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This has been an exciting summer for computational complexity.

• Manindra Agrawal and his students Neeraj Kayal and Nitin Saxena at ITT Kanpur have given
the first provably deterministic polynomial-time algorithm for primality. For more details see
Josep Dı́az’s Algorithmic Column in this bulletin.

• Madhu Sudan received the Nevanlinna Prize for his work on probabilistically checkable proofs
and error-correcting codes. This prize is given with the Fields medal every four years for work
in “information science”.

• The Conference on Computational Complexity held in Montreal in May broke all records
with 140 participants. Next year’s conference is coming to Europe and will be held July
7-10 in Aarhus, Denmark. See the call for papers elsewhere in this bulletin or check out the
conference’s new website at computationalcomplexity.org.

Ketan Mulmuley and Milind Sohoni have taken an algebraic geometry approach to separating
complexity classes. In this column Ken Regan deciphers this approach for computer scientists.

Understanding the Mulmuley-Sohoni Approach to P vs. NP

Kenneth W. Regan1

University at Buffalo

Abstract We explain the essence of K. Mulmuley and M. Sohoni, “Geometric Complexity Theory
I: An Approach to the P vs. NP and Related Problems” [MS02] for a general complexity-theory au-
dience. We evaluate the power and prospects of the new approach. The emphasis is not on probing
the deep mathematics that underlies this work, but rather on helping computational complexity
theorists not versed in its background to understand the combinatorics involved.

1 Introduction

Consider a group G of n× n matrices A and a vector v in an n-dimensional vector space V over a
field F . The orbit Gv is the set of images Av over all A ∈ G. We ask, how “nice” a subset of V
does Gv form? Does it swing arbitrarily close to zero? If not, and/or if it remains nice when we
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replace V by the projective space V ∗—then one says that the action of G on v is stable. We can
ask similar questions for other kinds of group actions α : G× V → V besides A, v 7→ Av, including
cases where the dimension of V is much larger than n.

Stability is informally a notion of not being “chaotic,” and has developed into a major branch of
algebraic geometry under the guiding influence of D.A. Mumford among others. Ketan Mulmuley
and Milind Sohoni [MS02] observe that many questions about complexity classes can be re-cast
as questions about the nature of group actions on certain vectors in certain spaces that encode
problems in these classes. This survey explains their framework from a lay point of view, and
attempts to evaluate whether this approach truly adds new power to attacks on the P. vs. NP
question.

2 Key geometric and algebraic concepts

First we need to define “nice.” Given a field F , take V to be the finite-dimensional vector space
Fn. Also write F [x1, . . . , xn] for the ring of polynomials in n variables with coefficients in F . The
solution space S of a finite set of polynomial equations p1(x1, . . . , xn) = 0, . . . ps(x1, . . . , xn) = 0 is
then a subset of V , and we call S a basic closed set . Finite unions and arbitrary intersections of
basic closed sets form the closed sets of the Zariski topology on V . Their complements are Zariski-
open. Proper Z(ariski)-closed subsets of V are “nice” algebraic sets. Less nice are subsets that are
open, or are the intersection of a closed set and an open set—these are called locally closed . Finite
unions of locally-closed sets are the same as all finite Boolean combinations of closed sets—these
are called constructible sets.

Every Z-closed set is closed in the familiar “Euclidean” topology, but not conversely, because
every Z-closed set other than V itself is at most (n− 1)-dimensional. Thus every Z-closed set other
than V has measure zero on V , and being Z-open gives a particularly strong notion of “almost
everywhere.” Just as in the Euclidean topology, every set R ⊆ V has a closure R̄ in the Zariski
topology, defined to be the intersection of all Z-closed sets that contain R. It is also definable as
R̄ = V(I(R)), where I(R) is the set of all n-ary polynomials that vanish on R, and V(I) means
the set of common zeroes of those polynomials. Here I = I(R) forms an ideal , meaning that for
all p, q ∈ I and arbitrary polynomial α, αp + q ∈ I. Not all ideals have the form I(R) for some
R—those that do are radical , meaning that whenever some power pe of a polynomial p belongs to
I, p itself belongs to I. Hilbert’s Nullstellensatz says that if the field F is algebraically closed, then
there is a 1-1 correspondence between Z-closed subsets of V and radical ideals in F [x1, . . . , xn].
Every ideal of polynomials I is finitely generated , meaning that there exist p1, . . . , ps ∈ I such that
I comprises all the “algebraic consequences” α1p1 + . . .+αsps over all polynomials α1, . . . , αs of the
equations pi. The Nullstellensatz implies that the equations are unsolvable over the algebraically
closed field iff 1 is a consequence. The Z-closure of an arbitrary point set R may balloon out
a lot further than its Euclidean closure—for instance, any “open ball” (of full dimension) in the
Euclidean topology closes out to all of V in the Zariski topology.

The Zariski topology may also be defined on projective space, and there it has an important
special-case connection with the familiar topology. Define P (V ) to be the space of equivalence
classes of V under scalar multiplication—i.e., of one-dimensional linear subspaces. This is the
projective space associated to V . If each polynomial pi in { p1, . . . , ps } is homogeneous, meaning
that all its monomials in unfactored form have the same degree di (which can be different for
different i), then their solution space S is invariant under scalar multiples. Thus S becomes a
subset of projective space (ignoring the zero vector), and is a closed set in the Zariski topology on
P (V ). The Z-closure of an arbitrary R ⊆ P (V ) is defined analogously. The key fact is that when



V is a vector space over an algebraically closed field, and S is a constructible subset of P (V ), the
Z-closure of S coincides with its classical closure (see [Mum76]).

2.1 Group actions

A group action of a group G on a set S is a mapping α : G × S → S that converts group
multiplication into composition: for all g, h ∈ G and u ∈ S, α(gh, u) = α(g, α(h, u)). If e is the
identity of G, it is customary—but not always necessary—to stipulate that α(e, u) = u for all u.
The canonical example is when S = V = Cn and G is a group of complex n × n matrices A,
with α(A, u) = Au. Then α(AB, u) = ABu since multiplication is associative. Another action is
α′(A, u) = AuA−1; note that α′(AB, u) = (AB)u(AB)−1 = ABuB−1A = α′(A,α′(B, u)). This is
subsumed by the action of the product group G′ = G×G given by α2((A,B), u) = AuB−1.

Where the action referred to is clear, it is written simply with product notation, namely g·u in
place of α(g, u). The action is said to “give S the structure of a G-module.”

The action used most critically by Mulmuley and Sohoni takes G to be a group of invertible
m × m matrices B and h to be an m-variable polynomial that is homogeneous of some degree
d ≤ m. Such h belong to the vector space Vd over C of dimension D = (m+d−1

d ), with basis
given by the set of monomials of degree d. The action is αG(B, h) = h′, where h′ is defined for
all v ∈ Cm by h′(v) = h(vB−1). Again, if C then sends h′ to h′′ = λw.h′(wC−1), then for all v,
h′′(v) = h(vC−1B−1), which is where BC sends h.

Definition 2.1 (see discussions in [MS02]). A polynomial h is stable under the G action if the
orbit Gh in V is Z-closed, and semi-stable if the Z-closure of the orbit Gh in V does not contain
the zero polynomial. Otherwise it is unstable or nilpotent . The set of unstable polynomials is the
null cone of V.

These attributes are unchanged on multiplying h by any scalar, so they can also be applied to
points in the projective space P (V).

Orbits in affine space are always locally closed (see section 8.3 in the text [Hum81]), and hence
constructible, but need not be closed. The boundary of the orbit, namely its Z-closure minus the
orbit, is also preserved by G, so it is a union of orbits. Since in projective space this is the same
as the classical boundary, it is lower-dimensional than the original orbit, so all orbits in the union
are lower-dimensional. Iterating this reason yields the existence of orbits of minimum dimension in
these boundaries that themselves are closed, so stable points always exist.

Not to be confused with “stable” are the following key concepts. The isotropy subgroup of a
vector v ∈ V under a given action by a group G is defined by Gv = { g ∈ G : gv = v }. This
is the subgroup of elements whose action leaves v fixed. The orbit is then the singleton { v },
which is closed, so such v are stable. The stabilizer of a vector subspace W of V is given by
GW = { g ∈ G : (∀w ∈ W ) gw ∈ W }. The isotropy subgroup Gw is also called the “stabilizer” of
w, but we try to minimize the usage of “stable. . . ” and prefer to say w is fixed by Gw. Note that
stabilizing W is weaker than fixing every w ∈W , when we say W is pointwise fixed .

Example 2.1. This expands “5.3.1 Example 2” in [MS02], itself ascribed to [PV91]. Let V = C4

be thought of as the space of homogeneous polynomials of degree 3 via coefficients of the four basic
monomials x3, x2y, xy2, y3. Take G = SL2(C), f = x2y, and g = x3 + y3. Then f is identified with
(0, 1, 0, 0), and g with (1, 0, 0, 1). Take A = ( a cb d )−1, so that the action A ·f = λx.f(xA−1) gives
A·f = f(ax+ by, cx+ dy) = (ax+ by)2(cx+ dy) and A·g = (ax+ by)3 + (cx+ dy)3. Then subject



to ad− bc = 1, the orbits of f and g are:

Gf = { (a2c, 2abc+ a2d, 2abd+ b2c, bd2) : ad− bc = 1 }
Gg = { (a3 + c3, 3a2b+ 3c2d, 3ab2 + 3cd2, b3 + d3) : ad− bc = 1 }

To determine the isotropy subgroup Gf for the action on V , we solve a2c = 0, 2abc + a2d = 1,
2abd + b2c = 0, and b2d = 0, together with ad − bc = 1. We cannot have a = 0 by the second
equation, so c = 0, and then by ad−bc = 1 we cannot have d = 0 either. So b = 0 and we are left to
solve a2d = 1 and ad = 1. This forces a = d = 1, so we get the identity matrix only, meaning that
Gf on V is trivial. However , if we work in P (V ), then the second equation becomes 2abc+a2d = m
for a general nonzero multiplier m, and then we’re left to solve a2d = m and ad = 1. This is solved
by a = m, d = 1/m, giving us a one-dimensional isotropy subgroup of diagonal matrices. Since
P (V ) is 3-dimensional, this implies that the orbit Gf is two-dimensional.

For Gg in V , we solve a3 + c3 = 1, a2b+ c2d = 0, ab2 + cd2 = 0, and b3 + d3 = 1, together with
ad− bc = 1. If a = 0, then we get c3 = 1 and c2d = 0, so d = 0 and we’re left with bc = −1, c3 = 1,
and b3 = 1. This is impossible because no two of the cube roots of unity multiply to −1. So a 6= 0,
and symmetrically, d 6= 0. Thus we can divide by a to get b = −c2d/a2, and then ab2 = −cd2

simplifies to c4/a3 = −c. If c 6= 0, this gives c3/a3 = −1, but that contradicts a3 + c3 = 1. So
c = 0, and symmetrically, b = 0. This leaves a3 = 1, d3 = 1, and ad = 1, so Gg is the finite set
( ω 0

0 ω̄ ) over the three cube roots ω of unity. Thus Gg is finite.
Now we can show that no multiple mf of f lies in the orbit Gg. Here we try to solve a3 +c3 = 0,

a2b + c2d = m, ab2 + cd2 = 0, b3 + d3 = 0, and ad − bc = 1. If d = 0 then b = 0 and ad − bc = 1
is impossible; thus we can divide by d. Substituting a = (1 + bc)/d in the third equation and
multiplying through by d gives b2 + b3c+ cd3 = 0. But since b3 + d3 = 0 this gives b = 0 and d = 0,
sending us back to the impasse. Thus without even considering the equation with m we cannot
solve this. However , we can come within any desired ε > 0 of f in each coefficient. Take d = 0,
b = ε, a = 1/ε, and c = −1/ε. Then

Ag = (0, 3/ε, 3ε, ε3).

Thus the multiple (3/ε)f of f lies within ε of the orbit, so in projective space, f lies within the
Z-closure of the orbit. The fact that progressively higher multiples of f are needed in affine space
is typical.

A simple example of isotropy is to note that symmetric polynomials are fixed under permutations
of the variables, i.e. by permutation matrices applied to the argument variables. For another
example, note that when A and B are invertible n× n matrices of equal determinant, and Y is an
n×n matrix of variables, the action Y 7→ AY B−1 preserves the determinant, since det(AY B−1) =
det(A) det(Y )/det(B) = det(Y ). This linear transformation of Y can be expressed as a matrix SA,B
of size n2×n2 applied to Y unrolled as a vector. This matrix has det(SA,B) = 1, so SA,B ∈ SLn2(F ).
The set of all matrices arising as SA,B with A,B as above forms a subgroup R of SLn2(F ) that
fixes detn.

If we only care about preserving det up to scalar multiples—i.e. if we consider det as existing
in projective space—then we can define R′ without the restriction det(B) = det(A). Then R′ is no
longer a subgroup of SLn2(F ), but its intersection with SLn2(F ) is a subgroup R′′. As asserted in
[MS02], R′′ comprises all matrices in SLn2(F ) that fix det, so the isotropy subgroup of det under
the standard action by SLn2(F ) is R′′. Moreover, the only polynomials fixed by R′′ are multiples of
det, so in projective space, detn is characterized by R′′. The isotropy subgroup of the permanent



for n ≥ 3 is shown ([MS02] citing Minc) to be generated by (the linear transformations in SLn2(F )
arising from) the subcases where A and B are either diagonal or permutation matrices, provided F
is not of characteristic 2, and again the permanent is the unique polynomial up to multiples that
it fixes.

Finally, an action by a group G on V can fix a polynomial function p on V in the sense
that for all g ∈ G, λx.p(α(g, x)) equals p itself. Then p is likewise “G-invariant.” When V is a
space of polynomials, thinking of “polynomials with polynomial arguments” can seem hairy, but
remembering correspondences such as V = the span of {x3, x2y, xy2, y3 } = C4 can help. As
ascribed to Hilbert in [MS02], the null cone of V under a given group action is characterized as the
set of points on which every non-constant homogeneous polynomial that is constant on orbits of G
vanishes. This is an example of how the notion of isotropy (“stabilizing”) interacts with stability
(or being unstable).

2.2 Linear group representations

An action αG on a vector space V is linear if for all g ∈ G, u, v ∈ V , and scalars c ∈ F , α(g, cu+v) =
cα(g, u) +α(g, v). Then α(g, ·) induces a linear transformation on V , so there is a matrix Ag of the
same dimension as V such that α(g, u) = Agu for all u ∈ V . Thus the action of left multiplication
by a matrix is canonical, and one can regard α itself as a homomorphism from G into a group of
such matrices. In the action α(B, h) = λx.h(B−1x) used by Mulmuley and Sohoni above, “AB”
becomes an exponentially large matrix in terms of m (if d = Θ(m)).

An action αH by a homomorphic image H = φ(G) of G can be regarded as an action of G itself
via αG(g, u) = αH(φ(g), u), since

αG(gh, u) = αH(φ(gh), u)
= αH(φ(g)φ(h), u)
= αH(φ(g), αH(φ(h), u))
= αG(g, αG(h, u))

. Thus if S is an H-module, it is a G-module for any G of which H is a subgroup.
Evidently because of these facts, it has become “cultural” to call either the matrix group or V

itself a representation of G, even if the mapping “really” represents only a small image H of G.
Another transmutation is that a group G of n× n matrices over a field F is-a subset of the vector
space Fn

2
, and one can attribute to G properties such as being Z-closed, locally closed, connected,

and/or compact (the latter two with reference to the Euclidean topology).
For instance, the special linear group SLn(F ) of n×n matrices A with det(A) = 1 is Z-closed—

because it is defined by the single equation det(x11, . . . , xnn) = 1. It is connected for F = Q,R,C
because any two matrices of determinant 1 can be continuously varied one to the other through
matrices of determinant 1. The general linear group GLn(F ) of invertible n×n matrices is Z-open,
because it is the complement of the Z-closed set defined by det(x11, . . . , xnn) = 0. It is, however,
locally Z-closed.

What matters to us most in a representation, however, is the correspondence between subgroups
H of G and subspaces W of V that are stabilized (one also says preserved or invariant) under the
action of G. If H stabilizes W , then W is a representation of H. A representation αG is irreducible if
there is no proper subspace W of V that is stabilized by G. If G is a direct sum H+J of two groups
H and J (i.e., G is isomorphic to H×J with the group product (h1, j1)·(h2, j2) = (h1·h2, j1·j2)), and
V = W +X for subspaces W and X preserved under the induced actions αH and αJ , respectively,



then αG is reducible and factors as αG = αH + αJ . Writing v ∈ V uniquely as w + x for w ∈ W
and x ∈ X, and g ∈ G corresponds to (h, j) with h ∈ H and j ∈ J , we get

αG(g, u) = (h, j)·(w + x) = hw + jx = αH(w) + αJ(x).

Note that if G itself stabilizes W , then we can take H = G and “J” = the identity subgroup 1 of
G and factor

αG = αG oW + τ oX,
where τ is the action of 1 and is called the trivial representation. (Here omeans “restricted to.”)
Note also that τ oX itself is irreducible if and only if the subspace X is 1-dimensional. The main
theorem this leads to is that every representation onto a finite-dimensional vector space can be
factored into irreducible representations, and this factorization is unique up to isomorphism. The
number of times τ occurs in this representation gives information about the dimensionality of
invariant subspaces.

Representations have immediate relevance via Kempf’s stability criterion. A one-parameter
subgroup G′ of G is the image of a homomorphism from the multiplicative group F ∗ of non-zero
elements of F to G. It is central if every element of G′ commutes with every element of G. For
example, GLn(F ) has the nontrivial central one-parameter subgroup consisting of scalar multiples
of the identity matrix, but SLn(F ) does not—and has no such subgroup. Following Alperin and
Bell [AB95], define a subgroup G′ of G to be parabolic if it is the simultaneous stabilizer of a
sequence of linear subspaces

0 ⊂W1 ⊂W2 ⊂ . . . ⊂Wr−1 ⊂Wr = V.

Such a sequence is called a flag , and by the proper containments, must have r ≤ n = dim(V ) terms.
For groups G such as SLn(F ) with no nontrivial central one-parameter subgroups, Kempf’s criterion
states that a projective point y ∈ P (V ) is stable if the isotropy subgroup Gy is not contained in
any proper parabolic subgroup of G. In particular this follows if the representation of Gy on V is
irreducible. The above descriptions of the isotropy subgroups of detn and permn are irreducible
representations, so these polynomials are stable under the action by SLn2(F ).

3 Application to Complexity Theory

The jumping-off point for the Mulmuley-Sohoni method is Valiant’s method [Val79] (see also
[vzG87]) of reducing any polynomial-size family of arithmetical circuits to a polynomial-size family
of determinant computations. This extends to saying that functions believed to be intractable, such
as the permanent polynomials, have polynomial-size (arithmetical) circuits iff they belong to the
(Z-closure of the) orbits of the determinant polynomials under certain group actions. It is impor-
tant to note that these polynomials are represented as vectors of length exponential in “n,” hence
exponential in the size of the matrices involved at the outset. We henceforth alter the notation in
[MS02] to make explicit a distinction between large and small objects.

1. n is always the reference parameter for the length of the input to a computational problem.

2. N = n2 is the size of an n×n matrix. Since we are concerned only with polynomial complexity,
we can measure in terms of n even if the input is a matrix of size N .

3. m = nO(1) is the number of rows/columns in paddings of n × n matrices that arise, and
becomes the degree of the permanent, determinant, and other homogeneous polynomials
associated to these matrices. Sometimes d stands for the degree of these polynomials.



4. M = m2 is the size of this matrix, and also the number of variables of these polynomials.

5. A,B,C, . . . stand for n× n or m×m matrices.

6. p(n) = nO(1) stands for a polynomial running time.

7. f, g, h, . . . stand for polynomials in N or M variables—note that these are vectors of length
exponential in m, i.e. large objects.

8. V,W, . . . stand for vector spaces of small objects, while V,W stand for vector spaces of large
objects.

9. G,H,K, . . . stand for groups of small matrices.

3.1 Permanent and Determinant

Fix F to be the complex numbers for the time being. Suppose the permanent polynomial permn of
an n×n matrix xij of indeterminates has arithmetical formulas over F of size s. Then as remarked
by von zur Gathen [vzG87], there is an (s+2)×(s+2) matrix M whose entries are either constants
or variables xij , such that det(M) re-creates the permanent polynomial. Thus permn becomes a
“Valiant projection” of the determinant polynomial of an m×m matrix of indeterminates yij , with
m = s + 2. In order to apply the Mulmuley-Sohoni setup, we need to pad permn into a degree-m
homogeneous polynomial over the yij variables of equivalent circuit complexity. Mulmuley and
Sohoni do this via a map φ(f) = ym−nmm f ′, where f ′ is f with variables xij renamed to yij for
1 ≤ i, j ≤ n and the choice of ymm outside this square being arbitrary. Write φ(f) as fφ for short.
Also let sdet(n) stand for an upper bound on the formula size of detn; currently sdet(n) = nO(logn) is
best known (see [BCS97]). The connection to complexity theory is the following proposition and its
near-converse, which hold for any f in place of permn. Note that unlike the definition of stability,
it talks about orbits under actions in projective space itself.

Proposition 3.1 ([MS02], Propositions 4.1 and 4.4) With reference to the action of
SLm2(F ) on polynomials in m2 variables:

(a) If the permanent has formulas of size m − 2, then permφ
n is in the projective closure of the

orbit of detm.

(b) If permφ
n is in the projective closure of the orbit of detm, then for any ε > 0, there are n2-

variable formulas Fε of size m2sdet(m) that approximate permn, in the strong sense that the
coefficients of the polynomial computed by Fε are within ε of those of corresponding terms of
permn. Only the constants in Fε depend on ε.

Proof. (a) Form an m × m matrix M ′ by taking M above, multiplying every nonzero constant
entry of M by ymm, and renaming entries xij with 1 ≤ i, j ≤ n back to yij . Then det(M ′) = permφ

n.
Since every entry of M ′ is a trivial linear combination of entries of the m ×m matrix Y = (yij),
there is a linear transformation A : Fm

2 → Fm
2

that produces M ′ from Y . Thus permφ
n = det(AY ).

Although A may be a singular m2 ×m2 matrix, there are elements A′ of GLm2 arbitrarily close to
A. In fact, det(A′Y ) can be made to approximate permφ

n coefficient-wise in the sense of (b). (Note
that Y is “unrolled” as a vector of length m2 in the product A′Y , not kept as a matrix.) Thus
permφ

n is in the classical closure of the GLm2-orbit of detm = det(Y ) in affine space Vm. Now take
d = det(A′) and A′′ = A′/(d1/m2

). Then det(A′′) = 1, so A′′ ∈ SLm2 , and det(A′′Y ) is coefficient-
wise a scalar multiple of the previous approximation to permφ

n. Thus passing to projective space,



permφ
n belongs to the classical closure of the SLm2-orbit of detm. Since the classical closure is

always contained in the Z-closure, (a) is proved.
(b) Suppose permφ

n, regarded as a point in P (Vm), lies in the Z-closure of the SLm2-orbit of
detm. Here we use the “key facts” that this orbit is a locally Z-closed subset of a Z-closed set in
P (Vm) (see [Hum81]), and thus its Z-closure coincides with its classical closure in P (Vm). Thus for
any δ > 0, we can find an m2×m2 matrix Aδ with det(Aδ) = 1 such that det(AδY ) has coefficients
within δ of some multiple c of permφ

n. Now let A′δ = Aδ/c
1/m. Then det(A′δY ) has coefficients

within δ/c of permφ
n. Provided δ < ε/c, det(A′δY ) has coefficients within ε of permφ

n.
Now in forming det(A′δY ), we can zero out variables that do not occur in permφ

n, as the terms
involving these variables must have coefficients of magnitude less than ε anyway. Also set ymm = 1
and rename the remaining variables yij to xij . Then every entry of the length-m2 vector A′δY is
a linear combination of variables xij plus possibly a constant term, where the coefficients depend
on ε. When we roll A′δY back into a matrix and compose this with formulas ψ of size sdet(m) for
the m ×m determinant, we plug linear formulas of size at most m2 at the input gates of ψ. The
resulting size is at most m2sdet(m). Moreover the entries of A′δ affect only the coefficients, not the
structure, of the resulting formula.

When m = nO(1) or even m = n(logn)O(1)
, m2sdet(m) = n(logn)O(1)

= size quasipolynomial in n.
Thus there is nearly an equivalence here between fφ-stability of detm and coefficient-wise approx-
imability of f by formulae of quasi-polynomial size, for any f not just the (padded) permanent.

What is untreated in (b) is how the magnitudes of constants in Aδ depend on δ, hence on
ε. High magnitudes would prevent a solid link being drawn to computing approximations to the
permanent via Turing machines or RAM models with “fair-cost arithmetic.” However, algebraic
complexity theory has mainly developed to ignore the magnitudes of constants—see [Lok95] as a
stem paper for bounded-magnitude lower bounds and Mulmuley’s own prior work [Mul99] for the
related issue of constraining access to individual bits of constants. The intuition leading Valiant to
conjecture exponential formula size lower bounds for permn over any fields not of characteristic 2,
not caring about the constants, certainly seems to extend to intuition against such approximability
by quasipolynomial-size formulas. Hence this backs up Mulmuley-Sohoni’s

Conjecture 3.2 The padded permanent does not belong to the Z-closure of the SLm2-orbit of the
determinant in P (Vm) under any polynomial (or sub-exponential) amount of padding.

The $64,000 question is whether this reformulation of the intuition adds something tangibly new to
the basic problem. Historically it must be remarked that in the 1890s, early proponents of group-
representation theory faced detractors such as Burnside, until a long development curve finally did
start producing results that seemed unobtainable by other means.

The meat of the matter is how well the algebraic tools capture complexity properties of both the
function f being lower-bounded and the “universal” function being orbited—here, the determinant.
The determinant is attractively characterizable as the unique degree-m homogeneous function that
is fixed by a certain natural group action, as we note below. (As remarked in [MS02], other families
of functions that are similarly universal for small formulas can be used, if they have even nicer
stabilizer characterizations.) So is the permanent. The question is how well we can get a direct
understanding of the group actions on—and in the neighborhoods of—these functions.

One thing that can help in a direct determination of whether the projective closure of an orbit
of detm touches a function f is whether the affine orbit of f itself is stable (under the same group
action)! If f is stable, then known algebraic techniques come into play to analyze the neighborhoods



of the orbits, and whether the orbits approach arbitrarily closely in the (here-classical-is-equivalent-
to-) Zariski sense. Mulmuley and Sohoni observe that permm is stable, but unfortunately, the
padded permanent permφ

n is unstable—not even semi-stable. However—and this is the jumping-
point for the main technical content of their work—they develop a notion of “partial stability”
that still allows much of the desired analytical tools to be recovered. In other words, the padding
φ introduces a little bit of “nastiness” that can be carefully peeled away by refining the algebraic
analysis. For this we need more definitions.

4 Partial stability

Recall that a parabolic subgroup P ⊆ G stabilizes a flag of the form 0 ⊂ W1 ⊂ . . . ⊂ Wr = V .
P is maximal if it is not contained in any other parabolic subgroup. Again following [AB95] (for
representation-tailored rather than “innate” definitions), the unipotent radical of P is the subgroup
UP of P that pointwise fixes every quotient subspace Wi/Wi−1 in the flag. UP is always a normal
subgroup. A reductive group is one whose representation forms a connected set of points (unrolling
the representing matrices as vectors) and whose unipotent radical is the identity. For subgroups of
P , intuitively this means that the reductive subgroup poses no blockage for working down the flag.
The identity group itself is not counted as reductive. If we write Wi = Wi−1 + Yi for each i, then a
maximum subgroup LP of P that stabilizes all the Yi is called a Levi subgroup or Levi complement
of UP . Such an LP is always isomorphic to the direct product GLy1(F )× . . .×GLyr(F ), where each
yi = dim(Yi) = dim(Wi)− dim(Wi−1). The point is that P = UPLP and UP ∩LP is the identity, a
situation summarized by saying that P is the semi-direct product of the normal subgroup UP and
the subgroup LP .

The rank of an algebraic group G is the maximum dimension of a subgroup of G that is
isomorphic to a group of diagonal matrices. For example, the rank of GLn(F ) is n, but the rank
of SLn(F ) is only n − 1 since one of the diagonal elements is constrained by the product of the
others to make the determinant equal to 1. Finally, a subgroup of an algebraic group G is regular
if its root system is a subsystem of that pf G. (We do not go into root systems here, but see the
Appendix of [Hum81].) Although intuition in a short treatment has to lag behind here, we now
have all the definitions required to define partial stability.

Definition 4.1 ([MS02]). A projective point y ∈ P (V ) is partially stable with defect δ,∆ with
respect to the action of an algebraic group G if there are a maximal parabolic subgroup P , a Levi
subgroup L of P , and a regular reductive subgroup K of L such that for all affine points x ∈ V on
the line y:

(a) The isotropy subgroup Gx contains the unipotent radical UP ;

(b) L ∩Gx is reductive;

(c) y is stable under the action by K;

(d) rank(K) = rank(L)− δ; and

(e) dim(Lx)/dim(Gx) ≥ ∆, i.e., the dimension of the orbit Lx is sufficiently large compared to
the dimension of the orbit Gx.

If P = G, δ = 0, and ∆ = 1, then one gets K = L = G also, and by (c) this co-incides with
the definition of y being stable under G. Thus δ and ∆ quantify the deviation from stability. In



the cases of partial stability sought and used by Mulmuley and Sohoni, δ = 1 and ∆ is inverse-
polynomial in n, so the deviation is “not too large.” The intent, to be brought out in the companion
paper [MS02b], is to focus in on the action of K.

Theorem 4.1 (Theorem 4.3 in [MS02]) The padded permanent permφ
n as a member of P (Vm)

with m2 variables is partially stable under the action by SLm2(F ), with defect δ = 1 and ∆ poly-
nomial in m/n. This applies to any padded homogeneous form h of degree n < m in n2 variables,
such that h is stable as a member of P (Vn) under the action by SLn2.

5 Obstructions

Given polynomials f and g such as permφ and detm, respectively, and a relevant action by an
algebraic group G, an obstruction is a witness that f does not lie in the closure of the orbit Gg
in P (V). This witness can be a “meta-polynomial” q. Namely, if f and g are homogeneous of
degree d in r variables (above, d = m and r = m2), then f and g are points in a vector space of
R = (m+d−1

d ) dimensions—as are all polynomials in the orbit Gg and its projective Z-closure. A
polynomial q in R variables can thus be said to take these smaller polynomials as arguments. If q
vanishes on all points in Gg, then it also vanishes on the closure. Further, if such a q gives q(f) 6= 0,
then q witnesses that f does not belong to the orbit closure. However, such a witness could be a
double-exponential-size object, and it is not clear that we have gained any information about the
(f, g)-problem by doing this.

Rather, Mulmuley and Sohoni advance the goal of constructing representations of the isotropy
subgroups Gf and Gg that serve as a witness. (In [MS02], Gf is called “H” and Gg is called “Q.”)

Theorem 5.1 (Theorem 5.1 in [MS02]) Let f be stable under the action of a group G on V.
A nonzero representation W of G is an obstruction for (f, g) if its unique factorization into irre-
ducibles contains an occurrence of the trivial Gf -module τf but not a trivial Gg-module τg—and
more generally, if τf occurs more often than τg in this factorization.

This reads like a definition but is actually a theorem, replacing “is an obstruction” with the con-
clusion, “then f is not in the projective closure of Gg.” We can word the more-general condition
a little more helpfully. Define

Ef = { v ∈ W : (∀A ∈ Gf ) A·v = v },
Eg = { v ∈ W : (∀A ∈ Gg) A·v = v }.

Then Ef and Eg are closed under scalar multiplication and under addition, so they are linear
subspaces—respectively, the subspace pointwise fixed by Gf and the space pointwise fixed by Gg.
The more-general condition is then simply dim(Ef ) > dim(Eg)—i.e., construction of a representa-
tion W giving this implies that f is not in the projective closure of Gg.

To prove this, note first that this disparity of dimension is impossible if Gf contains AGgA−1 for
some A ∈ G. This is intuitively because dim(Ef ) > dim(Eg) says that Gf should be smaller than
Gg, since larger groups fix fewer elements. Notice that AGgA−1 forms a group, called a conjugate
of Gg.

However, the stability of f implies by a result known as Luna’s slice theorem that the orbit Gf
in V has a neighborhood U preserved by G, such that the isotropy subgroup Sp of any point p in U



is a conjugate of a subgroup of Gf . Let [·] denote the mapping from V \ { 0 } to P (V). If [f ] lies in
the (Z-equivalent-to-classical) closure of G[g], then [U ] contains a point [A·g] for some A ∈ G. Thus
U contains a point p = λA ·g with λ ∈ F ∗ (i.e., λ 6= 0). Now the isotropy subgroup Sp = GλA·g
equals GA·g for any nonzero scalar λ. Now observe that GA·g = AGgA

−1, because if B·g = g, then

(ABA−1)·(A·g) = (ABA−1A)·g = (AB)·g = A·(B ·g) = A·g.

Thus elements of AGgA−1 are precisely those that fix A ·g, so Sp is a conjugate of Gg. Since a
conjugate of a conjugate is a conjugate, Luna’s slice theorem tells us that Gg is a conjugate of a
subgroup of Gf . This is exactly what we argued couldn’t happen from the dimensions of Ef and
Eg in the representation. Hence [f ] cannot belong to the closure of the orbit G[g] in P (V).

This proof—and its exploitation of the stability of f itself—moves the focus onto constructing
informative, extremal representations of G. This is a much-studied area of mathematics, where
many kinds of demands have already been dealt with. The demands here are governed largely
by the structure of the isotropy subgroups Gf and Gg, which in the case of the permanent and
the determinant have been nicely characterized above. Moreover, a major methodological point
advanced in [MS02] is that the focus can shift from f and g to their isotropy subgroups themselves.
Those computed at the end of Section 2.1 here for permn and detn involve bedrock matrix notions
that do not immediately shout, “I am merely a re-coding of the permanent or determinant!” The
question of whether f is in the projective orbit closure of Gg can be reformulated as the “stabilizer
problem” of whether Gg can occur as an isotropy subgroup in arbitrarily-close neighborhoods of
the orbit of items fixed by Gf .

Ah, but Conjecture 3.2 references the padded permanent. Partial stability does not yield the
efficient conclusion of Luna’s slice theorem. Mulmuley and Sohoni give one adaptation of Theo-
rem 5.1 toward the partially-stable case, as “Theorem 5.3” in the part-I paper [MS02], but it still
requires f to be stable. The full development of obstructions in the partially-stable case is the main
subject of the part-II paper [MS02b], to appear. According to the overview paper [MS02c], this
proceeds deeper into century-old unsolved problems in representation theory such as the “plethysm
problem.” At this point, as complexity theorists we should first take one step back to try to assess
the combinatorial nature of the proof techniques and problems encountered.

6 Would this naturalize?

Razborov and Rudich [RR97] showed the existence of a new obstacle to circuit lower-bound proofs.
They observed that basically all known proofs that certain Boolean functions hn lie outside a circuit
class C revolve around sequences Πn of subsets of Fn (the set of 22n Boolean functions of n variables)
such that:

(a) no language L such that L=n ∈ Πn for almost all (variantly, infinitely-many) n belongs to C
(“usefulness”);

(b) |Πn|/|Fn| is bounded below by 1/p(2n) for some polynomial p (“largeness”);

(c) whether a given f ∈ Fn belongs to Πn is decidable in time 2n
O(1)

, which is quasi-polynomial
in the length 2n of the truth table of f given as input (“low complexity”);

and hn ∈ Πn for all n. Razborov and Rudich showed that if a sequence Πn satisfies (a)–(c) with
C = P/poly (i.e., the class of languages having polynomial-sized circuits), then pseudo-random
generators and one-way functions of exponential security do not exist. Since the factoring problem



is widely believed to be hard enough to produce such generators, such “natural proofs” Πn are
conjectured not to exist. Granting this, a proof that NP-complete problems do not have polynomial-
sized circuits (regarded on a par with proving P 6= NP) must surmount either the largeness or the
low-complexity condition.

Although the Razborov-Rudich framework and results have not yet been carried over formally
to arithmetic circuits, it is reasonable to speak as though they have—and to expect that recent
techniques by Koiran [Koi96] and Bürgisser [Bür98, Bür00] using fields of finite characteristic as
conduits from the algebraic to the Boolean case can extend to accomplish this. Thus assuming the
Mulmuley-Sohoni method is useful against (the arithmetical analogue of) P/poly , which of (b) and
(c) does it escape from?

Mulmuley and Sohoni argue for (b). Indeed, their methodology for the case of the permanent
and determinant as outlined above is highly specific to them—and would not prove the hardness of
a “random” function as do natural proofs. Note that if the hardness predicate Πn(h) were simply
Dn(h) = “h does not belong to the projective Z-closure of the orbit of the determinant,” then Πn(h)
would be very large—indeed vast in the Zariski sense, being the complement of the closure of the
orbit. However, they emphasize that their hardness predicates will have the form Dn(h) ∧ Sn(h),
or more likely Dn(h) ∧ Pn(h), where Sn [Pn] expresses the [partial] stability of h under the same
group action—plus the ability to compute explicit obstructions. The predicates Sn and Pn are
expected to be small (under translation to the Boolean case). Moreover, for h such as the (padded)
permanent polynomial(s), one can conjoin to Sn or Pn the clause, “and h has a nice, large isotropy
subgroup such that h is the only thing it fixes.”

However, in public talks subsequent to their paper, Razborov and Rudich have pointed out a
philosophical obstacle to arguments that rely only on overcoming (b). Within the confines of the
purported proof based on Πn, the complement Π′n becomes an “easyness” predicate. If Π′n is vast,
then one is willy-nilly arguing in the situation where “a random function f is easy.” Now because +
is invertible (as with exclusive-or in the Boolean case), it follows that “a random function g = h−f”
over random f is easy. One thus must admit cases where one’s “hard” function h equals a sum
f + g of two “easy” functions. Roughly put, this prevents the lower-bound proof from working
inductively on the arithmetical operators.

However, the argument over (b) may be effectively moot, as it seems transparent from the
way the Mulmuley-Sohoni technique involves “large objects” that the complexity of the hardness
predicate would be greater than the bound in (c). The large objects have size 2p(n) where p is not a
fixed polynomial but rather one that is universally quantified. For instance, the hardness predicate
taken from their “Conjecture 4.3” for the permanent could be made to read: h is hard if for all
polynomials p(n), taking m = p(n), h padded up to hφ is not in the orbit closure of detm. The
“Natural Proofs Obstacle,” however, still seems to indicate here that their method will not be able
to escape the necessity of quantifying over p and dealing both with the padding and with multiple
source functions like detm that one has to argue over.

Mulmuley and Sohoni do have a point in giving motivation to consider problems other than
standard (NP-)complete ones as targets for lower bound proofs. In Sections 7 and 8 of [MS02],
they introduce the following problem in NP, which we name “Full Rank Avoidance.”

Instance: A matrix X with n rows and kn columns grouped as n blocks of k.
Question: Is it possible to choose one column from each block so that the resulting

n× n matrix M has det(M) = 0?

They conjecture that even for k = 3 and F = GF(2), this problem is not in P. The closest problem
that is known to us (personal communication from Mitsunori Ogihara, September 2002) to be NP-



complete has k = 2 and 2r columns where the input can vary r subject to r < n, and asks if the
resulting n × r matrix M has column rank less than r. The Mulmuley-Sohoni problem requires
r = n, however, and Ogihara’s reduction (from 3-not-all-equal-SAT, and adaptable for any field F )
seems to require r < n depending on the input formula to the reduction.

Mulmuley and Sohoni prove that provided the characteristic of the field F does not divide n,
k, or k− 1, the following polynomial E(X) associated to this problem is stable under the standard
action by SLkn2(F ) (again “unrolling” the matrix into a vector):

E(X) =
∏
σ

det(Xσ),

where σ stands for functions choosing one column from each block and Xσ is the resulting n × n
matrix. Clearly E(X) = 0 iff the answer to the problem instance is “yes.” The stability of E(X)
then plays into partial stability of padded forms E(X)φn, and thus allows the meat of the analysis
to come in [MS02b] to be applied to it.

In conclusion, there is both much deep mathematical content and some new concrete combina-
torics in their approach. It may not seem near to resolving P vs. NP now, but it does talk about
objects of the right kind of complexity for working on it.
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