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1 Introduction

1.1 Aim of the course

The main goal of this course is to derive several models (in practice, PDEs) describing
the electron flow through a semiconductor device due to an applied voltage. The main
transport phenomena, that have to be accounted for in the derivation process and which
depend in general on the particular device considered, are:

• diffusion: namely, the tendency of a distribution of some physical quantiity to spread
in space until it reaches an “equilbrium” configuration;

• drift: i.e. the tendency of the same distribution to translate in space due to some
force field;

• scattering: interaction between two or more particles, or between particles and atoms;
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• quantum mechanical phenomena: electrons are quantum mechanical objects and do
not obey to the rules of classical mechanics, so in many cases the formalism of quan-
tum mechanics will be unavoidable, althought in some situations it is possible to
describe quantum systems with a so-called semi-classic formalism.

In order to choose the right model for a given device, it is necessary to pay attention to
some key physical parameters, namely:

• device size: tipically the device length is of the order of magnitude of 100 nm;

• number of free electrons: usually of the order of magnitude of 104;

• mean free time: the average time interval between two consecutive collisions experi-
enced by a particle;

• ambient temperature: usually around 300 K.

The transport models that will be derived in this course will be (systems of) nonlinear
PDEs, which will not be solvable with analytical methods; the only possible way to solve
such equations will be through numerical methods. For this reason, another variable that
will have to be considered throughout the course is the computational effort required to
find a numerical solution for the considered models. The ideal compass of the modeling
activity will be to compromise between accuracy in the description of the relevant physical
phenomena and simplicity of the models.

We warn the attentive reader that the arguments employed in the derivation of the
model equations in this course will be usually purely formal. Even if we will write many
times the well-known mathematical keywords “Theorems”, “Proposition”, “Lemma” and
so on throughout these lecture notes, they will not have the same meaning that they have
in Analysis courses; for example we will not specify, in general, the regularity assumptions
on the involved functions, nor the precise notions of convergence when limits of sequences
of functions are taken, nor the exact functional setting of the considered problems; as a
matter of fact, rigorous proofs of many of the results stated in these lecture notes are
nowhere to be found in literature. Such is, after all, the spirit of Mathematical Modeling.

1.2 Preliminary considerations

First of all: what is a semiconductor?
We give two definitions of a semiconductor: a “macroscopic” one and a “microscopic” one.
Let us start with the macroscopic definition.

Definition 1. A semiconductor is a solid material with a conductivity between 10−6 and
105 S/m.

To understand the above definition, it is necessary to know what the conductivity of
a material is. According to Ohm’s law, the magnitude I of the electric current flowing
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through a body subject to a voltage V is given by I = V/R, where R is the electric
resistance of the body. Moreover, it holds R = r`/A, where A is the section of the body,
` is the length of the body, and r is an intrinsic property of the material composing the
body which is called resistivity. The reciprocal 1/r of the resistivity is the conductivity.

Definition 1 actually states that a semiconductor is a material with a conductivity
higher than the one of an insulator and lower than the one of a metal (this is, after all,
the reason of the name “semiconductor”). The “microscopic” definition is based instead
upon the concept of band gap, which is related to the intimate electronic properties of the
material.

Definition 2. A semiconductor is a solid material with a band gap greater than zero and
lower than 4 eV.

The notion of band gap will be explained to the reader in the next sections. However,
we point out that a band gap equal to zero is typical of metals, while a high band gap
yields an insulator.

So, now that it is more or less clear what a semiconductor is, the next question is: how
to describe the electron flow through a semiconductor?
To have an intuitive idea of the answer, let us just consider a very simple situation: let
us describe a single electron as a classical particle with mass m, position x, velocity v,
subject to an electric force F = −q∇V (x) where q is the charge of the electron and V is
the electric potential. According to classical mechanics, the system obeys Newton’s law:
mẍ = F or, equivalently, Hamilton’s equations:

ẋ = v, v̇ =
F

m
= − q

m
∇V (x). (1)

Eq. (1) is an example of microscopic model, that is, a model that is focused on single
particles. This approach would require us to solve eq. (1) for each electron. Since there
are in average 104 free electrons in a semiconductor device, the numerical solution of such
a system would be very expensive. Thus we search for alternative models. Our key idea
is that we are interested in describing the particle ensamble rather than a single particle;
for this reason, it appear meaningful to employ a statistical description of the system.
We define the distribution function of the system as the function f : R3 × R3 × [0,∞),
f = f(x, p, t) depending on position x ∈ R3, momentum p ∈ R3, time t > 0 representing
the particle density of the system in the phase space at time t; more precisely,

∀Ω ⊂ R3 × R3,

∫∫
Ω

f(x, p, t)dxdp = number of electrons with position x and

momentum p satisfying (x, p) ∈ Ω at time t.

In particular
∫∫

R3×R3 f(x, p, t)dxdp is the total number of electrons of the ensamble.
Let us assume that the initial distribution fI = f(·, ·, 0) of the system is known (it’s

quite a big assumption, actually). We want to write an evolution equation for f . The
starting point is Liouville’s Theorem: since the divergence of the right-hand side of (1) is
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zero (namely: ∇x · v + ∇v · F (x)/m = 0 due to the force F being positional), then the
distribution function f of the system is constant along trajectories:

f(x(t), v(t), t) = fI(x(0), v(0)) t > 0, ∀(x(t), v(t)) solution of (1). (2)

Let us differentiate both sides of (2) with respect to time. We get:

0 =
d

dt
f(x(t), v(t), t) = ∂tf + ẋ · ∇xf + v̇ · ∇vf, t > 0. (3)

By applying (1) we conclude:

∂tf + v · ∇xf −
q

m
∇V · ∇vf = 0 x ∈ R3, v ∈ R3, t > 0. (4)

Equation (4) is the Liouville equation. It provides a mesoscopic description of the system,
i.e. a description involving a distribution in the phase space; such a model can be regarded
as intermediate between microscopic and macroscopic models.

Equation (4) must be considered together with the initial condition f(·, ·, 0))fI . It is
a scalar PDE for a function in the phase space, which means, a 6-dimensional space; this
means that the numerical solution of such a problem is quite expensive. Moreover, in spite
of the assumption we made, the initial datum fI is known, this is usually not true in real
situations. Finally, the distribution f contains much more informations than we need: in
fact, we are not interested in knowing the distribution function of the system at each point
of the phase space, but rather we are interested in only some macroscopic (i.e. measurable)
quantities, mainly the particle density n(x, t) =

∫
R3 f(x, v, t)dv and the current density

J(x, t) =
∫
R3 vf(x, v, t)dv. So, we wish to write equations involving only these quantities

(which are called moments of the distribution function). Let us start by integrating the
Liouville equation (4) in R3 with respect to v. By keeping in mind the definitions of n and
J and recalling that the potential V does not depend on v, we obtain:

∂tn+∇x · J −
q

m
∇V ·

∫
R3

∇vfdv = 0. (5)

If f tends to 0 quick enough as |v| → ∞, the divergence theorem yields
∫
R3∇vfdv = 0.

Thus (5) becomes:

∂tn+∇x · J = 0. (6)

This is the continuity equation. It is a balance of mass; it states that, given an arbitrary
domain Ω ⊂ R3, the change per unit time of the particle number inside Ω equals the flow
of incoming particles minus the flow of outgoing particles.1

1To see this, just integrate (6) in Ω and apply the divergence theorem (ν is the outward normal to ∂Ω):

∂t

∫
Ω

ndx = −
∫
∂Ω

J · νdσ = J incoming − Joutgoing,

with J incoming = −
∫
∂Ω

min{J · ν, 0}dσ, Joutgoing =
∫
∂Ω

max{J · ν, 0}dσ.
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Now we face a problem, that we will encounter again many times in the course: the
so-called closure problem. Equation (6) is not closed, namely it is not possible to write J
as a function of n without making further assumptions. The reason lies in the definition
of n, J in terms of f : since we have almost no information on f , we can’t possibly hope to
find an explicit relation involving only n and J unless we make some ad-hoc hypothesis.
We will see in the rest of the course the exact nature of such assumptions; for now we just
state that in some suitable situation we can write J = −(∇n − n∇V ). By plugging this
expression inside (6) we get the well-known drift-diffusion equation:

∂tn = div (∇n− n∇V ). (7)

The potential V can be considered as a given function (in this case (7) is linear), or be
self-consistently defined by the Poisson equation:

λ2
D∆V = n, (8)

where λD > 0 is a constant parameter called Debye length.
Eqs. (7), (8) are the simplest model for electron transport in semiconductor and, for

this reason, also the most used model in semiconductor industry. This success comes in
spite of the physical limitations of the model; in fact, the Poisson-drift-diffusion equations
provide an accurate description of the system only if:

• the size of the device is at least 1000 nm;

• the system is close to thermal equilibrium, meaning that the current density should
be small and the temperature constant;

• the applied voltage is small.

Of course, the drift-diffusion equation (7) is not the only model for electron transport
that can be derived. Another model can be obtained by retaining the continuity equation
(6) and finding an equation for J . With this goal in mind, let us multiply eq. (4) times v
and integrate it in R3 with respect to v:2

∂tJ +∇x ·
∫
R3

v ⊗ vfdv − q

m

∫
R3

v(∇xV · ∇v)fdv = 0. (9)

Let us consider a generic component i ∈ {1, 2, 3} of the third integral in (9). The divergence
theorem allows to write:∫

R3

vi(∇xV · ∇v)fdv =
3∑
j=1

∂xjV

∫
R3

vi∂vjfdv = −
3∑
j=1

∂xjV

∫
R3

δijfdv = −n∂xiV. (10)

2In the equation which follows, the symbol ⊗ denotes the tensor product between vectors: if a ∈ RN ,
b ∈ RM , then a⊗ b ∈ RN×M with components (a⊗ b)ij = aibj .
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However, we can’t compute the other integral, namely
∫
R3 v ⊗ vfdv: we face again the

closure problem, and we are forced to make some assumption in order to express such
term as a function of n, J . We will see later on that in suitable circumstances it holds∫
R3 v ⊗ vfdv = J ⊗ J/n + nI. By plugging this relation into (9) and exploiting (10) we

conclude:

∂tJ +∇ ·
(
J ⊗ J
n

)
+∇n+

q

m
n∇V = 0. (11)

Eqs. (6), (11) are the Euler (or hydrodynamic) equations known in gas dynamics. The
term ∇ ·

(
J⊗J
n

)
is the convection; the pressure of the system equals n; q

m
n∇V is a force

term.
The drift-diffusion equation and the Euler equations are examples of macroscopic trans-

port models, that is, models involving macroscopic, observable quantities. In the rest of
the course we will explain precisely how the models we introduced here can be derived,
and how the quantum mechanical nature of the electrons can be taken into account.

2 Basic Physical Background

2.1 The cristal structure of solids

It is not possible to describe electron transport in semiconductors without having at least
some basic knowledge about the structure of a semiconductor. Thus, in this subsection we
present briefly the cristal structure of solids. For more details about the subject see [6].

An ideal solid is, by definition, an infinite 3-dimensional array of atoms disposed in a
lattice L ⊂ R3, which is called Bravais lattice:

L = {n1a1 + n2a2 + n3a3 : n1, n2, n3 ∈ Z}.

The given (linearly independent) vectors a1, a2, a3 ∈ R3 are called primitive vectors of the
lattice.

Another concept, that is rather useful in solid state physics, is the concept of reciprocal
lattice, which is the lattice L∗ ⊂ R3 defined as:

L∗ = {n1a
∗
1 + n2a

∗
2 + n3a

∗
3 : n1, n2, n3 ∈ Z}, a∗i · aj = 2πδij (i, j = 1, 2, 3). (12)

The primitive vectors a∗1, a
∗
2, a
∗
3 of the reciprocal lattice L∗ can be easily computed from

definition (12):

a∗1 =
2πa2 × a3

a1 · (a2 × a3)
, a∗2 =

2πa3 × a1

a1 · (a2 × a3)
, a∗3 =

2πa1 × a2

a1 · (a2 × a3)
. (13)

A primitive cell of the Bravais lattice L is any connected set D ⊂ R3 having volume
equal to |a1 · (a2×a3)| and with the property ∪x∈L(D+x) = R3. Notice that |a1 · (a2×a3)|
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is the volume of the parallelepiped with edges a1, a2, a3. The notion of primitive cell for
the reciprocal lattice L∗ is defined in a completely analogous way.

The primitive cell of L (or L∗) that is closest, among all the primitive cells, to the
origin of the chosen reference frame is called Wigner-Seitz cell. The Wigner-Seitz cell of
the reciprocal lattice is referred to as first Brillouin zone.

The vectors of L and L∗ can be seen as conjugate variables, like e.g. time and frequency.
In fact, let x ∈ L and k ∈ L∗. Clearly x =

∑3
i=1 niai and k =

∑3
i=1mia

∗
i for some integer

coefficients n1, n2, n3,m1,m2,m3. Thus:

eik·x = exp

(
i

3∑
i,j=1

nimjai · a∗j

)
= exp

(
i

3∑
i,j=1

nimj 2πδij

)
= e2πNi,

with N =
∑3

i=1 nimi ∈ Z. So eik·x = 1. We point out that x, being a vector in the physical
space, has the dimension of a length, while the relation eik·x = 1 clearly implies that k has
the dimension of an inverse length; for this reason, the vectors in the reciprocal lattice are
called wavevectors.

The reciprocal lattice is not merely a mathematical construct, but it has a nice physical
interpretation, which is related to the phenomenon of X-ray diffraction in solids. A common
way to explore the cristal structure of solids is the analysis of the reflection pattern of X-ray
radiation scattered by some solid body. Such reflection patterns are quite different from the
ones produced by fluids: in fact, in cristalline materials, intense peaks of scattered radiation
(Bragg peaks) are observed in correspondence of sharply defined wavelengths and incident
directions. These peaks can be accounted for by exploiting the cristal structure of solids:
it is possible to show that a Bragg peak is obtained if and only if the difference between
the wavevector of the reflected radiation and the wavevector of the incident radiation is a
vector of the reciprocal lattice.

2.2 The postulates of Quantum Mechanics

Electrons are quantum mechanical objects; it is therefore meaningful to give a short
overview of quantum mechanics before addressing the problem of electron transport in
semiconductors. For more details about the subject see e.g. [51].

In the following we consider a relatively simple quantum mechanical system, that is,
a single quantum particle in the usual 3-dimensional space; however, the considerations
below extend naturally to more complex situations.

1 The state of the system is represented by a normalized vector ψ of the Hilbert space
H = L2(R3,C). The vector ψ is called the wavefunction of the system. The quantity
|ψ|2 represent the probability density associated to the system; namely, for all Ω ⊂ R3,
the integral

∫
Ω
|ψ|2dx is the probability of finding the particle in Ω.

2 The observables of the system are represented by linear self-adjoint operators acting
on the Hilbert space H. The fundamental observables position and momentum are
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given respectively by: Xψ ≡ xψ, Pψ = −i~∇xψ for all ψ ∈ H, where ~ ≈ 10−34 J ·s is
the Dirac constant. Any classical observable γ = γ(x, p) has a quantum counterparts
intuitively defined by γ(X,P ) = γ(x,−i~∇x).

3 If ψ is the state of the system, then the result of a measurement of a quantum observ-
able is an element of the spectrum σ(A) of the quantum operator A associated to the
observable. For every λ ∈ σ(A), the probability of obtaining λ as a result of the mea-
surement equals ‖PA,λψ‖2

H, where PA,λ : H → H is the projection operator onto the
eigenspace associated to λ. The state of the system changes due to the measurement;
after the measurement, the new state of the system is ψ′ = PA,λψ/‖PA,λψ‖H.

4 The evolution of the system is described by the Schrödinger equation:

i~∂tψ = Hψ, x ∈ R3, t > 0,

where ∂t is the partial derivative with respect to time and H is the Hamiltonian
operator. If the particle has mass m and is subject to a force F = −∇V (x), then
H = P 2

2m
+ V (X) = − ~2

2m
∆ + V (x).

A few remarks about the postulates stated above.
While classical systems are deterministically described, the description of a quantum

system is instead probabilistic. The outcome of a measurement of some quantum observable
A is, rather then a number, a random variable with density 3 ‖PA,λψ‖2

H = (ψ,PA,λψ), with
ψ being the state of the system.

The mathematical expectation of a measurement of A is E[A;ψ] = (ψ,Aψ)H. This
formula can be motivated, in the case of discrete spectrum σ(A) = {λk : k ∈ N}, in the
following way:

E[A;ψ] =
∑
k∈N

λk(ψ,PA,λkψ)H =

(
ψ,
∑
k∈N

λkPA,λk ψ

)
H

= (ψ,Aψ)H.

Notice that, since self-adjoint operators have real spectrum, then Postulate 3 is coherent
with the fact that the result of a measurement of any observable is always a real number.

While in classical mechanics it is possible (in principle) to measure a system without
perturbing it, in quantum mechanics this is not possible. Every measurement of any
observable A alters the state of the system in such a way that, if λ is the outcome of the
measurement and Vλ is the eigenspace of A associated to λ, then the wavefunction ψ loses
its components orthogonal to Vλ (collapse of the wavefunction). Thus it is not possible to
know the state of a quantum system before a measurement, but only after it.

3Since PA,λ is a projection operator then P2
A,λ = PA,λ. Being PA,λ also self-adjoint then:

‖PA,λψ‖2H = (PA,λψ,PA,λψ)H = (ψ,P2
A,λψ)H = (ψ,PA,λψ)H.

9



While in classical mechanics it is always possible (in theory) to measure two different
observables simultaneously with arbitrarily high precision, this is not the case in quantum
mechanics. Analytically speaking, this is a consequence of the noncommutativity of the
composition of linear operators on Hilbert spaces: given two linear operators A,B : H →
H, it is not necessarily true that AB = BA. It is possible to show that, if A, B obey the
so-called canonical commutation rule, namely [A,B] ≡ AB − BA = i~, then the product
between the uncertainties in the measurements of A and B cannot be lower than ~/2:
4A ·4B ≥ ~/2. Since X and P obey indeed to the canonical commutation rule, it follows
that it is not possible to determine with arbitrarily low uncertainty both the position and
the momentum of a quantum particle (Heisemberg uncertainty principle). On the other
hand, when A, B are compatible observables, i.e. AB = BA holds, then it is possible to
measure both observables simultaneously with arbitrarily small uncertainty (in theory).

The expression γ(X,P ) = γ(x,−i~∇x) is ambiguous. For example, it is not clear
how to define the quantum analogue of γ(x, p) = x · p, because while x · p = p · x, the
operators X, P do not commute, so X · P , P · X, (X · P + P · X)/2 are three possible
distinct interpretations of γ(X,P ). Several rules have been defined (called quantization
rules), which associate to every classical observable its quantum counterpart. A possible
quantization rule is the Weyl quantization, according to which the quantum counterpart
Aγ of a classical observable γ = γ(x, p) is defined by:

(Aγψ)(x) = (2π~)−3

∫
R3×R3

γ

(
x+ y

2
, p

)
ψ(y)ei(x−y)·p/~dydp, ∀ψ ∈ H, ∀x ∈ R3.

It is possible to show that X, P given in Postulate 2 can be derived by means of the rule
above. Moreover, the following (formal) limit holds: lim~→0Aγψ = γψ for all ψ ∈ H. This
means that, in the formal limit ~ → 0, the quantum mechanics reduces to the classical
mechanics.

The solutions ψ of the time-dependent Schrödinger equation having the form ψ(x, t) =
eiEt/~φ(x), where E ∈ R is an eigenvalue of H and φ is an eigenstate of the Hamiltonian
corresponding to the eigenvalue E, are called stationary states of the system, and the corre-
sponding eigenvalue-eigenvector problem Hφ = Eφ for H is called stationary Schrödinger
equation. There are two main reasons why such solutions are important. First, notice that,
for every linear self-adjoint operator A on H and every stationary state ψ(x, t) = eiEt/~φ(x)
of the system it holds:

(ψ(t), Aψ(t))H =

∫
R3

eiEt/~φAeiEt/~φdx =

∫
R3

φAφdx = (φ,Aφ)H, t > 0.

Thus, if a quantum system is in a stationary state, the mathematical expectation of any
observable associated to the system is constant in time (hence the name “stationary state”).
Moreover, since multiplying the wavefunction of the system times any phase factor does
not alter the modulus of the wavefunction itself, then also the probability density |ψ|2 of
the system is constant in time if the state of the system is stationary.
The second reason for considering stationary states is related to semigroup theory. In
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fact, the solution of the time dependent Schrödinger equation can be written as ψ(t) =
e−itH/~ψ(0), for t ∈ R, where e−itH/~ is the group associated to H.4 Let us assume, for the
sake of simplicity, that H has discrete spectrum σ(H) = (Ek)k∈N and each eigenvalue Ek
has multiplicity 1, that is, the eigenspace associated to Ek is spanned by only one vector
φk. Thus:

ψ(t) = e−itH/~ψ(0) =
∑
k∈N

e−itEk/~PH,Ek
ψ(0) =

∑
k∈N

e−itEk/~(φk, ψ(0))φk.

This means that, if we can solve the stationary Schrödinger equation (i.e. we can find
(Ek, φk) for k ∈ N), then we can also solve the time-dependent Schrödinger equation.

Exercise. Prove that the Schrödinger equation preserves the normality of the wave-
function, that is: if

∫
R3 |ψ(0)|2dx = 1 then

∫
R3 |ψ(t)|2dx = 1 for all t ∈ R.

We show now that the quantum formalism that we have just introduced allows us to
derive an evolution equation for the probability density |ψ|2 of a quantum particle described
by the wavefunction ψ, that is formally identical to the continuity equation (6). Let us
differentiate |ψ|2 with respect to time:

∂t|ψ|2 = ψ∂tψ + ψ∂tψ = − i
~
(
ψHψ − ψHψ

)
. (14)

Since H = − ~2
2m

∆ + V for a single quantum particle with mass m subject to a force
F = −∇V , it follows:

∂t|ψ|2 = − 1

i~
~2

2m

(
ψ∆ψ − ψ∆ψ

)
= − ~

m

1

2i
∇ ·
(
ψ∇ψ − ψ∇ψ

)
,

and so:

∂t|ψ|2 +∇ ·
(
~
m
=(ψ∇ψ)

)
= 0. (15)

Eq. (15) is formally identical to (6) with n = |ψ|2 and J = ~
m
=(ψ∇ψ). It is a balance

equation for the probability density n of the system; the vector J can be regarded as
a probability current density. Intuitively, eq. (15) represents a bridge between quantum
mechanics and fluid models for electron transport.

Example 2.1 (free electron). We consider a free electron in the one-dimensional space
subject to no potential: V ≡ 0. We wish to determine the allowed energy values of the
system. The stationary Schrödinger equation for the system looks like:

− ~2

2m
ψ′′ = Eψ, x ∈ R. (16)

4Being H self-adjoint, then iH/~ is skew-adjoint, and thus generates a unitary group e−itH/~ in H =
L2(R3,C) (Stone’s theorem).
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If ω ∈ C satisfies

ω2 = −2mE

~2
(17)

then the solutions of (16) can be written as:

ψ(x) = C1e
ωx + C2e

−ωx, x ∈ R. (18)

We are interested only in the physically reasonable solutions of (16). Any such solution
must clearly be bounded for |x| → ∞; this means that <ω = 0, so ω = ik for some k ∈ R.
From (17) it follows E = ~2k2/2m; in particular E must be nonnegative. However, this
appears to be the only limitations for the energy spectrum: the system energy can assume
all values between 0 and ∞; the spectrum of H is continuous.

Example 2.2 (infinite square-well potential). Now we consider an electron that is confined
between two parallel walls, and we try to determine the allowed energy values of the
system. We consider this problem as one-dimensional by neglecting what is happening in
the directions parallel to the walls. We choose the reference frame in such a way that the x
axis is orthogonal to the walls, and these walls are placed at points 0 and L, respectively.
Clearly any stationary state of the system will be given by the restriction of (18) to the
interval (0, L):

ψ(x) = C1e
ωx + C2e

−ωx, 0 ≤ x ≤ L. (19)

This time we cannot invoke any boundedness argument to determine ω, since the function
ψ given by (19) is always bounded in [0, L]. We can, however, exploit the fact that the
system in confined in the interval [0, L]: as a consequence ψ(0) = ψ(L) = 0. The constraint
ψ(0) = 0 implies C2 = −C1; the relation ψ(L) = 0 leads to:

0 = C1e
ωL + C2e

−ωL = C1(eωL − e−ωL). (20)

Clearly C1 6= 0 (otherwise also C2 = −C1 = 0 and so ψ ≡ 0, which is not acceptable).
Thus (20) implies e2ωL = 1, which means 2ωL = 2πin for some n ∈ Z, that is ω = nπi/L.
By plugging this result into (17) we get:

E = −ω
2~2

2m
=

π2~2

2mL2
n2. (21)

Since n ∈ Z, (21) means that the energy E can assume only a discrete set of (positive)
values: that is, the spectrum of H is discrete.

2.3 Electrons in a semiconductor cristal

A semiconductor material is is made up by nuclei and electrons. The latter ones fall into
two cathegories according to their energy: the core electrons, which have negative energy
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and are bound to the nuclei, and the valence electrons, which have positive energy and
are flow freely throughout the semiconductor. A nucleous and the core electrons orbiting
around it form an ion. The electronic properties of a semiconductor are determined by the
valence electrons and their relation with the ions.

The valence electrons ensemble can be described by a wavefunction ψ : R3M ×R→ C,
ψ = ψ(x, t), with x = (x1, . . . , xN), and xj ∈ R3 representing the position of the j−th
electron, for j = 1, . . . , N . To write the Hamiltonian of the system one has to take
into account three phenomenon: ion vibrations, electron-ion interaction, electron-electron
scattering. To make things simpler, we neglect ion vibrations: we assume that the ions are
fixed and in equilibrium. Thus the Hamiltonian of the system has the form:

H = − ~2

2m

N∑
j=1

∆xj +Hei +Hee, (22)

where Hei, Hee take into account the electron-ion interaction and the electron-electron
scattering, respectively. Let us focus on these two terms. Clearly Hei = q

∑N
j=1 Vei(xj),

where Vei is the electrostatic potential generated by the static ion distribution:

Vei(y) =
M∑
k=1

Q

4πε0|y −Rk|
, y ∈ R3,

where ε0 is the electric permittivity, M is the number of ions, Q is the charge of an ion
and Rk ∈ R3 is the position of the k−th ion, for k = 1, . . . ,M . It follows that:

Hei =
N∑
j=1

M∑
k=1

qQ

4πε0|xj −Rk|
. (23)

The contribution from the electron-electron scattering has the form:5

Hee =
1

2

N∑
j,k=1
j 6=k

Hee,j,k,

where Hee,j,k represents the contribution of the pair of electrons with labels j, k, which is
given by:

Hee,j,k =
q2

4πε0|xj − xk|
, j, k = 1, . . . , N, j 6= k. (24)

Thus:

Hee =
1

2

N∑
j,k=1
j 6=k

q2

4πε0|xj − xk|
. (25)

5The factor 1/2 is the equation below takes into account the obvious fact that the couples (j, k) and
(k, j) give the same contribution.
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By putting (22)–(25) together we conclude:

H = − ~2

2m

N∑
j=1

∆xj +
N∑
j=1

M∑
k=1

qQ

4πε0|xj −Rk|
+

1

2

N∑
j,k=1
j 6=k

q2

4πε0|xj − xk|
. (26)

Since the number N of electrons is rather big, the solution of the stationary Schrödinger
equation for H (namely Hψ = Eψ) is numerically very expensive. So we look for a way
to simplify the problem. The strategy that we will follow is:

1. we will replace the term Hee describing the electron-electron interactions with a
single-particle effective potential, reducing the 3M−dimensional problem to a 3-
dimensional one (Hartree-Fock approximation);

2. we will reduce the solution of the Schrödinger equation in the whole space R3 to the
solution of the Schrödinger equation in the Wigner-Seitz cell of the Bravais lattice
(Bloch decomposition).

2.3.1 The Hartree-Fock approximation.

Let us explain the first approximation. We preliminary observe that, if electron-electron
interactions can be neglected, then the problem becomes much simpler, namely:

• the wavefunction ψ factorizes into a product of single-particle wavefunctions:

ψ(x) =
N∏
j=1

ψj(xj), ψj : R3 → C (j = 1, . . . , N); (27)

• the Hamiltonian H equals the sum of single-particle Hamiltonians:

H =
N∑
j=1

Hj, Hj = − ~2

2m
∆xj +

M∑
k=1

qQ

4πε0|xj −Rk|
, (j = 1, . . . , N); (28)

• the Schrödinger equation decouples into a system of independent single-particle
Schrödinger equations: Hjψj = Ejψj, j = 1, . . . , N .

In fact, if ψ, H satisfy (27), (28):

Hψ =
N∑
j=1

Hj

N∏
k=1

ψk(xk) =
N∑
j=1

N∏
k=1
k 6=j

ψkHjψj;

this means that, if Hjψj = Ejψj for j = 1, . . . , N , then Hψ = Eψ with E =
∑N

j=1 Ej.

Conversely, if Hψ = Eψ, let us write E =
∑N

j=1 Ej for some E1, . . . , EN ∈ R. It follows:

0 =
1

ψ
(Hψ − Eψ) =

N∑
k=1

1

ψj
(Hjψj − Ejψj),
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and since ψj, Hjψj depend only on xj we conclude that Hjψj = Ejψj for j = 1, . . . , N .
The idea of the Hartree-Fock method is that the product ansatz (27) makes sense even

in presence of electron-electron interactions. In this case, however, (28) does not hold true;
instead,

H =
N∑
j=1

Hj +
1

2

N∑
j,k=1
j 6=k

Hee,j,k, (29)

with H1, . . . , HN and Hee,j,k given by (28), (24), respectively. To determine the functions
ψ1, . . . , ψN in (27) we assume that the system is in the ground state, which means, its
energy is minimal. Thus (ψ1, . . . , ψN) will be the solution of the constraint minimization
problem:

minimize (ψ,Hψ) under the constraints ‖ψj‖2
L2 = 1 (j = 1, . . . , N), (30)

with ψ, H given by (27), (29), respectively.

We solve problem (30) with the Lagrange multipliers method. If ψ(x) =
∏N

j=1 ψj(xj) solves
(30), then parameters E1, . . . , EN ∈ R exist such that:

δ(ψ,Hψ)−
N∑
j=1

Ejδ‖ψj‖2
L2 = 0. (31)

In (31) the symbol δ denotes the variation of a functional H → R. Thanks to (29) the
left-hand side of (31) can be rewritten as:

δ
N∑
j=1

(ψj, Hjψj) + δ
1

2

N∑
j,k=1
j 6=k

∫
R6

Hee,j,k|ψj|2|ψk|2dxjdxk − 2
N∑
j=1

Ej(δψj, ψj)

= 2
N∑
j=1

(δψj, Hjψj) + 2
N∑

j,k=1
j 6=k

∫
R6

δψjHee,j,kψj|ψk|2dxjdxk − 2
N∑
j=1

Ej(δψj, ψj)

= 2
N∑
j=1

(δψj, (Hj + Veff − Ej)ψj), (32)

where

Veff(r) =

∫
R3

q2|ψk(r′)|2

4πε0|r − r′|
dr′, r ∈ R3. (33)

Since the variation δψ in (32) is arbitrary, (31) implies:

− ~2

2m
∆ψj(r) +

M∑
k=1

qQψj(r)

4πε0|r −Rk|
+ Veff(r)ψj(r) = Ejψj(r), r ∈ R3, (34)
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for j = 1, . . . , N . Eq. (34) is the Hartree equation. It is a single-particle Schrödinger
equation (that is, a PDE for a scalar function of r ∈ R3) which incorporates the many-
body effects through the effective potential Veff. Notice that ∆ in (34) is the 3-dimensional
Laplacian.

Unfortunately, the Hartree equation has a flaw: in the derivation of (34) we ne-
glected the fermionic nature of the electrons. Quantum particles fall into two cathe-
gories: bosons and fermions. To understand the difference between the two classes,
consider two undistinguishable quantum particles, labeled with indexes 1 and 2. The
wavefunction of the system will be some function ψ = ψ(x1, x2). What happens to ψ is
the particle labels are exchanged? It can be shown that either ψ(x2, x1) = ψ(x1, x2) or
ψ(x2, x1) = −ψ(x1, x2). Any quantum particle will choose always one of the two options.
The particles for which ψ(x2, x1) = −ψ(x1, x2) are called fermions, while the particles for
which ψ(x2, x1) = ψ(x1, x2) are called bosons.

It happens that electrons are fermions. So the wavefunction of an electron ensemble
must clearly be antysimmetric, that is, ψ(x1, . . . , xN) must change sign for every odd
permutation of the variables x1, . . . , xN . However, there is no reason why the wavefunction
defined in (27) should satisfy this property. Thus we have to consider a symmetrized
version of (27), namely, in place of a factorized wavefunction we choose a suitable linear
combinations of products like the one in (27):

ψ(x) =
∑

(j1,...,jN )∈SN

sign(j1, . . . , jN)
N∏
k=1

ψk(xjk), (35)

where SN is the set of permutations of {1, . . . , N}. It is easy to see that ψ defined in (35)
equals the determinant of the matrix (ψj(xk))j,k, and for this reason an expression like (35)
is called a Slater determinant. If we solve (30) with ψ given by (35) we obtain in the end
the Hartree-Fock equation:

− ~2

2m
∆ψj(r) +

M∑
k=1

qQψj(r)

4πε0|r −Rk|
+ Veff(r)ψj(r) (36)

− q2
∑

k 6=j, spin ‖

∫
R3

ψk(r
′)ψj(r

′)

|r − r′|
dr′ψk(r) = Ejψj(r), r ∈ R3,

with Veff still given by (33). The derivation of (36) can be found in [11]. The additional
term in (36):

(Hexψ)j ≡ −q2
∑

k 6=j, spin ‖

∫
R3

ψk(r
′)ψj(r

′)

|r − r′|
dr′ψk(r), (37)

contains a summation over electrons with the same spin6 and arises from “exchange inter-
action”, i.e. the fact that the particles are indistinguishable under the exchange of particle
label.

6The spin is an intrinsic property of some quantum particles, a form of intrinsic angular momentum
which does not have a classical counterpart [51].
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2.3.2 The Bloch decomposition.

So, with the Hartree-Fock method we have obtained a Schrödinger equation for the single-
particle Hamiltonian

H = − ~2

2m
∆ + qVL(x), x ∈ R3, (38)

where VL is a suitable effective potential. Given the periodic crystal structure of a semicon-
ductor, one expects that also VL is periodic. So we hope that the Schrödinger equation in
the whole space can be reduced to a Schrödinger equation in a primitive cell of the Bravais
lattice. This hope is not in vain:

Theorem 2.1 (Bloch). Let VL a potential satisfying VL(x + y) = VL(x) for all x ∈ R3,
y ∈ L (Bravais lattice). Then the eigenfunctions of the Hamiltonian H given by (38) can
be chosen to have the following form:

ψn,k(x) = eik·xun,k(x), x ∈ R3, k ∈ B (the Brillouin zone), n ∈ N, (39)

for some functions un,k satisfying: un,k(x+ y) = un,k(x) for all x ∈ R3, y ∈ L.

Proof. Let Ta be the translation operator: (Taψ)(x) = ψ(x + a) for a ∈ L, x ∈ R3,
ψ ∈ L2(R3,C). We claim that the eigenvalues of Ta have the form eiθ for some θ ∈ R. In
fact, if Taψ = λψ and ψ 6= 0 then:

|λ|2‖ψ‖2
L2 = ‖λψ‖2

L2 = ‖Taψ‖2
L2 =

∫
R3

|ψ(x+ a)|2dx =

∫
R3

|ψ(x)|2dx = ‖ψ‖2
L2 ,

so |λ| = 1.
It is trivial to see that TaTa′ = Ta′Ta for all a, a′ ∈ L. Moreover, we claim that HTa = TaH
for all a ∈ L. In fact, thanks to the periodicity of VL and the fact a ∈ L,

(TaHψ)(x) = − ~2

2m
∆ψ(x+ a) + qVL(x+ a)ψ(x+ a)

= − ~2

2m
∆ψ(x+ a) + qVL(x)ψ(x+ a) = (HTaψ)(x).

Being H, Ta self-adjoint operators, this means that H and Ta have the same eigenvectors
for all a ∈ L [5]. Let ψ be such a common eigenvector of H and Ta for all a ∈ L. In
particular, for j = 1, 2, 3 there exist θj ∈ R such that

Tajψ = eiθjψ (j = 1, 2, 3). (40)

Let now, for K ∈ L∗ arbitrary,

k = − 1

2π

3∑
`=1

θ`a
∗
` +K, u(x) = eik·xψ(x). (41)
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It is easy to see that ei(k·aj+θj) = 1, for j = 1, 2, 3. Thus it follows:

u(x+ aj) = eik·xeik·ajψ(x+ aj) = eik·xeik·aj(Tajψ)(x) = eik·xei(k·aj+θj)ψ(x) = u(x).

So u(x+y) = u(x) for all x ∈ R3, y ∈ L. By choosing K =
∑3

j=1Kja
∗
j with Kj a minimizer

of the function s ∈ R 7→
∣∣∣s− θj

2π

∣∣∣ ∈ R, we conclude that k ∈ B.

Let us make some remarks about Bloch’s theorem. First, we point out that the in-
dex n ∈ N appears in the theorem because there are many solutions to the Schrödinger
equation. In fact, if ψ satisfies (39) then the eigenvalue problem Hψ = Eψ becomes:

~2

2m
(−i∇+ k)2un,k(x) + qVL(x)un,k(x) = En(k)un,k(x), x ∈ R3,

with the periodicity condition

un,k(x+ y) = un,k(x) x ∈ R3, y ∈ L.

The above-stated problem can be regarded as an eigenvalue problem for a self-adjoint
operator in a bounded domain D (a primitive cell of the lattice L). So we expect to have
an infinite (countable) family of solutions with discretely spaced eigenvalues: n ∈ N.

Relation k 7→ En(k) is called dispersion relation; it can be proved to be a continuous
map and L∗−periodic (En(k +K) = En(k) for k ∈ R3, K ∈ L∗). The image of B through
En, namely En(B) = {En(k) : k ∈ B}, is the n−th energy band. If the set R\∪n∈NEn(B)
is nonempty, then its connected components are called energy gaps. Finally, if there is only
one energy gap, then the nearest energy bands below and above the energy gap are called
valence band and conduction band, respectively.

Bloch’s theorem introduces a wavevector k, to which a momentum p = ~k can be
associated. However, p is not the (mathematical expectation of the) electron momentum.
In fact, for ψn,k of the form (39) it holds:

− i~∇ψn,k = −i~∇(eik·xun,k(x)) = ~kψn,k − i~eik·x∇un,k(x) 6= ~kψn,k,

so ψ is not a momentum eigenstate. Neverthless, the quantity p = ~k, called crystal
momentum, plays an important role in the problem of the motion of electrons in periodic
potentials, as we will see in the rest of the course.

We conclude this section by pointing out that now the reader is finally able to under-
stand the definition of semiconductor anticipated in the Introduction:

Definition. A semiconductor is a solid material with a band gap greater than zero and
lower than 4 eV.

2.4 The Semi-Classical Picture

We will present some equations which look like Newton’s laws of classical mechanics, but
incorporate also quantum effects.
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2.4.1 Semi-Classical equations of motion.

Let us begin by considering a Bloch electron in a semiconductor subject to an external
potential V . The particles will be described by a wavefunction ψn,k(x) satisfying the family
of eigenvalue-eigenvector problems depending on k ∈ B:

− ~2

2m
∆ψn,k + q(VL + V )ψn,k = En(k)ψn,k in D, (42)

and admitting the decomposition:

ψn,k(x) = eik·xun,k(x) x ∈ D. (43)

Here D is a primitive cell of the lattice, VL is an effective potential with the periodicity of
the Bravais lattice, k is the electron’s (pseudo)wavevector and n ∈ N is the band index.
We assume, for the sake of simplicity, that the electron stays in the same band n during
the evolution of the system. For this reason we can drop the index n from En(k) and ψn,k.

If the electron were a classical particle, then one could associate to it a position x = x(t)
and a velocity v = v(t) in a straightforward way. However, even if the electron is a quantum
particle, we can associate to it a “semi-classical trajectory” x(t) defined by:

ẋ =
〈P 〉
m

, (44)

where 〈P 〉 is the mathematical expectation of the momentum operator P :

〈P 〉 ≡
∫
D

ψk(x)(−i~∇x)ψk(x)dx.

The wavevector k is also to be considered a function of time: k = k(t). The quantity 〈P 〉
is a function of k, thus (44) is a relation between x(t) and k(t).

The mathematical expectation of P admits a simple form:

Lemma 2.1. It holds:
〈P 〉 =

m

~
∇kE(k).

Proof. Since (43) holds, it follows ∇kψk = ixψk +eik·x∇kuk. Thus differentiating (42) with
respect to k yields:

− ~2

2m
∆x(ixψk + eik·x∇kuk) + q(VL + V )(ixψk + eik·x∇kuk) (45)

= ψn,k∇kE(k) + E(k)(ixψk + eik·x∇kuk).

Clearly ∆x(ixψk) = 2i∇xψk + ix∆xψk, so from (45) it follows:

ix

(
− ~2

2m
∆xψk + q(VL + V )ψk − E(k)ψk

)
− i~2

m
∇xψk (46)
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+

(
− ~2

2m
∆x + q(VL + V )− E(k)

)
(eik·x∇kuk) = ψn,k∇kE(k).

The first term on the left-hand side of (46) vanishes thanks to (42), so:

− i~2

m
∇xψk + (H − E(k)) (eik·x∇kuk) = ψn,k∇kE(k), (47)

where H = − ~2
2m

∆x + q(VL + V ) is the Hamiltonian. Let us multiply (47) times ψk and
integrate in D:

− i~2

m

∫
D

ψk∇xψk +

∫
D

ψk (H − E(k)) (eik·x∇kuk)dx = ∇kE(k). (48)

The self-adjointness of H and (42) imply:∫
D

ψk (H − E(k)) (eik·x∇kuk)dx =

∫
D

(Hψk − E(k)ψk) e
ik·x∇kukdx = 0.

So (48) becomes:

− i~2

m

∫
D

ψk∇xψk = ∇kE(k),

which implies the statement.

By putting together (44) and Lemma 2.1 we obtain:

ẋ =
1

~
∇kE(k) = ∇pẼ(p), (49)

where Ẽ(p) ≡ E(k) = E(p/~) is the energy written as a function of the pseudo-momentum
p = ~k. Eq. (49) strikingly resembles one of the Hamilton equations of classical mechanics,
namely ẋ = ∇pH , linking the time derivative of the position with the (classical) Hamil-
tonian H of the system. At this point it is natural to ask whether there is a semiclassical
analogue of the other Hamilton equation, that is ṗ = −∇xH . As a matter of fact, it can
be shown that:

~k̇ = −q∇xV. (50)

The proof of (50) is quite difficult; see e.g. [6, p. 220], [40, p. 39]. Anyway, we can
derive a weaker relation in a simple way by assuming that the total energy of the system
Etot = E(k) + qV (x) is constant along the trajectories of the system:

0 =
dEtot
dt

= ∇kE(k) · k̇ + q∇xV (x) · ẋ =
(
k̇ +

q

~
∇xV (x)

)
· ∇kE(k).

So ~k̇ + q∇xV (x) is orthogonal to ∇kE(k). This is coherent with (50), although it is by
no means of proof of it.

Notice that (50) does not contain the effective potential VL: the evolution of the pseudo-
momentum p depends only on the applied potential.
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2.4.2 Effective mass and parabolic band approximation.

Eq. (49) shows that the semiclassical velocity ẋ is proportional to 〈P 〉: 〈P 〉 = mẋ. What
is the relation between the pseudo-momentum ~k and ẋ? Is there a scalar, or a 3 × 3
matrix m∗ such that ~k = m∗ẋ? Let us assume that such a matrix exists. Then from (49)
it follows:

~k̇ = m∗ẍ =
m∗

~
∂2E(k)

∂k2
k̇,

which implies, since k̇ is arbitrary:

(m∗)−1 =
1

~2

∂2E(k)

∂k2
. (51)

Eq. (51) gives the definition of the effective mass m∗. Notice that m∗ is, in general, a 3× 3
symmetric matrix. If k0 is a point of local minimum for E(k) (that is, a minimum of the
conduction band), then m∗(k0) is positive definite. So the spectral theorem allows us to
find a suitable orthogonal coordinates system in which m∗(k0) is diagonal:

m∗(k0) =

m∗1 0 0
0 m∗2 0
0 0 m∗3

 .

So, thanks to Taylor’s formula, the conduction band can be approximated, in a neighbor-
hood of the minimum, by:7

E(k) ≈ Ec +
~2

2

(
k2

1

m1

+
k2

2

m2

+
k2

3

m3

)
,

where Ec is the minimum value of the conduction band.
A semiconductor is called isotropic if m1 = m2 = m3 = m∗e. In such a case:

E(k) ≈ Ec +
~2|k|2

2m∗e
. (52)

Eq. (52) is called parabolic band approximation. It means that, in an isotropic semiconduc-
tor, the energy of an electron near a minimum of the conduction band equals the energy
of a free quantum particle in a vacuum having mass equal to the effective mass m∗.

What happens if we evaluate (51) in a maximum of the valence band? Then clearly
m∗ is negative definite. Physicists dislike things like negative masses, so they found a
way to avoid this concept. The idea is: if we change the sign of both m∗ and ẋ in the
relation ~k = m∗ẋ, then such relation remains valid and the newly defined effective mass is
positive definite. However, a change in sign of the velocity ẋ means that the particles move,
under the influence of an electric field, in the opposite direction compared to the electrons;

7We can assume, without loss of generality, that k0 = 0.

21



namely, they behave like “positively charged electrons”. These particles are called holes.
Physically speaking, a hole is a vacant orbital in the valence band, which behaves like
a particle with positive charge. An electron moving in a direction can be equivalently
viewed as a hole moving in the opposite direction. Simmetrically to what happens near
the bottom of the conduction band, near the top of the valence band the band energy can
be approximated by:

E(k) ≈ Ev −
~2|k|2

2m∗h
, (53)

where Ev is the energy at the valence band maximum, and m∗h is the hole effective mass
near the maximum of the valence band.

2.5 Semiconductor Statistics

Given a system of N electrons in a semiconductor of finite size in thermal equilibrium
(i.e. no current flow), how many electrons are in a given energy band? More in general,
how are electrons distributed with respect to their energy?

Answering these questions means to analyze the occupation probability fN(E) for the
system, which can be heuristically defined as follows. Given an arbitrary (allowed) energy
value E,

fN(E)dE = number of electrons with energy in the range [E,E + dE].

Recall that the allowed energy values in a semiconductor have the form E = En(k), where
n ∈ N is a band index and k ∈ B (the Brillouin zone) is a wavevector. So it seems natural
to state that the number of electrons in the n−th energy band equals the sum of fN(En(k))
over all possible wavevectors k. To have a more handy expression for this quantity it is
possible to take the continuous limit, so the sum becomes an integral. The result is:

Nn ≡ number of electrons in the n−th energy band =
2V

(2π)3

∫
B

fN(En(k))dk, (54)

where V denotes the volume of the semiconductor. The term (2π)3 is related to the volume
of the Brillouin zone, while the factor 2 takes into account the two possible states of the
electron spin. For details see [33, Section 1.6].

So we have answered the first question. The second one can be restated as: how does
fN(E) look like? To derive an expression for the occupation probability8, one has to keep
in mind that:

• the electrons are undistinguishable;

• each quantum state can be occupied by at most two electrons with opposite spin
(Pauli exclusion principle).

8The following derivation can be found in [6, p. 40]. For details about statistical mechanics see [35].
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Thus to build an N−electron state one must fill N different one-electron levels.9 In partic-
ular, the probability fNi of finding an electron in the level i, when the N−electron system
is in thermal equilibrium, is simply the sum of the independent probabilities of finding an
electron in any of the N−electron states in which the level i is occupied:

fNi =
∑

α :α is an N−electron state,
level i occupied in state α

PN(EN
α ), (55)

where EN
α is the energy of the N−electron state α. Here PN(E) is the probability of

finding an electron with energy E when the N−electron system is in thermal equilibrium
(at temperature T ), and is given by:

PN(E) = e−(E−FN )/kBT , (56)

where kB is the Boltzmann constant and FN is the Helmotz free energy for the system.
We can evaluate fNi in three steps.

1 Pauli exclusion principle implies that the probability of finding an electron in level i
equals 1 minus the probability of finding no electrons at level i. So:

fNi = 1−
∑

α :α is an N−electron state,
level i unoccupied in state α

PN(EN
α ). (57)

2 By taking any (N + 1)−electron state in which the electron level i is occupied, we
can build an N−electron state in which level i is unoccupied, simply by removing the
electron from the i−th level and leaving all the other levels unaltered. Conversely,
any N−electron state in which level i is unoccupied can be obtained in this manner
from any (N + 1)−electron state in which the electron level i is occupied. Clearly
the energy of an (N + 1)−electron state in which the electron level i is occupied and
the corresponding N−electron state in which level i is unoccupied differ only by an
amount Ei equals to the energy of the only one-electron level whose occupation is
different in the two states. So:

{Energies of N−electron states in which level i is unoccupied}
= {Energies of (N + 1)−electron states in which level i is occupied} − Ei.

By taking into account this correspondence we can rewrite (57) as:

fNi = 1−
∑

α :α is an (N + 1)−electron state,
level i occupied in state α

PN(EN+1
α − Ei). (58)

9Here each level is specified by the electron’s wavevector k and the projection of its spin along some
axis.
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By exploiting (56) we obtain:

PN(EN+1
α − Ei) = e(Ei−qµ)/kBTPN+1(EN+1

α ), qµ = FN+1 − FN .

The quantity µ is the above equation is the chemical potential at temperature T , and
q is the electron charge. By substituting the above relation into (58) we get:

fNi = 1− e(Ei−qµ)/kBTfN+1
i . (59)

3 We are interested in systems with a large number of electrons. Being fNi a sum of
many one-electron contributions, it seems reasonable to approximate fN+1

i with fNi
if N is big enough. Thus, by replacing fN+1

i with fNi in (59) we conclude:

fNi = 1− e(Ei−qµ)/kBTfNi ,

which can be explicitly solved for fNi , yielding:

fNi =
1

1 + e(Ei−qµ)/kBT
.

Since fNi (probability of finding an electron in level i when the N−electron state is in
thermal equilibrium) depends only on the energy Ei of level i, we can write fNi = fN(Ei).
So we found an expression for the occupation probability:

fN(E) =
1

1 + e(E−qµ)/kBT
. (60)

Eq. (60) is called the Fermi-Dirac distribution function. The dependence of fN from the
total number of electrons N is hidden inside the chemical potential µ, which must be in
such a way that the following constraint holds:

N =
∑
n∈N

Nn =
∑
n∈N

2V
(2π)3

∫
B

fN(En(k))dk =
∑
n∈N

2V
(2π)3

∫
B

dk

1 + e(En(k)−qµ)/kBT
. (61)

Let us play a bit with the Fermi-Dirac distribution function. What happens when
T → 0+? It is immediate to see that the following pointwise convergence relation holds:

f(E)→ χ
(−∞,qµ)(E) =


1 for E < qµ

1/2 for E = qµ

0 for E > qµ

.

So, at tero temperature, all states having an energy smaller than qµ are filled, while all
other states are empty. This behaviour can be understood with the help of the Pauli
exclusion principle, according to which a quantum state cannot be occupied by more than
one electron: thus an electron ensemble at zero temperature (that is, with minimal total
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energy) can be built by filling each quantum state with one electron, starting with the states
with lowest energy. The energy of the state filled by the last particle equals EF ≡ qµ,
which is called Fermi energy. However, a zero temperature system is a fairly ideal object;
at positive temperature (that is, in real physical situations), electrons have a nonzero
probability of jumping to higher energy levels due to thermal excitation, although this
probability tends exponentially to zero as E →∞.

It is a basic fact of analysis that (1 + ex)−1 → e−x as x → ∞. So, under the as-
sumption E − EF � kBT , the Fermi-Dirac distribution can be approximated by the
Maxwell-Boltzmann distribution:

fMB(E) = e−(E−EF )/kBT . (62)

Semiconductors whose electron distribution can be effectively approximated by fMB are
called nondegenerate, otherwise are termed degenerate (and in this latter case the Fermi-
Dirac distribution f has to be employed).

2.5.1 Electrons and holes densities.

Eq. (54) gives us the number of electrons in a given energy band. The ratio between this
number and the volume of the semiconductor is called electron density in the energy band:

nj =
Nj

V
=

2

(2π)d

∫
B

f(Ej(k))dk, (63)

with f given by (60). The above integral can be reformulated in the energy space by
employing the Dirac delta distribution. 10 In fact, since:

f(Ej(k)) =

∫
R
f(E)δ(E − Ej(k))dE,

it follows:

nj =
2

(2π)d

∫
B

∫
R
f(E)δ(E − Ej(k))dEdk =

∫
R
DOSj(E)f(E)dE, (64)

where:

DOSj(E) =
2

(2π)d

∫
B

δ(E − Ej(k))dk (65)

10The Dirac delta is the linear functional δ on C(R) defined by 〈δ, g〉 = g(0) for all g ∈ C(R). This
definition is often rewritten in terms of the symbolic integral:∫

R
δ(x)g(x)dx = g(0) ∀g ∈ C(R).

We stress the fact that the above integral is not a true integral, since δ is not a function, but a distribution.
See e.g. [5, 38] for details.
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is the so-called density of states of the j−th band.
In a similar way we can compute the density of holes pj in the j−th band. Since holes

are nothing but empty states, then their distribution function is simply given by 1− f(E);
thus, in analogy with (64) we deduce:

pj =

∫
R
DOSj(E)(1− f(E))dE.

In particular, the electron density n in the conduction band and the hole density p in the
valence band can be written as:

n =

∫
B

DOSc(E)f(E)dE, p =

∫
B

DOSv(E)(1− f(E))dE,

with DOSc, DOSv densities of states in the conduction and valence band, respectively.
For nondegenerate semiconductors, under the parabolic band approximation, n, p can

be computed explicitly.

Lemma 2.2. Let d = 3. Assume that the energy in the conduction and valence bands

is given by Ec + ~2|k|2
2m∗e

, Ev − ~2|k|2
2m∗h

respectively (parabolic band approximation), and that

Ec − qµ, qµ− Ev � kBT (Maxwell-Boltzmann approximation).11 Then:

n = N∗c e
(qµ−Ec)/kBT , p = N∗v e

(Ev−qµ)/kBT , (66)

where the effective densities of states N∗c , N∗v in the conduction and valence band (respec-
tively) are given by:

N∗c = 2

(
m∗ekBT

2π~2

)3/2

, N∗v = 2

(
m∗hkBT

2π~2

)3/2

. (67)

Proof. We prove the equation for n; the relation for p can be shown in a similar way.
By using spherical coordinates, eq. (65) can be restated as: 12

DOSc(E) =
2

(2π)3

∫
R3

δ

(
E − Ec −

~2|k|2

2m∗e

)
dk =

1

π2

∫ ∞
0

δ

(
E − Ec −

~2ρ2

2m∗e

)
ρ2dρ;

11Recall that the distribution function of the holes is 1− f(E). Since:

1− 1

1 + ex
=

ex

1 + ex
=

1

1 + e−x
≈ ex if x→ −∞,

the Maxwell-Boltzmann approximation for the hole distribution rewrites as qµ− E � kBT .
12Notice that f(E)→ 0 exponentially as E →∞, and that, according to the parabolic band approxima-

tion, the band energy diverges quadratically as |k| → ∞. For this reason, we can replace the Brillouin zone
B in the integral involving the density of states with the whole space R3, since the additional contribution
to the electron density brought by this approximation will be negligible.
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with the further change of variable ρ =
√

2m∗e
~
√
z the above integral becomes:

DOSc(E) =
1

2π2

(√
2m∗e
~

)3 ∫ ∞
0

δ (E − Ec − z)
√
zdz

=
1

2π2

(√
2m∗e
~

)3 ∫
R
δ (E − Ec − z)χ(0,∞)(z)

√
zdz

=
1

2π2

(√
2m∗e
~

)3

χ
(0,∞)(E − Ec)

√
E − Ec.

It follows:

n =

∫
R
DOSc(E)fMB(E)dE

=
1

2π2

(√
2m∗e
~

)3 ∫
R

χ
(0,∞)(E − Ec)

√
E − Ece−(E−qµ)/kBTdE

=
1

2π2

(√
2m∗e
~

)3 ∫ ∞
Ec

√
E − Ece−(E−qµ)/kBTdE.

With the change of variables x = (E − Ec)/kBT we get:

n =
1

2π2

(√
2m∗e
~

)3

(kBT )3/2e−(Ec−qµ)/kBT

∫ ∞
0

√
xe−xdx.

It is straightforward to see that
∫∞

0

√
xe−xdx =

√
π/2. We conclude:

n =
1

4π3/2

(√
2m∗e
~

)3

(kBT )3/2e−(Ec−qµ)/kBT ,

which yields the statement for n.

We point out that the factor 2 in front of N∗c , N∗v takes into account the 2 possible
states of the spin.

2.5.2 Intrinsic semiconductors and doping.

A semiconductor with no impurities is called an intrinsic semiconductor. Clearly, in this
case electrons in the conduction band can only come from valence band levels leaving a
vacancy behind them; that is, there is a one-to-one correspondence between electrons in
the conduction band and holes in the valence band. In particular, the electron density in
the conduction band n equals the hole density in the valence band p. Their common value
ni is called intrinsic density. Under the assumption of Lemma 2.2 it holds:

ni =
√
np =

√
N∗cN

∗
v e

(Ev−Ec)/kBT =
√
N∗cN

∗
v e
−Eg/kBT ,
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where Eg = Ec − Ev is the energy gap. From the above relation and Lemma 2.2 we can
deduce the Fermi energy of an intrinsic semiconductor:

qµ = Ec + kBT log
n

N∗c
= Ec + kBT log

ni
N∗c

=
Ec + Ev

2
+

3

4
kBT log

m∗h
m∗e

.

This means that at zero temperature the Fermi energy lies exactly in the middle of the
energy gap, while for positive temperatures the correction to this value is of the order of
kBT . Moreover, since in most semiconductors at room temperature Eg � kBT , it follows:

E − qµ ≥ Ec − qµ =
Eg
2
− 3

4
kBT log

m∗h
m∗e
� kBT,

which confirms the validity of the Maxwell-Bolzmann approximation.
Intrinsic semiconductors have indeed nice properties; however, it happens usually in

applications that the intrinsic density is too small to result in a significant conductivity
for nonzero temperature. To counter this inconvenient, the so-called process of doping
is employed, which consists in replacing some atoms in the semiconductor crystal with
atoms providing free electrons in the conduction band or free holes in the valence band,
thus increasing the semiconductor conductivity. Such impurities are called donors if they
supply additional electrons to the conduction band, while are called acceptors if they
supply additional holes to the valence band. A semiconductor doped with donors is called
an n-type semiconductor, while a semiconductor doped with acceptors is called a p-type
semiconductor. If Nd(x), Na(x) denote the densities of donors and acceptors (respectively),
then C(x) = Na(x)−Nd(x) is called doping profile. The charge density ρ is given by:

ρ = q(n+Nd − p−Na) = q(n− p− C).

Thus the Poisson equation, relating the electrostatic potential V generated by the charge
distribution in the semiconductor and the charge density ρ, reads as:

−εs∆V = ρ = q(n− p− C),

where εs is the semiconductor permittivity.

3 Kinetic transport equations

We have seen in Subs. 1.2 that the classical motion of an ensamble of M electrons in a
vacuum can be described by Newton’s equations:

ẋ = v, v̇ = F/m, t > 0,

where the position vector x ∈ R3M , the velocity vector v ∈ R3M and the force vector
F ∈ R3M decompose as x = (x1, . . . , xM), v = (v1, . . . , vM), F = (F1, . . . , FM), with
xi ∈ R3, vi ∈ R3 position and velocity of the i−th particle, respectively, and Fi ∈ R3

28



electric force acting on the i−th particle, for i = 1, . . . ,M . The electric force Fi, in case of
conservative electric field, takes the form Fi = −q∇xiV , with V the electric potential and
q the electron charge. The distribution function of the system f = f(x, v, t) satisfies the
Liouville equation in the 6M−dimensional position-velocity phase space:

∂tf + v · ∇xf +
F

m
· ∇vf = 0, (x, v) ∈ R6M , t > 0. (68)

Alas, electrons in a semiconductor cannot be described classically, so (68) does not hold
in the situations we are interested in. So the attentive Reader might wonder why we are
losing time in writing equations that we do not plan to use; the answer is, that an equation
similar to (68) actually holds for an electron ensemble in a semiconductor, and that such
model can be obtained from a set of motion equations that is analogue to Newton’s laws
of classical mechanics. This is the topic of the next subsection.

3.1 Semi-classical Liouville equation.

In Subs. 2.4 we have seen that the motion of an electron ensemble in a semiconductor can
be semi-classically described by the following equations:

~ẋi = ∇kiEn(ki), ~k̇i = Fi i = 1, . . . ,M, (69)

where En is the energy of the n−th band and ki ∈ B is the pseudo-wavevector, which
belongs to the Brillouin zone B. Let k = (k1, . . . , kM) ∈ R3M . We consider now f as
a function of (x, k, t) instead of (x, v, t). For the sake of simplicity, we assume that the
electrons remain in the same energy band during the evolution of the system, so that we
can drop the index n from En. To derive an equation for f(x, k, t) we proceed like in
Subs. 1.2. The starting point is the fact that f is constant along trajectories:

f(x(t), k(t), t) = f(x(0), k(0), 0) t > 0.

By differentiating both side of the above equality with respect to time we deduce:

0 =
d

dt
f(x(t), k(t), t) = ∂tf + ẋ · ∇xf + k̇ · ∇kf,

which, by exploiting (69), can be rewritten as:

∂tf +
1

~
∇kiEn(ki) · ∇xf +

1

~
F · ∇kf = 0, x ∈ R3M , k ∈ BM , t > 0. (70)

Eq. (70) is called semiclassical Liouville equation. It must be complemented with initial
conditions as well as boundary conditions, since B is bounded; usually periodic boundary
conditions are chosen, mainly for simplicity reasons.

We point out that, in the parabolic band approximation the semi-classical Liouville
equation reduces to the classical one. In fact, since E(k) = ~2|k|2/2m∗, then ~−1∇kE(k) =
~k/m∗ = v.
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3.2 Semi-classical Vlasov equation.

Just like its classical cousin, the main disadvantage of the semi-classical Liouville equation
is that it is an equation in a 6M−dimensional space, where M is the number of electrons
which, in physical situations, is very high. So the computational effort required to solve (70)
with numerical methods is often prohibitive. But, luckily, we can circumvent this problem
by deriving a single-particle equation, involving a distribution in the usual 6-dimensional
phase space, that is equivalent to (70) under certain assumptions. The strategy that we
will follow is:

(a) assume that the electric force has a suitable structure;

(b) integrate the Liouville equation in sub-phase spaces, thus obtaining a hierarchy of M
equations;

(c) take the limit M →∞ (infinite number of particles);

(d) reduce the solution of the (infinite) hierarchy for the many particles system to the
solution of a single-particle (nonlinear) equation, in which the many-particles effects
are accounted for by a suitable effective field.

The Reader can confront this procedure with the derivaton of the Hartree-Fock equation
in Subs. 2.3.

Let us first define, for a ∈ N, a < M , the sub-ensemble densities13 at time t > 0:

f (a)(x1 . . . xa, k1 . . . ka, t) =
1

(4π3)M−a

∫
(R3×B)M−a

f dxa+1 . . . dxMdka+1 . . . dkM ,

and the initial sub-ensemble densities:

f
(a)
I (x1 . . . xa, k1 . . . ka) =

1

(4π3)M−a

∫
(R3×B)M−a

fI dxa+1 . . . dxMdka+1 . . . dkM .

We make now the following hypothesis:

1. (Force field structure) The force Fi acting on the particle i is the sum of a con-
tribution from an external field Eext and a contribution from an interaction field
Eint:

Fi(x, t) = qEext(xi, t) +
q

4π3

M∑
j=1
j 6=i

Eint(xi, xj),

where the interaction field Eint is anti-symmetric:

Eint(xi, xj) = −Eint(xj, xi) i, j = 1, . . . ,M.

13The Reader can notice the similarity with the definition of the “marginal distributions” of Probability
Theory.
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This assumption means that the force F does not depend on k; in particular, no
magnetic field is considered in this model. The anti-symmetry of Eint is simply the
consequence of the action-reaction principle: the force exerted by the particle j on
the particle i equals minus the force exerted by the particle i on the particle j.

2. (Long range interactions) The interaction field Eint is of order 1/M as M →∞,
and the limit E0 = limM→∞MEint exists.

3. (Undistinguishable particles) The initial density is independent of the numbering
of the particles:

fI(x1 . . . xM , k1 . . . kM) = fI(xπ(1) . . . xπ(M), kπ(1) . . . kπ(M))

for any permutation π of the indices 1, . . . ,M . This, along with Assumption 1 on F ,
implies that the density is independent of the numbering of the particles at any time
instant t > 0:

f(x1 . . . xM , k1 . . . kM , t) = f(xπ(1) . . . xπ(M), kπ(1) . . . kπ(M), t)

for any permutation π of the indices 1, . . . ,M . The meaning of this hypothesis is
that each particle is identical to the other ones.

4. (Initial chaos assumption) For any a < M , the sub-ensemble initial density f
(a)
I

factorizes as:

f
(a)
I (x1 . . . xa, k1 . . . ka) =

a∏
i=1

f ∗I (xi, ki),

for some given function f ∗I . This means that at initial time the motion of the particles
of a subensemble is decoupled, so that each particle moves independently from the
other ones. See [16, Chap. 2.3] for more details.

Now it is time to integrate the Liouville equation in the sub-phase spaces:

{(xa+1 . . . xM , ka+1 . . . kM) ∈ R6(M−a)}, a = 1, . . . ,M − 1.

Thanks to Assumptions 1, 3 and to the fact that the interaction field Eint(xi, xj) has the
same form independently of the particular couple of particles (i, j) considered, we obtain
after straightforward computations:

∂tf
(a) +

a∑
j=1

v(kj) · ∇xjf
(a) +

q

~

a∑
j=1

Eext(xj, t) · ∇kjf
(a) +

q

~

a∑
j,`=1

Eint(xj, x`) · ∇kjf
(a)

+
q

4π3~

a∑
j=1

div kj

∫
R3×B

(M − a)Eint(xj, x̄)f (a+1)(x1 . . . xa, x̄, k1 . . . ka, k̄, t)dx̄dk̄ = 0, (71)

where v(k) = ~−1∇kE(k) is the semiclassical velocity. Eq. (71) is called the BBGKY
hierarchy, named after Bogoliubov, Born, Green, Kirkwood, Yvon.
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Now we take the limit M → ∞ in (71). We assume that f (a) converge in some sense
to some limit as M →∞, and we denote such limit, with a slight abuse of notation, again
with f (a). Thanks to Assumption 2 eq. (71) becomes:

∂tf
(a) +

a∑
j=1

v(kj) · ∇xjf
(a) +

q

~

a∑
j=1

Eext(xj, t) · ∇kjf
(a)

+
q

4π3~

a∑
j=1

div kj

∫
R3×B

E0(xj, x̄)f (a+1)(x1 . . . xa, x̄, k1 . . . ka, k̄, t)dx̄dk̄ = 0. (72)

Eq. (72) must be considered together with the initial condition:

f (a)(x1 . . . xa, k1 . . . ka, 0) = f
(a)
I (x1 . . . xa, k1 . . . ka). (73)

We prove now the following result, stating that the solution of the many-particles hierarchy
(72), (73) can be reduced to the solution of a one-particle equation:

Theorem 3.1 (Semi-classical Vlasov equation). Let the assumption 1–4 hold, and let f ∗

solve the semiclassical Vlasov equation:

∂tf
∗ + v(k) · ∇xf

∗ +
q

~
Eeff · ∇kf

∗ = 0, x ∈ R3, k ∈ B, t > 0, (74)

provided with the initial and boundary conditions:

f ∗(x, k, 0) = f ∗I (x, k) x ∈ R3, k ∈ B, (75)

f ∗(x, k, t) = f ∗(x,−k, t) x ∈ R3, k ∈ ∂B, t > 0,

where f ∗I is as in Assumption 4, the effective field Eeff is given by:

Eeff(x, t) = Eext(x, t) +

∫
R3

n(x̄, t)E0(x, x̄)dx̄, (76)

and n is the electron density:

n(x, t) =

∫
B

f ∗(x, k, t)
dk

4π3
.

Then the family of functions:

f (a) =
a∏
i=1

f ∗(xi, ki, t), a ∈ N, (77)

is a solution of (72), (73).
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Proof. Let us define

Qi =
a∏
j=1
j 6=i

f ∗(xj, kj, t) i = 1, . . . , a.

Let us evaluate (74) for (x, k) = (xi, ki), then multiply it times Qi and sum for i = 1, . . . , a.
It holds:

a∑
i=1

Qi∂tf
∗(xi, ki, t) =

a∑
i=1

a∏
j=1
j 6=i

f ∗(xj, kj, t)∂tf
∗(xi, ki, t) = ∂t

a∏
i=1

f ∗(xi, ki, t) = f (a).

Analogously,

a∑
i=1

Qiv(ki) · ∇xif
∗(xi, ki, t) =

a∑
i=1

v(ki) · ∇kif
(a),

a∑
i=1

QiEext(xi, t) · ∇kif
∗(xi, ki, t) =

a∑
i=1

Eext(xi, t) · ∇kif
(a).

Moreover,

a∑
i=1

Qi

(∫
R3×B

f ∗(x̄, k̄, t)E0(x̄, k̄)dx̄dk̄

)
· ∇kif

∗(xi, ki, t)

=
a∑
i=1

div ki

∫
R3×B

a∏
j=1

f ∗(xj, kj, t)f
∗(xi, ki, t)E0(xi, x̄)dx̄dk̄

=
a∑
i=1

div ki

∫
R3×B

f (a+1)(x1 . . . xa, x̄, k1 . . . ka, k̄, t)dx̄dk̄.

By putting the above equations together we conclude that (77) solves (72). Assumption 4
ensures that (73) holds as well.

So the evolution of an electron ensemble in a semiconductor can be described semiclas-
sically by means of a one-particle equation, which incorporates the many-particle effects
through an effective field. The drawback of this approach is that the Vlasov equation,
contrarily to the Liouville equation, is nonlinear, since the effective field depends on the
distribution f through the electron density n. Eq. (74) is thus a scalar equation with a
nonlocal quadratic nonlinearity. It is valid under the assumption that the interactions are
long-range; in particular, we have not considered any scattering mechanism in the deriva-
tion of the equations. Collisions will be taken into consideration in the next subsection.

3.3 Semi-Classical Boltzmann equation

In deriving the semiclassical Vlasov equation (74) we have neglected collisional processes.
But collisions do exist; so we must take them into account eventually. This is conventionally
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done by adding a term on the right-hand side of (74), which represents the rate of change
of the density f due to collisions:

∂tf + v(k) · ∇xf +
q

~
Eeff · ∇kf = Q(f), x ∈ R3, k ∈ B, t > 0, (78)

where the effective field Eeff is given by (76). We will now derive an expression for Q. We
assume that:

• the scattering of particles is instantaneous;

• scattering only affects the pseudo-wavevector k.

It is convenient to consider the quantity P (x, k′ → k, t), defined as the rate at which a
particle with position x and wavevector k′ changes its wavevector to k due to a collision,
at time t. Thus Q(f), the rate of change of f due to collisions, evaluated at (x, k, t),
will be equal to the sum (integral), with respect to all possible wavevectors k′ ∈ B, of
P (x, k′ → k, t) (gain term) minus P (x, k → k′, t) (loss term):

(Q(f))(x, k, t) =

∫
B

(P (x, k′ → k, t)− P (x, k → k′, t)) dk′. (79)

It is intuitively clear that P (x, k′ → k, t) should be proportional to f(x, k′, t). It is perhaps
less evident that P (x, k′ → k, t) should also be proportional to 1− f(x, k, t); however, this
is a consequence of the Pauli exclusion principle: since every quantum state can only be
occupied by at most one electron, it follows that P (x, k′ → k, t) must vanish if there are
no available states with wavevector k, that is, if f(x, k, t) = 1. So:

P (x, k′ → k, t) = s(x, k′ → k)f(x, k′, t)(1− f(x, k, t)), (80)

where s(x, k′ → k) is called scattering rate. Let us define the shorthands: f = f(x, k, t),
f ′ = f(x, k′, t). From (79), (80) we obtain:

(Q(f))(x, k, t) =

∫
B

(s(x, k′ → k)f ′(1− f)− s(x, k → k′)f(1− f ′)) dk′. (81)

Equation (78), with Q given by (81), is called semiclassical Boltzmann equation. It is a
nonlinear equation with quadratic nonlinearities in both the potential and the collisional
term; moreover, these terms are also nonlocal, that is, any compactly-supported pertur-
bation of f alters the value of V and Q in any point of the phase space. To be precise,
V is nonlocal in the x−space (being given by the convolution of n − C with 1/|x|, the
fundamental harmonic of R3), while Q is nonlocal in the k−space (since it is an integral
with respect to the wavevector).

In the case of Coulomb fields:

E0(x, y) =
q

4πεs

x− y
|x− y|3

= −∇x

(
q

4πεs

1

|x− y|

)
, (82)
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Eext(x, t) = − q

4πεs

∫
R3

C(y)
x− y
|x− y|3

dy = −∇x

(
− q

4πεs

∫
R3

C(y)

|x− y|
dy

)
, (83)

it is easy to see that curlEeff = 0, εsdivEeff = q(n−C); as a consequence, Eeff = −∇V for
some potential V satisfying the Poisson equation:

−εs∆V = q(n− C). (84)

Eqs. (78), (84), coupled with the definition (81) of Q and the relation Eeff = −∇V , are
called the Boltzmann-Poisson system.

Let us summarize the features of the semiclassical Boltzmann equation.

• The semiconductor Boltzmann equation is a single-particle model of a many-particle
system; interactions between particles are incorporated through an effective field.

• Quantum mechanical phenomena are accounted for through the semiclassical ap-
proximation: electrons are assumed to be described by the semiclassical equations of
motion.

• Collisions are assumed to be binary, instantaneous, and local in space.

• The Boltzmann equation provides a statistical description of the electron ensemble,
which is valid only if the number of particles in the system is large enough.

3.3.1 More about scattering.

The structure of the scattering rate s(x, k′ → k, t) can be made more explicit by considering
more specific collision processes. As a matter of fact, the most important scattering events
in semiconductor crystals are:

• carrier-carrier (electron-hole, electron-electron, hole-hole) scattering;

• ionized impurity scattering;

• electron-phonon scattering.

Among these three scattering mechanism, the most important is the third one. Thus we
consider here only the electron-phonon scattering, and we neglect (for the sake of simplicity)
the other types of scattering.

What is a phonon? At positive temperatures, the ions in a semiconductor crystal
vibrate around equilibrium positions. These vibrations are quantized; the quantum of
lattice vibration is called a phonon. Actually, a phonon is not a physical particle, but
a virtual particle that has been invented by physicists to describe lattice vibrations and
their interactions with the charge carriers. Ions can vibrate in both the physical space and
the momentum space: the phonons that arise from such vibrations are called acoustic and
optic, respectively. Intuitively, acoustic phonons can be thought as sound waves, while optic
phonons can be regarded as electromagnetic waves (they are indeed able to interact with
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light). Phonons are bosons (that is, the wavefunction of an ensamble of indistinguishable
phonons is symmetric with respect to the exchange of the particles labels), and thus the
phonon occupation number N (~ω) (the number of phonons with energy ~ω at temperature
T , ω being the frequency) is computed from Bose-Einstein statistics:

N (~ω) =
1

e~ω/kBT − 1
. (85)

Let us suppose that an electron in the Bloch state k′ with energy E(k′) experiences a
collision with a phonon with energy ~ω. Due to this collision, the electron can change its
state from k′ to k if the (absolute value of the) energy variation E(k) − E(k′) equals ~ω,
namely:

E(k)− E(k′) = ±~ω,

where the plus and minus signs hold in case of photon absorption or emission, respectively.
Since the scattering rate s is nonzero only if the above relation is satisfied, we can rewrite
s in the following way:

s(x, k′ → k) = σemi(x, k, k
′)δ(E(k′)− E(K)− ~ω) + σabs(x, k, k

′)δ(E(k′)− E(K) + ~ω),

for some suitable functions σemi(x, k, k
′), σabs(x, k, k

′). Actually, it is possible to show (with
quantum mechanical arguments, see [54] for details) that s takes the form:

s(x, k′ → k) = σ0(x, k, k′)
(

(1 + N̂)δ(E ′ − E + ~ω) + N̂δ(E ′ − E − ~ω)
)
, (86)

where E ≡ E(k), E ′ ≡ E(k′), and σ0(x, k, k′) is symmetric in k, k′. The first delta
represents the contribution of scattering events in which a phonon is absorbed, while the
second delta accounts for collisions characterized by phonon emissions. In the case of
acoustic phonons at room temperature, ~ω can be neglected with respect to the electron
energy. Under this approximation s becomes:

sac(x, k
′ → k) = σac(x, k, k

′)δ(E ′ − E), (87)

with σac = (2N̂ + 1)σ0. The symmetry of the delta distribution (“δ(x) = δ(−x)”) implies:∫
B

(sac(x, k
′ → k)f ′f − sac(x, k → k′)ff ′) dk′ =

∫
B

σacδ(E
′ − E)(f ′f − ff ′)dk′ = 0,

so the collision operator becomes linear:

(Qac(f))(x, k, t) =

∫
B

σacδ(E
′ − E)(f ′ − f)dk′. (88)
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3.3.2 Approximations of the collision operator and their properties.

We consider here two approximations of the collision operator: the low-density and elastic
approximations.

The low-density approximation is based upon these two assumptions:

• the quadratic (w.r.t. f) terms inside Q are small and can be neglected;

• the so-called principle of detailed balance [6] holds:

s(x, k′ → k)f ′eq(1− feq)− s(x, k → k′)feq(1− f ′eq) = 0.

In the above equation feq is the Fermi-Dirac distribution:

feq(k) =
1

1 + e(E(k)−EF )/kBT
.

The principle of detailed balance states that the scattering probability at local thermal
equilibrium vanishes. An (easy to verify) consequence of this assumption is:

s(x, k′ → k)

M(k)
=
s(x, k → k′)

M(k′)
,

which means that the so-called cross section σ(x, k, k′) = s(x, k′ → k)/M(k) is symmetric
in k, k′. From this fact and our assumptions it follows that Q(f) can be approximated by
the low-density collision operator:

(Q0(f))(x, k, t) =

∫
B

σ(x, k, k′)(Mf ′ −M ′f)dk′. (89)

The following proposition states several properties of Q0.

Proposition 3.1 (Low-density collision operator). For all functions f ≥ 0 and χ : R→ R,
with χ nondecreasing, it holds:∫

B

Q0(f)dk = 0, (90)∫
B

Q0(f)χ

(
f

M

)
dk ≤ 0, (91)

Q0(f) = 0 ⇔ ∃g = g(x) : f(x, k) = g(x)M(k). (92)

Proof. Let χ : R→ R a (smooth) function. Let us consider:∫
B

Q0(f)χ(f/M)dk =

∫
B

σMM ′
(
f ′

M ′ −
f

M

)
χ

(
f

M

)
dk′dk.
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Since σ is symmetric in k, k′, by exchanging k and k′ in the integral on the right-hand side
of the above equation we get:∫

B

Q0(f)χ(f/M)dk = −
∫
B

σMM ′
(
f ′

M ′ −
f

M

)
χ

(
f ′

M ′

)
dk′dk.

By summing up the previous two equations we obtain:

2

∫
B

Q0(f)χ(f/M)dk = −
∫
B

σMM ′
(
f ′

M ′ −
f

M

)(
χ

(
f ′

M ′

)
− χ

(
f

M

))
dk′dk. (93)

If we take χ ≡ 1 in (93) we obtain (90). If χ is an arbitrary nondecreasing function, then
the right-hand side of (93) is clearly nonpositive, so (91) follows. Finally, if Q0(f) = 0,
then from (93) with χ(x) = x we obtain:∫

B

σMM ′
(
f ′

M ′ −
f

M

)2

dk′dk = 0,

which proves the implication ⇒ in (92). The implication ⇐ follows immediately from the
definition (89) of Q0.

Another approximation of the collision operator Q is constituted by the elastic collision
operator:

(Qel(f))(x, k, t) =

∫
B

σ(x, k, k′)δ(E − E ′)(f ′ − f)dk′. (94)

We assume that the cross section σ is positive and symmetric in k, k′. This operator has
the following properties:∫

B

Qel(f)dk =

∫
B

Qel(f)E(k)dk = 0, (95)∫
B

Qel(f)fdk ≤ 0, (96)

Qel(f) = 0 ⇔ ∃F = F (x, E , t) : f(x, k, t) = F (x,E(k), t). (97)

The proof of (95)–(97) is similar to the proof of (90)–(92) and thus we omit it; instead,
we wish to point out the physical meaning of (90), (95). By integrating the semiclassical
Boltzmann equation (78) in R3 ×B with respect to x, k, we obtain:

∂tn =

∫
R3×B

Q(f)dxdk.

If Q = Q0, then (90) implies that ∂tn = 0. Thus (90) expresses the conservation of total
mass.
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Let us now assume that Eext = 0 (no external forces) and let us define the energy
density ne as ne =

∫
fE(k)dk/4π3. By multiplying (78) times E(k) and then integrating

it in R3 ×B with respect to x, k, we obtain:

∂t(ne) =

∫
R3×B

Q(f)E(k)dxdk.

If Q = Qel, then (95) implies that ∂t(ne) = 0 and, since (90) is contained into (95), ∂tn = 0
as well. Thus (95) expresses the conservation of total mass and total energy.

4 Drift-Diffusion Equations

It is time that we put what we studied in the previous section into practice, namely, that
we derive some macroscopic transport model for semiconductors. This section is devoted
to the derivation of drift-diffusion equations, which, among all semiconductor fluid models,
are the simplest ones, and were derived from the first time by Van Roosbroeck in 1950 [55].

Everything begins with the semiclassical Boltzmann equation (78) coupled with the
Poisson equation (84) (the effective field Eeff being given by Eeff = −∇V ) and provided
with an initial condition:

∂tf + v(k) · ∇xf −
q

~
∇xV · ∇kf = Q(f) x ∈ R3, k ∈ B, t > 0, (98)

−εs∆V = q(n− C) x ∈ R3, t > 0, (99)

n =

∫
B

f
dk

4π3
x ∈ R3, t > 0,

f(x, k, 0) = fI(x, k) x ∈ R3, k ∈ B.

In (98), v(k) = ~−1∇kE(k) is the average velocity in the considered energy band, E = E(k)
is the energy, Q(f) is the collision operator, n = n(x, t) is the electron density, C = C(x)
is the doping profile, B is the Brillouin zone. The drift-diffusion model is derived from the
kinetic equation (99) under the assumption that the timescale of collisions is much shorter
than the timescale of transport, which is much shorter than the reference timescale (this
statement will be clear in the following subsection).

4.1 Scaling of the Boltzmann-Poisson system

In mathematical physics, it is important to know what is big and what is small. For this
reason, we are going to scale eqs. (98), (99). Let us define the following reference quantities
(in the following, T > 0 is the lattice temperature):

• the domain diameter L;

• the mean free path λ, which is the average distance traveled by a particle between
two subsequent collisions;
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• the reference length λ0 =
√
Lλ;

• the reference velocity v0 =
√
kBT/m∗;

• the reference potential U = kBT/q;

• the reference time τ0 = L/v0, which is the average time required by a particle to
cross the domain;

• the mean free time τ = λ/v0, which is the average time interval between two subse-
quent collisions experienced by a particle;

• the reference wave vector k0 = m∗v0/~;

• the reference electron density n0 = k3
0.

Notice that m∗v2
0/2 = qU/2 = kBT/2, that is, the kinetic, electric and thermal energy

(respectively) are of the same order of magnitude. This implies, in particular, that the
electric fields are small.

We scale the variables as follows:

t = t0ts, x = x0xs, k = k0ks, v(k) = v0vs(ks),

V = UVs, n = n0ns, C = n0Cs, Q(f) = τ−1Qs(f).

where the quantities with index s are a-dimensional. By plugging the above relations inside
(98), (99) and playing with the physical constants we obtain:

α2∂tsf + α (vs(ks) · ∇xsf −∇xsV · ∇ksf) = Qs(f), (100)

−λ2
D∆Vs = ns − Cs, (101)

where:

α =
λ

λ0

=
mean free path

reference length
, λD =

√
εsU

qλ2
0k

3
0

(scaled Debye length). (102)

We make the following assumptions [43, 45]:

1 (Parabolic band approximation) The band energy E(k) takes the form: E(k) =
Ec + ~2|k|2/2m∗, where Ec is the conduction band minimum. In particular, the
average velocity v is given by v = ~k/m∗.

2 (Low density collision operator) The (unscaled) collision operator is given by:

Q(f) =

∫
B

σ(x, k, k′)(Mf ′ −M ′f)dk′,

where the cross-section σ(x, k, k′) is positive and symmetric in k and k′, M(k) =
e−E(k)/kBT is the (unscaled) Maxwellian, f = f(x, k, t), f ′ = f(x, k′, t). So Q(f) is
linear in f ; moreover, the presence of the Maxwellian in place of the Fermi-Dirac
distribution implies that we are considering nondegenerate materials.
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3 (Frequent collisions) The parameter α (defined in (102)) is small. This means
that collisions occur frequently in the material.

Under the above-written assumptions, the scaled collision operator Q becomes:

Q(f) =

∫
B

s(x, k, k′)(Mf ′ −M ′f)dk′, s(x, k, k′) =
2

(2π)3/2
e−Ec/kBTσ(x, k, k′), (103)

and the adimensional Maxwellian is M = 2−1(2π)3/2e−|k|
2/2 (notice that

∫
R3 Mdk/4π3 =

1). Finally, we point out that the parabolic band approximation allows us to replace
the Brillouin zone B in the collision integral (103) with the whole space R3, since the
Maxwellian M tends to zero very quickly as |k| → ∞, and thus the contribution of R3\B
to the integral will be fairly small (we assume here that f is bounded at infinity, or shows
at most a polynomial growth).

Remark. Assumption 3 in the above list clarifies the statement at the beginning of this
section: in deriving the drift-diffusion model, we consider a situation in which the timescale
of collisions is much shorter than the timescale of transport, which is much shorter than the
reference timescale. In fact, in the scaled Boltzmann equation (100), due to the smallness
of α, the collision term dominates the transport term, which on turn dominates the time
derivative of w.

4.2 Properties of the low-density collision operator

In this subsection we study the kernel N(Q) and the range R(Q) of the collision operator
(103), defined (in the usual way) as:

N(Q) = {f : Q(f) = 0} , R(Q) = {g : there exists an f such that Q(f) = g} .

Let us define the so-called collision frequency:

S(x, k) =

∫
R3

s(x, k, k′)M(k′)dk′,

and the Hilbert space:

X =

{
f ∈ L2(R3) :

∫
R3

f 2SM−1dk <∞
}
,

provided with the scalar product:

(f1, f2)X =

∫
R3

f1f2SM
−1dk f1, f2 ∈ X.

Thanks to Prop. 3.1, we know that N(Q) = Span{M}. What about R(Q)? The following
result answers this question:
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Lemma 4.1. For a given g, the equation Q(f) = g has a solution f ∈ X if and only if∫
R3 gdk = 0. Moreover, there is only one solution f satisfying

∫
R3 fSdk = 0.

Proof. We symmetrize Q in order to deal with an operator acting on L2 functions. Let
fs =

√
S/Mf , Qs(fs) = (SM)−1/2Q(f). Straightforward computations lead to:

Qs(fs) =

∫
R3

s(x, k, k′)

(
MM ′

SS ′

)1/2

f ′sdk
′ − fs.

Since s(x, k, k′) = s(x, k′, k), then Qs : L2(R3) → L2(R3) is symmetric. Moreover, it is
possible to prove that R(Qs) is closed; as a consequence, a known result [12, Thr. 2.19]
implies that R(Qs) = N(Q∗s)

⊥ = N(Qs)
⊥. It follows that Q(f) = g has a solution if and

only if g ∈ N(Qs)
⊥, that is: ∫

R3

gshdk = 0 ∀f ∈ N(Qs).

Since N(Q) = Span{M}, then N(Qs) = Span{
√
SM}, so the above relation becomes:

0 =

∫
R3

gs
√
SMdk =

∫
R3

gdk.

To prove the uniqueness part, we exploit the following fact: a constant c > 0 exists such
that

−
∫
R3

Qs(fs)fsdk ≥ c‖fs‖2
L2 ∀f ∈ N(Qs)

⊥. (104)

Property (104) is called hypocoercivity (since it is a coercivity property holding not on
the whole Hilbert space X, but only on a smaller space). For the proof see [45] or [18,
Lemma 10]. This property implies that QS in one-to-one on:

N(Qs)
⊥ =

{
fs :

∫
R3

fswdk = 0 ∀w ∈ N(Qs) = Span{
√
SM}

}
=

{
fs :

∫
R3

fs
√
SMdk = 0

}
,

which means, thanks to the definition of fs, that Q is one-to-one on
{
f :

∫
R3 fSdk = 0

}
.

This finishes the proof.

A consequence of the previous lemma is that the equations

Q(hi) = kiM(k), i = 1, 2, 3, (105)

have solutions, since
∫
R3 kiM(k)dk = 0 (M is even). We state (without proving it) the

following technical result:
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Lemma 4.2. Assume that, for all orthogonal matrices A ∈ R3×3, it holds:

s(x,Ak,Ak′) = s(x, k, k′) x, k, k′ ∈ R3.

Then there exists a scalar function µ0 = µ0(x) ≥ 0 such that the solutions hi of (105)
satisfy: ∫

R3

kihj
dk

4π3
= −µ0δij (i, j = 1, 2, 3).

4.3 Derivation of the drift-diffusion equations

We are now ready to derive the drift-diffusion model. We denote with (fα, Vα) a solution
of the scaled Boltzmann-Poisson system:

α2∂tfα + α (k · ∇xfα −∇xVα · ∇kfα) = Qα(fα), (106)

−λ2
D∆Vα = nα − C, (107)

nα =

∫
R3

fα
dk

4π3
.

We assume that (f, V ) exists such that (fα, Vα) → (f, V ) as α → 0 in some suitable
(distributional) sense, along with their derivatives. The derivation of the model is made
up by three steps.

Step 1. Let us take the formal limit α → 0 in (106). it follows that Q(f) = 0; since
N(Q) = Span{M}, this implies that f(x, k, t) = n(x, t)M(k) with n =

∫
R3 f

dk
4π3 .

Step 2. The result obtained in the previous step14 allows us to write fα = nM + αgα for
some gα that is bounded as α→ 0. This is the so-called Chapman-Enskog expansion. We
assume that gα converges to some g as α → 0. Let us insert this expansion into (106).
Thanks to the fact that Q(nM) = 0, after a division by α we deduce:

α∂tfα + k · ∇x(nM)−∇xVα · ∇k(nM) + α (k · ∇xgα −∇xVα · ∇kgα) = Q(gα).

Since ∇kM = −kM , taking the limit α→ 0 in the above equation yields:

Q(g) = (∇xn+ n∇xV ) · kM. (108)

Step 3. Let us integrate (106) with respect to k and divide by α2:

∂t

∫
R3

fα
dk

4π3
+ α−1

∫
R3

(k · ∇xfα −∇xVα · ∇kfα)
dk

4π3
= α−2

∫
R3

Qα(fα)
dk

4π3
. (109)

One of the properties of Qα is mass conservation:
∫
R3 Qα(f)dk = 0 for all f . Moreover the

divergence theorem implies that
∫
R3 ∇kfαdk = 0, while from the expansion fα = nM+αgα

14We also assume that fα depends smoothly on α.
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and the fact that M is an even function of k it follows that
∫
R3 kMdk = 0. Thus (109)

becomes:

∂t

∫
R3

fα
dk

4π3
+ div x

∫
R3

kgα
dk

4π3
= 0. (110)

Since
∫
R3 fαdk/4π

3 = n+ α
∫
R3 gαdk/4π

3, by taking the limit α→ 0 in (110) we obtain:

∂tn+ div x

∫
R3

kg
dk

4π3
= 0. (111)

From (108) we deduce that g = (∇xn+ n∇xV ) · h with h = (h1, h2, h3) and Q(hi) = kiM
for i = 1, 2, 3. From Lemma 4.2 it follows that:∫

R3

kig
dk

4π3
=

3∑
j=1

(∫
R3

kihjdk

)(
∂xjn+ n∂xjV

)
= −µ0 (∂xin+ n∂xiV ) . (112)

By putting together (111), (112) we conclude:

∂tn+ div xJn = 0, Jn = −µ0(∇xn+ n∇xV ). (113)

By taking the limit α→ 0 in (107) we get:

−λ2
D∆V = n− C. (114)

Eqs. (113), (114) constitute the scaled drift-diffusion model. Going back to the physical
variables, eqs. (113), (114) become:

∂tn+ q−1div xJn = 0, Jn = −qµn(U∇xn+ n∇xV ), (115)

− εs∆V = q(n− C), (116)

where µn = (qτ/m∗)µ0.
Recall that the derivation of the drift-diffusion model relies on the following physical

assumptions:

• the mean free path λ0 is much smaller than the reference length λ;

• the electric potential is of the order of |U | = 0.026 V.

In spite of the above limitations, the drift-diffusion model is also used for higher applied
voltages. In practice, it gives reasonable results as long as the characteristic length is bigger
than λ ≈ 10−7 m.
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4.4 The bipolar model

We have derived a drift-diffusion model for electrons. But also holes contribute to the total
current density. Since holes are identical to electrons, except for the fact that they have
positive charge, then (115) can be rewritten for the hole density p as:

∂tp− q−1div xJp = 0, Jp = qµp(U∇xp− p∇xV ), (117)

where µp ≥ 0 is the hole mobility. Usually in applications it holds µp < µn (for example,
in silicon: µn = 1400 cm2/Vs, µp = 450 cm2/Vs). Notice that the sign of the drift term
p∇xV in (117) is opposite to the sign of the corresponding term −n∇xV in (115); this
reflects the fact that electrons and holes move in opposite directions due to the electric
field.

In order to describe the process of generation-recombination of electrons and holes, we
employ the so-called Shockley-Read-Hall recombination-generation term (see [11, Chap. 10]
or [29, Chap. 10] for details):

R(n, p) =
np− n2

i

τp(n+ nd)− τn(p+ pd)
. (118)

Here τn, τp are the carrier life times,

nd = Nce
(Et−Ec)/kBT , pd = Nve

(Ev−Et)/kBT , (119)

ni =
√
ndpd = 2

(√
m∗em

∗
vkBT

2π~2

)3/2

e−(Ec−Ev)/2kBT . (120)

The quantities Nc, Nv are the carrier effective densities of states, ni is the intrinsic density,
and Et is called trap energy level: it is an energy level in the forbidden band region, caused
by crystal impurities, which facilitates the formation of electron-hole pairs, since the jump
from the valence to the conduction band can be split into two parts.

The following system of PDEs:

∂tn+ q−1div xJn = −R(n, p), Jn = −qµn(U∇xn+ n∇xV ), (121)

∂tp− q−1div xJp = −R(n, p), Jp = qµp(U∇xp− p∇xV ), (122)

−εs∆V = q(n− p− C), (123)

with R(n, p) given by (118)–(120), constitute the bipolar model. Notice that the Poisson
equation changes as well, since the total carrier density n− p must be taken into account
in place of the electron density.

4.4.1 Thermal equilibrium state

A thermal equilibrium state is a time-independent solution (neq, peq, V eq) of (121)–(123)
with zero current flow:

∂tn
eq = ∂tp

eq = 0, Jeq
n = Jeq

p = 0 in Ω.
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This implies that R(neq, peq) = 0 and so neqpeq = n2
i . Moreover:

0 = U∇neq + neq∇V = neq∇(U log neq + V eq),

0 = U∇peq − peq∇V eq = peq∇(U log peq − V eq).

Since it is physically reasonable to assume that neq, peq are positive, it follows that
U log neq + V eq, U log peq − V eq are constant. So:

neq = e(α−V eq)/U , peq = e(β+V eq)/U ,

for some constants α, β. Since V eq is defined up to an additive constant, we can replace
V eq with V eq + (α− β)/2, obtaining:

neq = e(γ−V eq)/U , peq = e(γ+V eq)/U ,

with γ = (α + β)/2. Because of neqpeq = n2
i , it follows eγ = ni. So:

neq = nie
−V eq/U , peq = nie

V eq/U . (124)

By plugging (124) into (123) we obtain an elliptic PDE for V eq:

−εs∆V eq = q(nie
−V eq/U − nieV

eq/U − C). (125)

4.4.2 Boundary conditions for the bipolar model

When considering (121)–(123) in a bounded domain Ω ⊂ R3 it is necessary to impose
suitable boundary conditions. The usual procedure consists in splitting the boundary of Ω
into two parts: the Dirichlet boundary ΓD (which models the contacts) and the Neumann
boundary ΓN (which describes the insulating boundary segments). The carrier densities
and the potential are prescribed on ΓD:

n = nD, p = pD, V = VD on ΓD, (126)

while the normal components of the current densities and the electric field vanish on ΓN :

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN .

Thanks to (121), (122), this means:

∇n · ν = ∇p · ν = ∇V · ν = 0 on ΓN . (127)

In order to determine nD, pD, VD we employ the notion of thermal equilibrium. We assume
that:

• the total space charge vanishes on ΓD: nD − pD − C = 0;

• the densities are in thermal equilibrium on ΓD;
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• the boundary potential is the superposition of the built-in potential Vbi and the applied
voltage Vapp:

VD = Vbi + Vapp. (128)

From these assumptions and (124) it follows that

nD = nie
−Vbi/U , pD = nie

Vbi/U .

From the relations nDpD = n2
i and nD − pD − C = 0 we deduce:

nD =
1

2

(
C +

√
C2 + 4n2

i

)
, pD =

1

2

(
−C +

√
C2 + 4n2

i

)
, (129)

and so:

Vbi = U log

(
C

2ni
+

√
C2

4n2
i

+ 1

)
. (130)

Thus the bipolar model (121)–(123) is to be solved with the boundary conditions (126)–
(130). In an analogue way, eq. (125) must be coupled with the boundary conditions:

V eq = Vbi on ΓD, ∇V eq · ν = 0 on ΓN ,

with Vbi given by (130).

5 Hydrodynamic equations

The starting point is, like in the previous section, the semiconductor Boltzmann-Poisson
system:

∂tf + v(k) · ∇xf −
q

~
∇xV · ∇kf = Q(f), x ∈ R3, k ∈ R3, t > 0, (131)

−εs∆V = q(〈f〉 − C), x ∈ R3, t > 0, (132)

where v(k) = ~k/m∗ is the group velocity, m∗ is the electron effective mass, k is the pseudo-
wavevector, V = V (x, t) is the electric potential, and we have defined the shorthand
〈f〉 ≡

∫
R3 fdk/4π

3 for all functions f . The attentive Reader should have noticed that
we have made the parabolic band approximation: E(k) = ~2|v|2/m∗, so that v(k) =
∇kE(k)/~ = ~k/m∗ and the Brillouin zone can be replaced by the whole space R3.

The hydrodynamic model is derived from the kinetic equation (132) under the assump-
tion that the timescale of collisions is much shorter than the timescale of transport, which
is of the same order as the reference timescale. We will clarify this statement in a few
moments.
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We assume that the collision operator Q can be written as the sum of two operators
Q0, Q1, representing two different types of collisions and characterized by different mean
free times: Q(f) = Q0(f) +Q1(f).

We wish to scale eqs. (131), (132). To this purpose, let us define the following reference
values:

• the reference length λ, which is the mean free path corresponding to Q1;

• the mean free path λ0 corresponding to Q0;

• the reference wavevector k0 =
√
m∗kBTL/~2; notice that the corresponding value for

the energy is ~2k2
0/m

∗ = kBTL, so the reference energy equals the thermal energy
kBTL;

• the reference potential U = kBTL/q;

• the reference times τ = λ/
√
kBTL/m∗, τ0 = λ0/

√
kBTL/m∗.

We then define the a-dimensional variables:

x = λxs, t = τts, k = k0ks,

and the a-dimensional functions:

V = UVs, Q0(f) =
1

τ0

Q0,s(f), Q1(f) =
1

τ
Q1,s(f).

By defining

α =
λ0

λ
=

mean free path for Q0

mean free path for Q1

,

inserting the above definitions into (131), (132) and carrying out some straightforward
computations we conclude:15

∂tfα + k · ∇xfα −∇xVα · ∇kfα =
1

α
Q0(fα) +Q1(fα), x ∈ R3, k ∈ R3, t > 0, (133)

−λD∆Vα = 〈fα〉 − C, x ∈ R3, (134)

We assume that Q0 and Q1 have the following properties:

• Q0 conserves mass, momentum, and energy:∫
R3

Q0(f)dk =

∫
R3

kiQ(f)dk =

∫
R3

|k|2Q0(f)dk = 0, i = 1, 2, 3,

for all functions f .

15We remove the no more necessary subscript s for better readability and insert a subscript α in f and
V to remember the Reader their dependence on α.
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• The kernel of Q0 is spanned by local Maxwellians:

N(Q0) = {f : f = M [n, u, T ] for some n, u, T},

M [n, u, T ](k) ≡ 1

2

(
2π

T

)3/2

ne−|u−k|
2/2T .

• Q1 is given by the low-density operator with a cross-section σ depending only on x
(see Subs. 3.3.2):

Q1(f) =

∫
R3

σ(x) (Mf ′ −M′f) dk′ = σ(x)

(
M
∫
R3

f ′dk′ − f
)
,

where M is the global Maxwellian: M(k) = (1/2)(2π)3/2e−|k|
2/2. We point out that,

as stated in Prop. 3.1, Q1 preserves mass:
∫
R3 Q1(f)dk = 0 for all functions f .

We also assume that α = λ0/λ is small, that is, the collisions described by Q0 are much
more frequent than the collisions described by Q1.

Remark. The assumption on the smallness of α clarifies the statement at the beginning
of this section: in deriving the hydrodynamic model, we consider a situation in which the
timescale of collisions is much shorter than the timescale of transport, which is comparable
to the reference timescale. In fact, in the scaled Boltzmann equation (100), due to the
smallness of α, the collision term dominates both the transport term and the time derivative
of w, which are of the same order.

Our goal is to derive a macroscopic model for the moments 〈f〉 (electron density), 〈vf〉
(current density), 〈(|k|2/2)f〉 (energy density). The procedure to derive this model is made
up by three steps.

1. Let us multiply (133) times 1, k, |k|2/2 and integrate in R3 with respect to k. We
obtain a set of moment equations:

∂t 〈fα〉+ div x 〈kfα〉 = 0, (135)

∂t 〈kfα〉+ div x 〈k ⊗ kfα〉+ 〈fα〉∇xV = 〈kQ1(fα)〉 , (136)

∂t
〈
(|k|2/2)f

〉
+ div x

〈
(|k|2/2)kfα

〉
+ 〈kfα〉 · ∇xV =

〈
(|k|2/2)Q1(fα)

〉
. (137)

Eqs. (135)–(137) are not closed, namely, the integrals 〈k ⊗ kfα〉, 〈(|k|2/2)kfα〉 cannot
be written in terms of 〈fα〉, 〈vfα〉, 〈(|k|2/2)fα〉. This is the so-called closure problem.
We will solve this problem by taking the formal limit α→ 0 in the scaled Boltzmann
equation (133) and in the moment equations (135)–(137).

2. Let us take the limit α → 0 in (133). We assume that f ≡ limα→0 fα exists. It
follows that Q0(f) = 0; thanks to the assumptions on Q0, this imples that f is a
Maxwellian: f = M [n, u, T ] for some n, u, T .

A straightforward computation yields:

〈M [n, u, T ]〉 = n,
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〈kM [n, u, T ]〉 = nu,

〈k ⊗ kM [n, u, T ]〉 = nu⊗ u+ nTI,〈
k(|k|2/2)M [n, u, T ]

〉
=

1

2
nu(|u|2 + 5T ),

〈kQ1(M [n, u, T ])〉 = −σnu,〈
|k|2

2
Q1(M [n, u, T ])

〉
= σn

(
3

2
− |u|

2

2
− 3

2
T

)
.

3. Let us take the limit α → 0 in (135)–(137) and exploit the results obtained in the
previous step:

∂tn+ div x(nu) = 0,

∂t(nu) + div x (nu⊗ u) +∇(nT ) + n∇xV = −σnu,

∂t

(
n|u|2

2
+

3

2
nT

)
+ div x

(nu
2

(|u|2 + 5T )
)

+ nu · ∇xV = σn

(
3

2
− |u|

2

2
− 3

2
T

)
.

By defining J = nu (current density), e = |u|2/2 + (3/2)T (total energy per particle), and
τ0(x) = 1/σ(x) (relaxation time), and taking the limit α→ 0 in the Poisson equation (134)
we finally obtain the (scaled) hydrodynamic model:

∂tn+ div xJ = 0, (138)

∂tJ + div x

(
J ⊗ J
n

)
+∇(nT ) + n∇xV = − J

τ0

, (139)

∂t(ne) + div x (J(e+ T )) + J · ∇xV = − n
τ0

(
e− 3

2

)
, (140)

−λD∆V = n− C. (141)

Going back to the physical variables, the above system takes the form:

∂tn+
1

q
div xJ = 0, (142)

∂tJ +
1

q
div x

(
J ⊗ J
n

)
+
qkB
m∗
∇(nT ) +

q2

m∗
n∇xV = − J

τrel
, (143)

∂t(ne) +
1

q
div x (J(e+ kBT )) + J · ∇xV = − n

τrel

(
e− 3

2
kBTL

)
, (144)

−εs∆V = q(n− C), (145)

with τrel = ττ0.
The hydrodynamic model describes the evolution of the electron density n, the electron
current density J and the electron energy density ne in a timescale that is shorter than in
the drift-diffusion model, under the assumption that some scattering phenomena (described
by the operator Q0) happen much more frequently than other scattering phenomena (de-
scribed by Q1); the mean free time for this second class of collisions is assumed to be of
the order of the considered timescale.
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5.1 Relaxation-time limits

We are going to show that by performing the so-called relaxation-time limits in the hydro-
dynamic model it is possible to derive a new model (the energy-transport equations) and
to recover the drift-diffusion equations. Our starting point is a generalization of eqs. (142)–
(144) (we consider V as a given function, since it does not affect the computations that
follow):

∂tn+
1

q
div J = 0, (146)

∂tJ +
1

q
div

(
J ⊗ J
n

)
+
qkB
m∗
∇(nT ) +

q2

m∗
n∇xV = − J

τp
, (147)

∂t(ne) +
1

q
div (J(e+ kBT )) + J · ∇xV − div (κnT∇T ) = − n

τe

(
e− 3

2
kBTL

)
. (148)

As the attentive Reader has surely noticed, there are two differences between (142)–(144)
and (146)–(148):

1. we have introduced two different relaxation times: a momentum relaxation time τp,
and an energy relaxation time τe;

2. we have added the term −div (κnT∇T ) on the left-hand side of (148) which describes
heat conduction (κ = κ(x) > 0 is given).

The point in choosing two different relaxation mechanisms is that we wish to consider two
different timescales for energy and momentum relaxation. The next step in our argument
is a (diffusive) scaling of (146)–(148). As it is always the case in this kind of procedure,
we introduce some reference values:

• the reference length λ (the device diameter);

• the reference particle density Cm;

• the reference potential U = kBTL/q;

• the reference current density J0 = qCMλ/τ ;

• the reference time τ = m∗λ/τpkBTL.

Notice that the relation:

(kBTL)2 = m∗
(
λ

τ

)2

·m∗
(
λ

τp

)2

means that the thermal energy kBTL is of the same order of the geometric average of the
kinetic energies required to cross the device in times τ and τp.
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We define the a-dimensional quantities:

x = λxs, t = τts, n = Cmns, J = J0Js, V = UVs, T = TLTs.

We also define the a-dimensional parameters α = τp/τ , β = τe/τ .
By plugging the above relations into (142)–(144) and carrying out the straightforward

computations we obtain:

∂tn+ div J = 0, (149)

α∂tJ + αdiv

(
J ⊗ J
n

)
+∇(nT ) + n∇xV = −J, (150)

∂t(ne) + div (J(e+ T )) + J · ∇xV − div (κ0nT∇T ) = −n
β

(
e− 3

2

)
, (151)

e = α
|J |2

2n2
+

3

2
T. (152)

Let us now take the (formal) limit α→ 0 in the above equations (with β > 0 fixed). From
(152) we obtain e = (3/2)T ; from this relation and (149)–(151) we deduce:

∂tn+ div J = 0, J = −∇(nT )− n∇xV, (153)

∂t

(
3

2
nT

)
+ div

(
5

2
JT − κ0nT∇T

)
+ J · ∇xV = −3

2

n

β
(T − 1) . (154)

Eqs. (153), (154) constitute the so-called energy-transport model. It describes the evolution
of the electron density n and the electron energy density 3

2
nT under the assumption that

the momentum relaxation time is much smaller than the energy relaxation time.
What happens if we take the limit β → 0 in the energy-transport model? Well, eq. (154)

becomes the simple relation T = 1, which can be plugged into (153), thus obtaining:

∂tn+ div J = 0, J = −∇n− n∇V,

which is the already known the drift-diffusion model. So the drift-diffusion model can be
seen as the limit of the hydrodynamic equations (149)–(151) under the assumption that
the relaxation times for both energy and momentum are small compared to the considered
timescale, which is coherent with the fact that the drift-diffusion model describes the
evolution of the system in a longer timescale than the hydrodynamic equations.

6 Microscopic quantum models

Until now, we have used a semiclassical formalism to describe the motion of an ensemble
of electrons in a semiconductor; in this section we present instead some tools and concepts
that are proper to statistical quantum mechanics.
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6.1 Mixed states, density matrices, and density operators

We have seen in subsection 2.2 that a quantum system is described by a wavefunction,
satisfying the Schrödinger equation. However, it happens often that the state of the system
is not known, and only partial informations about it are available to the observer. Namely,
this latter might know that the possible states of the system are given by a sequence of
(normalized) wavefunctions (ψj)j∈N ⊂ L2(R3),16 each of them satisfying the Schrödinger
equation i~∂tψj = Hψj, and that the system can be found in the state j with some
probability λj ≥ 0, with

∑∞
j=1 λj = 1. In such a case, the system is said to be in a mixed

state, while quantum systems that are described by only one wavefunction are said to be
in a pure state. In order to describe a quantum system in a mixed state, it is convenient
to define the so-called density matrix of the system:

ρ(x, y) =
∑
j∈N

λjψj(x)ψj(y), (155)

and the density operator ρ̂ associated to it:

(ρ̂φ)(x) =

∫
R3

ρ(x, y)φ(y)dy, φ ∈ L2(R3). (156)

The density operator is positive, self-adjoint, compact, and has trace equal to 1: Tr(ρ̂) =
1.17 Moreover, it holds in general that Tr(ρ̂2) ≤ 1, with the equality holding if and only if
ρ(x, y) = ψ(x)ψ(y) for some ψ ∈ L2(R3), that is, if and only if the system is in a pure state.
In this case, ψ is the wavefuction of the system. We point out that, given an arbitrary
positive, self-adjoint and compact operator ρ̂, thanks to the spectral theorem, a complete
orthonormal system (ψj)j∈N of L2 exists, which is made up by eigenvectors for ρ̂. Thus
ρ̂ can be written as ρ̂ =

∑
j∈N λjψj(ψj, ·); in particular, the integral representation (156)

holds, with the kernel ρ given by (155).
In a mixed state, the particle density n and the current density J are defined in a

natural way by:

n(x, t) = 2
∞∑
j=1

λj|ψj(x, t)|2, J = 2
∞∑
j=1

λj
q~
m
=
(
ψj(x)∇xψj(x)

)
,

where the factor 2 in front of the expression accounts for the two spin degrees of freedom.
The same quantities can be expressed in terms of the density matrix in the following way:

n(x, t) = 2ρ(x, x, t), J(x, t) =
iq~
m

(∇r −∇s) ρ(r, s, t)|r=s=x. (157)

16We consider here a single particle quantum system.
17The trace of an operator A on some Hilbert space H is defined as Tr(A) =

∑
j∈N(uj , Auj), where

(uj)j∈N is any complete orthonormal set for H.
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It is also possible to show18 that the following equation, called the Liouville-Von Neumann
equation, holds:

i~∂tρ(x, y, t) = (Hx −Hy)ρ(x, y, t), x, y ∈ R3, t > 0, (158)

with Hx, Hy being the Hamiltonian operator acting on the variables x, y, respectively.
Eq. (158) admits an equivalent formulation in terms of the density operator:

i~∂tρ̂ = [H, ρ̂] ≡ Hρ̂− ρ̂H.

6.2 Many particle Wigner equation

We are about to present an equation that can be seen as a quantum counterpart of the
classical Liouville equation. Our starting point is the Liouville-Von Neumann equation for
an ensemble of M electrons with mass m in a vacuum, formulated in terms of the system
density matrix ρ:

i~∂tρ(r, s, t) = (Hr −Hs)ρ(r, s, t), r, s ∈ R3M , t > 0. (159)

We define the Wigner function associated to the system as:

w(x, p, t) =

∫
R3M

ρ
(
x+

y

2
, x− y

2

)
e−iy·p/~dy.

The mapping ρ 7→ w is called Wigner-Weyl transform. The Wigner function satisfies the
following many particle Wigner equation:

∂tw +
p

m
· ∇xw − qΘ[V ]w = 0, x, p ∈ R3M , t > 0, (160)

where Θ[V ] is the pseudo-differential operator given by:

(Θ[V ]w)(x, p, t) =

∫
R3M

i

~

(
V
(
x+

y

2
, t
)
− V

(
x− y

2
, t
))

w(x, p′, t)eiy·(p−p
′)/~ dp′dy

(2π~)3M
.

The drift term (p/m) · ∇xw is the quantum analogue of the classical transport term of
the Liouville equation. The nonlocal term qΘ[V ]w models the contribution of the electric
potential. The nonlocality means that the electrons are influenced by a potential barrier
even before they actually reach it.

The operator Θ[V ] looks ugly, but it has at least some interesting propertiers, namely:

• if V (x, t) is quadratic is x, then Θ[V ] = ∇xV · ∇p.

• for general potentials V (x, t), in the semiclassical regime (~ → 0) it holds: Θ[V ] =
∇xV · ∇p +O(~2).

18The proof is a straightforward computation which exploits the fact that each wavefunction ψj satisfies
a Schrödinger equation.
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The Wigner function w can be seen as the quantum counterpart of the classical Boltz-
mann distribution. In fact, the particle density n and the current density J can be written
as moments of w:

n(x, t) =
2

(2π~)3M

∫
R3M

w(x, p, t)dp, J(x, t) =
2

(2π~)3M

q

m

∫
R3M

w(x, p, t)pdp.

In general, it can be shown that the mathematical expectation of a quantum observable
Aγ = Op(γ) (Op being the Weyl quantization) equals

∫
R3M γwdp/(2π~)3M . Thus the

Wigner distribution plays in statistical quantum mechanics a role analogue to the one
played by the Boltzmann distribution in the statistical classical mechanics. However,
there is at least an important difference between the two objects: while the Boltzmann
distribution is always nonnegative, this is not true for the Wigner distribution: this latter
can vanish in sets of positive Lebesgue measure. But, in any case, the Wigner equation
preserves the positivity of the particle density n if n(·, 0) > 0.19

6.3 Quantum Vlasov equation

The many-particle Wigner equation has the same drawback as the classical Liouville equa-
tion: it has to be solved in a very high-dimensional space, so the numerical solution of the
problem is almost unfeasible. However, we will now show that a single-particle equation
contains all the informations about the evolution of the many-particle system.

Let us consider an ensemble of M electrons with mass m moving in a vacuum under
the action of a potential V (x, t) (x = (x1, . . . , xM), with xi ∈ R3 being the position of the
i−th electron), and let ρ the system density matrix. We assume that:

1. the potential V is the sum of single-particle external potentials and two particle
interaction potentials:

V (x, t) =
M∑
j=1

Vext(xi, t) +
M∑

j,k=1
j 6=k

Vint(xj, xk);

2. the limit V0 ≡ limM→∞MVint exists and is finite;

3. the electrons are initially indistinguishable, that is

ρI(r1, . . . , rM , s1, . . . , sM) = ρ(r1, . . . , rM , s1, . . . , sM , 0)

is independent of the particle labels;

19As a matter of fact, the Wigner distribution cannot be too negative: it is possible to show that so-
called Husimi regularization of w, namely the convolutin between w and a gaussian with standard deviation
of order ~, is always nonnegative. This can be interpreted in light of the indetermination principle: w
becomes positive if averaged on a set of radius ∼ ~.
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4. the initial sub-ensemble density matrices

ρ
(a)
I (r1, . . . , ra, s1, . . . , sa) =

∫
R3(M−a)

ρI |(ra+1...rM )=(sa+1...sM )=(ua+1...uM )dua+1 . . . duM

can be factorized for all a = 1, . . . ,M − 1 is the following way:

ρ
(a)
I (r1, . . . , ra, s1, . . . , sa) =

a∏
j=1

RI(rj, sj),

for some given function RI .

As a consequence, both V (x1, . . . , xM , t) and ρ(r1, . . . , rM , s1, . . . , sM , t) are invariant with
respect to the exchange of the particle labels, that is, the electrons are indistinguishable
at all time.

Under these assumptions, the dynamics of the many-particle system can be described
by a single particle equation. By proceeding like in the classical case, we can prove the
following:

Theorem 6.1. Let W be a solution of the quantum Vlasov equation:

∂tW +
p

m
· ∇xW + qΘ[Veff]W = 0, x, p ∈ R3, t > 0,

where the effective potential Veff is defined by:

Veff(x, t) = Vext(x, t) +

∫
R3

n(x′, t)V0(x, x′)dx′, n(x, t) =
2

(2π~)3

∫
R3

W (x, p, t)dp.

Let R the density matrix associated to W via the Wigner-Weyl transform, and let, for all
a > 0, ρ(a) be defined by the so-called Hartree ansatz:

ρ(a)(r1, . . . , ra, s1, . . . , sa) =
a∏
j=1

R(rj, sj).

Then ρ(a) is a solution of the limit BBGKY Liouville-von Neumann hierarchy, obtained
from the many-particle Wigner equation by evaluation in (ra+1, . . . , rM) = (sa+1, . . . , sM) =
(ua+1, . . . , uM), integration in R3(M−a) w.r.t. (ua+1, . . . , uM), and limit M →∞.

So, we have reduced the many-particles problem to a single-particle equation, but
there is a price to pay, namely: while the many-particle Wigner equation was linear, the
quantum Vlasov equation is not; it is a nonlinear and nonlocal equation. Moreover, in
contrast to the classical Vlasov equation, the quantum Vlasov equation does not preserve
the nonnegativity of the solution; it does preserve, however, the nonnegativity of the
particle density, if the Wigner function is nonnegative at initial time. Finally, we point out
that, since Θ[V ] = ∇xV · ∇p +O(~2), the quantum Vlasov equation becomes the classical
Vlasov equation in the (formal) limit ~→ 0.
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6.4 Wigner-Boltzmann equation

Until now, we have considered only ballistic motion of quantum particles; but, if the char-
acteristic device length is large compared to the mean free path of the electrons, collisions
do happen and must be taken into account. Scattering phenomena can be accounted for
by adding a suitable collision operator on the right-hand side of a kinetic equation; an
example in this sense is given by the Wigner-Boltzmann equation:

∂tw +
p

m
· ∇xw − qΘ[Veff]w = Q(w), (161)

which models an open quantum system, that is, a quantum system which interacts with
some environment, e.g. a phonon thermal bath, through the collision operator Q(w). Veff

is the effective potential defined in Thr. 6.1.
The Reader may wander how does the collision operator Q(w) look like; some possible

choices of Q are listed below.

• Wigner-BGK operator. The simplest choice of Q is given by the Bhatnagar-
Gross-Krook (BGK) or relaxation-time operator:

Q(w) =
1

τ

( n

neq
weq − w

)
,

where weq is the thermal equilibrium distribution20, n is the particle density, and neq

is the equilibrium density:

n =
2

(2π~)3

∫
R3

wdp, neq =
2

(2π~)3

∫
R3

weqdp.

This collision operator simply describes the relaxation of the system towards the
thermal equilibrium. An easy way to see this is by considering (161) in the uniform
case (that is, w is x−independent) with vanishing effective field:

∂tw =
1

τ

( n

neq
weq − w

)
.

The solution to the above-written ODE is w(t) = e−t/τw(0) + (n/neq)weq(1− e−t/τ ),
which indeed converges to (n/neq)weq as t→∞.

• Caldera-Leggett operator. It was derived by Caldera and Leggett [13] and reads
as:

Q(w) = Dpp∆pw + 2γdiv p(pw).

The parameter γ > 0 describes friction phenomena, while Dpp > 0 is a self-diffusion
coefficient. The Wigner-Boltzmann equation with this collision operator is also
known as quantum Brownian motion or quantum Langevin equation and it is rel-
evant in the study of interaction between light and matter [17].

20The way weq is defined will be explained in the subsequent subsections.
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• Wigner-Fokker-Planck operator. The quantum Langevin equation does not pre-
serve the positivity of the density operator along its time evolution, which is un-
physical; to address this issue, the Caldera-Leggett operator was modified into the
quantum Fokker-Planck operator:

Q(w) = Dpp∆pw + 2Dpqdiv x(∇pw) +Dqq∆xw + 2γdiv p(pw).

The nonnegative diffusion coefficients Dpp, Dpq, Dqq satisfy the so-called Lindblad
condition:

DppDqq −Dpq ≥
γ2

4
,

which guarantees that the density matrix remains positive along its evolution. The
Wigner equation (161) with the Wigner-Fokker-Planck operator is called Wigner-
Fokker-Planck operator and models an electron ensemble interacting dissipatively
with an ideal thermal bath, given by the semiconductor lattice, whose ions are rep-
resented as harmonic oscillators.

7 Quantum macroscopic equations

In this section we will present some macroscopic models for quantum systems. We will
see that such models can be obtained by means of a suitable (hydrodynamic or diffusive)
scaling of the Wigner equations, similarly to the classical case, but can also be derived
from the Schrödinger equation with simple algebraic manipulations.

7.1 The Madelung equations

Let us consider a single electron with mass m and charge q in a vacuum subject to an
electric potential V . The wavefunction ψ of the system obeys the Schrödinger equation:

i~∂tψ = − ~2

2m
∆ψ + qV ψ, t > 0, ψ(·, 0) = ψI in R3.

We assume that ψ(x, t) 6= 0 for all x ∈ R3, t ≥ 0. We can thus write the wavefunction ψ
and the initial wavefunction ψI in WKB form:

ψ =
√
neiS/~, ψI =

√
nIe

iSI/~,

where the phases S, SI are well defined (up to integer multiples of 2π~), given the positivity
of n and nI . Let us insert the above-written ansatz in the Schrödinger equation:

i~eiS/~
(
∂tn

2
√
n

+
√
n
i

~
∂tS

)
= − ~2

2m
div

(
eiS/~

(
∇n
2
√
n

+
√
n
i

~
∇S
))

+ qV
√
neiS/~

= −eiS/~
(

~2

2m
div

(
∇n
2
√
n

+
√
n
i

~
∇S
)

+
i~
2m
∇S ·

(
∇n
2
√
n

+
√
n
i

~
∇S
)
− qV

√
n

)
,
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which means:

i~
∂tn

2
√
n
−
√
n∂tS +

~2

2m
∆
√
n+

i~
m
∇
√
n · ∇S +

i~
2m

√
n∆S −

√
n

2m
|∇S|2 − qV

√
n = 0.

Separating real and imaginary part in the above equation yields:

∂tn

2
√
n

+
1

m
∇
√
n · ∇S +

1

2m

√
n∆S = 0,

−
√
n∂tS +

~2

2m
∆
√
n−
√
n

2m
|∇S|2 − qV

√
n = 0,

which is equivalent to:

∂tn = − 1

m
∇n · ∇S − 1

m
n∆S = − 1

m
div (n∇S), (162)

∂tS =
~2

2m

∆
√
n√
n
− 1

2m
|∇S|2 − qV. (163)

Since the current J is given by:

J =
~
m
=(ψ∇ψ) =

1

m
n∇S,

eq. (162) can be rewritten as:

∂tn+ div J = 0. (164)

Moreover, let us take the time derivative of J :

∂tJ =
∂tn

m
∇S +

n

m
∇∂tS = −J

n
div J +

n

m
∇
(

~2

2m

∆
√
n√
n
− m

2n2
|J |2 − qV

)
,

which means:

∂tJ +
q

m
n∇V − n ~2

2m2
∇
(

∆
√
n√
n

)
= −J

n
div J − n

2
∇
(
|J |2

n2

)
= −J

n
div J − J · ∇

(
J

n

)
= −div

(
J ⊗ J
n

)
. (165)

Eqs. (164), (165) are the so-called Madelung equations:

∂tn+ div J = 0, ∂tJ + div

(
J ⊗ J
n

)
+

q

m
n∇V − n ~2

2m2
∇
(

∆
√
n√
n

)
= 0. (166)

The Madelung equations are an alternative formulation of the Schrödinger equation, and
thus describe the evolution of a quantum system in a pure state. They are the quantum
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analogue of the classical pressureless Euler equations of gas dynamics. There latter can be
formally recovered from (166) by letting ~→ 0 (semiclassical limit). The quantity:

V B = − ~2

2m

∆
√
n√
n
,

which appears in the quantum contribution in (166), is called Bohm potential. Notice that,
since:

−n ~2

2m2
∇
(

∆
√
n√
n

)
= − ~2

4m2
div (n∇⊗∇ log n) ,

the quantum term in (166) can be represented as the divergence of the nondiagonal quan-
tum pressure tensor

PQ = − ~2

4m
n∇⊗∇ log n.

We also point out that, since J/n = ∇S, the initial velocity must be irrotational for
consistency with the derivation of the model.

A question that arises from the previous derivation is: is it possible to reconstruct the
wavefunction ψ in terms of the moments n, J? This is a particular case of a more general
problem, the so-called Pauli problem: is it possible to reconstruct a pure quantum state by
knowing a finite set of measurements of the state? We don’t mean to answer this question
here, but we point out that, for the case that we have considered, the answer is negative:
in fact, in order to derive (166), we assumed that n > 0 (or, equivalently, that ψ 6= 0) at
all times, in order to be able to define the phase S in an unique way. We did not consider
vacuum, namely, we ruled out the possibility that ψ(·, t) = 0 in a positive measure set, for
some t ≥ 0. Since vacuum does exist, determining the wavefunction ψ in terms of n, J is
in general impossible.

7.2 A mixed-state quantum hydrodynamic model

We have seen in the previous subsection that the Madelung equations describe pure
states. We will now derive a hydrodynamic model for a statistical mixture of quantum
particles (a mixed state). Let this state be represented by a sequence of wavefunctions
(ψj)j∈N ⊂ L2(R3) and occupation probabilites (λj)j∈N ⊂ [0, 1], with

∑∞
j=1 λj = 1, where

each wavefunction satisfies the Schrödinger equation:

i~∂tψj = − ~2

2m
∆ψj + qV ψj, t > 0, ψj(·, 0) = ψ0

j in R3. (167)

Let the single-state particle density nj and the single-state current density Jj be defined
as:

nj = |ψj|2, Jj =
~
m
=
(
ψj∇ψj

)
,

while the total particle density n and the total current density J are given by:

n =
∞∑
j=1

λjnj, J =
∞∑
j=1

λjJj.
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We wish to find hydrodynamic equations for n, J . The starting point is the Madelung
system (166), which holds true with n, J replaced by nj, Jj:

∂tnj + div Jj = 0, ∂tJj + div

(
Jj ⊗ Jj
nj

)
+

q

m
nj∇V − nj

~2

2m2
∇
(

∆
√
nj

√
nj

)
= 0,

for j ∈ N. In we multiply both equations times λj and sum in j we obtain:

∂tn+ div J = 0, (168)

∂tJ + div

(
∞∑
j=1

λj
Jj ⊗ Jj
nj

)
+

q

m
nj∇V −

~2

2m2

∞∑
j=1

λjnj∇
(

∆
√
nj

√
nj

)
= 0. (169)

It is convenient to define the following quantities, having the physical dimension of veloci-
ties:

ucuj =
Jj
nj
, ucu =

J

u
, uosj =

~
2m
∇ log nj, uos =

~
2m
∇ log n.

We call ucuj , ucu “current velocities” and uosj , uos “osmotic velocities”. It holds:

∞∑
j=1

λj
Jj ⊗ Jj
nj

=
∞∑
j=1

λjnju
cu
j ⊗ ucuj

=
∞∑
j=1

λjnj
(
(ucuj − ucu)⊗ (ucuj − ucu) + ucu ⊗ ucuj + ucuj ⊗ ucu − ucu ⊗ ucu

)
= n

∞∑
j=1

λj
nj
n

(ucuj − ucu)⊗ (ucuj − ucu) +
J ⊗ J
n

.

Moreover:

~2

2m2

∞∑
j=1

λjnj∇
(

∆
√
nj

√
nj

)
=

~2

4m2

∞∑
j=1

λjdiv

(
(∇⊗∇)nj −

∇nj ⊗∇nj
nj

)
=

~2

4m2
div ((∇⊗∇)n)

−
∞∑
j=1

λjdiv
(
nj(u

os
j − uos)⊗ (uosj − uos) + uos ⊗ uosj + uosj ⊗ uos − uos ⊗ uos

)
=

~2

4m2
div

(
(∇⊗∇)n− ∇n⊗∇n

n

)
− div

(
∞∑
j=1

λjnj(u
os
j − uos)⊗ (uosj − uos)

)

=
~2

2m2
n∇

(
∆
√
n√
n

)
− div

(
n
∞∑
j=1

λj
nj
n

(uosj − uos)⊗ (uosj − uos)

)
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Let us define the tensors:

θcu =
∞∑
j=1

λj
nj
n

(ucuj − ucu)⊗ (ucuj − ucu),

θos =
∞∑
j=1

λj
nj
n

(uosj − uos)⊗ (uosj − uos),

θ = θcu + θos.

We refer to θcu, θos as “current temperature” and “osmotic temperature”, respectively.
The quantity θ represents the total temperature. Thus we can rewrite (168), (169) as:

∂tn+ div J = 0, ∂tJ + div

(
J ⊗ J
n

+ nθ

)
+

q

m
n∇V − n ~2

2m2
∇
(

∆
√
n√
n

)
= 0. (170)

Eq. (170) is a system of hydrodynamic equations describing the evolution of a quantum
system in a mixed state. Such a system is not closed, since the temperature tensor θ cannot
be expressed as a function of n, J without further assumptions. So we face the closure
problem once more. A possible way of closing the system is by assuming that θ = T Id, for
some positive constant temperature T ; the model obtained with this hypothesis is called
isothermal quantum hydrodynamic model. Another possiblity is to assume that θ = T (n)Id
with T (n) = T0n

α for some T0 > 0 and α > 0; the corresponding model is referred to as
isentropic quantum hydrodynamic model.

7.3 Quantum thermal equilibrium

In subs. 6.4 we have mentioned the quantum thermal equilibrium Wigner distribution weq;
it is time to define this object in a (more or less) precise way. The quantum thermal equi-
librium distribution, also called quantum Maxwellian for its formal resemblance with the
Maxwellian of classical statistical mechanics, is the Wigner distribution that maximizes the
quantum entropy functional [21, 22]. Recall the definition of the Wigner-Weyl transform
W : L2(R3 × R3)→ L2(R3 × R3):

(Wρ)(x, p) =

∫
R3

ρ
(
x+

y

2
, x− y

2

)
e−iy·p/~dy.

Remember also that a density matrix ρ can be identified with the density operator ρ̂ defined
as:

(ρ̂φ)(x) =

∫
R3

ρ(x, y)φ(y)dy ∀φ ∈ L2(R3).

Conversely, any density operator ρ̂ (that is, any linear, self-adjoint, compact operator on
L2 such that Tr(ρ̂) = 1 and Tr(ρ̂2) < ∞) can be identified with its kernel ρ, which is a
density matrix. So we can lift W to an operator (which will be denoted again by W) such
that:

(W ρ̂)(x, p) =

∫
R3

ρ
(
x+

y

2
, x− y

2

)
e−iy·p/~dy,
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where ρ̂ is the density operator associated to the density matrix ρ. This definition allows
us to associate to any function φ : R → R a corresponding nonlocal quantum operator Φ
defined in the following way:

Φ(w) =W(φ(W−1(w))) for all Wigner functions w.

The meaning of the above-written definition is: given some Wigner function w ∈ L2(R3 ×
R3), in order to build Φ(w) we first apply the inverse Wigner transform W−1 to w and
obtain a density operator ρ̂ = W−1w, then we compute φ(ρ̂) with the help of spectral
theory,21 and finally we apply W to this density operator to obtain a Wigner function,
which is the element Φ(w) that we wanted to compute. By choosing φ = exp and φ = log
we obtain the so called quantum exponential and quantum logarithm:

Exp (w) =W(exp(W−1(w))), Log (w) =W(log(W−1(w))) for all Wigner functions w.

It is possible to prove that Log is the inverse mapping of Exp , and that the Fréchet
derivatives of Exp (w), Log (w) are Exp (w) and w−1, respectively. Moreover, it is also
possible to show that

Exp (w) = exp(w) +O(~2), Log (w) = log(w) +O(~2),

in the (formal) semiclassical limit ~→ 0. The O(~2) correction in the semiclassical expan-
sion of Exp has been explicitly computed; see [33, Lemma 12.4] for details.

Let w be a solution of the Wigner-Boltzmann equation (161), and let us define:

〈g〉 =
2

(2π~)3

∫
R3

g(p)dp for all functions g = g(p).

The von Neumann entropy of the state described by w is:

S(w) = − 2

(2π~)3

∫
R3×R3

w(x, p, ·)
(

(Logw)(x, p, t)− 1 +
h(x, p)

kBT

)
dxdp,

where h =WH = |p|2
2m

+qV is the classical symbol of the Hamiltonian operator H and T > 0
is the temperature of a thermal bath in equilibrium with the system. Notice that, while the
classical entropy is an integral in the momentum (or velocity) space, the quantum entropy
is an integral in the whole phase space; this is due to the nonlocal nature of quantum
mechanics.

21If A : H → H is a compact self-adjoint operator on a Hilbert space H, and f : R → R is some real
function, we can give a meaning to f(A) in a natural way. Being A compact and self-adjoint, we can write
A =

∑
k∈N λkΠk, where λk is the k−th (nonzero) eigenvalue of A, and Πk is the projection operator in

the eigenspace associated to λk. We define f(A) simply as:

f(A) =
∑
k∈N

f(λk)Πk.
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Let (kj(p))j=1,...,N weight functions, and let mj = 〈kjw(x, p, ·)〉 for j = 0, . . . , N . The
quantities mj are moments of the Wigner function w. The quantum thermal equilibrium
distribution or quantum Maxwellian M related to the moments m0, . . . ,mN is defined as
the solution of the (formal) constrained maximization problem:

S(M) = max{S(f) : 〈fkj〉 = mj (j = 0, . . . , N)}. (171)

Lemma 7.1. The solution of (171), if it exists, takes the form:

M = Exp

(
− h

kBT
+

N∑
j=0

λjkj

)
, (172)

where λ0(x, t), ·, λN(x, t) are Lagrange multipliers.

Proof. Let us define the Lagrangian functional

F (w, λ0, . . . , λN) = S(w) +
N∑
j=0

∫
R3

λj(mj − 〈kjw〉)dx.

If M is a solution to (171), then there exist λ∗0, . . . , λ
∗
N such that (M,λ∗0, . . . , λ

∗
N) is a critical

point for F :

dF

dw
(M,λ∗0, . . . , λ

∗
N) = 0,

dF

dλj
(M,λ∗0, . . . , λ

∗
N) = 0 (j = 0, . . . , N). (173)

The Fréchet derivative of S is given by:〈
d

dw
S(w), ϕ

〉
= − 2

(2π~)3

∫
R3×R3

(
Logw +

h

kBT

)
ϕdxdp, ∀ϕ ∈ L2(R3 × R3).

So (173) becomes:∫
R3×R3

(
Logw +

h

kBT
−

N∑
s=0

λsks

)
ϕdxdp =

∫
R3

(〈kjM〉 −mj)ξdx = 0,

for all ϕ ∈ L2(R3 × R3), ξ ∈ L2(R3), j = 0, . . . , N . It follows:

Logw +
h

kBT
−

N∑
s=0

λsks = 0, 〈kjM〉 = mj (j = 0, . . . , N),

which, thanks to the fact that Exp is the inverse function of Log , implies the statement.

The standard choice of the moments m0, . . . ,mN is:

m0 = 〈w〉 , mj = 〈pjw〉 (j = 1, 2, 3), m4 =

〈
|p|2

2m
w

〉
.

In this case the term h/kBT appearing in (172) can be absorbed into the sum
∑N

j=0 λjkj
with a suitable re-definition of the Lagrange multipliers λ0, . . . , λN , and M takes the form:

M = Exp

(
λ0 +

3∑
j=1

λjpj + λ4
|p|2

2m

)
. (174)
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7.4 Quantum hydrodynamic models and quantum Maxwellians

Let us consider the Wigner-Boltzmann-Poisson system:

∂tw +
p

m
· ∇xw − qΘ[V ]w = Q(w), (175)

− εs∆V = q(n− C), n =
2

(2π~)3

∫
R3

wdp. (176)

We proceed like in Section 5. We apply the same hydrodynamic scaling, and we assume that
the collision operator Q can be written as the sum of two operators Q0, Q1, representing
two different types of collisions and characterized by different mean free times: Q(f) =
Q0(f) + Q1(f). To be precise, we assume that the collisions modeled by Q0 happen
much more frequently than the collision described by Q1. The resulting scaled Wigner-
Boltzmann-Poisson system reads as:

α(∂tw + p · ∇xw −Θ[V ]w) = Q0(w) + αQ1(w), (177)

− λ2
D∆V = n− C, n =

2

(2πε)2

∫
R3

wdp, (178)

where ε is the scaled Planck constant. We assume that Q0 and Q1 have the following
properties:

• Q0 conserves mass, momentum, and energy:∫
R3

Q0(f)dp =

∫
R3

piQ(f)dp =

∫
R3

|p|2Q0(f)dp = 0, i = 1, 2, 3,

for all functions f .

• The kernel of Q0 is spanned by quantum Maxwellians:

N(Q0) = {f : f = M [A, v, T ] for some A(x), v(x), T (x)},

M [A, v, T ](p) ≡ Exp

(
A− |p− v|

2

2T

)
.

• Q1 preserves mass:
∫
R3 Q1(f)dp = 0 for all functions f .

We point out that the functions A, v, T can be written in terms of the moments n = 〈M〉,
J = 〈pM〉, ne = 〈(|p|2/2)M〉 of M through inversion of the relations:

n = 〈M [A, v, T ]〉 , J = 〈pM [A, v, T ]〉 , ne =
〈
(|p|2/2)M [A, v, T ]

〉
.

To derive the hydrodynamic model we are interested in, we need to know how to compute
the moments of the nonlocal term Θ[V ]w.
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Lemma 7.2. For all Wigner functions w = w(x, p, t) it holds:

〈Θ[V ]w〉 = 0, 〈pΘ[V ]w〉 = −n∇xV,

〈
|p|2

2
Θ[V ]w

〉
= −〈pw〉 · ∇xV,〈

|p|2

2
pΘ[V ]w

〉
= −

(
〈p⊗ p w〉+

〈
|p|2

2
w

〉
I

)
∇xV +

ε2

8
〈w〉∇x∆xV.

Hints of the proof. The scaled pseudodifferential operator Θ[V ] is given by:

(Θ[V ]w)(x, p) =

∫
R3×R3

i

ε

(
V
(
x+

y

2

)
− V

(
x− y

2

))
w(x, p′)eiy·(p−p

′)/ε dp
′dy

(2πε)3
.

For any function µ = µ(p) it holds:∫
R3

µΘ[V ]wdp

=

∫
R3×R3

i

ε

(
V
(
x+

y

2

)
− V

(
x− y

2

))
w(x, p′)

(∫
R3

µ(p)eiy·(p−p
′)/ε dp

(2πε)3

)
dp′dy. (179)

It alos holds (formally): ∫
R3

eiy·(p−p
′)/ε dp

(2πε)3
= δ(y), (180)∫

R3

peiy·(p−p
′)/ε dp

(2πε)3
= −iεe−iy·p′/ε∇δ(y), (181)∫

R3

|p|2eiy·(p−p′)/ε dp

(2πε)3
= −ε2e−iy·p

′/ε∆δ(y). (182)

The statement follows by replacing µ(p) = 1, p, |p|2/2 inside (179) and exploiting (180)–
(182).

We are now ready to derive a closed system of quantum hydrodynamic equations for
mixed states. Let (wα, Vα) be the solution of (177)–(178). Let w = limα→0wα, V =
limα→0 Vα (we assume these limits exist). By taking the limit α → 0 in (175) we get
Q0(w) = 0, which, due to the assumptions on Q0, yields w = M [A, v, T ] for some functions
A(x, t), v(x, t), T (x, t), which depend on the moments n = 〈w〉, J = nu = 〈pw〉, ne =
〈(|p|2/2)w〉 of w through the relations: n

nu
ne

 =
2

(2πε)3

∫
R3

Exp

(
A− |p− v|

2

2T

) 1
p
|p|2
2

 dp.

Multiplying (175) times 1, p, |p|2/2, integrating in p yields and taking the limit α → 0
yields:

∂tn+ div (nu) = 0, (183)
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∂t(nu) + div 〈p⊗ pM〉+ n∇V = 〈pQ1(M)〉 , (184)

∂t(ne) + div

〈
|p|2

2
pM

〉
+ nu · ∇V =

〈
|p|2

2
Q1(M)

〉
. (185)

By defining the quantum stress tensor P and the quantum heat flux q:

P = 〈(p− u)⊗ (p− u)M〉 , q =

〈
1

2
(p− u)|p− u|2M

〉
, (186)

we can rewrite the following integrals:

〈p⊗ p M〉 = P + nu⊗ u,
〈
|p|2

2
pM

〉
= (P + neI)u+ q,

and thus (183)–(185) takes the form:

∂tn+ div (nu) = 0, (187)

∂t(nu) + div (nu⊗ u+ P ) + n∇V = 〈pQ1(M)〉 , (188)

∂t(ne) + div ((P + neI)u+ q) + nu · ∇V =

〈
|p|2

2
Q1(M)

〉
. (189)

Eqs. (187)–(189) are a set of nonlinear and nonlocal quantum hydrodynamic equations,
describing the evolution of particle density n, momentum density nu, energy density ne
for a quantum mixture (that is, a quantum system in a mixed state). This model is quite
involved, and rather difficult to treat numerically. It can be simplified by performing the
semiclassical expansion of the quantum Maxwellian, which allows to obtain a set of local
equations. We will put this idea into practice in the next sections.

7.5 Local quantum hydrodynamic equations

The hydrodynamic equations (186)–(189) are nonlocal, because the relations between the
Lagrange multipliers A, v, T involve the quantum exponential, which is indeed a nonlocal
operator. In order to make the model simpler (namely, local) we assume that the scaled
Plack constant ε is small and expand the quantum Maxwellian in powers of ε (semiclassical
expansion). This procedure is showed in the Appendix A; the curious Reader can also see
[34, Lemma 3.4] for further details. The quantum Maxwellian can be approximated, up to
O(ε4), by a standard gaussian distribution in the velocity space times a polynomial factor;
this makes it possible to compute explicitly the quantum pressure P and the quantum
heat flux q. However, the expressions for P , q with this method are, albeit local, still quite
involved; they can be much simplified by assuming:

• the temperature T is slowly varying: ∇ log T = O(ε2);

• the vorticity (that is, the skew-symmetric part of the velocity gradient) is small:
∂xu− (∂xu)> = O(ε2).
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In the end, we are left with the following approximated expressions for P , q:

P = nTI − ε2

12
n(∇⊗∇) log n+O(ε4), q = −ε

2

8
n∆u+O(ε4), (190)

where the temperature T depends on the moments n, nu, ne through the relation:

ne =
3

2
nT +

1

2
n|u|2 − ε2

24
n∆ log n.

Eqs. (187)–(189) with P , p given by (190) are a set of local quantum hydrodynamic equa-
tions. They constitute a local-in-space approximation of (186)–(189), which is meaningful
provided that the scaled Planck constant ε, the (relative) temperature gradient ∇T/T and
vorticity ∂xu− (∂xu)> are small enough.

7.6 Quantum drift-diffusion equations

A quantum drift-diffusion model can be derived from the Wigner-Boltzmann equation:

∂tw +
p

m
· ∇xw − qΘ[V ]w = Q(w), (191)

under the assumption that the collision operator Q is given by the BGK operator:

Q(w) =
M̃ [n]− w

τ
,

where M̃ [n] is the quantum Maxwellian having particle density equal to n, which is defined
as the particle density associated to the Wigner function w:

M̃ [n] = Exp

(
A− |p|

2

2m

)
,

2

(2π~)3

∫
R3

M̃ [n]dp = n ≡ 2

(2π~)3

∫
R3

wdp.

The function A in the above equation is, as usual, a Lagrange multiplier. We proceed like
in the derivation of the classical drift-diffusion model. The starting point in the derivation
is a diffusive scaling of (191):

α∂twα + p · ∇xwα −Θ[V ]wα =
M [n]− wα

α
, (192)

where α > 0 is the scaled mean free path, the scaled Maxwellian M [n] reads as:

M [n] = Exp

(
A− |p|

2

2

)
,

2

(2πε)3

∫
R3

M [n]dp = n ≡ 2

(2πε)3

∫
R3

wdp,

and ε is the scaled Plack constant.
We assume that α is small. We are thus authorized to the limit α→ 0 in (192), which

yields wα →M [n]. Next, we try the following Chapman-Enskog ansatz: wα = M [n]+αgα,
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for some gα that is bounded as α → 0. By inserting this ansatz into (192) we obtain an
expression for gα:

gα = −α∂twα − p · ∇xwα + Θ[V ]wα,

which, due to the relation limα→0wα = M [n], implies

lim
α→0

gα = −p · ∇xM [n] + Θ[V ]M [n]. (193)

Recalling that
∫
R3 Θ[V ]wdp = 0 for all Wigner functions w, let us integrate (192) w.r.t. p:

∂tn+
1

α
div x 〈pwα〉 = 0, (194)

where 〈f〉 ≡ 2(2πε)−3
∫
R3 fdp for all f = f(x, p, t). However, wα = M [n] + αgα, and

〈pM [n]〉 = 0 because M [n] is even w.r.t. p;22 so by taking the limit α → 0 in (194) and
exploiting (193) we obtain:

∂tn+ div Jn = 0, Jn = −〈p⊗ p M [n]〉+ 〈pΘ[V ]M [n]〉 .

By applying Lemma 7.2 we conclude:

∂tn+ div Jn = 0, Jn = −〈p⊗ p M [n]〉 − n∇V. (195)

This is the quantum drift-diffusion model that we were looking for. Notice that, just like
the quantum hydrodynamic equations (186)–(189), eq. (195) is a nonlocal model, which
makes it difficult to treat it analytically and numerically.

It is possible to obtain a local quantum drift-diffusion model by expanding semiclassi-
cally the quantum Maxwellian in powers of ε, exactly as we did in order to obtain the local
hydrodynamic equations (187)–(190) (the curious Reader can see [33, Sec. 12] for details
about the derivation):

∂tn+ div Jn = 0, Jn = −∇n− n∇V +
ε2

6
n∇

(
∆
√
n√
n

)
. (196)

We point out that the Bohm potential VB = − ε2

6
∆
√
n√
n

is present also in (196), just as it

appeared in the Madelung equations (166) (actually, the two quantities are the same up to
a numerical factor): in both models, it is proportional to the square of the scaled Planck
constant and it carries the informations about the quantum nature of the system.

22It can be shown that the quantum exponential operator preserves parity: if f = f(x, p) is even w.r.t.
p, then also Exp (f) has the same property.
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A How to derive a semiclassical expansion of the

quantum Maxwellian

Consider the scaled quantum Maxwellian:

M = Exp (−h) =We−H , H ≡ W−1h. (197)

In (197) h = h(x, p) equals the (classical symbol of the) system Hamiltonian plus some
additional terms containing some Lagrange multipliers, which depend on some moments
m0, . . . ,mN of M through relations of the form:∫

R3

kj(p)Mdp = mj (j = 0, . . . , N), (198)

where k0(p), . . . , kN(p) are suitable weight functions. A standard example in this sense is
given by (174). In this Appendix an idea is presented, which allows to derive a semiclassical
expansion (i.e. an expansion in powers of the scaled Planck constant ε) of the quantum
Maxwellian M . We point out that this procedure works for general functions h = h(x, p),
not just quadratic in p. For further details, see [59].

The starting point is to relate M with the semigroup S(β) generated by −H:

M = f(β)|β=1, f(β) ≡ WS(β), S(β) ≡ e−βH ∀β > 0.

The next step consists in taking the derivative of S w.r.t. β. It holds:

∂βS(β) = −HS(β), β > 0.

Let us apply W to both sides of the above equation and rewrite it in terms of h and f :

∂βf(β) = −W((W−1h)(W−1f(β))). (199)

Let us introduce the so-called Moyal product:

f#g =W((W−1f)(W−1g)), ∀f = f(x, p), g = g(x, p).

With this notation (199) can be rewritten as:

∂βf(β) + h#f(β) = 0, β > 0. (200)

The Moyal product admits a semiclassical expansion:

# =
∞∑
k=0

εk#k,

where the binary operators #k are known for all k ≥ 0. The first three terms in the above
expansion are given by:

f#0g = fg, f#1g =
i

2
(∇xf · ∇pg −∇pf · ∇xg) ,
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f#2g = −1

8

3∑
j,k=1

(
∂2
xjxk

f ∂2
pjpk

g − 2∂2
xjpk

f ∂2
pjxk

g + ∂2
pjpk

f ∂2
xjxk

g
)
,

for all functions f, g. This information allows us to obtain the second order semiclassical
expansion of f(β) (and thus also of M = f(1)). In fact, by writing f(β) = f 0(β)+εf 1(β)+
ε2f 2(β) +O(ε3) and plugging this ansatz into (200) we get:

∂βf
0(β) + h#0f 0(β) = 0,

∂βf
1(β) + h#0f 1(β) + h#1f 0(β) = 0,

∂βf
2(β) + h#0f 2(β) + h#1f 1(β) + h#2f 0(β) = 0,

for all β > 0. The above equations must be considered together with initial conditions.
Since f(0) = 1, it follows that f 0(0) = 1, while f 1(0) = f 2(0) = 0. Recalling that #0 is
simply the usual product, the problem that must be solved is:

∂βf
0(β) + hf 0(β) = 0 (β > 0), f 0(0) = 1, (201)

∂βf
1(β) + hf 1(β) = −h#1f 0(β) (β > 0), f 1(0) = 0, (202)

∂βf
2(β) + hf 2(β) = −h#1f 1(β)− h#2f 0(β) (β > 0), f 2(0) = 0. (203)

The above system is actually a hierarchy of equations, each one of them depending only
on the terms appearing in the equations of lower order. The solution of (201) is clearly
f 0(β) = exp(−βh), which means that the dominant term in the semiclassical expansion of
the quantum Maxwellian M is nothing else but the classical Maxwellian. In view of this
fact we find that h#1f 0(β) ≡ 0, so the right-hand side of the ODE in (202) vanishes. Since
f 1(0) = 0, this implies that f 1(β) ≡ 0. We are left with (203), which rewrites as:

∂βf
2(β) + hf 2(β) = −h#2

(
e−βh

)
(β > 0), f 2(0) = 0. (204)

As the Reader surely knows, the solution to (204) is:

f 2(β) = −
∫ β

0

e−(β−s)h (h#2
(
e−sh

))
ds, β > 0. (205)

It can be shown that the third order correction of f(β) is zero, just like f 1(β).
Summarizing up, we have obtained the following second-order semiclassical expansion

of the quantum Maxwellian M :

M = e−h
{

1− ε2

∫ 1

0

esh
(
h#2

(
e−sh

))
ds

}
+O(ε4).

By plugging the above expression inside (198) it is possible to obtain explicit forms for
the Lagrange multipliers appearing inside h, provided that suitable expressions for h and
k0(p), . . . , kN(p) are available.
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