uki φidx, (187)

where B(wk) = A(uk)h′′(uk)−1,

Dmwk ·Dmφ :=
∑
|α|=m

2∑
i=1

DαukiD
αφi,

α = (α1, . . . , αd) ∈ Nd
0 is a multiindex and Dα = ∂|α|/(∂xα1

1 · · · ∂x
αd
d ) a partial derivative of

order |α|.
Step 1: solution of (187). This is a standard argument based on Leray-Schauder’s fixed
point theorem which has already been used many times in these notes, and therefore we skip
it. The interested Reader can find it in [29]. In the end we obtain a solution wk ∈ Hm(Td)
to (187).

Step 2: a priori estimates.
We define the piecewise constant functions in time w(τ)(x, t) = wk(x) and u(τ)(x, t) =

uk(x) for x ∈ Td and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , j. Furthermore, we introduce the shift
operator στu

(τ)(x, t) = uk−1(x) for x ∈ Td, t ∈ ((k − 1)τ, kτ ]. With this notation, we can
rewrite (187) as:

1

τ

∫ T

0

∫
Td

(u(τ) − στu(τ)) · φdxdt+

∫ T

0

∫
Td
∇φ : A(u(τ))∇u(τ)dxdt

+ τ

∫ T

0

∫
Td

(
Dmw(τ) ·Dmφ+ w(τ) · φ(τ)

)
dxdt+

2∑
i=1

µi

∫ T

0

∫
Td
u

(τ)
i φidxdt, (188)

and the following discrete entropy inequality is deduced by choosing φ = w(τ) in (188) and
applying Lemma 3.7:∫

Td
h(u(τ)(t))dx+

∫ t

0

∫
Td

((
u

(τ)
1

u
(τ)
2

)α−p
+

(
u

(τ)
1

u
(τ)
2

)p−α)
|∇u(τ)|2dxds
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+ τ

∫ t

0

∫
Td

(
|Dmw(τ)|2 + |w(τ)|2

)
dxds ≤ C, t ∈ [0, T ]. (189)

It follows that
‖w(τ)‖L2(0,T ;Hm(Td)) ≤ Cτ−1/2. (190)

By Lemma 3.8, Lemma 3.6, and estimate (189), we find that∫
Td

(∣∣∣∣a(u(τ)
1

u
(τ)
2

)
u

(τ)
1

∣∣∣∣2 +

∣∣∣∣a(u(τ)
1

u
(τ)
2

)
u

(τ)
2

∣∣∣∣2)dx ≤ 3Ca

∫
Td
h(u(τ))dx ≤ C, (191)∫

Td

(
(u

(τ)
1 )2 + (u

(τ)
2 )2

)
dx ≤

∫
Td
h(u(τ))dx ≤ C. (192)

Moreover, using Lemma 3.9 and (189),∫ T

0

∫
Td

(∣∣∇(a(u
(τ)
1 /u

(τ)
2 )u

(τ)
1

)∣∣2 +
∣∣∇(a(u

(τ)
1 /u

(τ)
2 )u

(τ)
2

)∣∣2)dxdt
=

∫
Td
|A(u(τ))∇u(τ)|2dx ≤

∫ T

0

∫
Td
|A(u(τ))|2|∇u(τ)|2dxdt

≤ CA

∫ T

0

∫
Td

(
1 +

(
u

(τ)
1

u
(τ)
2

)4

+

(
u

(τ)
2

u
(τ)
1

)4)
|∇u(τ)|2dxdt

≤ C

∫ T

0

∫
Td

((
u

(τ)
1

u
(τ)
2

)α−p
+

(
u

(τ)
1

u
(τ)
2

)p−α)
|∇u(τ)|2dxdt ≤ C. (193)

The last but one inequality follows from the elementary estimate 1 + y4 ≤ yα−p + yp−α for
y > 0 which holds because of the assumption α − p ≥ 4. Estimates (191)-(193) yield for
i = 1, 2,

‖u(τ)
i ‖L∞(0,T ;L2(Td)) + ‖∇u(τ)

i ‖L2(0,T ;L2(Td)) ≤ C, (194)

‖a(u
(τ)
1 /u

(τ)
2 )ui‖L∞(0,T ;L2(Td)) + ‖∇(a(u

(τ)
1 /u

(τ)
2 )u

(τ)
i )‖L2(0,T ;L2(Td)) ≤ C. (195)

These estimates are uniform in T > 0 if µi ≤ 0.
Next, we derive a uniform estimate for the discrete time derivative (u(τ) − στu(τ))/τ .

For φ ∈ L2(0, T ;Hm(Td)), we estimate

1

τ

∣∣∣∣ ∫ T

0

(u(τ) − στu(τ)) · φdxdt
∣∣∣∣ ≤ ‖A(u(τ))∇u(τ)‖L2(0,T ;L2(Td))‖∇φ‖L2(0,T ;L2(Td))

+ τ‖w(τ)‖L2(0,T ;Hm(Td))‖φ‖L2(0,T ;Hm(Td))

+ max{µ1, µ2}‖u(τ)‖L2(0,T ;L2(Td))‖φ‖L2(0,T ;L2(Td))

≤ C‖φ‖L2(0,T ;Hm(Td)),

taking into account the bounds (190), (193), and (194). Therefore,

τ−1‖u(τ) − στu(τ)‖L2(0,T ;Hm(Td)′) ≤ C. (196)
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Step 3: limit τ → 0. Estimates (194) and (196) allow us to apply the Aubin-Lions lemma in
the discrete version of [21] to obtain the existence of a subsequence, which is not relabeled,
such that, as τ → 0,

u
(τ)
i → ui strongly in L2(0, T ;L2(Td)) and a.e., i = 1, 2.

Moreover, by (190), (194), and (196), for the same subsequence and i = 1, 2,

τw
(τ)
i → 0 strongly in L2(0, T ;Hm(Td)),

∇u(τ)
i ⇀ ∇ui weakly in L2(0, T ;L2(Td)),

τ−1(u
(τ)
i − στu

(τ)
i ) ⇀ ∂tui weakly in L2(0, T ;Hm(Td)′).

The pointwise convergence of (u
(τ)
i ), Fatou’s lemma, and estimate (189) imply that, for

a.e. t ∈ (0, T ),

2∑
i=1

∫
Td

(ui(t)− log ui(t))dx ≤ lim inf
τ→0

2∑
i=1

∫
Td

(
u

(τ)
i (t)− log u

(τ)
i (t)

)
dx

≤ lim inf
τ→0

∫
Td
h(u(τ)(t))dx ≤ C.

This means that ui > 0 a.e. in Td × (0, T ).
Estimate (191) and (193) show that, up to a subsequence,

a(u
(τ)
1 /u

(τ)
2 )u

(τ)
i ⇀ qi weakly in L2(0, T ;H1(Td)), i = 1, 2,

where qi ∈ L2(0, T ;H1(Td)). We wish to identify qi. To this end, let us define χ
(τ)
ε =

1{u(τ)1 ≥ε, u
(τ)
2 ≥ε}

and χε = 1{u1≥ε, u2≥ε}, where 1A denotes the characteristic function on the

set A. Clearly, χ
(τ)
ε → χε strongly in Ls(0, T ;Ls(Td)) for all 1 ≤ s <∞. We infer that

χ(τ)
ε a(u

(τ)
1 /u

(τ)
2 )u

(τ)
i ⇀ χεa(u1/u2)ui weakly in Ls(0, T ;Ls(Td)), 1 ≤ s < 2.

We deduce that qi = a(u1/u2)ui on the set {u1 ≥ ε, u2 ≥ ε}. Since ε > 0 is arbitrary and
ui > 0 a.e. in Td × (0, T ), this identification holds, in fact, a.e. in Td × (0, T ).

Consequently, we may perform the limit τ → 0 in (188) to deduce that u is a weak
solution to (178) with test functions L2(0, T ;Hm(Td)′). However, since a(u1/u2)ui ∈
L2(0, T ;H1(Td)), we can employ a standard density argument to infer that (178) also
holds in L2(0, T ;H1(Td)′). Since ui ∈ L2(0, T ;H1(Td)) and ∂tui ∈ L2(0, T ;H1(Td)′), it
follows that ui ∈ C0([0, T ];L2(Td)), so the initial datum is satisfied in L2(Td). Finally,
since the bounds are uniform in T if µi ≤ 0, the statement (183) follows.
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[34] A. Jüngel and P. Kristöfel. Lyapunov functionals, weak sequential stability, and
uniqueness analysis for energy-transport systems. Ann. Univ. Ferrara 58 (2012), 89-
100.
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