Implementation of a Deterministic

Partial E-Unification Algorithm

for Macro Tree Transducers

Heinz Faflbender* Heiko Vogler Andrea Wedel*

Abt. Theoretische Informatik, Universitat Ulm
89069 Ulm, Germany

e-mail: {fassbend,vogler,wedel }@informatik.uni-ulm.de

April 12, 1994

Abstract

During the execution of functional logic programs, particular E-unification pro-
blems have to be solved quite frequently. In this paper we contribute to the efficient
solution of such problems in the case where F is induced by particular term rewriting
systems called macro tree transducers. We formalize the implementation of a deter-
ministic partial E-unification algorithm on a deterministic abstract machine, called
twin unification machine. The unification algorithm is based on a particular narrow-
ing strategy which combines leftmost outermost narrowing with a local constructor
consistency check and a particular occur check. The twin unification machine uses two
runtime stacks; i1t is an extension of an efficient leftmost outermost reduction machine
for macro tree transducers. The feasibility of the presented implementation technique
is proved by an implementation which has been developed on a SPARCstation SLC.

*The work of the authors are supported by the Deutsche Forschungsgemeinschaft (DFG).

1 Introduction

The investigation of our paper shows an implementation technique which is expected to
contribute to an efficient implementation of functional logic programming languages.

Consider, e.g., the functional logic programming language BABEL [MR92]. In Figure 1
we show a BABEL-program which defines the predicate sublist and the function append;
sublist checks whether its first argument is a sublist of its second argument, and append
concatenates two lists in the usual way.

sublist(x,y) = if y = append(z1, append(z, z2)) then TRUE else FALSE

append(CON S(z1, x2),y1) = CONS(zx1,append(xa,y1))
append(NIL, y) Y1

Figure 1: A functional logic program.

In computations of the predicate sublist, an equation like

ty = append(zy, append(t,, z2)) (*)

has to be solved, where ¢, and ?, are the current values of the variables y and z, respec-
tively. More precisely, the computation machinery tries to find a substitution ¢ such that
the -instance of (*) is true in the equational theory =p_ ., which is induced by the set
Eoppend; Eappend consists of the two equations for append. Clearly, this is nothing else but
the Eyppeng-unification problem for the terms ¢, and append(z1, append(t,, z3)); and the
computation machinery tries to compute an Fqppenq-unifier ¢, i.e., it tries to answer the
question whether ¢, and append(z;, append(l,, z3)) are Eyppenq-unifiable, yes or no.

It is well known that the decidability of an F-unification problem depends on the set
F of equations. If F is the empty set, then the E-unification problem coincides with the
usual unification problem of terms which is decidable [Rob65]. If F is the set of Peano’s
axioms, then the F-unification problem coincides with Hilbert’s tenth problem which was
shown to be undecidable [Mat70].

Clearly, for an unconditional equational specification of a function as, e.g., append in
Figure 1, the basic computation model is a term rewriting system; Figure 2 shows the
rewrite rules of the term rewriting system R,ppenqd Which is appropriate to compute values
of the function append.

append(CONS(z1,22),11) — CONS(z1,append(za,y1))
append(NIL, y;) - 0

Figure 2: Rewrite rules of the term rewriting system Rappend-

In the scope of this paper, we focus our attention to such F-unification problems which
arise in functional logic programming languages and where the set F is induced by a term

rewriting system R in the sense that F can be considered as the symmetric closure of R.
In this case, we denote F by Er, and we will talk about the Fr-unification problem.

Most of the approaches for trying to solve an Eg-unification problem are based on the
concept of narrowing [Lan75]. Every approach refers to particular term rewriting systems
and to a particular narrowing relation, e.g.,

e canonical term rewriting systems and narrowing [Fay79, Hul80]
e canonical term rewriting systems and basic narrowing [Hul80, MH92]
e left-linear, non-overlapping term rewriting systems and D-narrowing [YouS88]

e canonical, uniform term rewriting systems and the leftmost outermost narrowing
strategy [Pad87]

e totally-defined term rewriting systems and any innermost narrowing strategy [Fri85]

e canonical, totally-defined, not strictly subunifiable term rewriting systems and any
narrowing strategy [Ech88]

e canonical, totally-defined, not strictly subunifiable term rewriting systems and uni-
fication-driven leftmost outermost narrowing [F'V92b].

All these approaches have in common that they try to compute an Egr-unifier of two
terms ¢t and s by starting from the term equ(t, s), where equ is some new binary symbol
(in [Hul80] equ is denoted by H). Usually, the computation is followed by or interleaved
with unification steps.

Unfortunately, even for very simple term rewriting systems R, the Fr-unification pro-
blem is undecidable: Post’s Correspondence Problems can be coded into term rewriting
systems which have the form of tree homomorphisms. Thus, even for very simple term
rewriting systems R, any deterministic algorithm A which tries to compute an Fr-unifier,
can only be partial in the sense that, for every two terms ¢ and s as input, A behaves in
one of the following three ways:

1. A terminates and computes an Fr-unifier of ¢ and s.
2. A terminates and answers that ¢ and s are not Fg-unifiable.

3. A does not terminate.

We will call such an algorithm a deterministic partial Fr-unification algorithm.

In this paper, we formalize a special deterministic partial Fr-unification algorithm
which is appropriate for computing F'r-unifiers, where R is taken from a class of parti-
cular term rewriting systems, called macro tree transducers. This special deterministic
partial Fr-unification algorithm is called deterministic unification algorithm for macro
tree transducers. Moreover, we formalize an efficient implementation of the deterministic
unification algorithm for macro tree transducers. By using this efficient implementation

technique, an implementation of a complete functional logic programming language might
hopefully also benefit (cf. the discussion in Section 6).

Our deterministic unification algorithm for macro tree transducers is based on a depth-
first left-to-right traversal over the computation trees which are induced by the unification-
driven leftmost outermost (for short: ulo) narrowing relation [F'V92b]. As usual, a com-
putation tree collects all possible computations which are induced by the underlying com-
putation relation (here: the ulo narrowing relation) and which start from a particular
sentential form (here: equ(t,s)). We note that, since our deterministic unification algo-
rithm for macro tree transducers is based on a depth-first left-to-right traversal, we cannot
obtain a better behaviour with respect to termination: it is possible that, in a computa-
tion tree, an infinite branch occurs left from the first solution; then our algorithm cannot
terminate. We also note that a breadth-first left-to-right traversal behaves better; it is
even a semi decision procedure. However, it is unacceptably inefficient.

In the rest of the introduction we explain the concept of macro tree transducer, the ulo
narrowing relation, and the implementation of the deterministic unification algorithm for
macro tree transducers.

In functional logic programming languages, it can be observed that recursion often
occurs in the form of primitive recursion over some inductively defined data types like
lists or tree-structured objects (cf. [Pét57] for primitive recursive functions over natural
numbers; cf. [Hup78, Kla84, EV91] for primitive recursive functions over trees). In this
paper we consider a subclass of the class PREC of primitive recursive functions over trees;
this subclass is computed by macro tree transducers [Eng80, CF82, EV85, EV86]. From the
program schematic point of view, a macro tree transducer can be considered as a primitive
recursive program scheme with parameters; it allows for simultaneous function definitions
and for nesting of function calls in parameter positions in right hand sides of function
definitions. Since it does not allow function calls in the recursion argument positions, the
expressive power of macro tree transducers is rather restricted: the composition closure
of macro tree transducers is tightly related to the second level of the LOOP-hierarchy (cf.
Lemma 6.4 of [EV91]).

From the term rewriting system point of view, a macro tree transducer is constructor-
based [You89], canonical (i.e., confluent and noetherian), left-linear, totally defined [Fri85],
and not strictly subunifiable [Ech88]; moreover, for every function symbol f and every
constructor symbol o, there exists exactly one rule the left hand side of which has the

form f(o(x1,...,2k),Y1,-- -, Yn); the right hand side is a term over constructors, variables
Y1, - -5 Yn, and recursive function calls; in such a function call, the first argument is a
variable x1,...,zg. The latter restriction implies a recursive descent over the first function

argument and thus, it guarantees termination. Figure 2 shows an example of a macro tree
transducer with two rewrite rules; it contains the function symbol append and constructors

CONS and NIL.

Now we discuss the ulo narrowing relation introduced in [F'V92b]. This relation com-
bines leftmost outermost narrowing with a particular occur check and a local consistency
check between head constructor symbols. As usual, all possible derivations induced by
the ulo narrowing relation, can be collected in an ordered computation tree, called ulo
narrowing tree. As an immediate consequence of Theorem 7.8 of [FV92b] we will prove

that the depth-first left-to-right traversal over such narrowing trees is a deterministic par-
tial F'r-unification algorithm. The ulo narrowing relation has the advantage that, often,
infinite branches left to the leftmost F'z-unifier are cut off. This pruning is caused by the
occur check, the local consistency check, and the fact that we use outermost narrowing; as
usual, an outermost strategy avoids possibly infinite computations of deleted parameters
of a function call (in opposite to innermost strategies).

Finally, we turn to the discussion of the implementation. We implement the deter-
ministic unification algorithm for macro tree transducers which is induced by depth-first
left-to-right traversals over ulo narrowing trees, on an abstract machine which is called the
twin unification machine. This machine is an extension of the sdrs machine in [GFV91];
the latter machine implements the leftmost outermost reduction relation of macro tree
transducers. The main component of the sdrs machine is a runtime stack which manages
the environments during the evaluation of a term ¢; ¢ may contain function symbols and
constructors of the macro tree transducer.

The implementation of the deterministic unification algorithm for macro tree transdu-
cers simulates the ulo narrowing relation. For this purpose, the sdrs machine is enriched by
a second runtime stack. Then each of the two terms ¢ and s which should be Fgr-unified,
is evaluated on one of the two runtime stacks. More precisely, t is evaluated on the left
runtime stack to a term hnf(t) in head normal form, i.e., the root symbol of hnf(t) is
either a variable or a constructor. Then the control switches to the right runtime stack
which evaluates s into head normal form hnf(s), too. Then, one of the following cases
occurs:

e If the two roots are labeled by the same constructor, then the control switches back
to the left runtime stack and the computation continues with the evaluation of the
first subterm of hnf(t) into head normal form.

o If the two roots are labeled by different constructors, then backtracking is initiated.

e If one of the two terms Anf(t) and hnf(s) is a variable, say, hnf(t) is a variable,
then the occur check is applied to hnf(s). If it fails, then Anf(s) is evaluated to
normal form on the right runtime stack and hnf(t) is bound to this normal form of
hnf(s). If the occur check succeeds, then backtracking is initiated.

In order to handle backtracking, choice points are pushed to the runtime stacks; for
the management of binding of variables, the twin unification machine uses a graph which
results from the tree of the sdrs machine by sharing variables, and a trail with pointers to

graph nodes (cf. the implementation of PROLOG on the WAM in [War83]).

An overview over the main ingredients of the paper and their connections is illustrated
in Figure 3. It shall give the reader an orientation through the paper.

This paper is organized in seven sections, where the second section contains prelimina-
ries. In Section 3 we recall the definitions of macro tree transducer and the ulo narrowing
relation. Furthermore, we present the deterministic unification algorithm for macro tree
transducers. In Section 4 we present a slight modification of the implementation of the
leftmost outermost reduction relation for macro tree transducers on the sdrs machine in

[GF'V91]. We have decided to deserve a complete section for the repetition of this reduction
machine, because it gives a good preparation for the implementation of the deterministic
unification algorithm for macro tree transducers in Section 5. In Section 6 we compare
the implementation of our machine on a SPARCstation SLC with the implementation
of the BABEL system [Win94]. Finally, Section 7 contains some concluding remarks,
comparisons with related work, and it indicates further research topics.

M

macro tree transducer

—

«—

U
/\/>M

ulo narrowing relation [FV92b]

collect all
possible
computations

/N
A2

ulo narrowing tree

perform
a deterministic
traversal

depth-first left-to-right traversal

T~

CITTTTT]

:M

lo reduction relation

CITTTTT]

sdrs machine [GFV91]

twin unification machine

Figure 3: Illustration of the main ingredients of our approach.

2 Preliminaries

We recall and collect some notations, basic definitions, and terminology which will be used
in the rest of the paper. We have tried to be in accordance with the notations in [Hue80]
and [DJ91] as much as possible.

2.1 General Notations

We denote the set of nonnegative integers by IN. The empty set is denoted by (. For
i,j € IN, [i,] denotes the set {i,i+1,...,7}; thus [i,j] =0 if i > j. If ¢ = 1, then we
write [j] instead of [1,j]; thus [0] = 0. For a finite set A, P(A) is the set of subsets of
A and card(A) denotes the cardinality of A. As usual for a set A, A* denotes the set
Unewiaias .. .ay, | for every 7 € [n] : a; € A} that is called the set of words over A; A
denotes the empty word. The i-th symbol of a word w is denoted by w[i].

2.2 Ranked Alphabets, Variables, and Terms

A pair (Q,rankq) is called ranked alphabet, if Q is an alphabet and rankqg : Q2 — INis
a total function. For f € Q, rankq(f) is called rank of f. The subset Q™) of Q consists
of all symbols of rank m (m > 0). Note that, for ¢ # j, Q) and QU are disjoint. If
rankq(a) = n, then we write a(™) . If the ranks of the symbols are clear from the context,
then we drop the function rankq from the denotation of the ranked alphabet (€, rankq)
and simply write 2.

Let V denote a fixed enumerable set of variables which is divided into three disjoint
sets X = {xy,29,...}, Y = {y1,99,...}, and FV = {z1,29,...} of recursion variables,
parameter variables, and free variables, respectively.

Let 2 be a ranked alphabet and let .S be an arbitrary set. Then the set of terms over 2
indexed by S, denoted by T(Q)(S), is defined inductively as follows: (i) SUQ®) C T(Q)(S)
and (i) for every f € Q) with k> 1 and t1,...,t, € T((S): f(t1,...,t5) € T(Q)(S).
The set T(2)(0), denoted by T(£2), is called the set of ground terms over Q.

For a term t € T(Q)(V), the set of occurrences of t, denoted by O(t), is written in
Dewey’s notation. It is defined inductively on the structure of ¢ as follows:

(i) It € VUQO then O(t) = {A}, and

(it) if t = f(t1,...,t,) where f € QU) and n > 0, and for every i € [n] : t; € T(Q)(V),

The prefix order on O(t) is denoted by < and the lexicographical order on O(t) is deno-
ted by <jei:. The reflexive closures of < and <., are denoted by < and <., respectively.
Clearly, < C <. The minimal element with respect to <;., in a subset S of O(t) is
denoted by min,;S. For a term ¢ € T(Q2)(V) and an occurrence u of ¢, t/u denotes the
subterm of t at occurrence u, and t[u] denotes the label of t at occurrence u. We use V(t)
to denote the set of variables occurring in ¢. Finally, we define t[u < s] as the term ¢ in
which we have replaced the subterm at occurrence u by the term s.

2.3 Substitutions, Functions, and Congruences

A (V,Q)-substitution is an assignment ¢ : V — T(Q)(V), where the set {z | ¢(z) #z,2 €
V} is finite. The set {z | ¢(z) # z} is denoted by D() and it is called the domain of ¢. If
D(¢) ={x1,...,2,}, then @ is represented by [z1/p(21), ..., 2n/p(x,)]. If D(¢) = 0, then
¢ is denoted by ¢g. We say that ¢ is ground, if for every z € D(¢) : V(p(z)) = 0. The
set Uyep(y) V(p(e)) is denoted by Z(p) and it is called the set of variables introduced by
. The set of (V,Q)-substitutions and the set of ground (V,Q)-substitutions are denoted
by Sub(V, Q) and gSub(V,), respectively. The composition of two (V, Q)-substitutions ¢
and 1 is the (V, Q)-substitution which is defined by 1 (¢(x)) for every z € V. It is denoted
by @ o).

If two functions f and ¢ from A into B are different only for a finite number of elements
ai,...,a, € Aandif for every j € [n] : g(a;) = b;, then we denote g by fla1/by, ..., a,/by,).
The set of all functions from A into B is denoted by [A — B]. A function f: A — B is
denoted by fy, if for every @ € A : f(a) is undefined.

An equivalence relation ~ on T(Q)(V) is called a congruence relation over T{(2)(V),
if for every f € QU with n > 0 and, for every ty,51,...,t,, 5, € T(Q)(V) with t; ~
S1y.-.ytn ~ sy, the relation f(ty,...,¢,) ~ f(s1,...,s,) holds.

2.4 FE-Unification

An equation over Q and V is a pair (t,s), where ¢t,s € T{(Q)(V). As usual we denote
an equation (¢,s) by ¢ = s. In the rest of the paper, we let £ denote a finite set of
equations over 2 and V. The F-equality, denoted by =p, is the finest congruence relation
over T(Q)(V) containing every pair (¢(t),1(s)), where (t = s) € E and 1 is an arbitrary
(V,Q)-substitution. If ¢ =g s, then ¢ and s are called E-equal (cf. [HO80]). Two terms
t,s € T{Q)(V) are called F-unifiable, if there exists a (V,Q)-substitution ¢ such that

e(t) =k ¢(s).
A deterministic partial F-unification algorithm is a deterministic algorithm which takes

as input a set F of equations and two terms ¢ and s, and which behaves in one of the
following three ways:

e It terminates and yields an F-unifier of ¢ and s.
e [t terminates and answers that ¢ and s are not F-unifiable.

o [t does not terminate.

In Figure 4 we illustrate the behaviours of a deterministic partial F-unification al-
gorithm; every pair (£, s) of terms occurs in exactly one of the three illustrated groups.
Roughly speaking, for two deterministic partial F-unification algorithms A and B, we say
that A is better than B if the group in the middle, i.e., the group of pairs for which the
algorithm does not terminate, is smaller for A than for B. Clearly, because of the undecida-
bility of the general F-unification problem, there is no deterministic partial F-unification
algorithm for which the group in the middle is empty for every set F of equations.

t and s are t and s are t and s are
F-unifiable F-unifiable or not F-unifiable
not F-unifiable

and and and
algorithm algorithm algorithm
terminates does not terminate terminates

Figure 4: Possible behaviours of a deterministic partial F-unification algorithm.

The set {¢ | ¢(t) =g ¢(s)} is called the set of F-unifiers of t and s, and it is denoted
by Ug(t,s) (cf. [Sie89]). Let V' be a finite subset of V. We define the preorder <g (V') on
(V, Q)-substitutions by ¢ <g ¢’ (V), if there exists a (V, Q)-substitution ¢ such that for

every € V 1 ¢(p(2)) =g ¢'(x) (cf. [SieR9]).

Let © be divided into two disjoint sets F and A, let ¢, s € T(Q)(V)and V = V(t)UV(s).
A (V, A)-substitution which is an F-unifier of ¢ and s, is called an (F, A)-unifier of t and
s. A set S of (V, A)-substitutions is a ground complete set of (F,A)-unifiers of t and s
away from V [Ech88] if the following three conditions hold:

1. Forevery ¢ € S: D(¢) CV and Z(¢)NV = 0.
2. For every ¢ € S: ¢ is an (&, A)-unifier of ¢ and s.
3. For every ground (£, A)-unifier ¢ of t and s, there is a 1 € S such that ¢ <g ¢ (V).

2.5 Term Rewriting Systems

A term rewriting system, denoted by R, is a pair (2, R), where € is a ranked alphabet and
R is a finite set of rewrite rules of the form [— r such that [, € T(Q)(V) and V(r) C V()
(cf. [Hue80]). For every term rewriting system R = (2, R), the related set of equations,
denoted by Eg,is theset {{ =r |l = r € R} (cf. [MH92]).

Let R = (€, R) be a term rewriting system and let ¢ € T().
e The set of redex interfaces for R and t, denoted by redI(R,t), is the set
{(u, 0,1 = 1) |ueOt) witht/u g V,p € Sub(V,Q),l = r € R with p(I) =t/u}.

e The set of redex occurrences for R and t, denoted by redO(R,t), is the set

{uw] (u,,l = 1) €redl(R,t)}.

e The reduction relation associated with R, denoted by =, is defined as follows:
For every t,s € T(Q) : t =>r s, if the following two conditions hold:

1. There is a redex interface (u,p,l — r) € redI(R,t).
2. s =1tu+ ¢(r)]. o

If R is clear from the context, then we write = instead of =—>x. We use the standard
notation =* to denote the transitive-reflexive closure of =—. A term rewriting system
is canonical, if it is confluent and noetherian (cf. [HO80]). A term ¢ is a normal form of
a term s, if s =% ¢ and t is irreducible, i.e., there does not exist any term t' such that
t =r t'. A (V,Q)-substitution ¢ is in normal form if for every x € D(¢), the term ¢(x)
is irreducible.

Finally, we recall the definition of the leftmost outermost narrowing relation which will
be used in the definition of the unification-driven leftmost outermost narrowing relation
in Subsection 3.2.

Let R = (2, R) be a term rewriting system and let ¢ € T(Q2)(V).

e The set of narrowing interfaces for R and t, denoted by narl(R,t), is the set

{(w, o, 0l = 1, p) | w € O(t) with t/u ¢ V,l — r € R, p is a renaming of variables in [
such that V(p(l)) N V(t) = 0, and ¢ € Sub(V,Q)is the most general unifier of

p(l) and t/u}.

e The set of narrowing occurrences for R and t, denoted by narO(R,t), is the set

{ul (u, 6,0 1, p) € nar[(R,1)}.
e The leftmost outermost narrowing occurrence for R and t, denoted by lo-narO(R,t),

is the narrowing occurrence minj.,narO(R,t).

o The set of leftmost outermost narrowing interfaces for R and t, denoted by lo-
narl(R,t), is the set

{(u, 0,0l = 1,p) | (w, 0,0 = r,p) € narl(R,t) and v = lo-narO(R,t)}.

o The leftmost outermost narrowing relation associated with R, denoted by '@R, is

defined as follows: for every t,s € T(Q)(V) and ¥, ¢" € Sub(V,Q): (t,v) derives to
(s,v") by '@R, denoted by (¢,1) ’@R (s,v"), if the following three conditions hold:

1. there is a leftmost outermost narrowing interface (u, p,{ — r, p) € lo-narl(R,t)
2. s = p(tlu = p(r)])
3. ¢ = 1o (elyw)

10

3 The Deterministic Unification Algorithm for Macro Tree
Transducers

In this section we define the deterministic unification algorithm for macro tree transducers.
For this purpose, we recall the definition of macro tree transducers from [Eng80, CF82] and
introduce its leftmost outermost (for short: lo) reduction relation. After that, we recall
the unification-driven leftmost outermost narrowing relation (for short: ulo narrowing
relation) and the ulo narrowing trees. Finally, we define the deterministic unification
algorithm for macro tree transducers which is shown to be a deterministic partial F-
unification algorithm.

3.1 Macro Tree Transducer and LO Reduction Relation

We start this subsection by recalling the notion of macro tree transducer. For the sake
of better readability, we first define the set of right hand sides of rewrite rules of a macro
tree transducer.

Definition 3.1 Let F and A be ranked alphabets. For every f € F("t1) with n > 0 and
o € AU with m > 0, the set of (f,o)-right hand sides, denoted by RHS(f, o), is the
smallest set RH.S which is defined inductively as follows:

(i) Forevery i€ [n]: y; € RHS.

(ii) For every § € A% with k > 0 and for every r; € RH S with i € [k] :
8(ri,...,1x) € RHS.

(iii) For every g € FUHD) with k > 0, i € [m], and for every r; € RHS with j € [k] :
g(ziyr1,...,7%) € RHS.
The set of the right hand sides for F' and A, denoted by RHS(F,A), is the set

) RHS(f,0).

fEFcEA

Definition 3.2 A macro tree transducer is a term rewriting system (2, R), where

e () is partitioned into two disjoint sets F' and A, where F' and A are the sets of
function symbols and constructor symbols, respectively; moreover, F(©) = {.

e If l » risin R, then { = f(o(z1,...,2m),Y1,--.,Yyn) and r € RHS(f, o) for some
n>0,fe Frt) m >0, and o € AU, In this case, [— r is called (f, o) — rule.
Moreover, for every f € F and 0 € A, R contains exactly one (f, o) — rule. a

In the sequel, we will denote a macro tree transducer (2, R) with Q = FUA by (I, A, R).

11

Remark 3.3 With every macro tree transducer M = (F,A, R), a bijection = : R —
[card(R)] is associated that describes an enumeration of R. The function 7 is defined as
follows: We suppose that there exist total orderings on F and A, i.e., (f1,..., f,) for the
elements of /' and (o4, ...,0,) for the elements of A. In this case, 7 maps the (f;, o;)-rule

to ((¢ — 1) - card(A)) + j. We write R as follows:

{fi(gj(xlv .. -vxrank(crj))7 Y1, - - '7y7’ank(f,‘)—1) — Ty |] € [p]77’ € [n]}

To give an example, the set Ry of rewrite rules of the macro tree transducer M; =
(F1,Aq, Ry) is shown in Figure 5, where we assume to have a ranked alphabet I} =
{sh® miM} of function symbols and a ranked alphabet A; = {o(2), a9} of constructors.
Intuitively, My defines two functions shovel and merror with arity 2 and 1, respectively;
marror reflects terms over A at the vertical center line, and shovel accumulates in its
second argument the mirror-image of the second subterm of its first argument. If we con-
sider, e.g., the term t; = o(0(«, s1), s2) for some subterms s; and sq, then for an arbitrary
term to, sh(ty,tz) derives to the term o(mi(sy), o(mi(sq),tz2)).

sh(a, y1) — n (1)
sh(o(z1,22), 1) — sh(xy,0(mi(z2),11)) (2)
mi(«) — e (3)
mi(o(zy, x2)) — o(mi(z3), mi(z1)) (4)

Figure 5: Set of rewrite rules of the macro tree transducer Mj.

Remark 3.4 Every macro tree transducer M is a ctn-trs, i.e., it is canonical (i.e., conflu-
ent and noetherian) [FHVV93], constructor-based [You89], totally defined (i.e., every nor-
mal form does not contain any function symbol) [EV85], and it is not strictly sub-unifiable
[Ech88]. A term rewriting system is strictly sub-unifiable if there exist two rewrite rules
I = r and I’ — ' such that (i) there exists an occurrence u € O(l) N O(I") where [/u
and !'/u are unifiable and their most general unifier is neither a variable renaming nor the
empty substitution, and (ii) for every v € O(I) N O(I') with v < u we have {[v] = I'[v].
These conditions cannot be fulfilled by a macro tree transducer, because of the structure
of the rewrite rules’ left hand sides. a

In the rest of the paper, M denotes an arbitrary, but fixed macro tree transducer (I, A, R).

The leftmost outermost reduction relation is a subset of the reduction relation (cf.
Section 2) which only allows reduction at the leftmost outermost redex occurrence.

Definition 3.5 Let M = (F, A, R) be a macro tree transducer and let t € T'(F' U A).

e The leftmost outermost redex occurrence for M and t, denoted by lo-redO(M, 1), is
the redex occurrence ming.,redO(M,t).

12

e The set of leftmost outermost redex interfaces for M andt, denoted by lo-redl (M, t),
is the set

{(u, 0,0l = 1) | (u, 0,0l = r) € redl(M,t) and u = lo-redO(M, t)}.

e The leftmost outermost (for short: lo) reduction relation associated with M, denoted

by £>M7 is defined as follows. For every ¢,s € T(F'UA) define ¢ £>M s, if the
following two conditions hold:

1. There is a leftmost outermost redex interface (u, ¢, — r) € lo-redl (M, t).

2. s=1tu+ ¢(r)] o

Note that lo-redO(M,t) € redO(M,t) and that lo-redI(M,t) C redI(M,t). We some-
times use indices for £>M to indicate the lo redex occurrence or the applied rule. For

instance, £>M,u,l—>r denotes the reduction step in Definition 3.5. Furthermore, we often

replace the applied rule by its number. A derivation by £>M17 where M; is the macro
tree transducer in Figure 5, is illustrated in the following example.

Example 3.6 Let M; be the macro tree transducer in Figure 5. Consider the term
t = sh(o(a,), mi(a)).
lo . .
t =@ shla,o(mi(a), mi(a)))

(mi(e), mi(a))
lo .
=M1, 0o, mi(a))

(

2M1,27(3) g 05705)

Since there is no function call anymore, the term o(a, «) is the normal form of ¢. O

Note that, the reduction machine only accepts particular expressions as input. They are
defined at the beginning of Section 4.

3.2 ULO Narrowing Relation

In [F'V92b] we have introduced the unification-driven leftmost outermost narrowing re-
lation (for short: ulo narrowing relation). We have shown that, for ctn-trs’s, the ulo
narrowing relation constitutes a universal unification algorithm for the class of equational
theories which are induced by such term rewriting systems.

Roughly speaking, the ulo narrowing relation combines leftmost outermost narrowing
with a particular occur check and a local consistency check between head constructor
symbols. The local consistency check is based on additional rules called decomposition
rules; the original macro tree transducer M together with the decomposition rules form
the extension of M.

13

Definition 3.7 The extension of M, denoted by M\, is the triple (ﬁ, A,]%), where

o '=FU {equ}, where equ is a new binary symbol.

e R contains the rules of R and additionally, for every o € AW with & > 0, the
decomposition rule

equ(o(x1, ..., 25),0(Tpg1, ..., 22k)) = olequ(zy, Tpy1), .- ., equ(xg, T2p)).

a

The enumeration of the rules in R is given by the bijection 7 : R — [card(R)] such that
7|r = w, where 7 is the bijection that induces the enumeration of R (cf. Remark 3.3), and
the decomposition rules are enumerated in any arbitrary order (which is irrelevant in the
sequel).

As an example, the set R1 of the extensmn M1 = (ﬁl,AhEl) of the macro tree
transducer M;, where Iy = {sh(® mi), equ(®} and Ay = {0, a(®}, includes the rules
in Figure 5 and in Figure 6.

« (5)
olequ(zy, z3), equ(za, x4)) (6)

equ(o, o)

%
equ(o(zy,x2),0(x3,24)) —

Figure 6: Decomposition rules of Ml.

The derivation forms of the ulo narrowing relation are pairs (e, ¢) consisting of a term
e € T(FUA)(FV) and an (F'V, A)-substitution ¢. We allow only variables of the set F'V/
in the derivation forms for preventing conflicts with variables occuring in the rewrite rules.

Intuitively, the ulo narrowing relation is defined as follows. If (e, ¢) is the current deri-
vation form, then the leftmost occurrence of equ in e is considered; we call this occurrence
the important occurrence in e and we denote it by impO(e). Let e/impO(e) = equ(ty,ts)
for some terms ty and to, and let [; and /5 be the labels of the roots of t; and t,, respectively.
Then we distinguish the following cases.

o If [y =l =0 € A, then the decomposition rule for ¢ is applied.
e If [1,l; € A and [y # 3, then the derivation is stopped without success.

e If [y € FV and [, = 0 € A, then the occur check for [y is applied to the (AU
FV)-skeleton of t3. If it succeeds, then the derivation is stopped; otherwise, the
decomposition rule for ¢ is applied.

The (AU FV)-skeleton of a term t is the set of all occurrences u € O(t) such that
there does not exist any prefix v of u which is labeled by a function symbol.

o If ;=0 € A and [, € FV, then the ulo narrowing relation behaves similarly to the
previous case.

14

If l1,l; € FV and [y # I3, then