
Bioinformatics Algorithms

Enno Ohlebusch

Bioinformatics Algorithms

Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction

Enno Ohlebusch
Institute of Theoretical

Computer Science
Faculty of Engineering

and Computer Science
University of Ulm
89069 Ulm
Germany

ISBN 978-3-00-041316-2

c© Enno Ohlebusch 2013
All rights reserved. Except as otherwise expressly permitted under German
Copyright Law, no part of this work may be reproduced in any form or by any
means or used to make any derivative (such as translation, transformation or
adaptation) without prior written permission of the copyright owner.

Cover design: Volker Haese
Printed in Germany

To my family, especially to my parents.

Contents

Preface xiii

1 Molecular Biology in a Nutshell 1
1.1 Nucleic acids and proteins 1
1.2 Evolution . 7

2 Exact String Matching 9
2.1 Basic string definitions . 9
2.2 The naive algorithm . 11
2.3 The Boyer-Moore-Horspool algorithm 12
2.4 The Knuth-Morris-Pratt algorithm 15
2.5 The Aho-Corasick algorithm for a set of patterns 24

3 Answering Range Minimum Queries in Constant Time 33
3.1 Basic definitions . 33
3.2 Range minimum vs. lowest common ancestor 34
3.3 Range minimum queries . 42

3.3.1 The sparse table algorithm 42
3.3.2 An optimal algorithm 43

3.4 Completing the proof of correctness 53

4 Enhanced Suffix Arrays 59
4.1 Suffix arrays . 59

4.1.1 Linear-time construction 61
4.1.2 Induced sorting . 68

4.2 The LCP-array . 79
4.2.1 Linear-time construction 79
4.2.2 Longest common prefix 84

4.3 The lcp-interval tree . 85
4.3.1 Finding child and parent intervals 88
4.3.2 Bottom-up traversal 93
4.3.3 Top-down traversal 98

viii Contents

4.3.4 Finding child intervals without RMQs 105
4.4 Suffix trees . 110

4.4.1 Linear-time construction 113

5 Applications of Enhanced Suffix Arrays 115
5.1 Exact string matching . 116

5.1.1 Forward search on suffix trees 116
5.1.2 Forward search on suffix arrays 117
5.1.3 Binary search . 120

5.2 Lempel-Ziv factorization . 125
5.2.1 Longest previous substring 126
5.2.2 Ultra-fast factorization 134

5.3 Finding repeats . 138
5.3.1 Longest repeats . 140
5.3.2 Supermaximal repeats 144
5.3.3 Maximal repeats . 148
5.3.4 Maximal repeated pairs 149
5.3.5 Non-overlapping repeats 155
5.3.6 Maximal periodicities 157

5.4 Comparing two strings . 173
5.4.1 Generalized suffix array 173
5.4.2 Longest common substring 181
5.4.3 Finding exact matches 183

5.5 Traversals with suffix links 185
5.5.1 Suffix links in the suffix tree 185
5.5.2 Suffix links in the lcp-interval tree 186
5.5.3 Computing suffix links space efficiently 187
5.5.4 Matching statistics 194
5.5.5 Merging two suffix arrays in linear time 203

5.6 Comparing multiple strings 206
5.6.1 Generalized suffix array 206
5.6.2 Longest common substring 208
5.6.3 Document frequency 216
5.6.4 Document retrieval 221
5.6.5 Shortest unique substrings 224
5.6.6 A distance measure for genomes 228
5.6.7 All-pairs suffix-prefix matching 231

5.7 String kernels . 237
5.7.1 Machine learning 237
5.7.2 Calculating a string kernel 238
5.7.3 Calculating the kernel matrix 243
5.7.4 Classification . 243
5.7.5 The TF-IDF weighting scheme 244

Contents ix

5.8 String mining . 247
5.8.1 Extraction phase . 248
5.8.2 Intersection phase 250

6 Making the Components of Enhanced Suffix Arrays Smaller 257
6.1 Constant time rank and select queries 257
6.2 Compressed suffix and LCP-arrays 262

6.2.1 Compressed suffix array 262
6.2.2 Compressed LCP-array 264

6.3 The balanced parentheses sequence of the LCP-array . . . 265
6.3.1 Finding the parent interval 270
6.3.2 Finding child intervals 272
6.3.3 Computing getInterval([i..j], c) 274
6.3.4 Answering RMQs in constant time 275
6.3.5 Computing suffix link intervals 276
6.3.6 Attaching additional information 276

7 Compressed Full-Text Indexes 281
7.1 The components of a compressed full-text index 281
7.2 The Burrows-Wheeler transform 282

7.2.1 Encoding . 282
7.2.2 Decoding . 284
7.2.3 Data compression 287
7.2.4 Direct construction of the BWT 291

7.3 Backward search . 299
7.3.1 A simple FM-index 299
7.3.2 The search algorithm 300

7.4 Wavelet trees . 303
7.4.1 Answering rank and select queries 304
7.4.2 Retrieval of SA[i] and the string starting at SA[i] . . 306
7.4.3 Implementation: If σ is a power of 2 307
7.4.4 Implementation: If σ is not a power of 2 310
7.4.5 Other types of wavelet trees 315

7.5 Analyzing a string space efficiently 315
7.5.1 Construction of the LCP-array from the BWT 315
7.5.2 Bottom-up traversal of the lcp-interval tree 321
7.5.3 Shortest unique substrings 322
7.5.4 Top-down traversal of the lcp-interval tree 323
7.5.5 Finding repeats . 328
7.5.6 Lempel-Ziv factorization 332

7.6 Space-efficient comparison of two strings 336
7.6.1 Matching statistics 336
7.6.2 Maximal exact matches 340
7.6.3 Merging Burrows-Wheeler transformed strings . . 342

x Contents

7.7 Space-efficient comparison of multiple strings 345
7.7.1 Document array, LCP-array, and correction terms 345
7.7.2 Document retrieval with wavelet trees 348
7.7.3 All-pairs suffix-prefix matching 352

7.8 Bidirectional search . 357
7.8.1 Burrows-Wheeler transform of the reverse string . 358
7.8.2 The suffix array of the reverse string 364
7.8.3 The lcp-array of the reverse string 366
7.8.4 The bidirectional search algorithm 369

7.9 Approximate string matching 374
7.9.1 Using backward search 375
7.9.2 Using bidirectional search 380

8 Sequence Alignment 385
8.1 Pairwise alignment . 386

8.1.1 Distance methods 387
8.1.2 Computing an optimal alignment in linear space . 393
8.1.3 Edit distance . 398
8.1.4 Similarity methods 399
8.1.5 Distance vs. similarity 401
8.1.6 General similarity functions and gap penalties . . 402

8.2 Multiple alignment . 406
8.2.1 Pruning the search space 409
8.2.2 A 2-approximation algorithm 411
8.2.3 Progressive alignment 415

8.3 Whole genome alignment 417
8.3.1 Basic definitions and concepts 418
8.3.2 A global chaining algorithm 420
8.3.3 Alternative data structures 423
8.3.4 Longest/heaviest increasing subsequence 424

9 Sorting by Reversals 429
9.1 Introduction . 429
9.2 Basic definitions . 437
9.3 The reality-desire diagram 440
9.4 Components . 445

9.4.1 Elementary intervals 445
9.4.2 Finding cycles and components 448

9.5 Sorting a permutation without bad components 451
9.6 Dealing with bad components 455

9.6.1 Hurdles . 458
9.6.2 A fortress . 461

9.7 Sorting by reversals in quadratic time 467
9.7.1 Finding a happy clique 468

Contents xi

9.7.2 Searching the happy clique 473

10 Phylogenetic Reconstruction 477
10.1 Introduction . 477

10.1.1 Methods of phylogenetic inference 479
10.1.2 Molecular anthropology 481

10.2 Basic definitions . 489
10.3 Ultrametric distance matrices and trees 492

10.3.1 Characterization of ultrametric matrices 494
10.3.2 Construction algorithm 497
10.3.3 The UPGMA-algorithm 501
10.3.4 Fast UPGMA implementation based on quadtrees 509

10.4 Additive distance matrices and trees 514
10.4.1 Ultrametric trees revisited 515
10.4.2 Reduction of the additive tree problem 516
10.4.3 Characterization of additive matrices 521
10.4.4 Construction algorithm 524
10.4.5 Splits and quartets 526
10.4.6 Uniqueness of the additive tree 528

10.5 Neighbor-joining algorithms 531
10.5.1 Farris’ neighbor-joining algorithm 534
10.5.2 Saitou and Nei’s neighbor-joining algorithm 540
10.5.3 Fast neighbor-joining 546

10.6 Non-additive dissimilarity matrices 548
10.6.1 Nearly additive matrices and quartet-consistency . 549
10.6.2 Estimating edge weights 561
10.6.3 Bootstrapping . 569

Bibliography 571

Index 599

Preface

The origins of this book go back to the 1990s, when members of the “Tech-
nische Fakultät” (joint Department of Computer Science and Biotech-
nology) at the University of Bielefeld, Germany, developed curricula for
the diploma (equivalent to M.Sc.) in “Naturwissenschaftliche Informatik”
(Computer Science in the Natural Sciences). Computer science students
could choose either Biology, Chemistry or Physics as their second subject.
In Bielefeld, my former supervisor Robert Giegerich was one of the driv-
ing forces behind the development of bioinformatics, the interdisciplinary
field that combines molecular biology with computer science. At that time,
I was a postdoc in his research group working on term rewriting systems.
I inevitably became acquainted with bioinformatics, and it proved to be
a stroke of luck. Robert prepared lecture notes for a course “Algorithms
on Sequences,” and his work was later extended by my former colleague
Stefan Kurtz. Parts of Chapter 2 (exact string matching) and Section 8.1
(pairwise alignment) can be traced back to Stefan’s manuscript [194]. It
also contained a chapter on suffix trees and their bioinformatics applica-
tions. However, the linear-time construction of suffix trees is difficult to
understand and teach. In 2003, it was independently shown by several
authors that a direct linear-time construction of suffix arrays is possible.
One of the algorithms used a rather simple and clever divide and conquer
strategy, and this opened up new possibilities. Not only does this simplify
teaching—because suffix trees can easily be built in linear time from suf-
fix arrays—but, more importantly, suffix trees can be completely replaced
by suffix arrays. Algorithms on suffix arrays are not only more space
efficient than their counterparts on suffix trees, but they are also faster
and easier to implement. I know from discussions with colleagues that a
textbook on suffix arrays and their applications would be appreciated, so
I wrote one.

One of the problems I encountered in writing this book was the vast
literature on the subject. This is particularly true of phylogenetic recon-
struction methods. Felsenstein [97] estimates that there are about 3,000
papers on methods for inferring phylogenies, and I have only read a small

xiv Preface

fraction of those. Therefore, I apologize in advance to my colleagues if
their important work has not been cited.

What the book is about

The primary reason for writing this book was to provide an overview of
the state-of-the-art in string algorithms based on index structures. Dan
Gusfield published his highly recommended textbook [139] over 15 years
ago using the suffix tree as a central data structure. However, suffix trees
cannot be used in large-scale applications. As already mentioned, it is
possible to replace this index data structure by enhanced suffix arrays.
There is an extensive literature, but no textbook, on suffix arrays. This
book fills that gap. Additionally, it not only describes classic topics in
the field of string algorithms from a new perspective, but also introduces
important advanced techniques. For example, recent research focuses
on compressed index structures that are based on the Burrows-Wheeler
transform. Chapter 7 discusses new approaches in that field by focus-
ing on wavelet trees and backward search, including the latest methods
and algorithms. The book focuses on exact string problems (finding ex-
act matches, exact repeats, etc.), rather than on the biologically more
relevant inexact string problems (finding approximate matches, degener-
ate repeats, etc.). However, efficient methods that are robust under errors
most often rely on methods that solve the corresponding exact string prob-
lem. In other words, one should study the latter in order to understand
the former.

Apart from string algorithms, the book presents several other important
topics in computer science and bioinformatics within a unified framework.
It covers classic topics, such as exact string matching, alignments, and
phylogenetic reconstruction as well as newer topics such as constant time
range minimum queries and sorting by reversals. The reader should have
a solid background in algorithms and data structures in order to fully
understand the material covered here.

Emphasis is placed on concepts and methods used to resolve problems,
but in contrast to many other texts, this book also puts emphasis on
efficient implementations. To give an example, the vast majority of texts
on phylogenetic reconstruction explain the UPGMA-algorithm and then
state that it runs in quadratic time (if they are interested in the time
complexity at all). The experienced reader will be able to find an O(n2 log n)
time solution, but usually not much more than that. This book provides
enough detail to allow construction of an efficient implementation of the
algorithm.

Given my background in theoretical computer science, all topics are
thoroughly discussed, including proofs of correctness as well as worst-

Preface xv

case time and space complexity analyses. Many examples and figures
make the material easier to access. The majority of the algorithms are
presented in pseudo-code, so they should be easy to implement. There
are exceptions though: To completely implement the space-efficient algo-
rithms described in Chapters 6 and 7 is not an easy task. Fortunately,
gifted programmers like my former Ph.D. student Simon Gog and others
have developed libraries that can be used for this purpose.1

How to use this book

The chapters in this book can be read independently, except for Chapters
4–7, and one can use each of the independent chapters as course mate-
rial. All of the chapters can be used in computer science courses, some for
advanced undergraduate students and some for graduate students. (Most
parts of the book have been used in courses taught at the University of
Ulm, predominantly at the graduate level.) Chapters 8–10 are intended to
serve as a text for computer science oriented courses on bioinformatics.

A course on string algorithms and their applications to bioinformatics
can be taught by starting with the material in Chapter 4, and then picking
topics from Chapter 5. These chapters use range minimum queries, but
the reader who is not interested in the details of how to answer such
queries in constant time can skip Chapter 3.

Chapter 6 demonstrates that it is possible to implement the algorithms
of Chapters 4 and 5 space efficiently, but the material is quite advanced
and only suitable for graduate students. It is worth noting that Chapter 6
does not depend on Chapter 5.

The most “modern” part of this book is Chapter 7. Only parts of it are
dependent upon material found in Chapters 4 to 6, so most experienced
students can immediately begin with Chapter 7. However, it is recom-
mended to read Chapter 4 first. Thus, a course on string algorithms that
focuses on large-scale bioinformatics applications can be taught in this
way.

Acknowledgments

I am indebted to Stefan Kurtz for sharing his lecture notes [194] with me.
I am also much obliged to Johannes Fischer who used the material of
Section 5.3.6 in a lecture held at the University of Tübingen in 2008 and
gave me feedback on it.

I would like to thank my present and former students Mohamed Abouel-
hoda, Michael Arnold, Martin Bader, Timo Beller, Katharina Berger, Axel

1Simon’s library can be found at https://github.com/simongog/sdsl.

xvi Preface

Fürstberger, Simon Gog, Adrian Kügel, Christoph Mehre, Julian Rüth,
Thomas Schnattinger, Florian Schüle, Benjamin Weggenmann, and Maike
Zwerger for their assistance in preparing figures, providing implementa-
tions, and other important work. It has been a pleasure to work with
so many excellent students; many of them are co-authors on scientific
publications.

Thanks to my brother-in-law Volker Haese for the cover-design and to
my friends Roland Ehle, Michael Schmeisser, and Silvio Weißenborn in
helping to bring this book before the public.

Chapter 1
Molecular Biology in a Nutshell

1.1 Nucleic acids and proteins

The three major macromolecules that are essential for all known forms of
life are deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins.

DNA

Deoxyribonucleic acid is the carrier of genetic information of all known
living organisms and many viruses. Most DNA molecules are double-
stranded helices, consisting of two long polymers of simple units called
nucleotides; see Figure 1.1. A nucleotide is composed of a phosphate
group, a five-carbon sugar (2-deoxyribose), and a nucleobase attached to
the sugar. There are four nucleotides in DNA that can be distinguished
by their bases: adenine (A), cytosine (C), guanine (G), and thymine (T). A
single strand of the DNA molecule has a backbone made of alternating
sugars and phosphate groups: a phosphate group is linked to the 5′-
carbon of the sugar of its nucleotide and the 3′-carbon of the sugar of
another nucleotide (the numbers 1′ to 5′ refer to the carbon atom locations
in the sugar structure). Figure 1.2 shows a schematic view of a single-
stranded DNA.

Figure 1.1: Schematic view of the DNA double helix.

2 1 Molecular Biology in a Nutshell

. . . P
5′

−− S
3′

−− P
5′

−− S
3′

−− P
5′

−− S
3′

−− P
5′

−− S
3′

−− . . .
| | | |
G A C T

Figure 1.2: A schematic view of a DNA strand. P stands for a phosphate
group and S for a sugar 2-deoxyribose.

A single strand of a DNA molecule—a chain of nucleotides—has a di-
rection, conventionally noted as 5′ to 3′. If we omit the sugar-phosphate
backbone in Figure 1.2, we obtain

5′ . . . G A C T . . . 3′

We often omit the 5′ and 3′ markers because the beginning of a DNA se-
quence is the 5′ end unless otherwise stated.

A double-stranded DNA molecule consists of two complementary DNA
sequences held together by base pairs. For example, the DNA sequence
GACT and its complementary strand can be schematically viewed as

5′ G A C T 3′

3′ C T G A 5′

The Watson-Crick base pairs G-C and A-T (guanine-cytosine and adenine-
thymine) are formed by hydrogen bonds. G and C are called complemen-
tary bases, and so are A and T. The reverse complement of a DNA se-
quence is obtained by writing its complement with the 5′ end on the left
and the 3′ end on the right. For example, the reverse complement of GACT
is AGTC.

The complementary nature of the based-paired structure of a double-
stranded DNA molecule provides the basis for replication. DNA replica-
tion begins at specific locations called origins. The unwinding of double-
stranded DNA into two single strands and the simultaneous synthesis of
new strands forms a replication fork; see Figure 1.3. Each of the two
single strands serves as a template for the production of its complemen-
tary strand: an enzyme called DNA polymerase synthesizes the new DNA
by adding nucleotides matched to the template strand. Synthesis always
occurs in the 5′ to 3′ direction. So one strand, the leading strand, can
be synthesized continuously while the other, the lagging strand, must be
synthesized discontinuously in short fragments, which are later joined.
To sum up, after replication there are two identical copies of the original
double-stranded DNA molecule. Although replication errors may occur,
cellular proofreading ensures that the error rate is kept very low.

DNA molecules may be circular or linear, and they can have an enor-
mous length (the length is measured by the number of base pairs). A DNA

1.1 Nucleic acids and proteins 3

3’
5’

3’
5’

3’
5’

3’ 5’3’

5’

3’
5’

Figure 1.3: Schematic view of the replication fork.

molecule is packaged up tightly into a structure called chromosome. Usu-
ally, eukaryotic cells (cells with nuclei, like human cells) have large linear
chromosomes, while prokaryotic cells (cells without nuclei, like bacterial
cells) have smaller circular chromosomes. The number of chromosomes
varies from species to species, but it is constant and characteristic to a
given species. The complete set of genetic information is called genome.
For example, the human genome is composed of 46 linear chromosomes
(23 chromosome pairs) within the cell nucleus (the “nuclear genome”) and
a small circular chromosome within the mitochondrion (the “mitochon-
drial genome”).

RNA and gene expression

Roughly speaking, a gene is a region of a genomic DNA sequence that en-
codes a protein,1 and gene expression is the process by which information
from a gene is used in the synthesis of a protein. As we shall see, several
types of RNAs are involved in gene expression. Like DNA, RNA is made up
of a long chain of nucleotides but T (thymine) is replaced with U (uracil).
Unlike DNA, however, RNA is almost always a single-stranded molecule
and intramolecular base pairings allow it to fold into structures like the
cloverleaf structure in Figure 1.4.

Figure 1.5 provides a schematic view of the expression of a prokaryotic
gene.2 In our example, the coding sequence of the gene is on the upper
DNA strand and it starts with ATG. The DNA strand on which the coding
sequence is found is said to be the coding strand of the gene and the
other DNA strand is said to be the template strand. In a first step, the

1There are also non-protein coding genes whose products are functional RNAs.
2The expression of a eukaryotic gene is much more difficult because in a eukaryotic
gene coding regions (exons) are separated from each other by non-coding regions (in-
trons).

4 1 Molecular Biology in a Nutshell

Figure 1.4: Schematic view of a tRNA. Its anticodon GCC (in 5′ to 3′ direc-
tion) appears at the very top.

gene is transcribed into an intermediate RNA molecule called messenger
RNA (mRNA) because it now carries the genetic “message.” Transcription
is carried out by an enzyme called RNA polymerase, which moves along
the DNA in the 5′ to 3′ direction. It reads the bases from the template
strand (and so is reading in the 3′ to 5′ direction from the point-of-view
of the template strand), and synthesizes the mRNA by adding nucleotides
matched to the template strand. This means that the final mRNA is a
copy of the coding sequence of the gene, in which T is replaced with U.

In a second step,3 the mRNA is translated into a sequence of amino
acids based on the genetic code shown in Figure 1.6. The genetic code
consists of 64 triplets of nucleotides, called codons. With three exceptions
(the STOP codons), each codon encodes for one of the 20 amino acids used
in the synthesis of proteins. The codon wheel from Figure 1.6 can be used
to decode a codon as follows. Start from the inside of the wheel: find the
first nucleotide of the codon in the center of the wheel and work outwards,
through the second and third ring (with the next nucleotides) to find the
corresponding amino acid. Following this procedure, we find, for exam-
ple, that AUG codes for the amino acid methionine (AUG is called a start

3In the expression of a eukaryotic gene, there is an intermediate step in which the tran-
scribed pre-mRNA is processed into mature mRNA. Among other things, the introns
are removed in a process called splicing.

1.1 Nucleic acids and proteins 5

5′ . . .ATGGTGCTGTCTCCTGACGACAAGACCAAC . . .
3′ . . .TACCACGACAGAGGACTGCTGTTCTGGTTG . . .

↓
5′ AUG︸ ︷︷ ︸GUG︸ ︷︷ ︸CUG︸ ︷︷ ︸UCU︸ ︷︷ ︸CCU︸ ︷︷ ︸GAC︸ ︷︷ ︸GAC︸ ︷︷ ︸AAG︸ ︷︷ ︸ACC︸ ︷︷ ︸AAC︸ ︷︷ ︸. . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
M V L S P D D K T N

Figure 1.5: A schematic view of gene expression: DNA is transcribed into
mRNA, which in turn is translated into a sequence of amino
acids.

codon because it is usually the first codon of an mRNA transcript trans-
lated by a ribosome). Figure 1.6 also shows the three-letter and one-letter
codes of the amino acids; for example, Met and M stand for methionine.
Because there are only 20 different amino acids but 64 possible codons,
most amino acids are encoded by more than one codon. In other words,
the genetic code is redundant (this redundancy minimizes the harmful
effects that incorrectly placed nucleotides can have on protein synthesis).

Biological decoding and protein synthesis is accomplished by the ribo-
some, a large and complex molecular machine made of ribosomal RNA
(rRNA) molecules and a variety of proteins. A ribosome can bind to an
mRNA molecule and “reads” it in 5′ to 3′ direction. Each of the codons
of the mRNA is recognized by a transfer RNA (tRNA) molecule, whose so-
called anticodon is the reverse complement of the codon. If, for example,
the codon GGC is read by the ribosome, a tRNA with the anticodon GCC
(in 5′ to 3′ direction; see Figure 1.4) enters one part of the ribosome and
the bases on the codon and anticodon form hydrogen bonds and link:

5′ G G C 3′

3′ C C G 5′

The 3′ end of the tRNA is covalently linked to a specific amino acid. In
our example, this is glycine; cf. Figure 1.6. The attached amino acid
is then linked to the growing amino acid chain by another part of the
ribosome. Translation stops when a STOP codon (UAA, UAG, or UGA) is
reached, and the ribosome dissociates from the mRNA. To sum up, the
genetic code is implemented by tRNA molecules. The ribosome facilitates
decoding by inducing the binding of tRNAs with complementary anticodon
sequences to that of the mRNA, and the amino acids attached to the tRNAs
are then linked together. In this way, the mRNA is used as a template
for synthesizing the corresponding amino acid sequence. This sequence
“folds” into a specific three-dimensional structure, which determines the
function of the produced protein.

6 1 Molecular Biology in a Nutshell

Figure 1.6: The genetic code.

Figure 1.7 summarizes the normal flow of information in molecular biol-
ogy: DNA can be copied to DNA (DNA replication), DNA information can be
copied into mRNA (transcription), and proteins can be synthesized using
the information in mRNA as a template (translation).

Proteins

Proteins perform the majority of functions within each cell. The chief
characteristic of proteins that allows their diverse set of functions is their
ability to bind other molecules specifically and tightly. The region of the
protein responsible for binding another molecule is known as the binding
site and is often a depression or “pocket” on the molecular surface. This
binding ability is mediated by the tertiary structure of the protein, which
defines the binding site pocket, and by the chemical properties of the
surrounding amino acids’ side chains. Proteins differ from one another
primarily in their sequence of amino acids, which is dictated by the DNA

1.2 Evolution 7

RNA proteinDNA

replication

translation

reverse transcription

replication

transcription

Figure 1.7: Solid arrows illustrate the classic flow of genetic information
in molecular biology. Dotted arrows indicate special cases:
reverse transcription is the transfer of information from RNA
to DNA (it is used e.g. by retroviruses such as HIV), and RNA
replication is the copying of one RNA to another (the repli-
cation method used my many viruses). In principle, direct
translation from DNA to protein is also possible. In [62], Fran-
cis Crick writes about the central dogma of molecular biology:
“It states that such information cannot be transferred back
from protein to either protein or nucleic acid.”

sequence of their genes, and which usually results in folding of the protein
into a specific three-dimensional structure that determines its activity.

1.2 Evolution

Earth formed approximately 4.5 billion years ago and the planet’s environ-
ment has changed with time. There were periods when it changed drasti-
cally and there were periods when changes were slow and subtle. Life on
earth appeared approximately 3.8 billion years ago and it also changed
much with time: When environmental changes are drastic, species be-
come extinct or evolve into new species. This process is called evolution.
Its driving forces are mutation and natural selection.

A mutation is a permanent change in the genome (DNA molecules) of
an individual. We distinguish between small-scale mutations that affect
one or a few nucleotides and large-scale mutations that change the chro-
mosomal structure. Large-scale mutations will be discussed in Chapter
9. Small-scale mutations include:

• Point mutations (often caused by copying errors during DNA replica-
tion) exchange a single nucleotide for another.

• Insertions add one or more extra nucleotides into the DNA.

• Deletions remove one or more nucleotides from the DNA.

8 1 Molecular Biology in a Nutshell

It is believed that the overwhelming majority of such mutations are neu-
tral mutations that have no significant effect on an organism’s fitness,
mostly because these mutations occur outside genes.4 If a mutation oc-
curs within a gene, it can also be neutral (for instance, if the third nu-
cleotide in the codon GGC is replaced with another nucleotide, the result-
ing codon will still encode the same amino acid glycine), but in many cases
it will be harmful because it alters the product of a gene and may prevent
it from functioning properly or completely. For example, cystic fibrosis
(one of the most widespread life-shortening genetic diseases) is caused by
a mutation in the gene cystic fibrosis transmembrane conductance regu-
lator (CFTR). The most common mutation, ∆F508, is a deletion (hence the
∆) of three nucleotides that results in a loss of the amino acid phenylala-
nine (F) at the 508-th position in the amino acid sequence of the produced
protein. Patients with cystic fibrosis suffer from chronic lung infections,
bacterial colonization, pancreatic problems, and reproductive difficulties.
So ∆F508 is definitely a harmful mutation. We would like to stress that
the insertion or deletion of a number of nucleotides that is not evenly di-
visible by three can have even more dramatic effects. Because mRNA is
read in codons (nucleotide triplets) during translation, such an insertion
or deletion changes the reading frame (the grouping of the codons), result-
ing in a completely different amino acid chain. For example, if we delete
the tenth nucleotide from the mRNA shown in Figure 1.5, then we obtain

5′ AUG︸ ︷︷ ︸GUG︸ ︷︷ ︸CUG︸ ︷︷ ︸CUC︸ ︷︷ ︸CUG︸ ︷︷ ︸ACG︸ ︷︷ ︸ACA︸ ︷︷ ︸AGA︸ ︷︷ ︸CCA︸ ︷︷ ︸AC . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
M V L L L T T R P

instead of MVLSPDDKTN. Such a frameshift mutation will also alter the
first stop codon encountered in the sequence. The amino acid chain being
created could be abnormally short or abnormally long, and will most likely
not fold into a functional protein.

So most mutations are either neutral or harmful, but some can be ben-
eficial. This is because mutations can help an organism to adapt to its en-
vironment. For example, antibiotic resistance arises by spontaneous gene
mutation. If a population of bacteria is exposed to an antibiotic, then any
non-resistant bacteria will be killed or inhibited. Antibiotic-resistant bac-
teria, however, will survive and multiply, passing on their resistant genes
from generation to generation. In effect, natural selection is occurring.
Natural selection (the term was introduced by Darwin in his influential
1859 book “On the Origin of Species”) is the process by which organisms
that best fit to their environment will survive (“survival of the fittest”) and
pass their traits to their offspring.

4And outside regulatory regions (regions in the DNA that regulate gene expression).

Chapter 2
Exact String Matching

Finding all occurrences of a pattern in a text is a problem that arises in
many different contexts like text editing, information retrieval, and bio-
logical sequence analysis. For example, one of the typical functions of
a text editor is to search for the occurrences of a particular string (the
pattern) in a document (the text) and to replace them with another string,
where both strings are supplied by the user. Another typical application is
to search the World Wide Web for information using a web search engine.
The user enters a query in form of one or several strings (the patterns) and
the search engine returns a list of documents and web pages in which the
patterns occur (so in this case, the text is in fact a collection of web pages).
In bioinformatics, exact string matching is used to search for particular
patterns in DNA sequences.

In this chapter, we present some well-known exact string matching
algorithms that do not preprocess the text. In large-scale applications
like searching for all occurrences of a particular pattern in a genome se-
quence, however, one usually computes an index of the text to accelerate
the search. We will address this issue later.

2.1 Basic string definitions

Definition 2.1.1 An alphabet Σ is a finite set, whose elements are called
characters (or letters). The size of Σ is denoted by σ = |Σ|.

For example, the basic modern Latin alphabet of lowercase letters is

Σ = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

and σ = 26. In most parts of this book, we assume a total order on the
alphabet Σ. For example, the standard order of the Latin alphabet is:

a < b < c < · · · < x < y < z

10 2 Exact String Matching

In bioinformatics, the DNA alphabet

Σ = {A,C,G,T}

plays a central role.

Definition 2.1.2 A string S is a finite sequence of characters (where the
characters are drawn from some alphabet Σ). The length of a string S,
denoted by |S|, is the number of characters composing the string. The
empty string, denoted by ε, has length 0. Given a string S, its reverse
string is obtained by reversing the order of the characters in S.

For example, TATAAACG is a string of length 8 on the DNA alphabet. If
the alphabet is not specified, then we tacitly assume that it consists of all
characters appearing in S.

The concatenation of two strings is the string formed by writing the
first, followed by the second, with no intervening space. For example, the
concatenation of TATA and AACG is TATAAACG. The juxtaposition is used
as the concatenation operator. That is, if u and v are strings, then uv is
the concatenation of these two strings. The empty string is the identity
for the concatenation operator, i.e., εω = ω = ωε for each string ω.

In the biological literature, the word “sequence” is often used instead
of “string.” For example, a string on the four-letter alphabet {A,C,G,T}
is called a DNA sequence, and a string on the twenty-letter amino acid
alphabet is called an amino acid sequence (or protein sequence if it rep-
resents the primary structure of a protein). Throughout this book, we use
the word “sequence” instead of “string” solely in those cases in which the
alphabet is either the DNA alphabet or the amino acid alphabet.

For a given alphabet Σ, Σn denotes the set of all strings on Σ having
length n. Formally, Σ0 = {ε} and Σn = {aω | a ∈ Σ, ω ∈ Σn−1} for n > 0. The
set of all strings on the alphabet Σ is

Σ∗ =
⋃
n∈N

Σn

where N is the set of natural numbers (including zero). The set of all
non-empty strings on the alphabet Σ is Σ+ = Σ∗ \ {ε}.

Definition 2.1.3 Given a string S of length n, S[i..j] denotes the substring1

of S that begins at position i and ends at position j (by definition, S[i..j] is

1The words “string” and “sequence” can be used synonymously but “substring” and
“subsequence” can not. In mathematics, a subsequence is a sequence that can be
derived from another sequence by deleting some elements without changing the order
of the remaining elements. By contrast, a substring is always a consecutive part of
a string. This means that a substring of a string is a contiguous subsequence of the
string, but a subsequence of a string is not necessarily a substring of the string.

2.2 The naive algorithm 11

the empty string if i > j). In particular, S[1..n] is the whole string S, S[1..j]
is the prefix of S that ends at position j, and S[i..n] is the suffix of S that
starts at position i. A substring, prefix, or suffix of S is proper if it is not
equal to S itself. Furthermore, S[i] denotes the i-th character of S.

For example, AAA is a substring, TAT is a prefix, and CG is a suffix of
the string S =TATAAACG. Furthermore, S[2] is the character A.

Note that the empty string is a substring, a prefix, and a suffix of any
other string.

2.2 The naive algorithm

The formal definition of the exact string matching (or exact string search-
ing) problem reads as follows.

Definition 2.2.1 Let P ∈ Σ+ and T ∈ Σ+ be strings of lengths m and
n, respectively. We say that P occurs in T beginning at position j + 1 if
T [j + 1..j +m] = P [1..m]. The exact string matching problem is the problem
of finding all positions j + 1 in T at which an occurrence of P begins. As
customary, we call the string P pattern and the string T text.

The exact string matching algorithm that immediately comes to mind is
the naive algorithm that successively tests the condition T [j + 1..j +m] =
P [1..m] for each possible value of j (i.e., 0 ≤ j ≤ n −m) by comparing the
pattern P character by character (e.g. from left to right) with the substring
T [j + 1..j + m] of T . Algorithm 2.1 shows a pseudo-code implementation
of this naive algorithm, and Figure 2.1 exemplifies it. In the worst case,
Algorithm 2.1 needs O(m · n) time. For example, if P = am−1c and T = an,
then m · (n−m+ 1) character comparisons are necessary.

Algorithm 2.1 The naive exact string matching algorithm: the pattern P
is compared from left to right with any substring T [j + 1..j +m] of T .
for j ← 0 to n−m do

i← 1
while i ≤ m and T [j + i] = P [i] do

i← i+ 1
if i = m+ 1 then

report match at position j + 1

The naive algorithm is inefficient because it does not use information
gained about the text for one value of j for other values of j. In Section
2.4, we will present an algorithm that keeps track of information about
previous character comparisons to speed up the computation.

12 2 Exact String Matching

... C A T A T G T A C A C A C A G A ...

j A C A C A G

o

⇓

... C A T A T G T A C A C A C A G A ...

j + 1 A C A C A G

Figure 2.1: The naive string matching algorithm finds that the first five
characters of the pattern P match the substring T [j + 1..j + 5],
but T [j+6] = C 6= G = P [6]. Thus, the pattern is shifted by one
position to the right. Subsequently, the pattern is compared
from left to right with the substring T [j + 2..j + 7].

2.3 The Boyer-Moore-Horspool algorithm

Boyer and Moore [41] devised an exact string matching algorithm that
works very well in practice, especially for large alphabets. In contrast to
the naive algorithm, the Boyer-Moore algorithm compares an m-length
substring T [j + 1..j +m] from right to left with the pattern P [1..m]. It uses
two heuristics, the bad-character heuristic and the good suffix heuristic to
avoid much of the work performed by the naive algorithm. These heuris-
tics are so effective that the algorithm typically examines fewer than m+n
characters, yielding an expected sublinear-time method. With a certain
extension, the Boyer-Moore algorithm has a worst-case running time of
O(m + n); we refer the reader to [139] for a thorough investigation of the
subject.

Horspool [156] showed that in the normal usage of the algorithm, the
good suffix heuristic does not make much improvement to the overall
speed. He modified Boyer and Moore’s bad-character heuristic so that
it always proposes a shift to the right. Here, we content ourselves with
this variant of the Boyer-Moore algorithm, which we call Boyer-Moore-
Horspool algorithm. Horspool’s bad-character heuristic works as follows.
If a character mismatch occurs in the right-to-left scan, the pattern is
shifted right relative to T so that the last character c = T [j+m] of the cur-
rent substring T [j +1..j +m] of T is aligned with the rightmost occurrence
of c in P [1..m − 1]. If c does not occur in P [1..m − 1], then T [j + 1..j + m]

2.3 The Boyer-Moore-Horspool algorithm 13

can be skipped entirely. The precise shift value depends on the following
function λ.

Definition 2.3.1 The function λ : Σ→ {1, . . . ,m− 1} is defined by

λ(c) =

{
max{i | 1 ≤ i ≤ m− 1, P [i] = c} if c occurs in P [1..m− 1]
0 otherwise

As an example consider the pattern P = ACACAG on the alphabet Σ =
{A,C,G,T}. Clearly, λ(A) = 5, λ(C) = 4, λ(G) = 0, and λ(T) = 0.

The function λ can easily be computed in O(m) time by Algorithm 2.2
(the alphabet size is constant). The reader is invited to apply the algorithm
to the pattern P = ACACAG.

Algorithm 2.2 Precomputation of the function λ.
for each c ∈ Σ do

λ(c)← 0
for i← 1 to m− 1 do

λ(P [i])← i

Horspool’s heuristic proposes to shift the pattern m−λ(T [j+m]) positions
to the right whenever a character mismatch occurs in the comparison of
P [1..m] with T [j + 1..j + m]. It is readily verified that such a shift is safe,
where a shift is called safe if it does not miss an occurrence of P in T .
We would like to stress that the last character of P is excluded in the
computation of the function λ in Algorithm 2.2. This ensures that every
shift value is strictly positive.

Algorithm 2.3 Boyer-Moore-Horspool algorithm.
j ← 0
while j ≤ n−m do

i← m− 1
while i ≥ 0 and P [i+ 1] = T [j + i+ 1] do

i← i− 1
if i < 0 then

report match at position j + 1
j ← j + (m− λ(T [j +m]))

The Boyer-Moore-Horspool algorithm is illustrated in Figure 2.2 and a
pseudo-code implementation is shown in Algorithm 2.3. The worst case
of Algorithm 2.3 occurs for the pattern P = cam−1 and the text T = an. This
is because every test of the condition T [j + 1..j + m] = P [1..m] requires m
character comparisons (recall that characters are scanned from right to
left) and the pattern is always shifted one position to the right (m− λ(a) =
1). Consequently, the Boyer-Moore-Horspool algorithm has a worst-case
time complexity of O(m · n).

14 2 Exact String Matching

... C A T A T G T A C A C A C A G A ...

j A C A C A G

o

⇓

... C A T A T G T A C A C A C A G A ...

j + 2 A C A C A G

Figure 2.2: The Boyer-Moore-Horspool algorithm compares the pattern
P [1..6] from right to left with the substring T [j + 1..j + 6]. The
first character comparison of P [6] = G with T [j+6] = C yields a
mismatch. Therefore, P is shifted m−λ(T [j+m]) = 6−λ(C) = 2
positions to the right so that the character C = T [j + 6] is
aligned with the rightmost occurrence of C in P [1..5]. In the
subsequent comparison of P with the substring T [j + 3..j + 8],
the first character comparison (from right to left) of T [j + 8]
with P [6] yields a match.

2.4 The Knuth-Morris-Pratt algorithm 15

w

v

u u

w

v

u

w

v

u

v

u

v

u

v

Figure 2.3: A graphical proof of Lemma 2.4.1. Both u and v are suffixes
of w. Double-headed arrows connect matching regions (shown
shaded). Left: If |u| = |v|, then u = v. Middle: If |u| < |v|, then
u is a proper suffix of v. Right: If |u| > |v|, then v is a proper
suffix of u.

2.4 The Knuth-Morris-Pratt algorithm

Knuth and Pratt invented the first O(m + n) time exact string matching
algorithm. Independently, Morris discovered virtually the same algorithm.
They published their algorithm jointly [183], and ever since the algorithm
is known as the Knuth-Morris-Pratt algorithm. The following lemma is a
basic prerequisite to understand the algorithm.

Lemma 2.4.1 Let the strings u and v both be suffixes of another string w.

1. If |u| = |v|, then u = v.

2. If |u| < |v|, then u is a proper suffix of v.

3. If |u| > |v|, then v is a proper suffix of u.

Proof See Figure 2.3 for a graphical proof. �

The Knuth-Morris-Pratt algorithm compares certain length m substrings
of T from left to right with the pattern P . Suppose that in the comparison
of T [j + 1..j +m] with P the first q characters match, i.e., T [j + 1..j + q] =
P [1..q], but then a mismatch occurs; see Figure 2.4. In this situation, the
naive algorithm would shift the pattern one position to the right. Clearly,
this shift is safe, i.e., it does not miss an occurrence of P in T . In order
to characterize other safe shifts, suppose that there is an occurrence of
P in T starting at a position j′ + 1 with j + 1 < j′ + 1 ≤ j + q. So this

16 2 Exact String Matching

T

j

P [1..q] b

P [1..q] c

Figure 2.4: The pattern P [1..m] is compared from left to right with the sub-
string T [j + 1..j + m] of T . The first q characters match, i.e.,
P [1..q] = T [j + 1..j + q], but P [q + 1] = b 6= c = T [j + q + 1].

j′ P [1..k] c

TP [1..k] b︸ ︷︷ ︸
P [1..q]

j P [1..k] c︸ ︷︷ ︸
P [1..q]

Figure 2.5: If there is a match starting in T at a position j′ + 1 with j + 1 <
j′ + 1 ≤ j + q, then T [j′ + 1..j + q] must be a prefix of P , say of
length k (so j′ = j + q − k). It follows that the prefix P [1..k] of P
must be a proper suffix of P [1..q] because P [1..q] = T [j+1..j+q].

occurrence overlaps with the substring T [j+1..j + q] = P [1..q]. It follows as
a consequence that the overlapping part must be a prefix P [1..k] of P and
a proper suffix of P [1..q]; see Figure 2.5.

If we shift the pattern to the right so that the suffix P [1..k] = T [j + q −
k + 1..j + q] of T [j + 1..j + q] is aligned with the prefix P [1..k] of P , then this
shift is safe, provided that P [1..k] is the longest prefix of P that is a proper
suffix of P [1..q]. (If there was an occurrence of P in T starting at a position
j′′+1 with j+1 < j′′+1 < j′+1, then the overlapping part would, of course,
also be a prefix of P and a proper suffix of P [1..q], and it would be longer
than P [1..k]. This, however, is impossible.) Moreover, in sharp contrast
to the naive algorithm, the first k characters of P are not compared with
T [j + q− k+ 1..j + q], because we know already that they match. Thus, the
subsequent comparison starts with P [k + 1] and T [j + q + 1]. Figure 2.6
illustrates the idea of the Knuth-Morris-Pratt algorithm, and in the rest of
this section we elaborate on this idea.

In a preprocessing step, the Knuth-Morris-Pratt algorithm computes the
so-called prefix function π, defined as follows.

2.4 The Knuth-Morris-Pratt algorithm 17

... C A T A T G T A C A C A C A G A ...

j A C A C A G

o

⇓

... C A T A T G T A C A C A C A G A ...

j + 2 A C A C A G

Figure 2.6: In the comparison of the length m = 6 substring T [j + 1..j + 6]
of T with P , the first q = 5 characters match, i.e., T [j + 1..j +
5] = P [1..5], but then a mismatch occurs. P [1..3] = ACA is
the longest prefix of P that is also a proper suffix of P [1..5] =
ACACA. The pattern is shifted to the right so that the length 3
suffix T [j+3..j+5] = ACA of T [j+1..j+5] is aligned with P [1..3] =
ACA. The subsequent comparison starts with the characters
T [j + 6] and P [4].

q 1 2 3 4 5 6
P [1..q] A AC ACA ACAC ACACA ACACAG

π(P [1..q]) ε ε A AC ACA ε
prefixtab[q] 0 0 1 2 3 0

Figure 2.7: The prefix function π for the pattern P = ACACAG. Because
both the parameter and the return value of π are prefixes of
P , one can use q—the length of the prefix—instead of P [1..q].
This gives the array prefixtab with prefixtab[q] = |π(P [1..q])|.

18 2 Exact String Matching

Definition 2.4.2 For every q ∈ {1, . . . ,m}, π(P [1..q]) returns the longest
prefix of P that is a proper suffix of P [1..q].

Figure 2.7 shows the prefix function π for the pattern P = ACACAG. We
postpone the computation of π until the search phase of the algorithm has
been fully developed.

If the pattern P [1..m] is compared with the substring of T starting at
position j + 1, and P [1..q] is a prefix of T [j + 1..j + m], then the Knuth-
Morris-Pratt algorithm proceeds as follows:

1. If q = m, then a match is reported.

• π(P [1..m]) returns the longest prefix P [1..k] of P that is also a
proper suffix of P ; see case (1) in Figure 2.8.

• The pattern P is shifted to the right so that the suffix P [1..k] of
T [j + 1..j +m] is aligned with the prefix P [1..k] of P ; see case (1)
in Figure 2.8.

• If P [1..k] = ε (i.e., k = 0), this means that P is shifted m positions
to the right.

2. If q < m, there are the following subcases:

a) b 6= c and q 6= 0:

• π(P [1..m]) returns the longest prefix P [1..k] of P that is a
proper suffix of P [1..q]; see case (2) in Figure 2.8.

• The pattern P is shifted to the right so that the suffix P [1..k]
of T [j+1..j+ q] is aligned with the prefix P [1..k] of P ; see case
(2a) in Figure 2.8.

b) b 6= c and q = 0:

• The pattern P is shifted one position to the right; see case
(2b) in Figure 2.8.

c) b = c:

• The algorithm proceeds with q+1; see case (2c) in Figure 2.8.

In each of the four cases described above, the Knuth-Morris-Pratt algo-
rithm either shifts the pattern at least one position to the right (cases (1),
(2a), and (2b)) or it reads the next character of the text (cases (2b) and
(2c)). Altogether, the four cases can occur at most 2n times. Thus, the
Knuth-Morris-Pratt algorithm runs in O(n) time provided that the prefix
function π is available. Since π solely depends on the pattern P , it can be
precomputed and it will be shown below how to do this in O(m) time. In
Algorithm 2.4, the pseudo-code implementation of the Knuth-Morris-Pratt
algorithm, the prefix function π is represented by an array prefixtab such
that prefixtab[q] = |π(P [1..q])|; see Figure 2.7.

2.4 The Knuth-Morris-Pratt algorithm 19

Case (1), q = m:

... ...P [1..k]

P [1..k]

⇓
... ...P [1..k]

P [1..k]

Case (2), q < m:

... ...P [1..k] b︸ ︷︷ ︸
P [1..q]

P [1..k] c︸ ︷︷ ︸
P [1..q]

Case (2a), b 6= c and q 6= 0:

... ...P [1..k] b

P [1..k] c

Case (2b), b 6= c and q = 0:

... ...b

c

Case (2c), b = c

... ...P [1..q] b

P [1..q] b

⇓
... ...P [1..q + 1]

P [1..q + 1]

Figure 2.8: The case differentiation in the Knuth-Morris-Pratt algorithm.

20 2 Exact String Matching

Algorithm 2.4 The Knuth-Morris-Pratt algorithm.
j ← 0
q ← 0
while j + q < n do

if q = m /* case (1) */
report match at position j + 1
j ← j + q − prefixtab[q]
q ← prefixtab[q]

else
b← T [j + q + 1]
c← P [q + 1]
if b 6= c then

if q > 0 then /* case (2a) */
j ← j + q − prefixtab[q]
q ← prefixtab[q]

else /* case (2b) */
j ← j + 1

else /* case (2c) */
q ← q + 1

Precomputation of the prefix function π

Suppose that ω is a non-empty prefix of P . By definition, π(ω) is the
longest proper suffix of ω that is also a prefix of P . For k ≥ 1 we define the
iterative application πk of π as follows:

πk(ω) =

π(ω) if k = 1
πk−1(π(ω)) if k > 1 and π(ω) 6= ε
⊥ otherwise

In the example of Figure 2.7, we have π3(ACACA) = π2(ACA) = π(A) = ε.
Throughout the book, ⊥ stands for the undefined value.

Lemma 2.4.3 is the key to a linear-time precomputation of the prefix
function π, or equivalently, the array prefixtab.

Lemma 2.4.3 Let ω be a non-empty prefix of P and v ∈ Σ∗. String v is a
proper suffix of ω and a prefix of P if and only if v = πk(ω) for some k ≥ 1.

Proof We show by induction on k that πk(ω) is a proper suffix of ω and a
prefix of P for all k with πk(ω) 6= ⊥. For k = 1, we have πk(ω) = π(ω) and
the claim follows from the definition of π. The inductive hypothesis states
that v′ = πk−1(ω) is a proper suffix of ω and a prefix of P . In the inductive
step, we must prove the claim for v = πk(ω). Because v′ is a proper suffix
of ω and π(v′) is a proper suffix of v′, it follows that π(v′) is a proper suffix
of ω; see Figure 2.9 for a graphical proof. Moreover, π(v′) is a prefix of P .

2.4 The Knuth-Morris-Pratt algorithm 21

v′

π(v′)

ω

Figure 2.9: If v′ is a proper suffix of ω and π(v′) is a proper suffix of v′, then
π(v′) is also a proper suffix of ω.

Thus, v = πk(ω) = π(πk−1(ω)) = π(v′) is a proper suffix of ω and a prefix of
P . This already proves the if-direction. Conversely, let v be a proper suffix
of ω and a prefix of P . We give a proof of contradiction for the fact that
v = πk(ω) for some k ≥ 1. So suppose that v 6= πk(ω) for all k ≥ 1. Because
v and all πk(ω) 6= ⊥ are a proper suffixes of ω, there must be some q ≥ 1
so that |πq+1(ω)| < |v| < |πq(ω)|. According to Lemma 2.4.1, v is a proper
suffix of πq(ω). By definition, πq+1(ω) = π(πq(ω)) is the longest proper suffix
of πq(ω) that is a prefix of P . However, v is a proper suffix of πq(ω), a prefix
of P , and |πq+1(ω)| < |v|. This contradiction proves the lemma. �

We compute π iteratively for all prefixes ω of P , from the shortest to the
longest prefix. The shortest non-empty prefix of P consists solely of the
first character of P , i.e., |ω| = 1. In this case the empty string ε is the only
proper suffix of ω, and ε is a prefix of P . Hence π(ω) = ε, or equivalently,
prefixtab[1] = 0. Now let |ω| ≥ 2. Then ω = uc for some non-empty string u
and some character c. As we compute π iteratively from the shortest to the
longest prefix, the values π(u), π2(u), . . . , π`(u), where π`(u) = ε, are already
known and stored. Assume for a moment that π(ω) 6= ε. Because c is the
last character of ω and π(ω) is a suffix of ω, c is also the last character of
π(ω). Thus, π(ω) = vc for some string v. Clearly, v must be a proper suffix
of u because π(ω) = vc is a suffix of ω = uc. Furthermore, since π(ω) is
a prefix of P , so is v. Thus, Lemma 2.4.3 is applicable and we infer that
v = πk(u) for some k ≥ 1.

These considerations lead to the following algorithmic idea: If ω = uc,
then we iteratively look-up the strings π(u), π2(u), . . . , π`(u) from the longest
to the shortest. All these strings are prefixes of P and we search for the
first one, say v, with the property that vc still is a prefix of P . If we find
such a string v, then π(ω) = vc. If such a v does not exist, then π(ω) = ε.
The pseudo-code in Algorithm 2.5 implements this approach.

Since v is a prefix of P in Algorithm 2.5, we can test whether vc is a prefix
of P by testing whether P [|v|+1] = c holds true. With this observation, it is
easy to compute the array prefixtab instead of π; see Algorithm 2.6. Figure
2.10 exemplifies how Algorithm 2.6 works.

22 2 Exact String Matching

Algorithm 2.5 Linear-time computation the prefix function π.
π(P [1..1])← ε
for q ← 2 to m do

c← P [q]
v ← π(P [1..q − 1])
while vc is not a prefix of P and v 6= ε do

v ← π(v)
if vc is a prefix of P then

π(P [1..q])← vc
else

π(P [1..q])← ε

Algorithm 2.6 Linear-time computation of the array prefixtab, version 1.
prefixtab[1]← 0
for q ← 2 to m do

c← P [q]
k ← prefixtab[q − 1]
while P [k + 1] 6= c and k > 0 do

k ← prefixtab[k]
if P [k + 1] = c then

prefixtab[q]← k + 1
else

prefixtab[q]← 0

Algorithm 2.7 Linear-time computation of the array prefixtab, version 2.
prefixtab[1]← 0
k ← 0
for q ← 2 to m do

c← P [q]
while P [k + 1] 6= c and k > 0 do

k ← prefixtab[k]
if P [k + 1] = c then

k ← k + 1
prefixtab[q]← k

2.4 The Knuth-Morris-Pratt algorithm 23

q 1 2 3 4 5 6
P [q] A C A C A G

prefixtab[q] 0 0 1 2

Figure 2.10: Suppose that Algorithm 2.6 computed the values prefixtab[q]
for all q with 1 ≤ q ≤ 4. To compute prefixtab[5], the condition
P [k+1] 6= c of the while-loop in Algorithm 2.6 is evaluated for
k = prefixtab[5 − 1] = 2 and c = A. Because P [3] = A, the body
of the while-loop is not executed and prefixtab[5] is set to 3. In
the computation of prefixtab[6], the condition P [k + 1] 6= c and
k > 0 of the while-loop is true for k = prefixtab[6−1] = 3 and c =
G because P [4] = C. Thus, in the first execution of the body
of the while-loop, k is set to prefixtab[3] = 1. The condition
P [k+1] 6= c and k > 0 of the while-loop again evaluates to true
for k = 1 and c = G, so that k is set to prefixtab[1] = 0 in the
second execution of the body of the while-loop. Then, since
k = 0, the while-loop is left. In the final if-then-else statement
prefixtab[6] gets the value 0 because P [1] = A 6= G.

In order to clearly see that Algorithm 2.6 has a worst-case time com-
plexity of O(m), we transform the program a little. The while-loop is left
either because P [k + 1] = c or because k = 0. Thus, the last four lines
in Algorithm 2.6 can be replaced with the last three lines in Algorithm
2.7. Now, the fourth statement of Algorithm 2.6 is superfluous, provided
that k is initialized with 0. These considerations yield Algorithm 2.7. We
first observe that the correctness of Algorithm 2.7 immediately follows
from that of Algorithm 2.6 because it maintains the following invariant:
at the start of each iteration of the for-loop we have k = prefixtab[q − 1].
Obviously, this is true when the loop is first entered and the assignment
prefixtab[q] ← k ensures that it remains true in each successive iteration.
Clearly, the worst-case time complexity of Algorithm 2.7 crucially depends
on the number of iterations of the while-loop (all other computations take
constant time). In each iteration of the while-loop, k is decremented be-
cause k > prefixtab[k]. How many times that can be is the key question.
In each execution of the for-loop, the value of k either increases by one
or remains unchanged (at zero). So the total increase of k over the entire
algorithm is at most m − 1. Thus, the total number of decrements (and
of executions of the while-loop) is bounded by m. All in all, Algorithm 2.7
runs in O(m) time.

In summary, the Knuth-Morris-Pratt algorithm has a worst-case time
complexity of O(m+n). The algorithm can be generalized to search simul-
taneously for several patterns as we shall see in Section 2.5.

24 2 Exact String Matching

Exercise 2.4.4 Demonstrate an anology between the precomputation of
the prefix function and the search phase of the Knuth-Morris-Pratt algo-
rithm.

2.5 The Aho-Corasick algorithm for a set of patterns

In the previous sections, we were searching for all positions in the text
at which an occurrence of the pattern begins. Here, it is convenient to
search for all positions at which a pattern ends. We say that a pattern P
occurs in text T ending at position j if T [j −m + 1..j] = P [1..m]. Clearly, P
occurs in T ending at position j if and only if it occurs in T beginning at
position j −m + 1. So searching for all end positions of such occurrences
entails no loss of generality.

In fact, we study a more general problem, namely the problem of finding
all occurrences of a set P = {P 1, . . . , P k} of patterns in a text T . Let |P i| =
mi,

∑k
i=1mi = m, and |T | = n. If one uses the Knuth-Morris-Pratt algorithm

k times to search for all occurrences of each pattern P i in T individually,
then one can find all occurrences of P 1, . . . , P k in T in O(k · n + m) time.
By contrast, the Aho-Corasick algorithm [8,139] requires only O(n +m +
z) time, where z denotes the overall number of occurrences. In other
words, its run time does not only depend on the size of the input, but
also on the size of the output. An algorithm with this property is said to
be output-sensitive. The Aho-Corasick algorithm is based on the following
data structure, which is exemplified in Figure 2.11.

Definition 2.5.1 The trie2 (or keyword tree) K of a set P = {P 1, . . . , P k} of
strings (or keywords) is a rooted tree satisfying the following conditions:

1. Each edge is labeled with exactly one character.

2. Any two edges out of the same node have distinct labels.

3. For any node v in K, the string v̂ must be a prefix of some P i ∈ P,
where v̂ denotes the string obtained by a concatenation of the edge-
labels on the path from the root to v.

4. For each string P i ∈ P, there is exactly one node v in K with v̂ = P i;
this node is labeled with the number i.

Assuming a fixed-size alphabet, the trie of a set P = {P 1, . . . , P k} of
strings can be computed incrementally in O(m) time as follows: Let Ki
denote the trie of the set P = {P 1, . . . , P i}, where 1 ≤ i < k. K1 just consists
of a single path of |P 1| edges out of the root. Each edge on this path is

2The name comes from retrieval and is pronounced try; see [115].

2.5 The Aho-Corasick algorithm for a set of patterns 25

a g

ga

gag

at gc

a

a

g

g

ct

1 3

2

Figure 2.11: Trie of the patterns P 1 = at, P 2 = gag, and P 3 = gc. The labels
within the nodes are only for illustrative purposes; they are
not part of the trie.

labeled with a character of P 1 and when read from the root, these charac-
ters spell out P 1. To create Ki+1 from Ki, start at the root of Ki and follow,
as far as possible, the unique path in Ki that matches the characters in
P i+1 in order. This path is unique because at any branching node v of
Ki the characters on the edges out of v are distinct. If pattern P i+1 is ex-
hausted (fully matched), then number the node at which the match ends
with the number i + 1. If a node v is reached where no further match is
possible, but P i+1 is not fully matched, then create a new path out of v
labeled with the remaining unmatched part of P i+1 and number the end-
point of that path with the number i + 1; see Figure 2.12 for an example.
Obviously, to create Ki+1 from Ki takes O(mi+1) time and thus the overall
time complexity is O(m).

With the help of the trie of P, it is possible to use the same ideas as in the
Knuth-Morris-Pratt algorithm to efficiently search for all occurrences in T
of patterns in P. To this end, we introduce the following generalization of
the prefix function of Definition 2.4.2.

Definition 2.5.2 For any prefix u of a pattern in P, π(u) denotes the
longest proper suffix of u that is a prefix of a pattern in P.

Because every node v in the trie K of P represents a prefix of at least one
pattern in P, π(v̂) is the longest proper suffix of v̂ that is also a prefix of a
pattern in P. Moreover, there is a node w in K so that ŵ = π(v̂). (If π(v̂) = ε,
then w = root.) Due to the properties of the trie K, this node w is uniquely
determined. These considerations lead to the following definition.

Definition 2.5.3 For each node v in K, let w be the node in K so that
ŵ = π(v̂). A pointer πf (v) from v to w is called failure link of v.

26 2 Exact String Matching

a g

ga

gag

at gc

a

a

g

g

ct

1 3

2

gat

gata

4

a

t

Figure 2.12: The pattern P 4 = gata is inserted into the trie of the patterns
P 1 = at, P 2 = gag, and P 3 = gc by following the path ga to the
node v (with the illustrative label ga) and creating the new
path ta out of v.

a g

ga

gag

at gc

a

a

g

g

ct

1 3

2

gat

gata

4

a

t

Figure 2.13: Trie of the pattern P 1 = at, P 2 = gag, P 3 = gc, and P 4 =
gata with failure links. (For better readability, failure links
pointing to the root node are omitted.)

2.5 The Aho-Corasick algorithm for a set of patterns 27

Algorithm 2.8 This version of the Aho-Corasick Algorithm works correctly
if no pattern in P is a proper substring of any other pattern in P.
j ← 1
v ← root
repeat

while there is an edge (v, v′) labeled T [j] do
if v′ is labeled with number i then

report “Pattern P i occurs in T ending at position j.”
v ← v′

j ← j + 1
if v = root then

j ← j + 1
else

v ← πf (v) /* follow the failure link */
until j > n

Figure 2.13 depicts the failure links of our example.
Suppose we know the failure link πf (v) for each node v in K. We use j to

indicate the “current character” T [j] of T to be compared with a character
on K. To understand the use of the failure links in Algorithm 2.8, suppose
we have traversed the tree to node v but cannot continue (i.e., character
T [j] does not occur on any edge out of v). We know that the string v̂
occurs in T starting at position j − |v̂| and ending at position j − 1. By the
definition of the failure link πf (v), it is guaranteed that string π(v̂) matches
string T [j − |π(v̂)|..j − 1]. That is, the algorithm could traverse K from the
root to node πf (v) and be sure to match all the characters on this path with
the characters in T starting from position j − |π(v̂)|. So there is no need
to actually make the comparisons on the path from the root to node πf (v).
Instead, the comparisons should begin at node πf (v), comparing character
T [j] against the characters on the edges out of πf (v). If |π(v̂)| = 0, then the
comparisons begin at the root of K. The only case remaining is when the
mismatch occurs at the root. In this case, j must be incremented by 1
and comparisons again begin at the root. A pseudo-code implementation
of this method can be found in Algorithm 2.8.

As a matter of fact, Algorithm 2.8 already solves the problem of finding
all occurrences of the patterns P 1, . . . , P k in T problem provided that no
pattern is a proper substring of any other pattern. The proof of this fact is
left to the reader (the argument is similar to the one in the Knuth-Morris-
Pratt algorithm).

Exercise 2.5.4 Given the trie of the pattern set P with all failure links,
show that Algorithm 2.8 has a worst-case time complexity of O(n). (The
argument is also similar to the one used to analyze the search time of the
Knuth-Morris-Pratt algorithm.)

28 2 Exact String Matching

However, if a pattern in P is a proper substring of another pattern in
P, then Algorithm 2.8 may miss occurrences of a pattern in the text. To
see this, observe that in our running example, pattern P 1 = at is a proper
substring of P 4 = gata, and let T = gataca. Starting at the root of the trie
in Figure 2.13, Algorithm 2.8 follows the matching path gata, reports that
pattern P 4 occurs in T ending at position 4, and then follows the failure
link from node gata to node a. Now, the search phase continues with that
node. Obviously, this is not correct because the occurrence of pattern P 1

ending at position 3 is not reported. We overcome this problem with the
help of the output function and Lemma 2.5.7.

Definition 2.5.5 The output function output assigns to each node v in K
a subset of {1, . . . , k} as follows. Let v, πf (v), π2

f (v), . . . , π
q
f (v) be the path of

failure links from v to the node πqf (v) = root, and let i1, . . . , i` be the set of
pattern numbers encountered on that path. Then, output(v) = {i1, . . . , i`}.
The set output(v) is called output set of v.

For the proof of Lemma 2.5.7 we need the following auxiliary result,
which is a generalization of Lemma 2.4.3.

Lemma 2.5.6 Let v be a node in K with v 6= root and u ∈ Σ∗. u is a proper
suffix of v̂ and a prefix of a pattern in P if and only if u = πq(v̂) for some
q ≥ 1.

Proof Similar to the proof of Lemma 2.4.3. �
Lemma 2.5.7 Suppose node v is reached in the comparison of the current
character T [j] with a character on K. Then pattern P i occurs in T ending at
position j if and only if i ∈ output(v).

Proof “only-if-direction”: Suppose P i occurs in T ending at position j.
Then P i must be a suffix of v̂. If P i = v̂, then v is labeled with number
i; hence i ∈ output(v). Otherwise, according to Lemma 2.5.6, there is a
q ≥ 1 so that πq(v̂) = P i. Then v, πf (v), π

2
f (v), . . . , π

q
f (v) is a path of failure

links from v to the node w = πqf (v) and ŵ = P i. That is, node w = πqf (v) is
numbered i. Therefore, i ∈ output(v).
“if-direction”: Let i ∈ output(v) and let w be the node labeled with number
i. If v = w, then P i occurs in T ending at position j because v̂ = P i.
Otherwise, if v 6= w, then—by definition of output(v)—there is a path of
failure links v, πf (v), π2

f (v), . . . , π
q
f (v) from v to the node w = πqf (v), q ≥ 1. This

means that P i = ŵ = πq(v̂). It follows from Lemma 2.5.6 that P i is a proper
suffix of v̂. Thus, P i occurs in T ending a position j. �

The full Aho-Corasick search algorithm uses Lemma 2.5.7 and a pseudo-
code implementation is given in Algorithm 2.9. Apart from the output, Al-
gorithm 2.9 is precisely identical to Algorithm 2.8. Hence the search time
is also O(n), and its total running time is O(n + z), where z is the overall
number of occurrences of patterns from P in the text T .

2.5 The Aho-Corasick algorithm for a set of patterns 29

Algorithm 2.9 Aho-Corasick algorithm.
j ← 1
v ← root
repeat

while there is an edge (v, v′) labeled T [j] do
for each i ∈ output(v′) do

report “Pattern i occurs in T ending at position j.”
v ← v′

j ← j + 1
if v = root then

j ← j + 1
else

v ← πf (v) /* follow the failure link */
until j > n

Precomputation of the failure links and the output sets

Let us now turn to the computation of the failure links and the output
function. Recall that for any node v in K, w = πf (v) is the unique node in
K so that ŵ is the longest proper suffix of v̂ that is a prefix of a pattern
in P. Clearly, if depth(v) = 0 (i.e., v is the root) or depth(v) = 1 (i.e., v is a
child of the root), then πf (v) = root. Suppose, for some d, πf (v) has been
computed for every node v with depth(v) ≤ d. The task now is to compute
πf (v) for a node v with depth(v) = d + 1. Let v′ be the parent of v in K and
let c be the character on the edge (v′, v). We are looking for the node u
to which the failure link πf (v) of v points, and we know node w′ = πf (v

′)
because depth(v′) = d. Just as in the explanation of the Knuth-Morris-
Pratt algorithm, the string û must be a (not necessarily proper) suffix of
ŵ′ followed by character c. So the first thing to check is whether there is
an edge (w′, w) out of node w′ = πf (v

′) labeled with character c. If that edge
does exist, then πf (v) points to the node w and we are done. Otherwise, û
is a proper suffix of ŵ′ followed by character c. So we next examine π2

f (v
′) to

see whether there is an edge out of it labeled with character c. Continuing
in this way, we arrive at Algorithm 2.10 for computing πf (v).

The output function can also be computed during the computation of
the failure links. Clearly, output(root) = ∅. Suppose, for some d, output(v)
has been computed for every node v with depth(v) ≤ d. The task now
is to compute output(v) for a node v with depth(v) = d + 1. Note that
depth(πf (v)) ≤ d. Clearly, output(v) coincides with output(πf (v)) except for
the case in which v is numbered i. In this case, i must also be added to
output(v). To summarize, the output function can be computed with the

30 2 Exact String Matching

Algorithm 2.10 Computing the failure link and the output set for node v.
let v′ be the parent of v in K
let c be the character on the edge (v′, v)
w′ ← πf (v

′)
while there is no edge out of w′ labeled c and w′ 6= root do

w′ ← πf (w
′)

if there is an edge (w′, w) out of w′ labeled c then
πf (v)← w

else
πf (v)← root

if v is numbered i then
output(v)← {i} ∪ output(πf (v))

else
output(v)← output(πf (v))

help of the failure link πf (v) as follows:

output(v) =

∅ if v = root
{i} ∪ output(πf (v)) else if v is labeled with number i
output(πf (v)) otherwise

Algorithm 2.10 first computes the failure link πf (v) of v and then its output
set output(v) with the aid of πf (v).

As an example, consider Figure 2.13 (page 26) and suppose that the
failure links and output sets have already been computed for all nodes of
depth ≤ 2. We will compute the failure links and output sets for the nodes
of depth 3. First, let v be the node with illustrative label gag. Algorithm
2.10 follows the failure link of the parent node ga to node a. Since there
is no edge out of a labeled g, it further follows the failure link of node a to
the root node. (At this point, the while-loop is left.) Because there is an
edge out of the root node with label g, the failure link of node v points to
node g. Furthermore, as v is labeled with the pattern number 2, it follows
that output(v) = {2} ∪ output(πf (v)) = {2}. Second, let v be the node with
illustrative label gat. Again, Algorithm 2.10 follows the failure link of the
parent node ga to node a. Because there is an edge out of node a labeled
t, the failure link of node v points to node at. It follows from the fact that
v is not numbered that output(v) = output(πf (v)) = {1}.

To compute all failure links and output sets, we repeatedly apply Al-
gorithm 2.10 to the nodes in K in a breadth-first manner, starting at
the root. The worst-case time complexity of this method crucially de-
pends on the number of iterations of the while-loop over the entire al-
gorithm because all other computations take constant time (using linked
lists to represent the output set of a node v, the statement output(v) ←
{i} ∪ output(πf (v)) can indeed be executed in constant time). We will show

2.5 The Aho-Corasick algorithm for a set of patterns 31

at g

ga

gag

gc

at

a

g

g

c

3

2

ta

gata

1

4

Figure 2.14: PATRICIA tree of the pattern P 1 = at, P 2 = gag, P 3 = gc, and
P 4 = gata.

that for one pattern, say P i, the algorithm follows at most mi = |P i| failure
links. (The argument is very similar to that given in the Knuth-Morris-
Pratt algorithm; it is instructive to revisit the precomputation of the prefix
function π.) When Algorithm 2.10 is applied to a node v, then we obviously
have depth(πf (v)) ≤ depth(πf (v

′)) + 1, where v′ is the parent node of v. So
the total increase of depth over all executions of Algorithm 2.10 for nodes
on the path for pattern P i is bounded by mi. On the other hand, in each
iteration of the while-loop, the depth of the current node decreases by at
least one because the depth of the node to which its failure link points is
strictly smaller than the depth of the node itself. It follows that the while-
loop is executed at most mi times for pattern Pi. Consequently, there are
at most m executions of the while-loop over the entire algorithm. Hence,
the worst-case time complexity is O(m).

We would like to conclude this section with the following hint to PATRI-
CIA trees [226]. A PATRICIA tree is a compact trie, i.e., a representation of
a trie where all nodes with one child are merged with their parents. Figure
2.14 shows the PATRICIA tree of our running example.

Chapter 3
Answering Range Minimum Queries in
Constant Time

This chapter deals with the problem of answering minimum range queries
and lowest common ancestor queries in constant time, under the con-
straint that only linear time is spent in a preprocessing phase. In subse-
quent chapters we will make extensive use of this, but readers who are
not interested in the algorithms that solve this problem may safely skip
this chapter. However, they should acquaint themselves with the basic
definitions.

3.1 Basic definitions

Definition 3.1.1 Given an array A[1..n] of integers1 and two indices i and
j with 1 ≤ i ≤ j ≤ n, a range minimum query on the interval [i..j] returns
an index k so that A[k] = min{A[l] | i ≤ l ≤ j}. Such a query will henceforth
be denoted by RMQA(i, j).

We stress that our array indexing starts at 1.
By definition, an interval [i..j] with i > j is empty and RMQA(i, j) is un-

defined in this case. Moreover, if the minimum element in A[i..j] occurs
more than once in A[i..j], then the index of the minimum element is not
unique. In this case, we assume that RMQA(i, j) returns the first index of
the minimum element in A[i..j], unless stated otherwise.

As an example, consider the array A = [8, 4, 6, 2, 12, 10, 14, 6]. The range
minimum query RMQA(5, 8), returns the index 8 because A[8] = 6 is the
minimum element in A[5..8] = [12, 10, 14, 6].

1Here, the array elements are integers, i.e., elements of the totally ordered set Z. How-
ever, one can use any other totally ordered set instead of the integers.

34 3 Answering Range Minimum Queries in Constant Time

75

631

2

4

8

Figure 3.1: In this tree, LCAT (5, 7) returns the node 6, while LCAT (1, 7) re-
turns the root node 4.

Definition 3.1.2 Given a rooted tree T and two nodes u and v in T , a
lowest common ancestor query on u and v, denoted by LCAT (u, v), returns
the node farthest from the root that is an ancestor of both u and v.

Recall that in a rooted tree the ancestors of a node u are the nodes
on the direct path from u to the root of the tree. Therefore, the lowest
common ancestor of u and v is the node at which the path from u to the
root meets the path from v to the root. As an example, consider the tree
T in Figure 3.1. The lowest common ancestor query LCAT (5, 7) returns the
node 6, while LCAT (1, 7) returns the root node 4.

Early papers on finding lowest common ancestors in trees are [9] and
[306]. Harel and Tarjan [146] showed that a fixed tree can be preprocessed
in linear time and space so that LCA queries can be answered in constant
time. Their algorithm was simplified by Schieber and Vishkin [283], but
it cannot be called “simple” algorithm. Gabow et al. [117] showed that
the problems of answering range minimum queries and lowest common
ancestor queries are linearly equivalent. Berkman and Vishkin [39] ob-
served that the reduction from LCA to RMQ via the Euler-Tour (see Section
3.2) is in fact a reduction to a special RMQ-problem, in which consecutive
array elements differ by one. They solved this restricted RMQ-problem
and obtained a new algorithm for finding lowest common ancestors in
constant time. Bender and Farach-Colton [35] later provided a simplified
presentation of their algorithm.

3.2 Range minimum vs. lowest common ancestor

In this section, it will be shown that range minimum queries can be an-
swered in constant time (with linear time and space preprocessing) if and

3.2 Range minimum vs. lowest common ancestor 35

2

31 6

8

5 7

4

5

1

6
2

3 4

14

7
8

13

12
11

10

9

Figure 3.2: The Euler Tour 4, 2, 1, 2, 3, 2, 4, 8, 6, 5, 6, 7, 6, 8, 4 of the tree from
Figure 3.1 is obtained by following the consecutively num-
bered arrows.

only if lowest common ancestor queries can be answered in constant time
(with linear-time preprocessing). We follow the approach of Gabow et
al. [117] and Bender & Farach-Colton [35].

Definition 3.2.1 Let T be a rooted tree with n nodes, numbered from 1 to
n. We perform the following operations recursively at each node, starting
with the root node of T :

1. Visit the root.

2. Traverse the left subtree.

3. Traverse the right subtree.

Suppose that during this so-called preorder traversal2 the label of the new
node encountered is written down every time an edge is traversed. This
sequence of nodes is called the Euler tour of T . Because the traversal
visits each of the n− 1 edges twice (once in each direction), the Euler tour
of T has length 2n− 1. We define the representative of a node in an Euler
tour to be the index of the first occurrence of that node in the Euler tour.

The preceding definition is exemplified in Figure 3.2.
We say that an algorithm with preprocessing time p(n) and query time

q(n) has time complexity 〈p(n), q(n)〉.

Theorem 3.2.2 If there exists an 〈O(n), O(1)〉 time algorithm for answering
range minimum queries, then there is also an 〈O(n), O(1)〉 time algorithm for
finding lowest common ancestors.

2A preorder traversal is also called depth-first traversal.

36 3 Answering Range Minimum Queries in Constant Time

Proof Given a rooted tree T with n nodes (numbered from 1 to n), proceed
as follows:

1. Compute the Euler tour of T and store it in array E[1..2n− 1].
(In our example, E[1..15] = [4, 2, 1, 2, 3, 2, 4, 8, 6, 5, 6, 7, 6, 8, 4].)

2. Compute the depths3 of all nodes in the Euler tour E[1..2n − 1] and
store them in array D[1..2n− 1]. That is, D[i] is the length of the path
from node E[i] to the root of T .
(In our example, D[1..15] = [0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 2, 1, 0].)

3. Compute the representative of each node and store it in array R[1..n].
(In our example, R[1..8] = [3, 2, 5, 1, 10, 9, 12, 8].)

Each of the three computations takes O(n) time. With the help of these
arrays, LCAT (u, v) can be computed as follows: The nodes in the Euler tour
E[1..2n−1] between the first visits to u and v are E[R[u]..R[v]] (or E[R[v]..R[u]]
if v is encountered first). The key observation is that the shallowest
node encountered between the first visits to nodes u and v is the low-
est common ancestor of these nodes. Because the depths of E[R[u]..R[v]]
are stored in D[R[u]..R[v]], the range minimum query RMQD(R[u], R[v]) re-
turns the position of the shallowest node in E[R[u]..R[v]]. Consequently,
LCAT (u, v) = E[RMQD(R[u], R[v])]. Clearly, E[RMQD(R[u], R[v])] can be com-
puted in constant time because each of the three array references takes
O(1) time and we assume that range minimum queries can be answered
in O(1) time. It is easily seen that the required preprocessing can be done
in linear time. This is because array D can be preprocessed in O(n) time
so that range minimum queries can be answered in constant time, and
the computation of the three arrays also takes O(n) time. �

In order to show the converse of Theorem 3.2.2, we introduce the Carte-
sian tree of an array as a key concept; this data structure was invented
by Vuillemin [321].

Definition 3.2.3 Let A[l..r] be an array of integers. A Cartesian tree C(A)
of A is a labeled binary tree defined as follows:

• The root of C(A) corresponds to the minimum element of A, and the
root is labeled with a position i of this minimum.

• The left child of the root is the Cartesian tree of A[l..i − 1] if i > l,
otherwise it has no left child.

• The right child of the root is the Cartesian tree of A[i + 1..r] if i < r,
otherwise it has no right child.

3In a rooted tree, the depth of a node u is the length of the path from u to the root. The
root itself has depth 0.

3.2 Range minimum vs. lowest common ancestor 37

4

Ccan(A[1..3]) Ccan(A[5..8])

Figure 3.3: Computing the Cartesian tree of A = [8, 4, 6, 2, 12, 10, 14, 6].

31

2

4

8

Ccan(A[5..7])

Figure 3.4: Computing the Cartesian tree of A = [8, 4, 6, 2, 12, 10, 14, 6].

Because of the recursive nature of this definition, it subsumes Cartesian
trees of arrays of size n that are not indexed 1 through n. However, we are
not interested in such arrays. Henceforth, we will assume that an array of
size n is indexed 1 through n, unless stated otherwise. Consequently, the
n nodes of a Cartesian tree of an array of size n are labeled with numbers
from 1 to n.

If the array A contains multiple occurrences of an element, then its
Cartesian tree may not be unique. To avoid this, we define a strict order
≺ by (A[i], i) ≺ (A[j], j) if and only if A[i] < A[j], or A[i] = A[j] and i < j. With
respect to this order, the minimum element in A (and in each subarray of
A) is unique. Consequently, the Cartesian tree of A w.r.t. ≺ is unique. It
is called canonical Cartesian tree of A and denoted by Ccan(A).

Again, we use the array A = [8, 4, 6, 2, 12, 10, 14, 6] as an example. The
minimum element 2 in A[1..8] occurs at position 4, thus the root of Ccan(A)
is labeled with 4 and we have to compute the canonical Cartesian trees
of A[1..3] and A[5..8] recursively; see Figure 3.3. Let us further compute
A[5..8]. Since the minimum element 6 in A[5..8] occurs at position 8, there
is no right child, and we merely have to compute the canonical Cartesian
tree of A[5..7]; see Figure 3.4. All in all, Ccan(A) turns out to be the tree
from Figure 3.1.

Definition 3.2.4 The rightmost path in a Cartesian tree (or more generally
in a binary tree) is obtained by starting at the root of the tree and following
right child pointers. The path ends at the first node that has no right child;
see Figure 3.5.

38 3 Answering Range Minimum Queries in Constant Time

75

631

2

4

8

Figure 3.5: The rightmost path of this tree consists of the nodes 4 and 8.

We next show how Ccan(A) can be build incrementally, i.e., for every i
with 1 ≤ i ≤ n − 1 we build Ccan(A[1..i + 1]) from Ccan(A[1..i]). Moreover,
in each construction step from Ccan(A[1..i]) to Ccan(A[1..i + 1]), we identify
the number li+1 of nodes that are on the rightmost path in Ccan(A[1..i])
but not on the rightmost path in Ccan(A[1..i + 1]). Consequently, after the
construction of Ccan(A), we have a sequence l1, l2, . . . , ln of these numbers,
which characterizes Ccan(A) as we shall see later.

Initially, the canonical Cartesian tree of A[1..1] consists just of a root
labeled with position 1 and l1 = 0.

Let v1, . . . , vk be the nodes on the rightmost path in Ccan(A[1..i]) and let
p1, . . . , pk be their labels. It follows from the definition of the (canonical)
Cartesian tree that the node with label i + 1 must be at the end of the
rightmost path in Ccan(A[1..i + 1]). Therefore, we climb up the rightmost
path in Ccan(A[1..i]) until we find the position where i + 1 belongs. More
precisely, starting with m = k, we decrease m by 1 as long as A[pm] > A[i+1]
holds. Then we proceed by case analysis.

1. If m = k, i.e., A[pk] ≤ A[i + 1], then a new node w with label i + 1
becomes the right child of vk and li+1 = 0; see Figure 3.6.

2. If m = 0, i.e., A[p1] > A[i + 1], then a new node w with label i + 1
becomes the root of the tree and Ccan(A[1..i]) becomes its left child.
In this case, li+1 = k nodes are removed from the rightmost path in
Ccan(A[1..i]); see Figure 3.7.

3. If 1 ≤ m ≤ k − 1, then m is the index so that A[pm] ≤ A[i + 1] and
A[pm′] > A[i + 1] for all m < m′ ≤ k. In this case a new node w with
label i+1 becomes the right child of vm and the subtree rooted at vm+1

becomes the left child of w. Note that in this case li+1 = k −m nodes
are removed from the rightmost path in Ccan(A[1..i]); see Figure 3.8.

3.2 Range minimum vs. lowest common ancestor 39

3

1

2

31

2

Figure 3.6: The step from Ccan(A[1..2]) to Ccan(A[1..3]) corresponds to case
(1) in the algorithm that incrementally builds Ccan(A).

1

2

3

4

31

2

4

Figure 3.7: The step from Ccan(A[1..3]) to Ccan(A[1..4]) corresponds to case (2)
in the algorithm that incrementally builds Ccan(A). The nodes
2 and 3 occur on the rightmost path in Ccan(A[1..3]) but not on
the rightmost path in Ccan(A[1..4]), hence l4 = 2.

8

31

2

4

5

6

7 75

631

2

4

8

Figure 3.8: The step from Ccan(A[1..7]) to Ccan(A[1..8]) corresponds to case (3)
in the algorithm that incrementally builds Ccan(A). The nodes
6 and 7 occur on the rightmost path in Ccan(A[1..7]) but not on
the rightmost path in Ccan(A[1..8]), hence l8 = 2. The whole
sequence l1, . . . , l8 is 0, 1, 0, 2, 0, 1, 0, 2.

40 3 Answering Range Minimum Queries in Constant Time

The worst-case time complexity of the algorithm is obtained by the fol-
lowing amortized analysis. In each step exactly one node—the new node
with label i + 1—is added to the (rightmost path of the new) tree. Finding
the position where i + 1 belongs requires walking up the rightmost path
in Ccan(A[1..i]). Whenever the value of the variable m is decreased in this
walk, a node (the node vm) leaves the rightmost path, and it is not tra-
versed again. Since the overall number of nodes on all rightmost paths
during the construction is bounded by n, the overall construction time of
Ccan(A) is O(n).

Using the same kind of reasoning as above, we can show that the se-
quence of natural numbers l1, l2, . . . , ln satisfies

i∑
k=1

lk < i for all 1 ≤ i ≤ n

As already mentioned, one can remove at most as many nodes from the
rightmost path in Ccan(A[1..i]) as have been inserted. This, in combination
with the fact that in each step exactly one node joins the rightmost path,
implies

∑i
k=1 lk ≤ i. The inequality is strict because at least one node (the

root node) remains on the rightmost path.

Definition 3.2.5 For every n ∈ N, Ln denotes the set of all sequences of
natural numbers l1, l2, . . . , ln satisfying

∑i
k=1 lk < i for all 1 ≤ i ≤ n.

Exercise 3.2.6 Given array A of size n, the sequence l1, l2, . . . , ln can be
computed without actually constructing Ccan(A). Explain why Algorithm
3.1 does this correctly.

Algorithm 3.1 Given array A of size n, compute the sequence l1, l2, . . . , ln.
R[0]← −∞ /* array R stores the (current) values on the rightmost path */
for i← 1 to n do
l[i]← 0 /* array l stores the sequence l1, l2, . . . , ln */

q ← 0
for i← 1 to n do

while R[q] > A[i] do
l[i]← l[i] + 1
q ← q − 1 /* remove R[q] from the rightmost path */

q ← q + 1
R[q]← A[i] /* A[i] is the new rightmost leaf */

return array l

The following characterization of the canonical Cartesian tree of an ar-
ray A will turn out to be very useful.

3.2 Range minimum vs. lowest common ancestor 41

Lemma 3.2.7 For two arrays A[1..n] and B[1..n], we have Ccan(A) = Ccan(B)
if and only if lA1 , l

A
2 , . . . , l

A
n = lB1 , l

B
2 , . . . , l

B
n , where lA1 , l

A
2 , . . . , l

A
n and lB1 , l

B
2 , . . . , l

B
n

are the sequences of natural numbers obtained in the construction of Ccan(A)
and Ccan(B), respectively.

Proof If lA1 , l
A
2 , . . . , l

A
n = lB1 , l

B
2 , . . . , l

B
n , then exactly the same steps were ap-

plied in the construction of Ccan(A) and Ccan(B). Thus, Ccan(A) = Ccan(B).
Conversely, suppose that lA1 , l

A
2 , . . . , l

A
n 6= lB1 , l

B
2 , . . . , l

B
n . Let i+ 1 be the first

index at which the sequences differ, i.e., lA1 , l
A
2 , . . . , l

A
i = lB1 , l

B
2 , . . . , l

B
i and

lAi+1 6= lBi+1. Without loss of generality, we may assume that lAi+1 > lBi+1,
hence lAi+1 > 0. Note that lA1 , l

A
2 , . . . , l

A
i = lB1 , l

B
2 , . . . , l

B
i implies Ccan(A[1..i]) =

Ccan(B[1..i]).
As lAi+1 > 0, at least one of the nodes on the rightmost path in Ccan(A[1..i])

is removed in the construction step from Ccan(A[1..i]) to Ccan(A[1..i + 1]).
Let r be the root of the subtree that becomes the left child of the new
node i + 1 in Ccan(A[1..i + 1]). In the construction step from Ccan(B[1..i]) to
Ccan(B[1..i + 1]), the new node i + 1 is inserted below the node r because
lAi+1 > lBi+1. Consequently, in Ccan(A[1..i+1]) (and hence in Ccan(A)) node n+1
is an ancestor of node r, while in Ccan(B[1..i + 1]) (and hence in Ccan(B))
node r is an ancestor of node n+ 1. Therefore, Ccan(A) 6= Ccan(B). �

Now we prove the converse of Theorem 3.2.2.

Theorem 3.2.8 If there is an 〈O(n), O(1)〉 time algorithm for finding low-
est common ancestors, then there is also an 〈O(n), O(1)〉 time algorithm for
answering range minimum queries.

Proof Given array A[1..n], we build Ccan(A) in linear time, and prepare it in
linear time for constant time lowest common ancestor queries. For ease
of presentation, let us identify each node in Ccan(A) with its label. Then,
for any two nodes i and j with i < j in Ccan(A), we have

RMQA(i, j) = LCACcan(A)(i, j)

To see this, consider the node k = LCACcan(A)(i, j) (i.e., the lowest common
ancestor of i and j in Ccan(A) is labeled with some index k). According to
the definition of the canonical Cartesian tree of A, we have i ≤ k ≤ j. We
claim that A[k] is the minimum element in the subarray A[i..j]. If there
were an element A[k′] < A[k] with i ≤ k′ ≤ j, then the node with label k′

would be an ancestor of node k and it would separate i and j (i.e., i is in
its left child and j is in its right child). Consequently, this node k′ would
be the lowest common ancestor of i and j, a contradiction. Similarly, one
can show that k is the first position in A at which the minimum element
appears, i.e., every other index l with i ≤ l ≤ j and A[l] = A[k] must satisfy
l > k. Hence, RMQA(i, j) = k. �

42 3 Answering Range Minimum Queries in Constant Time

3.3 Range minimum queries

It is the goal of this section to derive an 〈O(n), O(1)〉 time algorithm for
answering range minimum queries, but we start with some elementary
considerations.

A “brute-force” algorithm without preprocessing would scan the array A
from index i to index j for every query RMQA(i, j). In the worst case, it has
time complexity 〈O(1), O(n)〉.

A naive algorithm with preprocessing would compute the answers to
all queries in advance and store them in a look-up table RMQ. Given this
n×n matrix RMQ, a range minimum query on the interval [i..j] can then by
answered in constant time by a table look-up RMQ[i, j]. In fact, we merely
need a triangular matrix because we are solely interested in queries on
intervals [i..j] with i ≤ j. The triangular matrix RMQ can be computed in
O(n2) time by a dynamic programming algorithm using RMQ[i, i] = i and
the recurrence

RMQ[i, j] =

{
i if A[i] ≤ A[RMQ(i+ 1, j)]
RMQ(i+ 1, j) otherwise

Exercise 3.3.1 Give pseudo-code for the dynamic programming algo-
rithm that computes the look-up table (the triangular matrix).

The naive algorithm with preprocessing has time complexity 〈O(n2), O(1)〉.
Constant query time is exactly what we want, but the quadratic prepro-
cessing time can be improved, as we shall see next.

3.3.1 The sparse table algorithm

The preprocessing time can be reduced to O(n log n) time by precomput-
ing and storing only the answers to range minimum queries on intervals
whose length is a power of two. That is, for every starting position i with
1 ≤ i ≤ n and every j with 0 ≤ j ≤ blog nc, we compute the first position
of the minimum element in the “block” A[i..i + 2j − 1] of size 2j and store
it in M [i, j]. Formally, if i + 2j − 1 ≤ n, then M [i, j] is the smallest k with
i ≤ k ≤ i + 2j − 1 and A[k] = min{A[i..i + 2j − 1]}. The value of M [i, j] is
undefined whenever i+ 2j − 1 > n.

Table M is an n×(blog nc+1) matrix that can be filled in O(n log n) time by
a dynamic programming algorithm using M [i, 0] = i and the fact that the
position of the minimum element in a block of size 2j starting at position
i can be obtained by comparing the minima of its two constituent blocks
A[i..i+ 2j−1 − 1] and A[i+ 2j−1..i+ 2j − 1] of size 2j−1. Formally, for 1 ≤ i ≤ n
and 1 ≤ j ≤ blog nc so that i+ 2j − 1 ≤ n, we have

M [i, j] =

{
M [i, j − 1] if A[M [i, j − 1]] ≤ A[M [i+ 2j−1, j − 1]]
M [i+ 2j−1, j − 1] otherwise

3.3 Range minimum queries 43

356 73 14 2

M [3, 2]

M [4, 2]

Figure 3.9: Two overlapping blocks that exactly cover the interval [3..7].

As already mentioned, M [i, j] is undefined whenever i+ 2j − 1 > n.
In order to answer a range minimum query on the interval [i..j] in con-

stant time with the help of the sparse table M , we select two overlapping
blocks that exactly cover the interval [i..j]; this is illustrated in Figure 3.9.

Observe that the largest block that starts at position i and fits into the
interval [i..j] has size 2l, where l = blog(j − i + 1)c. The minimum in this
block is

A[M [i, l]] = min{A[i..i+ 2blog(j−i+1)c − 1]}

Moreover, the minimum in the largest block that ends at position j and
fits into the interval [i..j] is

A[M [j − 2l + 1, l]]

= min{A[j − 2blog(j−i+1)c + 1..j − 2blog(j−i+1)c + 1 + 2blog(j−i+1)c − 1]}
= min{A[j − 2blog(j−i+1)c + 1..j]}

Because the two blocks overlap, the minimum of the interval [i..j] is

min{A[M [i, l]], A[M [j − 2l + 1, l]]} where l = blog(j − i+ 1)c

To sum up, a range minimum query on the interval [i..j] can be answered
in constant time by computing

RMQA(i, j) =

{
M [i, l] if A[M [i, l]] ≤ A[M [j − 2l + 1, l]]
M [j − 2l + 1, l] otherwise (3.1)

This gives the sparse table algorithm with time complexity 〈O(n log n), O(1)〉;
see Bender and Farach-Colton [35].

3.3.2 An optimal algorithm

Based on the sparse table algorithm, we are now able to derive an optimal
〈O(n), O(1)〉 time algorithm. (Another fast algorithm for answering range
minimum queries in constant time was developed by Alstrup et al. [12].)

44 3 Answering Range Minimum Queries in Constant Time

1 2 3 4 4 2 3 1 6 5 7 3 8 7 6 5

1

1

5

4

1

4

3

4

B1 B2 B3 B4

A′:

A:

B′:

Figure 3.10: A is an array of size 216, hence the block size is 4. The figure
shows the first four blocks of A and the first four entries in
the arrays A′ and B′.

From now on, we follow the work of Fischer and Heun [104, 108]. To
simplify the presentation, we henceforth assume that n is a power of two.
The preprocessing step consists of the following phases:4

1. Divide the array A conceptually into non-overlapping consecutive
blocks B1, . . . , Bn/s, each of size s = logn

4
.

2. Compute two arrays A′ and B′ of size n
s
, where A′[i] stores the mini-

mum in block Bi and B′[i] stores its position in Bi.

3. Preprocess array A′ as in the sparse table algorithm so that every
range minimum query RMQA′(i, j) can be answered in constant time
(based on the corresponding sparse table M ′).

Figure 3.10 illustrates the preprocessing step. Obviously, the first two
phases both require O(n) time. Moreover, we have seen in Section 3.3.1
that the look-up table M ′ can be constructed in O(n

s
log(n

s
)) time and space.

Since O(n
s
log(n

s
)) = O(4n

logn
log(4n

logn
)) = O(n), also the third stage takes only

O(n) time and space.
How can we utilize the arrays A′ and B′ and the look-up table M ′ to

answer RMQA(i, j)? Let us consider the special case in which i is the first
position of a block, say of block Bp, and j is the last position of a block,
say of block Bq, where p ≤ q. That is, i = (p− 1) · s+1 and j = q · s. Then the
interval [i..j] spans the blocks Bp, . . . , Bq. For example, the interval [5..12]
in Figure 3.10 spans the blocks B2 and B3. The query RMQA(i, j) can be
answered as follows: First, a constant time query RMQA′(p, q) returns the
position k of the minimum element in A′[p..q] (based on the sparse table
M ′ and the array A′; see Equation 3.1). This means that the minimum
element in A[i..j] can be found in block Bk. Second, B′[k] provides the
relative position of this minimum in Bk. Thus, the absolute position of this
minimum in A is (k−1) ·s+B′[k]. In the example of Figure 3.11, RMQA′(2, 3)

4For a simpler presentation, we omit floors and ceilings.

3.3 Range minimum queries 45

1 2 3 4 8 7 6 54 2 3 1 6 5 7 3

rmqB1
(2, 4) rmqA′(2,3) rmqB4

(1, 3)

Figure 3.11: The answer to RMQA(5, 12) can be determined with the help
of the three queries RMQB1

(2, 4), RMQA′(2, 3), and RMQB4
(1, 3).

returns 2, hence the answer to RMQA(5, 12) is (2−1) ·4+B′[2] = 4+4 = 8. In
this way, queries RMQA(i, j) in which i is the first position of a block and j
is the last position of a block can be answered in constant time.

In the general case, if i is not the first position of a block, j is not the
last position of a block, and i and j do not occur in the same block, then
we compute

(a) the position of the minimum from i to the end of i’s block,

(b) the position of the minimum of all blocks between i’s and j’s block,

(c) the position of the minimum from the beginning of j’s block to j.

Clearly, the overall minimum is the smallest of the three minima, and
RMQA(i, j) returns its position. We exemplify this by the query RMQA(2, 15)
in Figure 3.11.

(a) The relative position in B1 of the minimum from position 2 to the end
of block B1 is obtained by RMQB1

(2, 4) = 2. Therefore, its absolute
position in A is (1− 1) · 4 + 2 = 2.

(b) The minimum of the blocks B2 and B3 can be found in block B2 be-
cause RMQA′(2, 3) returns 2. Its relative position in B2 is thus B′[2] = 4
and its absolute position in A is (2− 1) · 4 + 4 = 8.

(c) The relative position in B4 of the minimum from the beginning of
block B4 to position 15 is obtained by RMQB4

(1, 3) = 3. Hence, its
absolute position in A is (4− 1) · 4 + 3 = 15.

The overall minimum is min{A[2], A[8], A[15]} = min{2, 1, 6} = 1 and RMQA(i, j)
returns its position 8.

To obtain a complete constant time algorithm, we must be able to an-
swer in-block queries (range minimum queries inside a block) in constant
time. If we answer in-block queries by a linear scan of the block, then
this takes O(log n) time because the block size is s = logn

4
. The resulting

46 3 Answering Range Minimum Queries in Constant Time

algorithm is very useful in practice, but its worst-case time complexity of
〈O(n), O(log n)〉 is not optimal.

The rest of this section is solely devoted to the details of answering in-
block queries in constant time (with only linear-time preprocessing). The
following lemma plays a central role.

Lemma 3.3.2 For two arrays A[1..n] and B[1..n], we have RMQA(i, j) =
RMQB(i, j) for all 1 ≤ i ≤ j ≤ n if and only if Ccan(A) = Ccan(B).

Proof We prove the lemma by induction on the size n. The base case n = 1
is trivial. Let n > 1 and suppose that the lemma is true for all arrays of
size less than n.

“⇒” Assume that RMQA(i, j) = RMQB(i, j) for all 1 ≤ i ≤ j ≤ n. Because
RMQA(1, n) = m = RMQB(1, n), the roots of Ccan(A) and Ccan(B) are both
labeled with m. Since RMQA(i, j) = RMQB(i, j) for all 1 ≤ i ≤ j ≤ m − 1
and for all m + 1 ≤ i ≤ j ≤ n, it follows from the inductive hypothesis that
Ccan(A[1..m − 1]) = Ccan(B[1..m − 1]) and Ccan(A[m + 1..n]) = Ccan(B[m + 1..n]).
Hence the canonical Cartesian trees of A and B coincide.

“⇐” Let m be the label of the root of Ccan(A) = Ccan(B). Then for every
1 ≤ i ≤ m ≤ j ≤ n we have RMQA(i, j) = m = RMQB(i, j). Thus, suppose
that the range minimum queries have parameters (i, j) so that 1 ≤ i ≤
j < m or m < i ≤ j ≤ n. Because Ccan(A[1..m − 1]) = Ccan(B[1..m − 1]) and
Ccan(A[m + 1..n]) = Ccan(B[m + 1..n]), it is a consequence of the inductive
hypothesis that RMQA(i, j) = RMQB(i, j) for all 1 ≤ i ≤ j < m and for all
m < i ≤ j ≤ n, and we are done. �

So every range minimum query RMQ(i, j) returns the same results on
two different arrays A and B, provided that A and B are of the same type,
i.e., Ccan(A) = Ccan(B). Thus, to precompute all range minimum queries
on all possible arrays boils down to precomputing them on all possible
types of arrays. How many different canonical Cartesian trees are there?
It will be shown in Corollary 3.4.6 that the number of different canonical
Cartesian trees with n nodes coincides with the n-th Catalan number.

Definition 3.3.3 For every n ∈ N, the n-th Catalan number Cn is defined
by

Cn =
1

n+ 1

(
2n

n

)
For subsequent analyses, we remark that Cn = O(4n

n3/2). This is because
Stirling’s formula

n! =
√
2πn

(n
e

)n(
1 +O

(
1

n

))
implies that

Cn =
4n√
πn3/2

(
1 +O

(
1

n

))

3.3 Range minimum queries 47

8 7 6 54 2 3 1 6 5 7 31 2 3 4

1 2 3 4
1
1 2
1 2 3
1 2 3 4

1
2
3
4

1

1 2 3 4
1

2
2 3

4

2
2
4 4 4

1
2
3
4

12

1 2 3 4
1

2
3

4

2
3 3
4 4 4

1
2
3
4

14

... ...
j
i

j
i

j
i

Figure 3.12: Four blocks and their types 1, 12, and 14, respectively. The
entries of the look-up table P for these types are shown below
the canonical Cartesian trees of the blocks. The second and
the third block are of the same type 12.

Lemma 3.3.4 All possible answers to range minimum queries on all possi-
ble arrays of size s can be computed in O(Cs · s2) = O(4s

√
s) time and stored

in a three dimensional look-up table P of size Cs × s× s = O(4s
√
s).

Proof For a fixed array of size s, there are O(s2) queries and the two-
dimensional look-up table of size s × s for this particular array can be
constructed in O(s2) time using the naive algorithm described at the be-
ginning of this section. Because there are Cs = O(4s

s3/2
) different types of

arrays of size s, the three dimensional look-up table P has size Cs × s × s
and it can be computed in O(Cs · s2) = O(4

s s2

s3/2
) = O(4s

√
s) time. �

Figure 3.12 shows some entries of the three dimensional look-up table
P , namely those for the types 1, 12, and 14.

If we apply the preceding lemma to s = logn
4

, the computation takes
O(4(logn/4)(logn

4
)1/2) = O(2

√
n log n) = O(n) time and space.

A side note on the method used above: The technique of precomputing
all solutions (here: all answers to range minimum queries) to all possible

48 3 Answering Range Minimum Queries in Constant Time

problems (here: all types of arrays) of a certain small size and storing
them in a look-up table is called the Four-Russians technique [16].

Recall that we want to be able to answer in-block queries in constant
time (with only linear-time preprocessing). If we knew the type t(Bk) of a
block Bk, then a range minimum query RMQBk

(i, j) could be answered in
constant time by a table look-up P (t(Bk), i, j). In order to determine the
type t(Bk) in constant time, we further precompute a type array T of size
n/s so that T [k] = t(Bk). Then, RMQBk

(i, j) can be answered in constant
time by the table look-up P (T [k], i, j).

Thus the remaining question is: How do we determine the type of each
of the 4n

logn
blocks in O(n) time? To define a function that does exactly this,

we need the ballot numbers.

Definition 3.3.5 The ballot numbers C(p,q) are defined for all p, q ∈ N by
C(0,q) = 1 and

C(p,q) =

{
C(p,q−1) + C(p−1,q) if 1 ≤ p ≤ q
0 if p > q

It will be shown in Section 3.4 that the ballot number C(s,s) equals the
s-th Catalan number Cs.

Now we have all the ingredients to define f : Ls → {0, 1, 2, . . . , Cs − 1} as

f(l1, l2, . . . , ls) =
s∑
i=1

li−1∑
j=0

C(s−i,s−j−
∑i−1

k=1 lk)

It is clear that f(l1, l2, . . . , ls) can be computed in O(s) time because there
are at most

∑s
i=1 li < s summands.

To motivate the definition, we define a directed graph Gs as follows. Its
set of nodes consists of all pairs (p, q) of natural numbers with 0 ≤ p ≤ q ≤
s. Node (p, q) corresponds to the ballot number C(p,q). Furthermore, there
are directed edges from node (p, q) to node (p, q− 1) whenever p ≤ q− 1 and
from node (p, q) to node (p − 1, q) whenever p > 0. These edges model the
dependencies among ballot numbers according to their definition C(p,q) =
C(p,q−1) + C(p−1,q); see Figure 3.13.

A sequence l1, l2, . . . , ls ∈ Ls gives rise to a path from node (s, s) to node
(0, 0) in Gs: In step i, the path first goes from node (s − i + 1, s −

∑i−1
k=1 lk)

li steps upwards to node (s − i + 1, s −
∑i

k=1 lk) and then one step to the
left to node (s − i, s −

∑i
k=1 lk). After the s-th step, the path is at the node

(0, s−
∑s

k=1 lk), from which it further goes upwards to node (0, 0).
For example, consider the sequence 0, 1, 0, 2. It corresponds to the path

(4, 4) → (3, 4) → (3, 3) → (2, 3) → (1, 3) → (1, 2) → (1, 1) → (0, 1) → (0, 0) in the
graph G4; see Figure 3.14.

Conversely, every path in (s, s) to (0, 0) in Gs corresponds to a sequence
from Ls. This is a consequence of the definition of Gs: at each node one

3.3 Range minimum queries 49

(2,2)

(2,3)

(1,4)

(1,2)

(1,3)

(3,4)(2,4)

(3,3)

(4,4)

(1,1)

(0,0)

(0,4)

(0,3)

(0,2)

(0,1)

Figure 3.13: The graph G4, in which node (p, q) corresponds to the ballot
number C(p,q).

1

1

1

1

1

1

14

5

149

5

22

3

4

Figure 3.14: The graph G4, in which node (p, q) is labeled with the bal-
lot number C(p,q). The path corresponding to the sequence
0, 1, 0, 2 is drawn with dotted arrows.

50 3 Answering Range Minimum Queries in Constant Time

can move at most as many nodes upwards as have already been traversed
by going left.

With each path corresponding to a sequence l1, l2, . . . , ls ∈ Ls, we asso-
ciate a sum of ballot numbers as follows. In step i, if the path from node
(s − i + 1, s −

∑i−1
k=1 lk) climbs li steps upwards to (s − i + 1, s −

∑i−1
k=1 lk − li),

then the associated sum is
∑li−1

j=0 C(s−i,s−j−
∑i−1

k=1 lk)
(the sum is 0 if li = 0). The

whole path is associated with the overall sum of the associated sums
of each step. We stress that the mapping f applied to the sequence
l1, l2, . . . , ls ∈ Ls computes exactly this value

∑s
i=1

∑li−1
j=0 C(s−i,s−j−

∑i−1
k=1 lk)

.
Again, consider the sequence 0, 1, 0, 2, which corresponds to the path

(4, 4) → (3, 4) → (3, 3) → (2, 3) → (1, 3) → (1, 2) → (1, 1) → (0, 1) → (0, 0) in the
graph G4. There are three upwards moves (p, q)→ (p, q − 1) in which p > 0,
viz. (3, 4) → (3, 3), (1, 3) → (1, 2), and (1, 2) → (1, 1). Each of these upward
moves (p, q) → (p, q − 1) contributes the value C(p−1,q) to the overall sum.
Thus, in our example, we have f(0, 1, 0, 2) = C(2,4)+C(0,3)+C(0,2) = 9+1+1 =
11; cf. Figure 3.14.

Figure 3.15 illustrates the relationship between these concepts.
Let us come back to the problem of determining the type of each of the

4n
logn

blocks in O(n) time. By definition, blocks Bp and Bq are of the same

type if and only if Ccan(Bp) = Ccan(Bq). Let lBp

1 , l
Bp

2 , . . . , l
Bp
s and l

Bq

1 , l
Bq

2 , . . . , l
Bq
s

be the sequences of natural numbers obtained during the construction of
the canonical Cartesian trees of Bp and Bq, respectively. By Lemma 3.2.7,
Ccan(Bp) = Ccan(Bq) if and only if lBp

1 , l
Bp

2 , . . . , l
Bp
s = l

Bq

1 , l
Bq

2 , . . . , l
Bq
s . Moreover, it

will be proven in Theorem 3.4.5 that the mapping f (as defined above) is
bijective. To sum up,

Ccan(Bp) = Ccan(Bq)

⇔ l
Bp

1 , l
Bp

2 , . . . , lBp
s = l

Bq

1 , l
Bq

2 , . . . , lBq
s

⇔ f(l
Bp

1 , l
Bp

2 , . . . , lBp
s) = f(l

Bq

1 , l
Bq

2 , . . . , lBq
s)

Consequently, the number f(lBk
1 , lBk

2 , . . . , lBk
s) is a unique representation

of the type of a block Bk. Like the sequence lBk
1 , lBk

2 , . . . , lBk
s (Exercise 3.2.6),

f(lBk
1 , lBk

2 , . . . , lBk
s) can be computed in O(s) time without actually construct-

ing Ccan(Bk); see Exercise 3.3.8.
Since our array indexing starts at 1 and not at 0, we define the type of

a block Bk to be t(Bk) = 1 + f(lBk
1 , lBk

2 , . . . , lBk
s). It can be computed in O(s)

time because f(l1, l2, . . . , ls) can be computed in O(s) time.
As already mentioned, for each block Bk, 1 ≤ k ≤ n

s
, we precompute its

type t(Bk) and store it in the type array T at position k. Because there are
O(n

s
) blocks, the overall time to compute the type array T is O(n).

Figure 3.16 summarizes the whole process of answering queries.

3.3 Range minimum queries 51

A Ccan(A) path (l1, l2, l3, l4) sum f(l1, l2, l3, l4)

1234 (0, 0, 0, 0) 0 0

1243 (0, 0, 0, 1) 1 1

1342 (0, 0, 0, 2) 1+1 2

2341 (0, 0, 0, 3) 1+1+1 3
1324 (0, 0, 1, 0) 4 4

1432 (0, 0, 1, 1) 4+1 5

2431 (0, 0, 1, 2) 4+1+1 6
2314 (0, 0, 2, 0) 4+3 7

3421 (0, 0, 2, 1) 4+3+1 8
2134 (0, 1, 0, 0) 9 9
2143 (0, 1, 0, 1) 9+1 10
3241 (0, 1, 0, 2) 9+1+1 11
3214 (0, 1, 1, 0) 9+3 12

4321 (0, 1, 1, 1) 9+3+1 13

Figure 3.15: The second column contains all possible canonical Cartesian
trees of arrays with the four entries 1, 2, 3, 4 (the first column
shows one of many possible arrays having that canonical
Cartesian tree). The third column depicts the correspond-
ing path in the graph G4, while the fourth column shows the
corresponding sequence from L4. The fifth column depicts
the sum of ballot numbers corresponding to the path in the
graph G4, and the last column contains f(l1, l2, l3, l4).

52 3 Answering Range Minimum Queries in Constant Time

1 2 3 4 8 7 6 54 2 3 1 6 5 7 3

1 2 3 4

2

1
1 2
1 2 3
1 3 4

1
2
3
4

1

1 2 3 4
1

2
3

4

2
3

4 4 4
3

1
2
3
4

14

rmqB1
(2, 4) rmqB4

(1, 3)

T [1] = 1

rmqA′(2, 3)

T [4] = 14

j
i

j
i

Figure 3.16: Summary: The range minimum query RMQA(2, 15) is an-
swered by (a) answering the left in-block query RMQB1

(2, 4)
(by first looking up the type of block B1 in the type array T ,
yielding T [1] = 1, followed by the table look-up P (1, 2, 4)), the
query RMQA′(2, 3), and the right in-block query RMQB4

(1, 3),
(b) computing the absolute positions in A from the returned
relative positions, and (c) comparing the minima at these ab-
solute positions in A. Because all steps can be done in con-
stant time, the range minimum query can be answered in
constant time.

3.4 Completing the proof of correctness 53

Theorem 3.3.6 Given array A, after a preprocessing step taking linear
time and space, range minimum queries of the form RMQA(i, j) can be an-
swered in constant time.

Proof This is the bottom line of the considerations in this section. �

Corollary 3.3.7 Given tree T , after a preprocessing step taking linear time
and space, lowest common ancestors in T can be found in constant time.

Proof Combine Theorem 3.2.2 with Theorem 3.3.6. �

Exercise 3.3.8 Use Exercise 3.2.6 to prove that Algorithm 3.2 computes
the number f(lA1 , l

A
2 , . . . , l

A
s) for an array A of size s, without actually con-

structing the sequence lA1 , l
A
2 , . . . , l

A
s .

Algorithm 3.2 Given array A of size s, compute f(lA1 , l
A
2 , . . . , l

A
s).

R[0]← −∞ /* array R stores the (current) values on the rightmost path */
f ← 0
q ← 0
for i← 1 to s do

while R[q] > A[i] do
f ← f + C(s−i,s−i+q+1)

q ← q − 1 /* remove R[q] from the rightmost path */
q ← q + 1
R[q]← A[i] /* A[i] is the new rightmost leaf */

return f

3.4 Completing the proof of correctness

Our goal is to show that f : Ls → {0, 1, 2, . . . , Cs − 1} defined by

f(l1, l2, . . . , ls) =
s∑
i=1

li−1∑
j=0

C(s−i,s−j−
∑i−1

k=1 lk)

is a bijection. To achieve this goal, we need a few prerequisites.

Lemma 3.4.1 For all q ∈ N, we have C(1,q) = q.

Proof Straightforward by induction on q. �

54 3 Answering Range Minimum Queries in Constant Time

Lemma 3.4.2 For 1 ≤ p ≤ q, the ballot number C(p,q) can be computed by

C(p,q) =

(
p+ q

p

)
−
(
p+ q

p− 1

)

Proof The proof is by induction on the well-founded order ≺ defined on
N>0 × N>0 defined by (p′, q′) ≺ (p, q) if and only if p′ < p or p′ = p and q′ < q.
The base case p = q = 1 is readily verified. If p = 1 and q ∈ N>0, then C(1,q) =(
1+q
1

)
−
(
1+q
1−1

)
= q, which is the correct value by Lemma 3.4.1. Now consider

(p, q) ∈ N>0 × N>0 with 2 ≤ p ≤ q. By the inductive hypothesis, we may
assume that the lemma holds for all (p′, q′) ∈ N>0 × N>0 with (p′, q′) ≺ (p, q).
In the inductive step, we first apply the definition C(p,q) = C(p,q−1) + C(p−1,q)

of C(p,q), and then the inductive hypothesis to C(p,q−1) and C(p−1,q).

C(p,q) = C(p,q−1) + C(p−1,q)

=

(
p+ q − 1

p

)
−
(
p+ q − 1

p− 1

)
+

(
p+ q − 1

p− 1

)
−
(
p+ q − 1

p− 2

)
=

(p+ q − 1)!

(q − 1)! p!
− (p+ q − 1)!

(q + 1)!(p− 2)!

=
q(p+ q − 1)!

q! p!
− (p− 1)(p+ q − 1)!

(q + 1)!(p− 1)!

=
(p+ q − p)(p+ q − 1)!

q! p!
− (p− 1 + q + 1− (q + 1))(p+ q − 1)!

(q + 1)!(p− 1)!

=
(p+ q)!

q! p!
− p(p+ q − 1)!

q! p!
− (p+ q)!

(q + 1)!(p− 1)!
+

(q + 1)(p+ q − 1)!

(q + 1)!(p− 1)!

=
(p+ q)!

q! p!
− (p+ q − 1)!

q! (p− 1)!
− (p+ q)!

(q + 1)!(p− 1)!
+

(p+ q − 1)!

q!(p− 1)!

=

(
p+ q

p

)
−
(
p+ q

p− 1

)
�

It is easy to verify that(
p+ q

p

)
−
(
p+ q

p− 1

)
=
q − p+ 1

q + 1

(
p+ q

p

)
Hence

C(s,s) =
1

s+ 1

(
2s

s

)
= Cs

Therefore, the ballot number C(s,s) equals the s-th Catalan number Cs.
In order to show that f is bijective, we need two more lemmata.

3.4 Completing the proof of correctness 55

Lemma 3.4.3 For all 1 ≤ p ≤ q, we have

C(p,q) =

q∑
j=p

C(p−1,j)

Proof We proceed by induction on q. The base case q = 1 is true be-
cause C(1,1) = 1 and

∑1
j=1C(0,j) = C(0,1) = 1. By the definition of the ballot

numbers, C(p,q) = C(p,q−1) + C(p−1,q). Hence, it follows from the inductive
hypothesis that

C(p,q) = C(p,q−1) + C(p−1,q) =

q−1∑
j=p

C(p−1,j) + C(p−1,q) =

q∑
j=p

C(p−1,j)

�

Lemma 3.4.4 For all p > 0, we have

C(p−1,p) = 1 +

p−2∑
j=0

C(p−j−2,p−j)

Proof By induction on p. The base case p = 1 holds true because C(0,1) =

1+
∑−1

j=0C(1−j−2,1−j) = 1 (the sum is empty). The inductive hypothesis states
that C(p−2,p−1) = 1+

∑p−3
j=0 C(p−1−j−2,p−1−j). The following derivation proves the

lemma:

C(p−1,p) = C(p−1,p−1) + C(p−2,p) (def. ballot numbers)
= C(p−1,p−2) + C(p−2,p−1) + C(p−2,p) (def. ballot numbers)
= C(p−2,p−1) + C(p−2,p) (because C(p−1,p−2) = 0)

= 1 +

p−3∑
j=0

C(p−1−j−2,p−1−j) + C(p−2,p) (inductive hypothesis)

= 1 +

p−2∑
j=1

C(p−j−2,p−j) + C(p−2,p) (index shift)

= 1 +

p−2∑
j=0

C(p−j−2,p−j) − C(p−2,p) + C(p−2,p)

= 1 +

p−2∑
j=0

C(p−j−2,p−j)

�

56 3 Answering Range Minimum Queries in Constant Time

Theorem 3.4.5 The mapping f : Ls → {0, 1, 2, . . . , Cs − 1} defined by

f(l1, l2, . . . , ls) =
s∑
i=1

li−1∑
j=0

C(s−i,s−j−
∑i−1

k=1 lk)

is bijective.

Proof Ls together with the lexicographic order <lex (which compares se-
quences from left to right) is a totally ordered set. Its smallest element is
0, 0, . . . , 0 and its largest element is 0, 1, . . . , 1. Note that f(0, 0, . . . , 0) = 0 and

f(0, 1, . . . , 1) =
s∑
i=2

C(s−i,s−
∑i−1

k=1 lk)

=
s∑
i=2

C(s−i,s−i+2)

=
s−2∑
i=0

C(s−i−2,s−i) (index shift)

= C(s−1,s) − 1 (by Lemma 3.4.4)
= C(s,s) − 1 (def. ballot numbers)
= Cs − 1

We have to show that f is injective, i.e., l1, l2, . . . , ls 6= l′1, l
′
2, . . . , l

′
s implies

f(l1, l2, . . . , ls) 6= f(l′1, l
′
2, . . . , l

′
s), and that f is surjective, i.e., for each m ∈

{0, 1, 2, . . . , Cs−1} there is a sequence l1, l2, . . . , ls ∈ Ls with f(l1, l2, . . . , ls) = m.
Let 0, 1, . . . , 1 6= l1, l2, . . . , ls ∈ Ls and let l′1, l

′
2, . . . , l

′
s ∈ Ls be its successor

w.r.t. <lex. It is readily verified that f is bijective if we can show that

f(l′1, l
′
2, . . . , l

′
s) = 1 + f(l1, l2, . . . , ls)

The successor l′1, l
′
2, . . . , l

′
s ∈ Ls of a sequence l1, l2, . . . , ls ∈ Ls can be ob-

tained as follows. Determine the largest index m so that
∑m

k=1 lk < m − 1.
Note that this implies

∑i
k=1 lk = i − 1 for all i > m, or equivalently,

li = i − 1 −
∑i−1

k=1 lk. In particular, for i = m + 1 we have lm+1 = m −
∑m

k=1 lk.
Thus, for i = m + 2, it follows that lm+2 = m + 1 −

∑m+1
k=1 lk = m + 1 −m = 1.

Analogously, we derive lm+3 = · · · = ls = 1. The successor l′1, l
′
2, . . . , l

′
s of the

sequence l1, l2, . . . , ls satisfies l′1 = l1, l
′
2 = l2, . . . , l

′
m−1 = lm−1, l′m = lm + 1, and

l′m+1 = · · · = l′s = 0. With

S =
m∑
i=1

li−1∑
j=0

C(s−i,s−j−
∑i−1

k=1 lk)

3.4 Completing the proof of correctness 57

the images of the sequences w.r.t. f can be expressed as

f(l′1, l
′
2, . . . , l

′
s) = f(l1, l2, . . . , lm−1, lm + 1, 0, . . . , 0)

= S + C(s−m,s−lm−
∑m−1

k=1 lk)

= S + C(s−m,s−
∑m

k=1 lk)

= S + C(s−m,s−m+lm+1)

where the last equality follows from
∑m

k=1 lk = m− lm+1, and

f(l1, l2, . . . , ls) = f(l1, l2, . . . , lm, lm+1, 1, . . . , 1)

= S +

lm+1−1∑
j=0

C(s−m−1,s−j−
∑m

k=1 lk)
+

s∑
i=m+2

C(s−i,s−
∑i−1

k=1 lk)

= S +

lm+1−1∑
j=0

C(s−m−1,s−j−m+lm+1) +
s∑

i=m+2

C(s−i,s−i+2)

In summary, we must show

C(s−m,s−m+lm+1) = 1 +

lm+1−1∑
j=0

C(s−m−1,s−m+lm+1−j) +
s∑

i=m+2

C(s−i,s−i+2) (3.2)

Setting p = s−m, it follows
lm+1−1∑
j=0

C(s−m−1,s−m+lm+1−j) =

lm+1−1∑
j=0

C(p−1,p+lm+1−j) =

p+lm+1∑
j=p+1

C(p−1,j)

and
s∑

i=m+2

C(s−i,s−i+2) =
s−m−2∑
i=0

C(s−m−2−i,s−m−i) =

p−2∑
i=0

C(p−i−2,p−i)

If we further set q = s−m+lm+1 = p+lm+1, then the preceding two equalities
imply that Equation (3.2) is equivalent to

C(p,q) = 1 +

q∑
j=p+1

C(p−1,j) +

p−2∑
i=0

C(p−i−2,p−i)

This equality, however, follows easily with the preceding lemmata.

C(p,q) =

q∑
j=p

C(p−1,j) (by Lemma 3.4.3)

=

q∑
j=p+1

C(p−1,j) + C(p−1,p)

=

q∑
j=p+1

C(p−1,j) + 1 +

p−2∑
i=0

C(p−i−2,p−i) (by Lemma 3.4.4)

�

58 3 Answering Range Minimum Queries in Constant Time

Corollary 3.4.6 The number of different canonical Cartesian trees with n
nodes (numbered from 1 to n) is Cn.

Proof According to Lemma 3.2.7, the canonical Cartesian trees Ccan(A) and
Ccan(B) of two arrays A[1..n] and B[1..n] coincide if and only if lA1 , l

A
2 , . . . , l

A
s =

lB1 , l
B
2 , . . . , l

B
s , where lA1 , l

A
2 , . . . , l

A
s and lB1 , l

B
2 , . . . , l

B
s are the sequences of nat-

ural numbers obtained in the construction of Ccan(A) and Ccan(B), respec-
tively. Therefore, there are as many canonical Cartesian trees as there are
sequences in Ln, and |Ln| = Cn by Theorem 3.4.5. �

Exercise 3.4.7 Prove that the number of different binary trees with n
nodes is Cn.
Hint: Show that every binary tree corresponds to exactly one canonical
Cartesian tree in which the nodes are numbered 1 to n.

Chapter 4
Enhanced Suffix Arrays

The meteoric increase of DNA sequences produced by next-generation se-
quencers demands new approaches in computer science for storing, ana-
lyzing, and mining the accumulating data. While the databases are grow-
ing rapidly, the data representing DNA sequences of the human chro-
mosomes do not change much over time. As a consequence, index data
structures such as suffix arrays or suffix trees can be used to efficiently
solve a myriad of sequence analysis problems.

In this chapter, we will introduce the suffix array and the LCP-array
of a string, and present linear-time algorithms to construct them. The
combination of these (and possibly other) arrays is called an enhanced
suffix array. Furthermore, we define the lcp-interval tree and provide tree
traversal algorithms that solely rely on the enhanced suffix array. At the
end of the chapter, we shall see that the lcp-interval tree of a string S
coincides with the suffix tree of S. The main advantage of using an lcp-
interval tree is that it can be traversed without building the tree itself.

Memory is not an issue here. As we shall see in Chapter 6, the memory
usage of enhanced suffix arrays can be reduced significantly.

4.1 Suffix arrays

To construct the suffix array of a string S boils down to sorting all suffixes
of S in lexicographic order (also known as alphabetical order, dictionary
order, or lexical order). This order is induced by an order on the alphabet
Σ. In this book, Σ is an ordered alphabet of constant size σ. It is some-
times convenient to regard Σ as an array of size σ so that the characters
appear in ascending order in the array Σ[1..σ], i.e., Σ[1] < Σ[2] < · · · < Σ[σ].
Conversely, each character in Σ is mapped to a number in {1, . . . , σ}.
The smallest character is mapped to 1, the second smallest character is
mapped to 2, and so on. In this way, we can use a character as an index
for an array.

60 4 Enhanced Suffix Arrays

Definition 4.1.1 Let < be a total order on the alphabet Σ. This order
induces the lexicographic order on Σ∗ (which we again denote by <) as
follows: For s, t ∈ Σ∗, define s < t if and only if either s is a proper prefix of
t or there are strings u, v, w ∈ Σ∗ and characters a, b ∈ Σ with a < b so that
s = uav and t = ubw.

To determine the lexicographic order of two strings, their first charac-
ters are compared. If they differ, then the string whose first character
comes earlier in the alphabet is the one which comes first in lexicographic
order. If the first characters are the same, then the second characters are
compared, and so on. If a position is reached where one string has no
more characters to compare while the other does, then the shorter string
comes first in lexicographic order.

In algorithms that need to determine the lexicographic order of two suf-
fixes of the same string S, a cumbersome distinction between “has more
characters” and “has no more characters” can be avoided by appending
the special symbol $ (called sentinel character) to S. In the following, we
assume that $ is smaller than all other elements of the alphabet Σ. If $
occurs nowhere else in S and the lexicographic order of two suffixes of S
is determined as described above, then it cannot happen that one suffix
has no more characters to compare. As we shall see later, there are other
situations in which it is convenient to append the special symbol $ to a
string.

Definition 4.1.2 Let S be a string of length n. For every i, 1 ≤ i ≤ n, Si
denotes the i-th suffix S[i..n] of S. The suffix array SA of the string S is an
array of integers in the range 1 to n specifying the lexicographic order of
the n suffixes of the string S. That is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n].

The inverse suffix array ISA is an array of size n so that for any k with
1 ≤ k ≤ n the equality ISA[SA[k]] = k holds.

The inverse suffix array is sometimes also called rank-array because
ISA[i] specifies the rank of the i-th suffix among the lexicographically or-
dered suffixes. More precisely, if j = ISA[i], then suffix Si is the j-th lex-
icographically smallest suffix. Obviously, the inverse suffix array can be
computed in linear time from the suffix array. Figure 4.1 shows the suffix
array and the inverse suffix array of the string S = ctaataatg.

Suffixes of S that share a common prefix occur consecutively in the
suffix array SA because SA contains the suffixes of S in lexicographically
sorted order. In other words, they form an interval in the suffix array.

Definition 4.1.3 Let SA be the suffix array of the string S. For every
substring ω of S, the ω-interval in SA is the interval [i..j] so that

• ω is not a prefix of SSA[i−1],

4.1 Suffix arrays 61

i SA ISA SSA[i]

1 3 5 aataatg
2 6 7 aatg
3 4 1 ataatg
4 7 3 atg
5 1 8 ctaataatg
6 9 2 g
7 2 4 taataatg
8 5 9 taatg
9 8 6 tg

Figure 4.1: Suffix array and inverse suffix array of the string S = ctaataatg.

• ω is a prefix of SSA[k] for all i ≤ k ≤ j,

• ω is not a prefix of SSA[j+1].

For example, [7..9] is the t-interval in the suffix array of Figure 4.1, and
the taa-interval is [7..8].

Exercise 4.1.4 Let u and v be substrings of S. Show that

• the u-interval [i..j] and the v-interval [p..q] do not overlap, i.e., neither
p < i ≤ q < j nor i < p ≤ j < q,

• the u-interval [i..j] is a subinterval of the v-interval [p..q] if and only if
v is a prefix of u.

4.1.1 Linear-time construction

The suffix array was devised by Manber and Myers [214] and indepen-
dently by Gonnet et al. [129] under the name PAT array. Ten years later,
it was shown independently and contemporaneously by Kärkkäinen and
Sanders [175], Kim et al. [180], Ko and Aluru [184], and Hon et al. [154]
that a direct linear-time construction of the suffix array is possible. To
date, over 20 different suffix array construction algorithms (SACAs) are
known. It is beyond the scope of this book to review all of them; the reader
is referred to the overview article of Puglisi et al. [262]. It is worth men-
tioning that the SACAs that perform best in practice have a non-linear
worst-case time complexity. In this section, we explain the simplest of
the three above-mentioned linear-time algorithms, namely the skew algo-
rithm of Kärkkäinen and Sanders [175]. In Section 4.1.2, we will present

62 4 Enhanced Suffix Arrays

the induced sorting algorithm devised by Nong et al. [244].
In what follows, we shall assume that n mod 3 = 0, where n = |S|. In

our running example S = ctaataatg and thus n = 9. The skew algorithm
follows the divide and conquer paradigm. It divides the sequence (or list)
[Si | 1 ≤ i ≤ n] = [S1, S2, S3, . . . , Sn] of suffixes of S into two sequences:

• The sequence [Si | 1 ≤ i ≤ n, i mod 3 6= 1] = [S2, S3, S5, S6, . . .] of suffixes
of S that start at a position i with i mod 3 6= 1. This sequence has 2n

3

elements.

• The sequence [Si | 1 ≤ i ≤ n, i mod 3 = 1] = [S1, S4, S7, . . .] of suffixes
of S that start at a position i with i mod 3 = 1. This sequence has n

3

elements.

Then the skew algorithm proceeds in three phases.

1. The sequence [Si | 1 ≤ i ≤ n, i mod 3 6= 1] is sorted recursively.

2. The sequence [Si | 1 ≤ i ≤ n, i mod 3 = 1] is sorted non-recursively with
the aid of the information gained in phase 1.

3. The two sorted sequences are merged as in the merge sort algorithm;
see e.g. [61]. So phase 3 is the conquer-step of the algorithm.

Figure 4.2 illustrates the idea. Let us elaborate on the three phases.
Phase 1: The sequence of suffixes [Si | 1 ≤ i ≤ n, i mod 3 6= 1] is sorted as

follows: First, the sequence of triples [S[i..i + 2] | 1 ≤ i ≤ n, i mod 3 6= 1] is
stably sorted in linear time by a radix sort. (Details on the radix sort and
how it can be implemented so that it is stable, i.e., elements with the same
value appear in the output sequence in the same order as in the input
sequence, can e.g. be found in [61].) To deal with boundary cases, we
adopt the convention that S[n−1..n+1] = S[n−1..n]$ and S[n..n+2] = S[n]$$,
where $ is the sentinel character. If triple S[i..i + 2] is the k-th different
triple occurring in the sorted sequence, then the lexicographic name i = k
is associated with S[i..i+ 2]. Note that i ∈ [1..2n

3
]. Furthermore, i < j if and

only if S[i..i+ 2] < S[j..j + 2].
In our example, an application of radix sort to [taa, aat, taa, aat, tg$, g$$]

yields the sequence [aat, aat, g$$, taa, taa, tg$]. The lexicographic names as-
sociated with the triples are shown in Figure 4.3.

If the triples get pairwise different lexicographic names, then the suf-
fixes are sorted lexicographically and phase 1 of the algorithm is com-
pleted. Otherwise, the skew algorithm recursively computes the suffix
array SA of the string S, which is the concatenation of the strings of lex-
icographic names [i | 1 ≤ i ≤ n, i mod 3 = 2] and [i | 1 ≤ i ≤ n, i mod 3 = 0];
see also Algorithm 4.1. In our example, S = 334112. The suffix array SA of
the string 334112 can be found in Figure 4.4.

4.1 Suffix arrays 63

S1 = ctaataatg
S2 = taataatg
S3 = aataatg
S4 = ataatg
S5 = taatg
S6 = aatg
S7 = atg
S8 = tg
S9 = g

↙ ↘

S2 = taataat S1 = ctaataatg
S3 = aataatg S4 = ataatg
S5 = taatg S7 = atg
S6 = aatg
S8 = tg
S9 = g

↓ ↓

Phase 1: sort Phase 2: sort
S3 = aataatg S4 = ataatg
S6 = aatg S7 = atg
S9 = g S1 = ctaataatg
S2 = taataatg
S5 = taatg
S8 = tg

↘ ↙

Phase 3: merge
S3 = aataatg
S6 = aatg
S4 = ataatg
S7 = atg
S1 = ctaataatg
S9 = g
S2 = taataatg
S5 = taatg
S8 = tg

Figure 4.2: Overview of the skew algorithm.

64 4 Enhanced Suffix Arrays

i 2 3 5 6 8 9

i 3 1 3 1 4 2
S[i..i+ 2] taa aat taa aat tg$ g$$

Figure 4.3: The lexicographic names associated with the triples.

k SA ISA SSA[k] i Si

1 4 4 112 3 aataatg
2 5 5 12 6 aatg
3 6 6 2 9 g
4 1 1 334112 2 taataatg
5 2 2 34112 5 taatg
6 3 3 4112 8 tg

Figure 4.4: Suffix array of the string S = 334112. The suffix Si of S that is
represented by SSA[k] is shown in the same row.

Algorithm 4.1 Given the lexicographic names i, compute the string S.
S ← ε /* S is the empty string */
i← 2
while i ≤ n do

append i to S
i← i+ 3

i← 3
while i ≤ n do

append i to S
i← i+ 3

4.1 Suffix arrays 65

According to the lexicographic naming and the definition of S, the suffix
S i+1

3
of S represents the suffix Si of S if i mod 3 = 2. More precisely, the

string S[i+1
3
..n

3
] represents the string S[i..n]$. In our example, for i = 2, we

have S[2+1
3
..9
3
] = S[1..3] = 334112[1..3] = 334, where 334 stands for taataatg$.

The string taataatg in turn is the second suffix S2 of S. Analogously, for
i mod 3 = 0, the suffix S n+i

3
of S represents the suffix Si of S. To be precise,

the string S[n+i
3
..2n

3
] represents the string S[i..n]$$. In our example, for

i = 3, we have S[9+3
3
..18

3
] = S[4..6] = 334112[4..6] = 112, where 112 stands for

aataatg$$. The string aataatg in turn is the third suffix S3 of S.
In order to simplify the presentation, let us define the transformation

function τ : {i | 1 ≤ i ≤ n, i mod 3 6= 1} → {1, . . . , 2n
3
} by

τ(i) =

{
i+1
3

, if i mod 3 = 2
n+i
3

, if i mod 3 = 0

So, for i mod 3 6= 1, the suffix Si of S is represented by the suffix Sτ(i) of S.
The mapping τ−1 : {1, . . . , 2n

3
} → {i | 1 ≤ i ≤ n, i mod 3 6= 1} defined by

τ−1(j) =

{
3j − 1, if 1 ≤ j ≤ n

3

3j − n, if n
3
< j ≤ 2n

3

is the inverse of τ (it is left as an exercise to the reader to verify this).
Therefore, for 1 ≤ j ≤ 2n

3
, the suffix Sj of S represents the suffix Sτ−1(j) of

S.
The crucial point is that for i 6= j with i mod 3 6= 1 and j mod 3 6= 1, we

have Si < Sj if and only if Sτ(i) < Sτ(j); see Exercise 4.1.5. In other words,
one can decide whether Si < Sj or Sj < Si by comparing the relative order
of their representatives in SA. Let k and l be the indices so that SSA[k] and
SSA[l] represent Si and Sj, respectively. Then Si < Sj if and only if k < l.
Therefore, we are faced with the following problem: Given i with 1 ≤ i ≤ n
and i mod 3 6= 1, find the index k such that SSA[k] represents Si. Because
Sτ(i) represents Si, it follows that SA[k] = τ(i). That is, k = ISA[τ(i)]. To sum
up, we have Si < Sj if and only if ISA[τ(i)] < ISA[τ(j)].

Phase 2: The task of sorting [Si | 1 ≤ i ≤ n, i mod 3 = 1] is equivalent
to sorting [(S[i], Si+1) | 1 ≤ i ≤ n, i mod 3 = 1]. Clearly, i mod 3 = 1 implies
that (i + 1) mod 3 = 2. Moreover, the lexicographic order of all suffixes
[Si+1 | 1 ≤ i ≤ n− 1, (i+1) mod 3 = 2] is implicitly contained in SA. Algorithm
4.2 shows how the lexicographically sorted list of these suffixes can be
extracted from SA. Consequently, one pass of radix sort w.r.t. the first
component of the pair (S[i], Si+1) yields the desired result. It is rather
obvious that this phase runs in linear time.

In our example, we have to sort [S1, S4, S7] = [ctaataatg, ataatg, atg], and
Algorithm 4.2 returns the list [S2, S5, S8]. Then radix sort applied to the list
[(c, S2), (a, S5), (a, S8)] sorts this list according to the first component. In our

66 4 Enhanced Suffix Arrays

Algorithm 4.2 Given the suffix array SA, determine the lexicographically
sorted list (sequence) of suffixes Si with i mod 3 = 2.
list← [] /* list is the empty list */
for k ← 1 to 2n

3
do

j ← SA[k]
i← τ−1(j)
if i mod 3 = 2 then

append i to list /* append Si to list */

example, this yields the list [(a, S5), (a, S8), (c, S2)]. So phase 2 of the skew
algorithm returns the sequence [S4, S7, S1] = [ataatg, atg, ctaataatg].

Phase 3: As in the merge sort algorithm (see e.g. [61]), one merges the
sorted sequence of suffixes Si with i mod 3 = 1 with the sorted sequence of
suffixes Sj with j mod 3 6= 1. A suffix Si with i mod 3 = 1 is compared to a
suffix Sj with j mod 3 6= 1 according to the following criteria:

a) If i mod 3 = 1 and j mod 3 = 2, then

Si < Sj ⇔ (S[i], Si+1) <lex (S[j], Sj+1)

⇔ (S[i], ISA[τ(i+ 1)]) <lex′ (S[j], ISA[τ(j + 1)])

because (i + 1) mod 3 = 2 and (j + 1) mod 3 = 0. Note that the order
<lex is the lexicographic product of the orders on strings, while the
order <lex′ is the lexicographic product of the order on strings (here
of length 1) and the natural order on the natural numbers. For the
convenience of the reader, we recall the formal definition of the lex-
icographic product of two orders: Given two partial orders <1 and
<2 on sets M1 and M2, respectively, their lexicographic product <lex is
defined by (u1, u2) <lex (v1, v2) if and only if either u1 <1 v1 or u1 = v1
and u2 <2 v2, where u1, v1 ∈M1 and u2, v2 ∈M2.

b) If i mod 3 = 1 and j mod 3 = 0, then1

Si < Sj ⇔ (S[i..i+ 1], Si+2) <lex (S[j..j + 1], Sj+2)

⇔ (S[i..i+ 1], ISA[τ(i+ 2)]) <lex′ (S[j..j + 1], ISA[τ(j + 2)])

because (i+ 2) mod 3 = 0 and (j + 2) mod 3 = 2.

Consequently, a comparison of two suffixes takes only constant time. Be-
cause there are at most n − 1 comparisons, the merging phase also runs
in linear time. It is illustrated in Figure 4.5.

1In the boundary case j = n, we set S[j + 1] = $. Because $ is smaller than any other
character, the value of ISA[τ(j + 2)] does not matter in this case.

4.1 Suffix arrays 67

i (pos. in S) 4 7 1 3 6 9 2 5 8
1-2 comp. (a, 5) (a, 6) (c, 4) (t, 1) (t, 2) (t, 3)
1-0 comp. (at, 2) (at, 3) (ct, 1) (aa, 5) (aa, 6) (g$,⊥)

Figure 4.5: Merging phase: The sorted sequence of the suffixes Si with
i mod 3 = 1 (left to the three vertical lines) is merged with the
sorted sequence of the suffixes Si with i mod 3 6= 1 (right to the
three vertical lines). The row “1-2 comp.” contains the pairs
that are used in comparisons where i mod 3 = 1 and j mod 3 =
2, while the row “1-0 comp.” contains the pairs that are used
in comparisons where i mod 3 = 1 and j mod 3 = 0. The result
of the merging phase is the suffix array [3, 6, 4, 7, 1, 9, 2, 5, 8] of S;
see also Figure 4.1 (page 61).

Exercise 4.1.5 For i 6= j with i mod 3 6= 1 and j mod 3 6= 1, prove that
Si < Sj if and only if Sτ(i) < Sτ(j).
Hint: Expand each lexicographic name in Sτ(i) and Sτ(j) by its correspond-
ing triple and use a case distinction on i mod 3 and j mod 3. Use the fact
that $ is smaller than any other character in the alphabet Σ.

Theorem 4.1.6 Given a string S of length n, the skew algorithm constructs
the suffix array of S in time Θ(n).

Proof The recurrence describing the worst-case running time of the skew
algorithm is:

T (n) =

{
Θ(1) , if n < 3
T (2n/3) + Θ(n), if n ≥ 3

According to the extended master theorem [11, 286], a recurrence of the
form

T (n) =
m∑
i=1

T (αi · n) + Θ(nk)

where 0 ≤ αi ≤ 1,m ≥ 1, k ≥ 0, has the solution

T (n) =

Θ(nk), if

∑m
i=1 α

k
i < 1

Θ(nk log n), if
∑m

i=1 α
k
i = 1

Θ(nc), if
∑m

i=1 α
k
i > 1

where c is the solution of the equation
∑m

i=1 α
c
i = 1. Therefore, our recur-

rence has the solution T (n) = Θ(n). �

68 4 Enhanced Suffix Arrays

The following observation is worth mentioning. If in phase 2, the se-
quence of suffixes [Si | 1 ≤ i ≤ n, i mod 3 = 1] would also be sorted recur-
sively by the skew algorithm, then this would yield the recurrence

T (n) = T (n/3) + T (2n/3) + Θ(n)

According to the master theorem, this recurrence has the solution T (n) =
Θ(n log n). In other words, the resulting algorithm would not be linear!

4.1.2 Induced sorting

In this section, we will explain another interesting linear-time SACA de-
vised by Nong et al. [244]. It shares two key features with the skew al-
gorithm: it is a recursive algorithm and it uses the method of induced
sorting. We speak of “induced sorting” whenever a complete sort of a se-
lected subset of suffixes can be used to “induce” a complete sort of other
subsets of suffixes. In the skew algorithm, for example, a complete sort of
the suffixes {Si | 1 ≤ i ≤ n, i mod 3 6= 1} can be used to induce a complete
sort of the suffixes {Si | 1 ≤ i ≤ n, i mod 3 = 1}.

The induced sorting algorithm2 of Nong et al. [244] heavily depends on
the work of Ko and Aluru [184] (the reader can find the description of
several precursor algorithms in [262]). Ko and Aluru classified suffixes
into S-type and L-type suffixes and showed that a complete sort of the S-
type suffixes can be used to induce a complete sort of the L-type suffixes
(or vice versa). The contribution of Nong et al. is the insight that it is
enough to sort the usually small set of LMS-substrings and to use it to
induce the order of all suffixes. Moreover, the lexicographic order of the
LMS-substrings is determined by the same principle, using recursion if
needed.

In the rest of this section, let S be a string of length n + 1 that is ter-
minated by the sentinel $. The suffixes of S are classified into two types:
Suffix Si is S-type if Si < Si+1 and it is L-type if Si > Si+1. The last suffix,
the sentinel $, is S-type. We use a bit array T [1..n + 1] to store the types
of the suffixes: T [i] = 0 means that suffix Si is L-type and T [i] = 1 means
that it is S-type. For better readability, we write T [i] = L instead of T [i] = 0
T [i] = S instead of T [i] = 1.

Lemma 4.1.7 All suffixes can be classified in O(n) time by a right-to-left
scan of S.

Proof It is readily verified that Si is S-type if (a) S[i] < S[i + 1] or (b) S[i] =
S[i + 1] and Si+1 is S-type. Analogously, Si is L-type if (a) S[i] > S[i + 1] or

2Nong et al. speak of “almost pure induced-sorting” but we will use the shorter term
“induced sorting.”

4.1 Suffix arrays 69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S i m i m m m i s i s m i s i s s i i p i $

type S L S L L L S L S L L S L S L L S S L L S

LMS * * * * * * *

Figure 4.6: The type classification of the suffixes of the string S proceeds
from right to left. It starts with the S-type suffix S21 = $.
Suffixes S19 and S20 are L-type because p > i > $, whereas
suffix S18 is S-type because i < p. Both suffixes S17 and S18

start with the same character i, so S17 is S-type because S18

is S-type. The same argument applies to the suffixes S15 and
S16: S15 is L-type because S16 is L-type. The LMS-positions of
S are marked with an asterisk. For example, 3 is an LMS-
position because suffix S3 is S-type and the preceding suffix
S2 is L-type.

(b) S[i] = S[i + 1] and Si+1 is L-type. Therefore, starting with the S-type
sentinel $, in a right-to-left scan of S, we can determine the types of all of
its suffixes. �

Figure 4.6 shows an example of type classification.

Lemma 4.1.8 An S-type suffix is lexicographically greater than any L-type
suffix starting with the same first character.

Proof For an indirect proof, suppose that there is an S-type suffix Si and
an L-type suffix Sj so that Si[1] = S[i] = a = S[j] = Sj[1] and Si < Sj. We can
write Si = aubv and Sj = aucw, where b 6= c are characters and u, v, and w
are (possibly empty) strings.

1. Suppose that u consists solely of a’s. Because Si is S-type, it follows
that a ≤ b. Similarly, since Sj is L-type, it follows that a ≥ c. The
combination of these two facts yields c ≤ b. However, Si < Sj implies
b < c, a contradiction.

2. Otherwise, u contains a character other than a. Let d be the leftmost
character in u that is different from a. Because Si is S-type, it follows
that a < d. Similarly, since Sj is L-type, it follows that d > a. This
contradiction proves the lemma.

�

Corollary 4.1.9 In the suffix array of S, among all suffixes that begin with
the same character, the L-type suffixes appear before the S-type suffixes.

70 4 Enhanced Suffix Arrays

Proof Direct consequence of Lemma 4.1.8 �

We employ an array C of size σ to divide the suffix array of S into buckets
(without loss of generality, we assume that all characters from the ordered
alphabet Σ appear in the string S). For every c ∈ Σ, we define C[c] =∑

b∈Σ,b<c cnt[b], where cnt[b] is the number of occurrences of character b in
S. In other words, if we consider all characters in Σ that are smaller than
c, then C[c] is the overall number of their occurrences in S. The c-interval
[i..j] can be determined by i = C[c] + 1 and j = C[c + 1] (where c + 1 is the
character that follows c in the alphabet Σ). In the following, we call the
c-interval the c-bucket. Every c-bucket [i..j] can further be divided into the
interval [i..k] containing all L-type suffixes starting with character c and
the interval [k + 1..j] containing all S-type suffixes starting with character
c. The interval [i..k] is called the L-type region and [k + 1..j] is called the
S-type region of the c-bucket (k = i− 1 or k = j is possible, i.e., the S-type
region or the L-type region of the bucket may be empty).

Definition 4.1.10 A position i, 1 < i ≤ n+1, in S with T [i−1] = L and T [i] =
S (i.e., suffix Si−1 is L-type and suffix Si is S-type) is called LMS-position
(leftmost S-type position); see Figure 4.6.

Now we are in a position to formulate the induced sorting algorithm.

Phase 0: Compute the type array T by a right-to-left scan of S.

Phase I: Compute all LMS-positions in S and sort the corresponding suf-
fixes in ascending lexicographic order (we will elaborate on this phase
later).

Phase II:

1. Scan the sorted sequence of LMS-positions from right to left. For
each position encountered in the scan,3 move it to the current end of
its bucket in A (initially, the end of a c-bucket is the index C[c + 1]),
and shift the current end of the bucket by one position to the left.

2. Scan the array A from left to right. For each entry A[i] encountered
in the scan, if SA[i]−1 is an L-type suffix, move its start position A[i]−1
in S to the current front of its bucket in A (initially, the front of a c-
bucket is the index C[c] + 1), and shift the current front of the bucket
by one position to the right.

3. Scan the array A from right to left. For each entry A[i] encountered in
the scan, if SA[i]−1 is an S-type suffix, move its start position A[i]−1 in

3Each undefined entry ⊥ is ignored because it does not correspond to a suffix.

4.1 Suffix arrays 71

S to the current end of its bucket in A (initially, the end of a c-bucket
is the index C[c + 1]), and shift the current end of the bucket by one
position to the left.

An illustration of phase II can be found in Figure 4.7. It should be
stressed that in step 3, the suffixes starting at LMS-positions (these are
of S-type) are already in the array A. This does no harm because each
of these suffixes will be overwritten before it is reached in the right-to-left
scan of A; see Lemma 4.1.12.

Lemma 4.1.11 Step 2 of phase II correctly sorts all L-type suffixes of S.

Proof First, we show that every L-type suffix is placed at its correct posi-
tion. We proceed by induction on the number q of placed L-type suffixes.
Clearly, A[1] = n+ 1 because $ appears at position n+ 1 in S, and $ is the
lexicographically smallest character. Furthermore, SA[i]−1 = Sn = c$ is an
L-type suffix because S[n] = c > $ = S[n + 1]. Consequently, position n is
moved to the front of the c-bucket. This is certainly correct because the
suffix Sn is the lexicographically smallest suffix starting with character
c. As an inductive hypothesis, suppose that q L-type suffixes have been
placed correctly. We have to show that the (q + 1)-th L-type suffix will be
placed correctly. Suppose that in the left-to-right scan of the array A we
are at index i > 1 with A[i] 6= ⊥, and let A[i] = j + 1 for some j ≥ 1. That
is, Sj+1 is either an S-type suffix starting at an LMS-position or an L-type
suffix that has already been placed, and suffix Sj is the (q + 1)-th L-type
suffix that has to be placed. Let c = S[j]. For a proof by contradiction,
suppose that when we move the start position j to the current front of the
c-bucket in A, there is already an L-type suffix Sk in the c-bucket that is
lexicographically greater than Sj. So in the c-bucket, k is left to j. This
means that there must be an index i′ < i so that A[i′] = k + 1. In other
words, k + 1 precedes j + 1 in the array A. Because both Sj and Sk are
in the c-bucket, we have Sj = cSj+1 and Sk = cSk+1. In conjunction with
Sj < Sk, this has Sj+1 < Sk+1 as a consequence. Note that Sj+1 is either
an S-type suffix starting at an LMS-position or an L-type suffix, and the
same is true for Sk+1. According to the inductive hypothesis, S-type suf-
fixes starting at LMS-positions and the first q placed L-type suffixes are
in the correct order. Thus, j + 1 must precede k + 1 in the array A. This,
however, contradicts our previous conclusion that k + 1 precedes j + 1 in
A. We conclude that the (q + 1)-th L-type suffix Sj is placed correctly.

Second, we prove that every L-type suffix will actually be placed dur-
ing the scan. For an inductive proof, assume that the q lexicographically
smallest L-type suffixes have been placed. Let Sj be the (q + 1)-th lexico-
graphically smallest L-type suffix. We have to show that Sj will be placed
during the scan. Clearly, Sj+1 < Sj because Sj is L-type (thus, if Sj+1 ap-
pears in the array A, then it must appear left to Sj). Moreover, Sj+1 is

72 4 Enhanced Suffix Arrays

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S i m i m m m i s i s m i s i s s i i p i $

type S L S L L L S L S L L S L S L L S S L L S

* * * * * * *

$ p

LMS 21 17 3 7 12 9 14

L-type suffixes 21 20 17 3 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

S-type suffixes 21 20 17 1 17

3

3

18

7

7

12

12

9

9

14

14

2 6 11 5 4 19 16 8 13 10 15

i m s

Figure 4.7: The upper part shows the type classification of the suffixes of
string S. The lower part illustrates phase II of the induced
sorting algorithm. In phase I, all suffixes that start at LMS-
positions have been sorted. In step 1 of phase II, the sorted
sequence delivered by phase I is scanned from right to left
and the suffixes are placed—also from right to left—into their
buckets. After step 1, all suffixes that start at LMS-positions
appear in ascending lexicographic order in the S-type regions
of their buckets as shown in row “LMS.” In step 2 of phase II,
the array is scanned from left to right and L-type suffixes are
placed—also from left to right—into their buckets. After step
2, all L-type suffixes appear in ascending lexicographic order
in the L-type regions of their buckets as shown in row “L-type
suffices.” In step 3 of phase II, the array is scanned again
from right to left and the S-type suffixes are placed—again
from right to left—into their buckets. Step 3 overwrites S-type
suffixes that start at LMS-positions before they are reached in
the scan. By contrast, all L-type suffixes are unaffected since
the L-type and S-type regions of the buckets are disjoint. After
step 3, all S-type suffixes appear in ascending lexicographic
order in the S-type regions of their buckets as shown in row
“S-type suffices.” It follows as a consequence that all suffixes
are sorted lexicographically after step 3.

4.1 Suffix arrays 73

either a suffix starting at an LMS-position or an L-type suffix. By the in-
duction hypothesis, Sj+1 has been placed. Consequently, when the scan
reaches Sj+1, the L-type suffix Sj is placed. �

Lemma 4.1.12 Step 3 of phase II correctly sorts all S-type suffixes of S.

Proof The proof is very similar to the proof of the preceding lemma. First,
we show that every S-type suffix is placed at its correct position. We
proceed by induction on the number q of placed S-type suffixes. For the
base case, note that all suffixes starting with the largest character cσ must
be L-type. That is, the S-type region of the cσ-bucket is empty, and hence
A[n + 1] corresponds to an L-type suffix. In the right-to-left scan of A, let
i be the first (rightmost) index so that SA[i]−1 = cSA[i] is an S-type suffix
(clearly, c < cσ and it is not difficult to show that i belongs to the cσ-
bucket). The algorithm places the index A[i] − 1 at the very end of the
c-bucket. This is correct because SA[i]−1 = cSA[i] is the lexicographically
largest suffix that starts with the character c. As an inductive hypothesis,
suppose that q S-type suffixes have been placed correctly. We have to
show that the (q + 1)-th S-type suffix will be placed correctly. Suppose
that in the right-to-left scan of the array A we are at index i, and let
A[i] = j + 1 for some j ≥ 1. That is, Sj+1 is either an L-type suffix or an
S-type suffix that has already been placed, and suffix Sj is the (q+1)-th S-
type suffix that has to be placed. Let c = S[j]. For a proof by contradiction,
suppose that when we move the start position j to the current end of the
c-bucket in A, there is already an S-type suffix Sk in the c-bucket that
is lexicographically smaller than Sj. So in the c-bucket, k is right to j.
This means that there must be an index i′ > i so that A[i′] = k + 1. In
other words, in the right-to-left scan of A, k + 1 is encountered before
j + 1. Because both Sj and Sk are in the c-bucket, we have Sj = cSj+1 and
Sk = cSk+1. Moreover, Sk < Sj has Sk+1 < Sj+1 as a consequence. If Sj+1

(Sk+1) is an L-type suffix, then it is at its correct position by Lemma 4.1.11.
Otherwise, if Sj+1 (Sk+1) is an S-type suffix, then it is at its correct position
by the inductive hypothesis. Therefore, in the right-to-left scan of A, j + 1
must be encountered before k + 1, a contradiction to our assumption. We
conclude that the (q + 1)-th S-type suffix Sj is placed correctly.

Second, we prove that every S-type suffix will actually be placed dur-
ing the scan. For an inductive proof, assume that the q lexicographically
largest S-type suffixes have been placed, and let Sj be the (q + 1)-th lexi-
cographically largest S-type suffix. We have to show that Sj will be placed
during the scan. Clearly, Sj < Sj+1 because Sj is S-type (thus, if Sj+1 ap-
pears in the array A, then it must appear right to Sj). If Sj+1 is an L-type
suffix, then it was placed correctly in step 2. Otherwise, if Sj+1 is an S-
type suffix, then it has also been placed by the induction hypothesis. In
both cases, Sj+1 was encountered before and Sj is placed. �

74 4 Enhanced Suffix Arrays

The following notions are used in the formulation of phase I of the in-
duced sorting algorithm.

Definition 4.1.13 A substring of S that starts at an LMS-position and
ends at the next LMS-position is called an LMS-substring. By definition,
the sentinel is also an LMS-substring. Any suffix of an LMS-substring is
called an LMS-suffix.

Now let us elaborate on phase I, which is illustrated in Figure 4.8. Note
that steps 2 and 3 are verbatim the same as in phase II.

Phase I:

1. Scan the array T from left to right and place each LMS-position into
its bucket and into an array P (so if there are m LMS-positions, then
P has size m). To be precise, for each position j encountered in the
scan, if j is an LMS-position, move it to the current end of its bucket
in A (initially, the end of a c-bucket is the index C[c+1]), and shift the
current end of the bucket by one position to the left. Furthermore,
move j to the current front of array P (initially, the front of P is the
index 1), and shift the current front of P by one position to the right.

In this step, each LMS-position j represents the last character S[j] of
the LMS-substring that ends at j (and not suffix Sj as in phase II).

2. Scan the array A from left to right. For each entry A[i] encountered
in the scan, if SA[i]−1 is an L-type suffix, move its start position A[i]−1
in S to the current front of its bucket in A (initially, the front of a c-
bucket is the index C[c] + 1), and shift the current front of the bucket
by one position to the right.

In this step, a position j with T [j] = L represents the LMS-suffix that
starts at position j and ends at the next LMS-position (and not the
L-type suffix Sj as in phase II).

3. Scan the array A from right to left. For each entry A[i] encountered in
the scan, if SA[i]−1 is an S-type suffix, move its start position A[i]−1 in
S to the current end of its bucket in A (initially, the end of a c-bucket
is the index C[c + 1]), and shift the current end of the bucket by one
position to the left.

In this step, a position j with T [j] = S represents the LMS-suffix that
starts at position j and ends at the next LMS-position (and not the
S-type suffix Sj as in phase II). Thus, if j is an LMS-position, then
it represents the LMS-substring that starts at position j and ends at
the next LMS-position.

4.1 Suffix arrays 75

1 2 3 4 5 6 7

S 3 4 5 4 6 2 1

type S S L S L L S

LMS * *

recursion

1 2 3 4 5 6 7

P 3 7 9 12 14 17 21

LN 3 4 5 4 6 2 1

1 2 3 4 5 6 7

P 3 7 9 12 14 17 21

_

3. 4. 6. 5. 7. 2. 1.

1 2 3 4 5 6 7

1 2 3 5 6

LMS 7 4

L-type suffixes 7 6 4 3 5

S-type suffixes 7 6 1 2 4

4

3 5

4

posi"on

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S i m i m m m i s i s m i s i s s i i p i $

type S L S L L L S L S L L S L S L L S S L L S

* * * * * * *

$ p

LMS 21 17 14 12 9 7 3

L-type suffixes 21 20 17 14 12 9 7 3 11 6 2 5 4 19 16 13 8 10 15

S-type suffixes 21 20 17 1 17

3

14

18

12

12

9

7

7

9

3

14

11 6 2 5 4 19 16 13 8 10 15

i m s

Figure 4.8: Phase I of the induced sorting algorithm.

76 4 Enhanced Suffix Arrays

4. Initialize an array LN[1..n + 1] that will contain the new lexicographic
names of the LMS-substrings, and initialize the counter i for new
lexicographic names to 1. Because the sentinel is the lexicographi-
cally smallest LMS-substring, it gets the smallest new lexicographic
name, i.e., LN[n + 1] = 1. Furthermore, initialize prev = n + 1. Now,
starting at index i = 2, scan the array A from left to right. Whenever
an entry A[i] = j is encountered so that j is the start position of an
LMS-substring do the following:

• Compare the LMS-substring starting at position prev in S with
the LMS-substring starting at position j in S (character by char-
acter).

• If they are different, increment i by one.

• Set LN[j] = i and prev = j.

5. Scan the array P [1..m] from left to right and for each k with 1 ≤ k ≤ m
set S[k] = LN[P [k]].

6. If i = m, then the LMS-substrings are pairwise different. Compute
the suffix array SA of the string S directly by SA[S[k]] = k.

7. Otherwise, recursively compute the suffix array SA of the string S.

8. The ascending lexicographic order of all the suffixes of S that start
at an LMS-position is P [SA[1]], P [SA[2]], . . . , P [SA[m]].

Lemma 4.1.14 After steps 1-3 of phase I, LMS-substrings appear in lexi-
cographic order in A.

Proof As already mentioned, in phase I an LMS-position j corresponds
to the last character S[j] of the LMS-substring ending at position j. By
contrast, in phase II an LMS-position j corresponds to the suffix Sj. After
step 1 of phase I, each LMS-position is in the S-type region of its bucket.
That is, the length 1 suffixes (last characters) of all LMS-substrings are
in the correct order in A. Now the proofs of Lemmata 4.1.11 and 4.1.12
apply with a grain of salt, and we conclude that after steps 1-3 all LMS-
suffixes of length greater than 1 are in the correct order in A.4 Of course,
the sentinel (more precisely, its position n + 1) is still the first entry of
A. Therefore, all LMS-substrings appear in lexicographic order in A (note
that lexicographically adjacent LMS-substrings may be identical). �

By Lemma 4.1.14, LMS-substrings (represented by their start positions)
appear in lexicographic order in the array A. Thus, there are indices

4In step 1, an LMS-position j represents the length 1 LMS-suffix S[j]. In step 3, however,
j represents the LMS-substring starting at position j. So length 1 LMS-suffixes are no
longer represented.

4.1 Suffix arrays 77

1 ≤ i1 < · · · < im ≤ n+1 and positions j1, . . . , jm so that A[i1] = j1, . . . , A[im] =
jm (hence j1, . . . , jm is a permutation of P [1], . . . , P [m]). Step 4 renames
all LMS-substrings according to their lexicographic order in the array
A, where identical LMS-substrings get the same new name. To be pre-
cise, in step 4 we compare the current LMS-substring, say S[jk..jk+1],
with the previous LMS-substring S[jk−1..jk]. Suppose that the previous
LMS-substring S[jk−1..jk] has got the new lexicographic name i. Now, if
S[jk..jk+1] = S[jk−1..jk], then S[jk..jk+1] gets the same lexicographic name i.
Otherwise, S[jk..jk+1] gets the new lexicographic name i+1. In both cases,
the lexicographic name of S[jk..jk+1] is stored at position jk in array LN;
see Figure 4.8. The new string S is obtained by setting S[k] = LN[P [k]]
in step 5. Now, there are two possibilities (step 6 or step 7). Either all
LMS-substrings are pairwise different (which is equivalent to i = m after
step 4) or there are at least two identical LMS-substrings. In the former
case (step 6), the inverse suffix array ISA of the string S coincides with
S (viewed as an array). In the latter case (step 7), we recursively apply
the whole induced sorting algorithm to the string S to get its suffix array
SA; see Figure 4.8. So after step 6 or step 7, we know the lexicographic
order of all suffixes of S. Lemma 4.1.15 proves that step 8 yields the lex-
icographic order of all the suffixes of S that start at an LMS-position (by
means of the suffix array SA and the P array).

Lemma 4.1.15 We have Si < Sj if and only if SP [i] < SP [j].

Proof Let ui be the string obtained by replacing every lexicographic name
in Si with the LMS-substring that is represented by this name. Further-
more, let vi be the string obtained from SP [i] by doubling every character at
an LMS-position. It is readily verified that ui = vi. Moreover, ui < uj (where
uj is defined analogously) if and only if SP [i] < SP [j]. Hence the lemma
follows. �

All in all, the induced sorting algorithm correctly computes the suffix
array. It remains to analyze its worst-case time-complexity. It is not dif-
ficult to see that each step in phases I and II takes at most O(n) time.
By definition 4.1.10, position 1 is not an LMS-position and there must be
at least one position in between two consecutive LMS-positions. Hence
|S| = m ≤ bn+1

2
c. It follows from the master theorem that the whole in-

duced sorting algorithm has a worst-case time complexity of O(n).

Implementation details of the induced sorting algorithm:

1. It is not difficult to see that if two LMS-substrings are identical, then
so are their type sequences. Consequently, in step 4 of phase I,
if one compares characters and types of LMS-substrings simultane-
ously, then the comparison can be stopped when there is a character

78 4 Enhanced Suffix Arrays

S
_

sorted LMS-substrings
lexicographic names

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 20 17 1 3 18 12 7 9 14 11 6 2 5 4 19 16 13 8 10 15

21 17 3 12 7 9 14

21 17 3 12 7 9 14 3 4 5 4 6 2 1

21 17 3 12 7 9 14 3 4 5 4 6 2 1

Figure 4.9: Apart from the string S, one array suffices in an implementa-
tion of the induced sorting algorithm.

mismatch or a type mismatch (this is done in the original algorithm
by Nong et al. [244]).

2. Since m ≤ bn+1
2
c, the sorted LMS-substrings can be stored in the left

half of the array A and the array LN (later the string S and finally the
array SA) can be stored in the right half of A; see Figure 4.9. As a
matter of fact, it is possible to remove the type array T in the initial
call of the induced sorting algorithm and to integrate the type arrays
in recursive calls into the array A. Moreover, the pointers to the
(current) front/end of the buckets are solely required in the initial
call but not in recursive calls. In summary, the induced sorting
algorithm can be implemented in such a way that it keeps only the
string S (the input), the array A (the output), and the bucket pointers
of the initial call (for a constant-size alphabet, these pointers take
only constant space) in main memory; see [243] for details.

Exercise 4.1.16 Suppose that the word boundaries in a natural language
text have already been determined by a parser. These word boundaries
divide the text into tokens. As an example, consider the English sentence
“This is a text.” and the corresponding sequence of tokens “This,is,a,text”.
In this exercise, we assume that a text T is given as the concatenation of
the tokens, in which tokens are separated by a special separator symbol
#. We assume that T consists of k tokens and n characters (including all
occurrences of the separator symbol). In our example, T = This#is#a#text
consists of 4 tokens and 14 characters. Let P be the set of positions at
which a token starts, i.e., P = {1}∪{i | 2 ≤ i ≤ n and T [i−1] = #}. The set of
all suffixes of T starting with a full token is defined by {Tp | p ∈ P}, and the

4.2 The LCP-array 79

word suffix array WSA is a permutation of P specifying the lexicographic
order of the k suffixes from {Tp | p ∈ P}, i.e., it satisfies TWSA[1] < TWSA[2] <
· · · < TWSA[k]. Devise an O(n) time and O(k) space algorithm to construct
the word suffix array of T .

Exercise 4.1.17 A cyclic string of length n is a string S in which the char-
acter at position n is considered to precede the character at position 1.
The cyclic string linearization problem is the following: Choose a position
to cut S so that the resulting linear string is the lexicographically smallest
of all the n possible linear strings created by cutting S. Give an algorithm
that solves this problem in O(n) time.

4.2 The LCP-array

Throughout this book, lcp(u, v) denotes the longest common prefix between
two strings u and v, whereas lcs(u, v) denotes the longest common suffix of
u and v.

The suffix array is often augmented with the so-called LCP-array (or
LCP-table), containing the lengths of the longest common prefixes between
consecutive suffixes in SA. The formal definition reads as follows.

Definition 4.2.1 The LCP-array is an array of size n + 1 with boundary
elements LCP[1] = −1 and LCP[n + 1] = −1, and for all i with 2 ≤ i ≤ n we
have LCP[i] = |lcp(SSA[i−1], SSA[i])|.

Figure 4.10 shows the LCP-array of the string S = ctaataatg. The LCP-
array first appeared in the seminal paper of Manber and Myers [214] on
suffix arrays (where it was called Hgt array).

A suffix array enhanced with the corresponding LCP-array will hence-
forth be called an enhanced suffix array. More generally, the generic name
enhanced suffix array (and the acronym ESA) stands for data structures
consisting of the suffix array enhanced with additional arrays.

4.2.1 Linear-time construction

It is possible to modify some SACAs so that they compute the LCP-array
as a by-product of the suffix array construction. This has been shown
in [175] for the skew algorithm presented in Section 4.1.1 and in [107]
for the induced sorting algorithm presented in Section 4.1.2, but other
SACAs could probably also be modified to produce the LCP-array.

Another approach is to construct the LCP-array from an already con-
structed suffix array. To date, several different LCP-array construction
algorithms (LACAs) of this kind are known [33, 126, 174, 177, 216, 264],
but to review all of them goes beyond the scope of this book. In this

80 4 Enhanced Suffix Arrays

i SA ISA LCP SSA[i]

1 3 5 −1 aataatg
2 6 7 3 aatg
3 4 1 1 ataatg
4 7 3 2 atg
5 1 8 0 ctaataatg
6 9 2 0 g
7 2 4 0 taataatg
8 5 9 4 taatg
9 8 6 1 tg
10 −1

Figure 4.10: Suffix array, inverse suffix array, and LCP-array of the string
S = ctaataatg.

section, we present two of them: the first linear-time LACA owing to Ka-
sai et al. [177] and the Φ-algorithm developed by Kärkkäinen et al. [174].
Another LACA can be found in Section 7.5.1.

We start with Kasai et al.’s algorithm, which computes the LCP-array
from the string S and its suffix array SA; see Algorithm 4.3. In its first for-
loop, the algorithm computes the inverse suffix array ISA. In the second
for-loop, the algorithm computes lcp-values. It starts with the longest
suffix Si = S1 of S (so i = 1), computes j = ISA[i] and then LCP[j] by a
left-to-right comparison of the characters in SSA[j−1] and SSA[j] = Si. The
same is done for the other suffixes Si of S by incrementing i successively;
see Figure 4.11 for an example. Algorithm 4.3 avoids many redundant
character comparisons; this is justified by the following lemma.

Lemma 4.2.2 For 2 ≤ i ≤ n, we have LCP[ISA[i]] ≥ LCP[ISA[i− 1]]− 1.

Proof Let ` = LCP[ISA[i− 1]]. Clearly, the lemma is true if ` ≤ 1, so suppose
that ` ≥ 2. Let Sk be the suffix of S that immediately precedes Si−1 in the
suffix array (that is, k = SA[ISA[i− 1]− 1]). Since LCP[ISA[i− 1]] = `, we have
|lcp(Sk, Si−1)| = `. In other words, S[k..k+`−1] = S[i−1..i+`−2] and S[k+`] 6=
S[i+`−1]. By omitting the first character, we get S[k+1..k+`−1] = S[i..i+`−2]
and S[k+`] 6= S[i+`−1], or equivalently, |lcp(Sk+1, Si)| = `−1. Moreover, Sk+1

is lexicographically smaller than Si because Sk is lexicographically smaller
than Si−1 and S[k] = S[i − 1]. Thus, Sk+1 precedes Si in the suffix array.
Since |lcp(Sk+1, Si)| = ` − 1, all suffixes between Sk+1 and Si (if there is one
at all) have a common prefix of length `− 1. Hence LCP[ISA[i]] ≥ `− 1. �

4.2 The LCP-array 81

Algorithm 4.3 Computation of the LCP-array using S and its suffix array.
In the pseudo-code, it is possible that S[n + 1] is accessed. To avoid a
“cannot access beyond end of string” error, we assume that S[n+ 1] = $.

LCP[1]← −1
LCP[n+ 1]← −1
for i← 1 to n do
ISA[SA[i]]← i

`← 0
for i← 1 to n do
j ← ISA[i]
if j > 1 then
k ← SA[j − 1] /* Sk precedes Si in SA */
while S[k + `] = S[i+ `] do
`← `+ 1

LCP[j]← `
`← max{`− 1, 0}

According to the preceding lemma, if ` = LCP[ISA[i − 1]] is known, then
one can skip at least ` − 1 character comparisons in the computation
of LCP[ISA[i]]; see Figure 4.11. Not only does this imply the correctness of
Algorithm 4.3, but it is also the key to the linear run time of the algorithm.

Theorem 4.2.3 Given a string S of length n and its suffix array, Algorithm
4.3 constructs the LCP-array in time O(n).

Proof We use an amortized analysis to show that the while-loop is exe-
cuted at most 2n times. It is readily verified that this implies the theorem.

Each comparison in the while-loop ends with a mismatch, so there are
n−1 mismatches (redundant character comparisons) in total. If a position
p in S is involved in a match (i.e., in the while-loop p = i+ ` and S[k + `] =
S[i + `]), then this particular occurrence of character S[p] will be skipped
in further suffix comparisons. So there are at most n matches. �

Kärkkäinen et al. [174] proposed a variant of Kasai et al.’s algorithm,
which first computes a permuted LCP-array (PLCP-array) with the help
of the so-called Φ-array and then derives the LCP-array from the PLCP-
array. They called it “Φ-algorithm” because it uses the Φ-array, which “is
in some way symmetric to the ψ array.” (The ψ array will be introduced in
Definition 5.5.4.)

Definition 4.2.4 Let S be a string of length n and let SA be its suffix
array. We define the corresponding Φ-array and PLCP-array, respectively,

82 4 Enhanced Suffix Arrays

i SA ISA LCP SSA[i]

1 3 5 −1 aat|aatg
2 6 7 ? aat|g
3 4 1 1 ataatg
4 7 3 atg
5 1 8 0 ctaataatg
6 9 2 g
7 2 4 0 taat|aatg
8 5 9 4 taat|g
9 8 6 tg
10 −1

Figure 4.11: Algorithm 4.3 has computed the LCP-entries for the suffixes
S1 = ctaataatg, S2 = taataatg, S3 = aataatg, S4 = ataatg, and
S5 = taatg. The suffix S5 = taatg occurs at index i = 8 and
its longest common prefix with the suffix S2 = taataatg at
index i = 7 has length 4. Hence LCP[8] = 4. Next, Algorithm
4.3 computes the LCP-entry for the suffix S6 = aatg at index
i = 2. By Lemma 4.2.2, S6 = aatg has at least the first three
characters in common with the suffix S3 = aataatg at index
i = 1. Therefore, these three characters are skipped and the
next character comparison of S6[4] = g with S3[4] = a yields a
mismatch. So LCP[2] = 3.

4.2 The LCP-array 83

i 1 2 3 4 5 6 7 8 9
S[i] c t a a t a a t g
Φ[i] 7 9 0 6 2 3 4 5 1

PLCP[i] 0 0 −1 1 4 3 2 1 0

Figure 4.12: Φ-array and PLCP-array of S = ctaataatg; cf. Figure 4.11.

as follows: For all i with 1 ≤ i ≤ n let

Φ[i] =

{
SA[ISA[i]− 1] if ISA[i] 6= 1
0 otherwise

and

PLCP[i] =

{
|lcp(Si, SΦ[i])| if Φ[i] 6= 0
−1 otherwise

Figure 4.12 shows an example. So in the suffix array SA, the suffix Sj is
immediately preceded by the suffix SΦ[j] unless Φ[j] = 0. For j 6= 1, we have

PLCP[SA[j]] = |lcp(SSA[j], SΦ[SA[j]])| = |lcp(SSA[j], SSA[j−1])| = LCP[j] (4.1)

In case j = 1 this equation holds also true: we have LCP[1] = −1 and
PLCP[SA[1]] = −1 because Φ[SA[1]] = 0. Thus, the PLCP-array is a permuta-
tion of the LCP-array (apart from the artificial entry LCP[n + 1] = −1). The
difference between the two arrays is that the lcp-values occur in text or-
der (position order) in the PLCP-array, whereas they occur in suffix array
order (lexicographic order) in the LCP-array. As a consequence, we obtain
the following corollary to Lemma 4.2.2.

Corollary 4.2.5 For 2 ≤ i ≤ n, we have PLCP[i] ≥ PLCP[i− 1]− 1.

Proof For j = ISA[i], Equation 4.1 has the form

LCP[ISA[i]] = PLCP[SA[ISA[i]]] = PLCP[i]

Furthermore, Lemma 4.2.2 states that LCP[ISA[i]] ≥ LCP[ISA[i−1]]−1 for all
i 6= 1. Hence PLCP[i] ≥ PLCP[i− 1]− 1 for all i with i 6= 1. �

Pseudo-code of the Φ-algorithm is shown in Algorithm 4.4. A compara-
tive analysis of Algorithm 4.3 and the Φ-algorithm can be found in [126].
The bottom line is that the Φ-algorithm is faster because of better mem-
ory locality: it merely needs sequential access to the Φ-array and the
PLCP-array in its second for-loop. However, in virtually all applications
lcp-values are required to be in suffix array order, so that in a final step
the PLCP-array must be converted into the LCP-array. Although this final
step (the third for-loop of the Φ-algorithm) has poor memory locality be-
cause it needs random access to the PLCP-array, the overall algorithm is
still faster than Kasai et al.’s.

84 4 Enhanced Suffix Arrays

Algorithm 4.4 The Φ-algorithm computes the LCP-array using S and its
suffix array SA.

Φ[SA[1]]← 0
for i← 2 to n do /* compute the Φ-array */
Φ[SA[i]]← SA[i− 1]

`← 0
for i← 1 to n do
k ← Φ[i]
if k 6= 0 then

while S[k + `] = S[i+ `] do /* Sk precedes Si in SA */
`← `+ 1

PLCP[i]← `
`← max{`− 1, 0}

else
PLCP[i]← −1

for i← 1 to n do
LCP[i]← PLCP[SA[i]]

LCP[n+ 1]← −1

Exercise 4.2.6 Prove the correctness of the Φ-algorithm and analyze its
worst-case time complexity.

4.2.2 Longest common prefix

Given the LCP-array, the length of the longest common prefix between two
consecutive suffixes in the suffix array can be determined in constant
time. An obvious question is: Is it possible to compute the length of the
longest common prefix between two arbitrary suffixes in the suffix array?
Based on the results from Chapter 3, the next lemmata give an answer in
the affirmative.

Lemma 4.2.7 Given a string S of length n and its LCP-array, we have

|lcp(SSA[i], SSA[j])| = LCP[RMQLCP(i+ 1, j)] = min
i<k≤j

{LCP[k]}

for all indices 1 ≤ i < j ≤ n.

Proof The second equality follows from the definition of RMQLCP(i + 1, j).
Let us turn to the first equality. It is readily verified that a string ω is a
common prefix of SSA[i] and SSA[j] if and only if it is a common prefix of all
suffixes SSA[i], SSA[i+1], . . . , SSA[j]. Let m = RMQLCP(i+1, j) and ` = LCP[m]. Ob-
viously, S[i..i+`−1] is a common prefix of all suffixes SSA[i], SSA[i+1], . . . , SSA[j],
hence of SSA[i] and SSA[j]. Moreover, S[i..i + `] is not a common prefix of

4.3 The lcp-interval tree 85

SSA[m−1] and SSA[m] because |lcp(SSA[m−1], SSA[m])| = LCP[m] = ` < ` + 1 =
|S[i..i + `]|. Consequently, S[i..i + `] is not a common prefix of SSA[i] and
SSA[j]. All in all, |lcp(SSA[i], SSA[j])| = `. �

As in Chapter 3, we say that an algorithm has time complexity 〈p(n), q(n)〉
if its preprocessing time is p(n) and its query is time q(n).

Lemma 4.2.8 There is an 〈O(n), O(1)〉-time algorithm for answering longest
common prefix queries between two suffixes of a string S.

Proof We must show that after a linear-time preprocessing, |lcp(Si, Sj)| can
be computed in constant time for all positions 1 ≤ i ≤ j ≤ n. Given string
S of length n, one can compute the corresponding arrays SA, ISA, and LCP
in O(n) time. Moreover, the LCP-array can be preprocessed in linear time
so that range minimum queries can be answered in constant time; see
Section 3.3. For i = j, we have |lcp(Si, Sj)| = |Si|. Otherwise, for i 6= j, we
have

|lcp(Si, Sj)| =
{

LCP[RMQLCP(ISA[i] + 1, ISA[j])], if ISA[i] < ISA[j]
LCP[RMQLCP(ISA[j] + 1, ISA[i])], if ISA[j] < ISA[i]

This is a direct consequence of Lemma 4.2.7 because the indices i′ = ISA[i]
and j′ = ISA[j] satisfy SSA[i′] = Si and SSA[j′] = Sj. �

Corollary 4.2.9 There is an 〈O(n), O(1)〉-time algorithm for answering
longest common suffix queries between two prefixes of a string S.

Proof Observe that lcs(S[1..i], S[1..j]) = lcp(Srevn−i+1, S
rev
n−j+1), where Srev denotes

the reverse string of S. This, in combination with the fact that Srev can be
obtained in linear time from S, implies that lcs(S[1..i], S[1..j]) can also be
computed in constant time after a linear-time preprocessing. �

4.3 The lcp-interval tree

Most concepts of this section originate from Abouelhoda et al. [1]. The
idea to use RMQs in this context stems from Fischer and Heun [108].

To see the usefulness of lcp-intervals, let us have a second look at the
enhanced suffix array of the string S = ctaataatg, which is replicated in
Figure 4.13. By definition 4.1.3, the a-interval is the interval [1..4], the
aa-interval is [1..2], and the aat-interval is also [1..2]. By contrast, there is
no substring ω of S so that the interval [1..3] is an ω-interval. The next
definition allows us to identify such intervals solely by means of the LCP-
array. The declarations LCP[1] = −1 and LCP[n + 1] = −1 ensure that the
definition also covers the interval [1..n].

86 4 Enhanced Suffix Arrays

i SA ISA LCP SSA[i] lcp-intervals
1 3 5 −1 aataatg

0

1
3

2 6 7 3 aatg
3 4 1 1 ataatg

2
4 7 3 2 atg
5 1 8 0 ctaataatg
6 9 2 0 g
7 2 4 0 taataatg

1
4

8 5 9 4 taatg
9 8 6 1 tg
10 −1

Figure 4.13: Enhanced suffix array and lcp-intervals of S = ctaataatg.

Definition 4.3.1 An interval [i..j], 1 ≤ i < j ≤ n, in an LCP-array is called
an lcp-interval of lcp-value ` if and only if

1. LCP[i] < `,

2. LCP[k] ≥ ` for all k with i+ 1 ≤ k ≤ j,

3. LCP[k] = ` for at least one k with i+ 1 ≤ k ≤ j,

4. LCP[j + 1] < `.

We will also use the shorthand `-[i..j] for an lcp-interval [i..j] of lcp-value
`, and [i..j] will be called `-interval. Every index k, i + 1 ≤ k ≤ j, with
LCP[k] = ` is called `-index (or lcp-index) of [i..j]. The set of all `-indices of
an `-interval [i..j] will be denoted by `Indices(i, j). Furthermore, we will say
that the lcp-interval `-[i..j] represents the string ω = S[SA[i]..SA[i] + ` − 1],
where ω is the longest common prefix of the suffixes SSA[i], SSA[i+1], . . . , SSA[j].

For ease of presentation, it is useful to ensure that the interval [1..n] is
always an lcp-interval of lcp-value 0. By Definition 4.3.1, this is the case
if and only if there is at least one k with 2 ≤ k ≤ n so that LCP[k] = 0.
This in turn is the case if and only if the string S contains at least two
different characters. Thus, we tacitly assume that $ is appended to strings
containing only one character.

As an example, consider Figure 4.13. [1..4] is a 1-interval because
LCP[1] = −1 < 1, LCP[4 + 1] = 0 < 1, LCP[k] ≥ 1 for all k with 2 ≤ k ≤ 4,
and LCP[3] = 1. Furthermore, the lcp-interval 1-[1..4] represents the string
a and `Indices(1, 4) = {3}. Similarly, the lcp-interval 3-[1..2] represents

4.3 The lcp-interval tree 87

the string aat. By definition, the string aa is not represented by an lcp-
interval. This is because each lcp-interval [i..j] only represents the longest
common prefix of the suffixes SSA[i], SSA[i+1], . . . , SSA[j]. So the lcp-interval
[1..2] represents aat and not aa.

Lemma 4.3.2 Two lcp-intervals `-[i..j] 6= m-[p..q] cannot overlap, i.e., one of
the following cases must hold:

• [i..j] is a subinterval of [p..q], i.e., p ≤ i < j ≤ q.

• [p..q] is a subinterval of [i..j], i.e., i ≤ p < q ≤ j.

• [i..j] and [p..q] are disjoint, i.e., j < p or q < i.

Proof Suppose to the contrary that [i..j] and [p..q] overlap, i.e., i < p ≤ j < q
(the case p < i ≤ q < j is symmetric). By Definition 4.3.1, we have

1. LCP[i] < `

2. LCP[p] ≥ `

3. LCP[j + 1] < `

4. LCP[p] < m

5. LCP[j + 1] ≥ m

6. LCP[q + 1] < m

The combination of (2) and (4) yields ` ≤ LCP[p] < m, while the conjunction
of (3) and (5) yields m ≤ LCP[j + 1] < `. In summary, we obtain ` < m < `.
This contradiction shows the lemma. �

Definition 4.3.3 An m-interval [p..q] is said to be embedded in an `-
interval [i..j] if it is a subinterval of [i..j] (i.e., i ≤ p < q ≤ j) and m > `.5 The
`-interval [i..j] is then called the interval enclosing [p..q]. If [i..j] encloses
[p..q] and there is no interval embedded in [i..j] that also encloses [p..q],
then [p..q] is called a child interval of [i..j] (vice versa, [i..j] is the parent
interval of [p..q]). This parent-child relationship constitutes a tree, which
we call lcp-interval tree.

For instance, continuing the example of Figure 4.13, the child intervals
of 1-[1..4] are 3-[1..2] and 2-[3..4]. The whole lcp-interval tree is shown in Fig-
ure 4.14. The root of an lcp-interval tree is always the 0-interval [1..n]. The
lcp-interval tree of Figure 4.14 also contains singleton intervals, which are
defined as follows.

5Note that we cannot have both i = p and j = q because m > `.

88 4 Enhanced Suffix Arrays

0−[1..9]

1−[1..4]

3−[1..2]

[1..1] [2..2]

2−[3..4]

[3..3] [4..4]

[5..5] [6..6] 1−[7..9]

4−[7..8]

[7..7] [8..8]

[9..9]

Figure 4.14: The lcp-interval tree for S = ctaataatg.

Definition 4.3.4 An interval [k..k] is called singleton interval. The parent
interval of such a singleton interval is the smallest lcp-interval [i..j] that
contains k.

How much space does an lcp-interval tree occupy? Clearly, there are
exactly n singleton-intervals, hence n leaves. As each internal node of an
lcp-interval tree is branching, there can be at most n − 1 internal nodes.
Since the representation of a node needs at most three numbers, a node
can be represented in constant space. It is readily seen that the number
of edges is one less than the number of nodes. Consequently, there are at
most 2n−2 edges because there are at most 2n−1 nodes in the lcp-interval
tree. Since the edges are not labeled, we can surely represent each edge
in constant space. To sum up, an lcp-interval tree requires only linear
space. However, we will not construct this tree explicitly. As we shall see,
it is possible to traverse this tree without constructing it.

4.3.1 Finding child and parent intervals

The next lemma shows how to determine child intervals.

Lemma 4.3.5 Let [i..j] be an `-interval. If i1 < i2 < · · · < ik are the `-
indices in ascending order, then the child intervals of [i..j] are [i..i1 − 1],
[i1..i2 − 1], . . . , [ik..j] (note that some of them may be singleton intervals).

Proof Let [p..q] be a non-singleton interval out of the intervals [i..i1 − 1],
[i1..i2 − 1], . . . , [ik..j] and let m = LCP[RMQLCP(p + 1, q)]. Since none of the in-
dices p+1, . . . , q is an `-index, it follows from Definition 4.3.1 that LCP[k] > `
for all k with p+1 ≤ k ≤ q. Hence m > `. We claim that [p..q] is an m-interval.

4.3 The lcp-interval tree 89

Note that LCP[p] < ` if p = i and LCP[p] = ` if p 6= i. Analogously, LCP[q+1] < `
if q = j and LCP[q + 1] = ` if q 6= j. We have

1. LCP[p] ≤ ` < m,

2. LCP[k] ≥ m for all k with p+ 1 ≤ k ≤ q,

3. LCP[k] = m for k = RMQLCP(p+ 1, q)

4. LCP[q + 1] ≤ ` < m.

By Definition 4.3.1, [p..q] is an m-interval. To show that m-[p..q] is a child
interval of `-[i..j], we must prove that there is no lcp-interval embedded in
[i..j] that encloses [p..q]. For a proof by contradiction, suppose that the lcp-
interval r-[lb..rb] is embedded in [i..j] and encloses [p..q]. We have m > r > `,
and at least one of the following cases must hold: (a) lb < p < q ≤ rb or (b)
lb ≤ p < q < rb. We prove the lemma for case (a); the other case follows
similarly. By Definition 4.3.1, it follows that LCP[k] ≥ r > ` for all k with
lb+1 ≤ k ≤ rb. In particular, LCP[p] > `. This, however, contradicts the fact
that LCP[p] ≤ `. Consequently, m-[p..q] is a child interval of `-[i..j].

Now suppose that [p..q] is a singleton interval, i.e., p = q. Obviously, at
least one of the indices p and p+ 1 must be an `-index. That is, LCP[p] = `
or LCP[p + 1] = ` (or both). One can show that there is no lcp-interval
[lb..rb] that is embedded in [i..j] and encloses [p..p] (the indirect proof is
verbatim the same as above). Therefore, `-[i..j] is the smallest lcp-interval
that contains [p..p], that is, `-[i..j] is the parent interval of [p..q]. �

As an example, we compute the child intervals of the lcp-interval 0-[1..9]
of the LCP-array from Figure 4.13. The 0-indices are (in ascending order)
5, 6, and 7. Thus, the child intervals of 0-[1..9] are [1..4], [5..5], [6..6], and
[7..9].

Exercise 4.3.6 Implement a procedure that takes an lcp-interval as input
and returns the list of its child intervals.

We employ two auxiliary arrays PSVLCP and NSVLCP to explain how the
parent interval of an lcp-interval can be determined.

Definition 4.3.7 For any index 2 ≤ i ≤ n, we define

PSVLCP[i] = max{j | 1 ≤ j < i and LCP[j] < LCP[i]}

and
NSVLCP[i] = min{j | i < j ≤ n+ 1 and LCP[j] < LCP[i]}

90 4 Enhanced Suffix Arrays

i SA LCP SSA[i] PSVLCP NSVLCP

1 3 −1 aaacatat
2 4 2 aacatat 1 3
3 1 1 acaaacatat 1 7
4 5 3 acatat 3 5
5 9 1 at 1 7
6 7 2 atat 5 7
7 2 0 caaacatat 1 11
8 6 2 catat 7 9
9 10 0 t 1 11
10 8 1 tat 9 11
11 −1

Figure 4.15: The enhanced suffix array of the string S = acaaacatat with
the arrays PSVLCP and NSVLCP.

PSV and NSV are acronyms for previous smaller value and next smaller
value, respectively. Given the value LCP[i] at index i, among all indices j
so that j is smaller than i and LCP[j] is smaller than LCP[i], PSVLCP[i] is the
largest index. Analogously, among all indices j so that j is larger than i
and LCP[j] is smaller than LCP[i], NSVLCP[i] = j is the smallest index. Figure
4.15 shows the arrays PSVLCP and NSVLCP of the string S = acaaacatat.

In this section, we will omit the subscript LCP, i.e., we will write PSV

instead of PSVLCP and NSV instead of NSVLCP.

Lemma 4.3.8 Let 2 ≤ k ≤ n and LCP[k] = `. Then [PSV[k]..NSV[k] − 1] is an
lcp-interval of lcp-value `.

Proof We have

1. LCP[PSV[k]] < ` (by the definition of PSV[k]).

2. LCP[m] ≥ ` for all m with PSV[k] + 1 ≤ m ≤ NSV[k]− 1.

3. LCP[k] = ` (note that PSV[k] + 1 ≤ k ≤ NSV[k]− 1).

4. LCP[NSV[k]] < ` (by the definition of NSV[k]).

Consequently, [PSV[k]..NSV[k]− 1] is an `-interval. �

The following lemma explains how the parent interval parent([i..j]) of an
lcp-interval [i..j] 6= [1..n] can be determined with the help of the arrays LCP,
PSV, and NSV.

4.3 The lcp-interval tree 91

Lemma 4.3.9 Let [i..j] 6= [1..n] be an lcp-interval ([i..j] may be a singleton
interval) with LCP[i] = p and LCP[j + 1] = q.

• If p = q, then

– the parent interval of [i..j] is the lcp-interval [PSV[i]..NSV[i] − 1] =
[PSV[j + 1]..NSV[j + 1]− 1],

– the parent interval of [i..j] has lcp-value p = q,

– i and j + 1 are consecutive p-indices of the parent interval of [i..j].

• If p > q, then

– the parent interval of [i..j] is the lcp-interval [PSV[i]..j],

– the parent interval of [i..j] has lcp-value p,

– i is the last p-index of the parent interval of [i..j].

• If p < q, then

– the parent interval of [i..j] is the lcp-interval [i..NSV[j + 1]− 1].

– the parent interval of [i..j] has lcp-value q,

– j + 1 is the first q-index of the parent interval of [i..j].

Proof We proceed by case analysis.
Case p = q: According to Lemma 4.3.8, [PSV[i]..NSV[i] − 1] is an lcp-interval
of lcp-value p = q. Clearly, i and j+1 are p-indices of that interval because
LCP[i] = p and LCP[j + 1] = p. We claim that PSV[i] = PSV[j + 1] and NSV[i] =
NSV[j + 1]. This is certainly true if [i..j] is a singleton interval. If [i..j] is
an lcp-interval of lcp-value `, then LCP[m] ≥ ` for all m with i + 1 ≤ m ≤ j
and ` > p = q prove the claim. Let i1 < i2 < · · · < ik be the p-indices
of the p-interval [PSV[i]..NSV[i] − 1] in ascending order. Since i and j + 1
are two consecutive p-indices, it follows that i = ir and j + 1 = ir+1 for
some 1 ≤ r < k. By Lemma 4.3.5, [i..j] is a child interval of the p-interval
[PSV[i]..NSV[i]− 1].
Case p > q: Again, by Lemma 4.3.8, [PSV[i]..NSV[i] − 1] is an lcp-interval
of lcp-value p. Obviously, i is a p-index of that interval, but j + 1 is not.
Because q < p, we have NSV[i] = j + 1. Moreover, this implies that i is the
last p-index of the p-interval [PSV[i]..j]. According to Lemma 4.3.5, [i..j] is
the last child interval of [PSV[i]..j].
Case p < q: Similar to the previous case. �

As an example, consider Figure 4.15 and determine parent([6..6]). Since
p = LCP[6] = 2 > 0 = LCP[7] = q, the second case of Lemma 4.3.9 applies,
so that parent([6..6]) = [PSV[6]..6] = [5..6]. Furthermore, the lcp-interval [5..6]
has lcp-value 2, and 6 is the last (in fact, the only) 2-index of [5..6]. As
another example, we search for parent interval of [1..2]. In this case p =

92 4 Enhanced Suffix Arrays

LCP[1] = −1 < 1 = LCP[3] = q, so that parent([1..2]) = [1..NSV[2 + 1]− 1] = [1..6].
Furthermore, the parent interval of [1..2] has lcp-value 1 and 3 is its first
1-index.

Corollary 4.3.10 Let [i..j] 6= [1..n] be an lcp-interval ([i..j] may be a single-
ton interval). The parent interval of [i..j] has lcp-value max{LCP[i], LCP[j+1]}.

Proof This is a direct consequence of Lemma 4.3.9. �

We have seen that child intervals can be determined with RMQs, while
parent intervals can be determined with PSV and NSV values. As a matter of
fact, it is also possible to determine the LCA of two lcp-intervals by means
of RMQ, PSV, and NSV. However, this is left as an exercise for the reader be-
cause lowest common ancestors are not needed in the applications dealt
with in this book.

Exercise 4.3.11 Give an algorithm in pseudo-code that takes two lcp-
intervals [i..j] and [p..q] as input and returns their lowest common ancestor
in the lcp-interval tree.
Hint: If j < p, then their LCA is the lcp-interval [PSV[k]..NSV[k] − 1], where
k = RMQ(j + 1, p).

In this chapter, we merely use the arrays PSV and NSV in proofs but not
in algorithms. Nevertheless, we show here how to compute them in linear
time. In the pseudo-code of Algorithm 4.5, the elements on the stack
are pairs 〈idx, lcp〉, where lcp = LCP[idx]. The procedures push (pushes an
element onto the stack) and pop() (pops an element from the stack and
returns that element) are the usual stack operations, while top() provides
a pointer to the topmost element of the stack. Moreover, top().idx denotes
the first component of the topmost element of the stack, while top().lcp
denotes the second component.

Initially, Algorithm 4.5 pushes the pair 〈1,−1〉 consisting of the first in-
dex and its lcp-value onto the stack, and sets PSV[1] to ⊥ (so PSV[1] does
not exist). The following invariant is maintained in the for-loop of the al-
gorithm: for every element e on the stack, PSV[e.idx] is set correctly. In
the while-loop, the algorithm tests whether the lcp-value of the current
index k is strictly smaller than the lcp-value of the topmost element of
the stack. If this is the case, then the next smaller lcp-value of the top-
most element can be found at the current index k. Consequently, the
assignment NSV[pop().idx] ← k pops the topmost element from the stack
and sets the corresponding NSV-entry to k. After the while-loop, one has
LCP[k] ≥ top().lcp. If the lcp-value of the topmost element of the stack is
strictly smaller than that of the current index k, then the previous smaller
lcp-value of the current index k is the index of the topmost element. Hence

4.3 The lcp-interval tree 93

Algorithm 4.5 Construction of the PSV and NSV arrays.
push(〈1,−1〉) /* an element on the stack has the form 〈idx, lcp〉 */
PSV[1]← ⊥
for k ← 2 to n+ 1 do

while LCP[k] < top().lcp do
NSV[pop().idx]← k

if LCP[k] > top().lcp then
PSV[k]← top().idx

else
PSV[k]← PSV[top().idx]

push(〈k, LCP[k]〉)

the assignment PSV[k] ← top().idx does the job. Otherwise, the equal-
ity LCP[k] = top().lcp holds. In this case, the indices k and top().idx have
the same previous smaller lcp-value. By the loop-invariant, PSV[top().idx]
has been set correctly in a previous iteration of the for-loop. Therefore,
PSV[k] ← PSV[top().idx] assigns the correct value to PSV[k]. Finally, the pair
〈k, LCP[k]〉 is pushed onto the stack. Because PSV[k] was set correctly, the
loop-invariant also holds before the next execution of the for-loop.

4.3.2 Bottom-up traversal

In this section, we are going to describe a linear-time algorithm that tra-
verses the lcp-interval tree in a bottom-up fashion with the help of a stack.
We shall satisfy ourselves with the lcp-interval tree without singleton in-
tervals. However, it is not difficult to modify the algorithm so that it also
incorporates singleton intervals. To demonstrate the full capabilities of
the method, we first show that the lcp-interval tree can be constructed in
a bottom-up fashion. However, in applications we will not construct this
tree explicitly. As we shall see, it is possible to traverse this tree without
constructing it.

Pseudo-code for the bottom-up construction of the lcp-interval tree can
be found in Algorithm 4.6. The elements on the stack are lcp-intervals
represented by quadruples 〈lcp, lb, rb, childList〉, where lcp is the lcp-value
of the interval, lb is its left boundary, rb is its right boundary, and childList
is a list of its child intervals. Furthermore, add(list, c) appends the element
c to the list list and returns the result. Algorithm 4.6 traverses the lcp-
interval tree by scanning the LCP-array from left to right (or, in many
illustrations, from top to bottom). At each index k, the while-loop tests
whether lcp-intervals on the stack end with the right boundary k − 1, and
new lcp-intervals are detected in the penultimate if-statement.

94 4 Enhanced Suffix Arrays

Algorithm 4.6 Bottom-up traversal of the lcp-interval tree based on the
LCP-array.
lastInterval← ⊥
push(〈0, 1,⊥, []〉)
for k ← 2 to n+ 1 do
lb← k − 1
while LCP[k] < top().lcp do
top().rb← k − 1
lastInterval← pop()
process(lastInterval)
lb← lastInterval.lb
if LCP[k] ≤ top().lcp then
top().childList← add(top().childList, lastInterval)
lastInterval ← ⊥

if LCP[k] > top().lcp then
if lastInterval 6= ⊥ then
push(〈LCP[k], lb,⊥, [lastInterval]〉)
lastInterval ← ⊥

else push(〈LCP[k], lb,⊥, []〉)

As an example, consider the execution of Algorithm 4.6 applied to the
LCP-array of the string S = ctaataatg, shown in Figure 4.16. First, the 0-
interval [1..⊥] is pushed onto the stack. In the first iteration (k = 2) of the
for-loop, the next lcp-interval 3-[1..⊥] is detected because LCP[2] = 3 > 0 =
top().lcp. Consequently, it is pushed onto the stack; see Figure 4.17. In
the next iteration (k = 3) the while-loop detects the end of this 3-interval
because LCP[3] = 1 < 3 = LCP[2]. Thus, its right boundary rb = k − 1 = 2
is set, it is popped from the stack, and processed. Then, the if-statement
inside the while-loop tests by LCP[k] ≤ top().lcp whether this 3-interval is
a child of the lcp-interval 0-[1..⊥], which now lies on top of the stack.
If so, it would be added to the child list of the topmost interval. Since
LCP[3] = 1 � 0 = top().lcp, however, this is not the case. Thereafter, the
while-loop is left and the lcp-interval 1-[1..⊥] is detected and pushed onto
the stack. Because it is the parent interval of the “dangling” 3-interval,
its child list must contain the interval 3-[1..2]. The remaining part of the
LCP-array is processed analogously.

i 1 2 3 4 5 6 7 8 9 10
LCP[i] −1 3 1 2 0 0 0 4 1 −1

Figure 4.16: The LCP-array of the string S = ctaataatg; cf. Figure 4.13.

4.3 The lcp-interval tree 95

k contents of the stack
〈0, 1,⊥, []〉

2 〈3, 1,⊥, []〉
〈0, 1,⊥, []〉

3 〈1, 1,⊥, [〈3, 1, 2, []〉]〉
〈0, 1,⊥, []〉

4 〈2, 3,⊥, []〉
〈1, 1,⊥, [〈3, 1, 2, []〉]〉
〈0, 1,⊥, []〉

5 〈0, 1,⊥, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉]〉
6 〈0, 1,⊥, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉]〉
7 〈0, 1,⊥, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉]〉
8 〈4, 7,⊥, []〉
〈0, 1,⊥, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉]〉

9 〈1, 7,⊥, [〈4, 7, 8, []〉]〉
〈0, 1,⊥, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉]〉

10

Figure 4.17: Contents of the stack during the run of Algorithm 4.6.
〈0, 1, 9, [〈1, 1, 4, [〈3, 1, 2, []〉, 〈2, 3, 4, []〉]〉, 〈1, 7, 9, [〈4, 7, 8, []〉]〉]〉 is the
last interval that is processed (when k = 10). As a matter
of fact, it is the whole lcp-interval tree corresponding to the
LCP-array of Figure 4.16. The construction of the lcp-interval
tree can be avoided by implementing the procedure process
in Algorithm 4.6 accordingly: after process has processed
lastInterval (the parameter of the procedure), the child list
of lastInterval must be emptied of its contents by the assign-
ment lastInterval.childList← []; cf. Algorithm 4.7.

96 4 Enhanced Suffix Arrays

The correctness of Algorithm 4.6 is a direct consequence of Theorem
4.3.12.

Theorem 4.3.12 Consider the for-loop of Algorithm 4.6 for some index k.
Let top be the topmost interval on the stack and top−1 be the interval directly
beneath it (note that top−1.lcp < top.lcp). If LCP[k] < top.lcp, then before top
will be popped from the stack in the while-loop, the following holds:

1. If LCP[k] ≤ top−1.lcp, then top is the child interval of top−1.

2. If LCP[k] > top−1.lcp, then top is the first child interval of the lcp-interval
with lcp-value LCP[k] that contains k. To be precise, top is the first child
interval of [top.lb..NSV[k]− 1].

Proof (1) First, we show that top is embedded in top−1. The following
invariant is maintained in the for-loop of Algorithm 4.6: If 〈`1, lb1, rb1〉, . . . ,
〈`m, lbm, rbm〉 are the intervals on the stack, where top = 〈`m, lbm, rbm〉, then
lbi ≤ lbj and `i < `j for all 1 ≤ i < j ≤ m. Furthermore, because 〈`j, lbj, rbj〉
will be popped from the stack before 〈`i, lbi, rbi〉, it follows that rbj ≤ rbi.
Thus, the `j-interval [lbj..rbj] is embedded in the `i-interval [lbi..rbi]. In
particular, top is embedded in top−1.

If top was not the child interval of top−1, then there would be an lcp-
interval 〈lcp′, lb′, rb′〉 so that top is embedded in 〈lcp′, lb′, rb′〉 and 〈lcp′, lb′, rb′〉
is embedded in top−1. This, however, can only happen if 〈lcp′, lb′, rb′〉 is an
interval on the stack that is above top−1. This contradiction proves the
claim.
(2) We have LCP[top.lb] = top−1.lcp < LCP[k] < top.lcp and top.rb = k−1. By the
third case of Lemma 4.3.9, it follows that (a) the parent interval of top is
the lcp-interval [top.lb..NSV[k]−1], (b) the parent interval of top has lcp-value
` = LCP[k], and (c) k is the first `-index of the parent interval of top. Thus,
the lemma follows. �

In Algorithm 4.6, the lcp-interval tree is traversed in a bottom-up fash-
ion by a linear scan of the LCP-array, while storing information on a stack.
Whenever an `-interval is processed by the generic procedure process, only
its child intervals have to be known. These are determined solely from the
lcp-information, i.e., we do not need explicit parent-child pointers in our
framework. It should be stressed that the algorithm exhibits strong local-
ity of reference because of the sequential access to the LCP-array.

It is possible to solve several problems merely by specifying the proce-
dure process in Algorithm 4.6; an example is given below. Other applica-
tions may require slight modifications of the algorithm; see Chapter 5.

Let us address the problem of finding all substrings of S having at least
p and at most q occurrences in S, where 1 ≤ p ≤ q. The goal is to give
a linear-time algorithm that solves the problem. However, if p = 1 and

4.3 The lcp-interval tree 97

Algorithm 4.7 To find all substrings of S having at least p and at most
q occurrences in S, where 2 ≤ p ≤ q, plug this implementation of the
procedure process in Algorithm 4.6.
process(lastInterval)

for each 〈`, i, j, []〉 in lastInterval.childList do
if p ≤ (j − i+ 1) and (j − i+ 1) ≤ q then

output (lastInterval.lcp, `, [i..j])
lastInterval.childList← [] /* empty childList */

q = n, then the algorithm must output all substrings of S, and there are
O(n2) substrings of S. In other words, a linear-time algorithm is impossi-
ble if every substring is output explicitly. For this reason, the algorithm
must use an implicit representation of the output. Here, we will give a
solution for the case p ≥ 2. Exercise 4.3.15 asks you to solve the prob-
lem for the case p = 1. As in Algorithm 4.6, the lcp-interval tree of S is
traversed in a bottom-up fashion. Suppose that the lcp-interval m-[lb..rb]
is going to be processed by the procedure process. At this point, all its
child intervals are known. Let `-[i..j] be one of those. Let the lcp-intervals
m-[lb..rb] and `-[i..j] represent the strings u and ω, respectively; see Defi-
nition 4.3.1. Clearly, ω = uv for some string v of length ` − m. The key
observation is that every substring uv′, where v′ is a non-empty prefix of v,
occurs exactly (j− i+1) times in S. Thus, procedure process tests whether
p ≤ (j − i + 1) ≤ q is true. If so, it outputs (m + 1, `, [i..j]); meaning that
every prefix of ω = S[SA[i]..SA[i] + ` − 1] having a length in between m + 1
and ` occurs at least p times and at most q times in S, namely at the
positions SA[i], . . . , SA[j]. Algorithm 4.7 implements this approach. Note
that its last assignment lastInterval.childList ← [] empties the childList
of lastInterval. This ensures that the lcp-interval tree is not constructed
during the bottom-up traversal.

Exercise 4.3.13 Show that Algorithm 4.6 takes only linear time and
space.

Exercise 4.3.14 Modify Algorithm 4.6 so that it also incorporates single-
ton intervals.

Exercise 4.3.15 Give a linear-time solution to the problem of finding all
substrings of S having at most q ≥ 1 occurrences in S.

Exercise 4.3.16 A string ω is called a prefix tandem repeat of string S if
ω is a prefix of S and has the form uu for some string u. Give a linear-time
algorithm to find the longest prefix tandem repeat of S.

98 4 Enhanced Suffix Arrays

Algorithm 4.8 BuildTopDown([i..j]) recursively constructs the subtree of
the lcp-interval tree rooted at the lcp-interval [i..j], using the LCP-array
and RMQs thereon.

if i = j then return 〈⊥, i, i, []〉 /* singleton interval */
childList← []
k ← i
m← RMQ(i+ 1, j) /* first `-index of [i..j] */
`← LCP[m]
repeat
subtree← BuildTopDown([k..m− 1])
add(childList, subtree)
k ← m
if k = j then

break
else
m← RMQ(k + 1, j)

until LCP[m] 6= `
subtree← BuildTopDown([k..j])
add(childList, subtree)
return 〈`, i, j, childList〉

4.3.3 Top-down traversal

According to Lemma 4.3.5, determining the child intervals of an `-interval
[i..j] boils down to finding the `-indices of [i..j] in ascending order. With
range minimum queries (see Chapter 3) on the LCP-array this is easy:
RMQ(i + 1, j) yields the first `-index i1, RMQ(i1 + 1, j) yields the second `-
index i2, etc.

We use this to construct the lcp-interval tree from the LCP-array in a
top-down fashion. The pseudo-code of the procedure BuildTopDown can
be found in Algorithm 4.8; it takes an lcp-interval [i..j] as input and
returns the subtree of the lcp-interval tree rooted at node [i..j]. Hence
BuildTopDown([1..n]) yields the desired lcp-interval tree. As in Algorithm
4.6, nodes (i.e., lcp-intervals) in the lcp-interval tree are represented by
quadruples 〈lcp, lb, rb, childList〉, where lcp is the lcp-value of the interval
(this value is ⊥ in singleton intervals), lb is its left boundary, rb is its right
boundary, and childList is the list of its child intervals.

Let us have a closer look at Algorithm 4.8. The first line contains the
base case of the recursion: If i = j, then [i..j] is a singleton interval,
and the lcp-interval tree rooted at node [i..j] consists solely of the node
〈⊥, i, i, []〉. Otherwise, i < j and the lcp-interval [i..j] is not a singleton
interval. Its child list is initialized to the empty list and k is set to the left
boundary of the lcp-interval [i..j]. Furthermore, m is set to the first lcp-

4.3 The lcp-interval tree 99

index of the lcp-interval [i..j] (note that every lcp-interval has at least one
lcp-index and this can be obtained by the range minimum query RMQ(i+
1, j)) and ` is set to the lcp-value of [i..j]. When the repeat-until-loop is
entered, the interval [k..m − 1] is the first child interval of [i..j] by Lemma
4.3.5. Consequently, BuildTopDown is called recursively with this child
interval and it returns the subtree of the lcp-interval tree rooted at node
[k..m − 1]. This subtree is added to the child list. Thereafter, the current
`-index is stored in variable k. The loop will be executed as long as k < j
and LCP[RMQ(k + 1, j)] = `, i.e., it will be executed as long as [k..j] is not
a singleton interval and there is another `-index of the lcp-interval [i..j],
namely the index m = RMQ(k + 1, j). In this case, BuildTopDown is called
recursively with the child interval [k..m−1] (cf. Lemma 4.3.5), the returned
subtree is added to the child list, and k is set to the current `-index m.

After the loop is done, there are two possibilities.

• k = j: In this case, the recursive call BuildTopDown([k..j]) yields the
subtree consisting of one node, viz. the singleton interval [k..j], and
this subtree is added to the child list.

• k < j and LCP[RMQ(k+1, j)] 6= `: In this case, k is the last `-index of the
lcp-interval [i..j] and, by Lemma 4.3.5, [k..j] is the last child interval
of the lcp-interval [i..j]. Thus, BuildTopDown is called recursively with
this child interval and the returned subtree is added to the child list.

Finally, Algorithm 4.8 returns the lcp-interval tree rooted at the lcp-
interval [i..j] in form of the quadruple 〈`, i, j, childList〉.

Exercise 4.3.17 Show that Algorithm 4.8 takes only linear time and
space. Modify the algorithm so that

• it returns the lcp-interval tree rooted at node [i..j] without singleton
intervals,

• it returns the list of all child intervals of [i..j] instead of the lcp-
interval tree rooted at node [i..j].

We stress that in applications it is not necessary to actually construct
the lcp-interval tree of a string. Slight modifications to Algorithm 4.8
suffice to obtain algorithms that traverse the lcp-interval tree in a top-
down fashion without constructing it. Below, we provide two applications.
The first one uses a depth-first traversal (similar to Algorithm 4.8), while
the second one uses a breadth-first traversal of the lcp-interval tree.

In our first application, for each non-singleton lcp-interval `-[i..j] we
wish to compute a value val([i..j]) defined as follows: For a non-empty
string ω, let occω(S) denote the number of occurrences of ω in S. Let u

100 4 Enhanced Suffix Arrays

i SA LCP SSA[i] VAL

1 3 −1 aaacatat
2 4 2 aacatat 8
3 1 1 acaaacatat 6
4 5 3 acatat 10
5 9 1 at 6
6 7 2 atat 8
7 2 0 caaacatat 0
8 6 2 catat 4
9 10 0 t 0
10 8 1 tat 2
11 −1

Figure 4.18: The enhanced suffix array of S = acaaacatat with VAL array.

be the string that is represented by the lcp-interval `-[i..j] (i.e., u is the
longest common prefix of the suffixes SSA[i], SSA[i+1], . . . , SSA[j]), and define

val([i..j]) =
∑
ω<u

occω(S)

where ω < u means that ω is a non-empty prefix of u. In words, val([i..j])
is the number of all occurrences of all non-empty prefixes of u in S. In
Section 5.7.2, the importance of these values will become clear. As an
example, consider the lcp-interval 3-[3..4] in Figure 4.18. This lcp-interval
represents the string u = aca. The prefixes a, ac, and aca of u have 6, 2,
and 2 occurrences in S. Hence val([3..4]) = 10.

Our algorithm is based on the following lemma.

Lemma 4.3.18 Let q-[lb..rb] be a child interval of the lcp-interval `-[i..j].
Then

val([lb..rb]) = val([i..j]) + (rb− lb+ 1) (q − `).

Proof Let u be the string that is represented by [i..j]. This implies that
[lb..rb] represents a string uv, where v 6= ε. Let ω be a substring of S so that
ω < uv but ω 6< u. The key observation is that the ω-interval coincides with
the uv-interval. In other words, ω occurs as often in S as uv does, namely

4.3 The lcp-interval tree 101

(rb− lb+ 1) times. Thus,

val([lb..rb]) =
∑
ω<uv

occω(S)

=
∑
ω<u

occω(S) +
∑

ω<uv,ω 6<u

occω(S)

= val([i..j]) +
∑

ω<uv,ω 6<u

(rb− lb+ 1)

= val([i..j]) + (rb− lb+ 1)
∑

ω<uv,ω 6<u

1

= val([i..j]) + (rb− lb+ 1) (q − `)

�

Again, consider the lcp-interval 3-[3..4] and its parent interval 1-[1..6];
see Figure 4.18. We have val([1..6]) = 6 because a occurs six times in S.
According to the previous lemma,

val([3..4]) = val([1..6]) + (4− 3 + 1) (3− 1) = 6 + 2 · 2 = 10

To have constant-time access to the values, we store them in an additional
array VAL. For an lcp-interval `-[i..j], the value val([i..j]) can be stored at
several locations. Among the options are

1. the first `-index of [i..j],

2. all `-indices of [i..j],

3. the home index of [i..j], defined by

home([i..j]) =

{
i if LCP[i] ≥ LCP[j + 1]
j otherwise

In what follows, we will use the second possibility; see Figure 4.18 for
an example. The uniqueness of the alternative location home([i..j]) is due
to Strothmann [302]; cf. Exercise 4.3.19.

The procedure ValTopDown(`-[i..j], idx, val) of Algorithm 4.9 takes an lcp-
interval [i..j] of lcp-value `, its first `-index idx, and val = val([i..j]) as input
and recursively computes the VAL array of the lcp-interval tree rooted at
[i..j]. The lcp-value ` and the first lcp-index idx of the lcp-interval [i..j] are
supplied as parameters to the procedure because this avoids superfluous
recomputations of these values. In order to get the whole VAL array, the
procedure is called with the root interval 0-[1..n], its first 0-index RMQ(2, n)
and val = 0. In Algorithm 4.9, the value val([lb..rb]) of a child interval
q-[lb..rb] of `-[i..j] is computed by a generic function computeValue. Here,

102 4 Enhanced Suffix Arrays

Algorithm 4.9 ValTopDown(`-[i..j], idx, val) recursively computes the VAL
array of the lcp-interval tree rooted at the lcp-interval `-[i..j], where idx is
the first `-index of [i..j] and val = val([i..j]). It uses the LCP-array and RMQs
thereon.
k ← i /* k stores the left boundary of the current child interval */
m← idx /* m stores the current `-index */
repeat
VAL[m]← val
if k 6= m− 1 then /* [k..m− 1] is a non-singleton child of [i..j] */

childIdx ← RMQ(k + 1,m− 1) /* first lcp-index of [k..m− 1] */
q ← LCP[childIdx] /* q is the lcp-value of [k..m− 1] */
childVal ← computeValue(`, val, q, k,m− 1)
ValTopDown(q-[k..m− 1], childIdx , childVal)

k ← m /* k is left boundary of the next child interval */
if k = j then

return /* there is no more non-singleton child interval */
else
m← RMQ(k + 1, j) /* m is the next `-index unless LCP[m] 6= ` */

until LCP[m] 6= `
/* [k..j] is the last non-singleton child interval of [i..j] */
/* and m is the first lcp-index of [k..j] */
q ← LCP[m] /* q is the lcp-value of [k..j] */
childVal ← computeValue(`, val, q, k, j)
ValTopDown(q-[k..j],m, childVal)

4.3 The lcp-interval tree 103

computeValue(`, val, q, lb, rb) = val + (rb− lb + 1) (q − `) by Lemma 4.3.18. We
shall see in Exercise 4.3.20 and in Section 5.7.2 that it is sufficient to
modify computeValue to solve related problems.

We will briefly explain Algorithm 4.9. As we have seen in Lemma 4.3.5,
the child intervals of [i..j] are [i..i1 − 1], [i1..i2 − 1], . . . , [ik..j], where i1 <
i2 < · · · < ik are the `-indices of [i..j]. In Algorithm 4.9, the variables k
and m store the left boundary of the current child interval and the cur-
rent `-index, respectively. Initially, k is set to the left boundary of the
interval [i..j] and m is set to the first `-index idx of [i..j]. Hence the first
child interval is [k..m − 1]. The body of the repeat-until-loop stores val
in the VAL array at the current `-index m and then deals with the cur-
rent child interval [k..m − 1] provided it is a non-singleton. In this case,
the first lcp-index childIdx of [k..m − 1] is determined by the range min-
imum query RMQ(k + 1,m − 1). Therefore, q = LCP[childIdx] is the lcp-
value of [k..m − 1]. According to Lemma 4.3.18, childVal = val([k..m − 1])
is computed by computeValue(`, val, q, lb, rb) = val + (rb − lb + 1) (q − `). The
computation proceeds recursively with the procedure call ValTopDown(q-
[k..m − 1], childIdx , childVal). Subsequently, k becomes the left boundary of
the next child interval, which is m, and the next `-index of [i..j] must be
determined. If k = j, then certainly there is no more `-index and the last
child interval of [i..j] is the singleton interval [j..j]. In this case, the repeat-
until-loop is left and the procedure terminates. Otherwise, m is set to
RMQ(k + 1, j). Now there are two possibilities: Either LCP[m] = `, in which
case m is the next `-index of [i..j], or LCP[m] 6= `, in which case [k..j] is
the last (non-singleton) child interval of [i..j] and m is the first lcp-index
of [k..j]. In the first case, the loop is repeated, i.e., the next iteration of
the loop sets VAL[m] to val and deals with the next child interval [k..m− 1].
In the second case, Algorithm 4.9 deals with the last child interval [k..j]
of [i..j] as with the previous child intervals. Figure 4.18 depicts the VAL
array of our example.

Exercise 4.3.19 For an lcp-interval [i..j], define

home([i..j]) =

{
i if LCP[i] ≥ LCP[j + 1]
j otherwise

to be the home index of [i..j]. Prove that for any two lcp-intervals [i..j] and
[p..q], the equality home([i..j]) = home([p..q]) implies [i..j] = [p..q].

Exercise 4.3.20 Modify Lemma 4.3.18 and the function computeValue in
such a way that Algorithm 4.9 computes

val([lb..rb]) =
∑
ω<uv

|ω| · occω(S)

where uv is the string represented by the lcp-interval [lb..rb].

104 4 Enhanced Suffix Arrays

As a second application of the top-down traversal, we will briefly de-
scribe how to find all shortest unique substrings. This is relevant in the
design of primers for DNA sequences; for details see Section 5.6.5.

Definition 4.3.21 A substring S[i..j] of S is unique if it occurs exactly
once in S. The shortest unique substring problem is to find all shortest
unique substrings of S.

For example, ca is the shortest unique substring of acac. If S consists
solely of a’s, i.e., S = an, then the shortest unique substring is S itself. In
the following, we assume that S contains at least two different characters.

It is readily verified that a substring u of S is unique if and only if it
is prefix of exactly one suffix of S, say of SSA[k]. In terms of lcp-intervals,
this can be rephrased as: u is unique if and only if there is exactly one
suffix SSA[k] so that u is prefix of SSA[k] but not of S[SA[k]..SA[k]+ `−1], where
`-[i..j] is the parent interval of the singleton interval [k..k]. Moreover, the
length of all the shortest unique substrings of S is m + 1, where m is
the smallest lcp-value of all lcp-intervals having a singleton child interval.
Using this observation, the shortest unique substring problem can be
solved by a breadth-first traversal of the lcp-interval tree, using a queue.
Initially, the queue contains only the root interval 0-[1..n]. During the
traversal, more lcp-intervals may be added to the queue. Besides the
queue, the algorithm maintains a set M that contains all the shortest
unique substrings detected so far (represented by their start position in
S) and a variable min that stores their length. Initially, M is empty and
min =∞.

Suppose that `-[i..j] is removed from the front of the queue, i.e., it is the
lcp-interval that is processed next during the breadth-first traversal. The
algorithm computes all its child intervals. If a singleton child interval [k..k]
of [i..j] is detected, then the length `+1 prefix of SSA[k] is a unique substring
of S. Thus, if M is empty or min > ` + 1, then M is set to {SA[k]} and min
is set to `+ 1. If M is not empty and min = `+ 1, then SA[k] is added to M .
Otherwise, M and min remain unchanged. If `-[i..j] has no singleton child
interval, then every child interval q-[lb..rb] of `-[i..j] satisfying q + 1 ≤ min
is added to the back of the queue. Then, the algorithm proceeds with
the next lcp-interval at the front of the queue, as described above, until
the queue is empty. Finally, the algorithm outputs min and M . It is not
difficult to see that the algorithm takes time proportional to the number
of processed lcp-intervals. In the worst case, this is O(n). However, in
practice only a small number of lcp-intervals is processed.

Exercise 4.3.22 Given a string S on an alphabet Σ, a string ω ∈ Σ+ is
called an absent word if it is not a substring of S. Develop an algorithm
that takes a string S as input, and outputs all shortest absent words
(suppose that the alphabet Σ consists of the characters appearing in S).

4.3 The lcp-interval tree 105

4.3.4 Finding child intervals without RMQs

In the top-down traversal of the lcp-interval tree we actually do not need
constant-time range minimum queries. To see this, we first introduce
Super-Cartesian trees, a slight variation of canonical Cartesian trees. We
advise the reader to consult Section 3.2, where the definition and con-
struction of canonical Cartesian trees is explained in detail.

Definition 4.3.23 Let A[l..r] be an array of integers.6 The Super-Cartesian
tree Csup(A[l..r]) of A[l..r] is recursively constructed as follows:

• If l > r, then Csup(A[l..r]) is the empty tree.

• If l ≤ r, then the minima of A[l..r] appear at positions p1 < p2 < · · · < pk
for some k ≥ 1. In this case, create k nodes v1, v2, . . . , vk and label
each vj with pj. Node v1 is the root of Csup(A[l..r]). For each j with
1 < j ≤ k, the node vj is the right sibling of node vj−1 (in illustrations
like Figure 4.20, node vj−1 is connected with vj by a horizontal edge).
Recursively construct C1 = Csup(A[l..p1−1]), C2 = Csup(A[p1+1..p2−1]), . . . ,
Ck+1 = Csup(A[pk + 1..r]). For each j with 1 ≤ j < k, the left child of vj is
the root of Cj. The left and right children of vk are the roots of Ck and
Ck+1, respectively.

We would like to emphasize that a node in a Super-Cartesian tree has
either a right sibling or a right child but not both.

As an example, consider the LCP-array of the string S = acaaacatat in
Figure 4.19. The minima of the array LCP[1..11] occur at positions p1 = 1
and p2 = 11. According to Definition 4.3.23, we must create two nodes
v1 and v2 so that v2 is the right sibling of v1. Furthermore, one must
construct C1 = Csup(LCP[1..0]), C2 = Csup(LCP[2..10]), and C3 = Csup(LCP[12..11])
recursively. Because C1 and C3 are empty, it remains to construct C2, the
Super-Cartesian tree of LCP[2..10]. By Definition 4.3.23, C2 becomes the
left child of node v2. Its construction is left to the reader (note that the
minima of the array LCP[2..10] occur at positions 7 and 9). The Super-
Cartesian tree of the whole LCP-array is depicted in Figure 4.20.

Similar to the canonical Cartesian tree, the Super-Cartesian tree Csup(A)
of an array A can be build incrementally, i.e., for every i with 1 ≤ i ≤ n− 1,
we build Csup(A[1..i + 1]) from Csup(A[1..i]). The linear-time construction
works by climbing up the rightmost path in Csup(A[1..i]). For the conve-
nience of the reader, we describe the construction algorithm in full detail.
However, we do not illustrate the algorithm with examples. For a better
understanding, readers may wish to consult Section 3.2, where the incre-
mental construction of a canonical Cartesian tree is explained in detail.

6The array elements are integers, i.e., elements of the totally ordered set Z. However,
one can use any other totally ordered set instead of the integers.

106 4 Enhanced Suffix Arrays

CLD
i SA LCP L R SSA[i]

1 3 −1 11 aaacatat
2 4 2 aacatat
3 1 1 2 5 acaaacatat
4 5 3 acatat
5 9 1 4 6 at
6 7 2 atat
7 2 0 3 9 caaacatat
8 6 2 catat
9 10 0 8 10 t
10 8 1 tat
11 −1 7

Figure 4.19: The enhanced suffix array of the string S = acaaacatat.

1 2 3 4 5 6 7 8 9 10 11

4

3

2

5

6

7 9

8 10

1 11

Figure 4.20: The Super-Cartesian tree of the LCP-array from Figure 4.19.

4.3 The lcp-interval tree 107

Definition 4.3.24 The rightmost path in a Super-Cartesian tree is ob-
tained by starting at the root of the tree and following right sibling/right
child pointers. The path ends at the first node that has no right sib-
ling/right child.

Initially, the Super-Cartesian tree of A[1..1] consists just of a root la-
beled with position 1. Let v1, . . . , vk be the nodes on the rightmost path in
Csup(A[1..i]) and let p1, . . . , pk be their labels. It follows from the definition
of the Super-Cartesian tree that the node with label i + 1 must be at the
end of the rightmost path in Csup(A[1..i + 1]). Therefore, we climb up the
rightmost path in Csup(A[1..i]) until we find the position where i + 1 be-
longs. More precisely, starting with m = k, we decrease m by 1 as long as
A[pm] > A[i+ 1] holds. Then we proceed by case analysis.

1. If m = k, i.e., A[pk] ≤ A[i+ 1], then:

• If A[pk] = A[i+ 1], then a new node w with label i+ 1 becomes the
right sibling of vk.

• If A[pk] < A[i+ 1], then a new node w with label i+ 1 becomes the
right child of vk.

2. If m = 0, i.e., A[p1] > A[i + 1], then a new node w with label i + 1
becomes the root of the tree and Csup(A[1..i]) becomes its left child.

3. If 1 ≤ m ≤ k − 1, then m is the index so that A[pm] ≤ A[i + 1] and
A[pm′] > A[i+ 1] for all m < m′ ≤ k.

• If A[pm] = A[i+1], then a new node w with label i+1 becomes the
right sibling of vm and vm+1 becomes the left child of w.

• If A[pm] < A[i+1], then a new node w with label i+1 becomes the
right child of vm and vm+1 becomes the left child of w.

The worst-case time complexity of the algorithm is obtained by the fol-
lowing amortized analysis. In each step exactly one node (the new node
with label i + 1) is added to the rightmost path. Clearly, this implies that
each node can leave the rightmost path only once. Moreover, whenever
the value of the variable m is decreased, a node (the node vm) leaves the
rightmost path. Thus, the overall construction time of Csup(A) is O(n).

To enable a top-down traversal of the lcp-interval tree without range
minimum queries, we store the Super-Cartesian tree in an additional ta-
ble CLD, which we call child table because it can be used to determine
child intervals in constant time. For didactic purposes, we will first store
the child table CLD in two arrays CLD.L and CLD.R. We shall see in a
moment, however, that one array suffices. By definition, a node in a
Super-Cartesian tree has either a right sibling or a right child but not
both. Therefore, for each node i, we store its left child in CLD[i].L and its

108 4 Enhanced Suffix Arrays

right sibling/right child in CLD[i].R. For example, the child table CLD of
the string S = acaaacatat is depicted in Figure 4.19.

According to Lemma 4.3.5, finding all child intervals of an lcp-interval
`-[i..j] boils down to finding all `-indices of that interval. The following
theorem shows where the first `-index of an lcp-interval `-[i..j] can be
found in the child table.

Theorem 4.3.25 For every lcp-interval `-[i..j] the following holds.

1. If LCP[i] ≤ LCP[j + 1], then CLD[j + 1].L stores the first `-index of the
lcp-interval [i..j].

2. If LCP[i] > LCP[j + 1], then CLD[i].R stores the first `-index of the lcp-
interval [i..j].

Proof (1a) If LCP[i] = p = LCP[j + 1], then according to Lemma 4.3.9 the
parent interval of [i..j] is the p-interval [PSV[i]..NSV[i]− 1], and i and j +1 are
consecutive p-indices of that interval. This implies that j + 1 is the right
sibling of i in the Super-Cartesian tree of the LCP-array (hence CLD[i].R =
j + 1). By definition, the left child of node j + 1 is the root of the Super-
Cartesian tree of the array LCP[i + 1..j]. This root node (or equivalently
CLD[j+1].L) contains the first index of the minimum element in LCP[i+1..j].
Hence it contains the first `-index of [i..j].
(1b) If LCP[i] = p < q = LCP[j+1], then Lemma 4.3.9 implies that the parent
interval of [i..j] is the q-interval [i..NSV[j+1]−1], and j+1 is the first q-index
of that interval. By definition, the left child of node j + 1 is the root of
the Super-Cartesian tree of LCP[i + 1..j]. This root node (or equivalently
CLD[j+1].L) contains the first index of the minimum element in LCP[i+1..j],
i.e., the first `-index of [i..j].
(2) If LCP[i] = p > q = LCP[j + 1], then by Lemma 4.3.9 the parent interval
of [i..j] is the p-interval [PSV[i]..j] and i is the last p-index of that interval.
This implies that i has no right sibling in the Super-Cartesian tree of the
LCP-array, and CLD[i].R stores the right child of node i. According to the
definition of the Super-Cartesian tree of the LCP-array, this right child of
node i is the root of the Super-Cartesian tree of the array LCP[i + 1..j],
and this root node contains the first index of the minimum element in
LCP[i+ 1..j]. Thus, it contains the first `-index of [i..j]. �

Now we have all the ingredients to realize a top-down traversal of the
lcp-interval tree without range minimum queries. Theorem 4.3.25 tells
us where the first `-index, say i1, of [i..j] can be found. Using the child
table, we find the second `-index i2 by i2 = CLD[i1].R, the third `-index i3
by i3 = CLD[i2].R, and so on. The index ik is the last `-index if LCP[ik+1] 6=
`. With this knowledge, the child intervals of `-[i..j] can be determined
straightforwardly according to Lemma 4.3.5. Algorithm 4.10 implements

4.3 The lcp-interval tree 109

Algorithm 4.10 Procedure getChildIntervals([i..j]) returns the list of all
child intervals of the lcp-interval [i..j]. It is based on the LCP-array and
the child table CLD.
list = []
k ← i
if LCP[i] ≤ LCP[j + 1] then
m← CLD[j + 1].L

else m← CLD[i].R
`← LCP[m]
repeat
add(list, [k..m− 1])
k ← m
m← CLD[m].R

until m = ⊥ or LCP[m] 6= `
add(list, [k..j])
return list

this approach. The procedure getChildIntervals applied to an lcp-interval
[i..j] returns the list of all child intervals of [i..j].

Of course, the Super-Cartesian tree is only conceptual, i.e., we can
construct the child table without it; see Algorithm 4.11.

Exercise 4.3.26 Apply Algorithm 4.11 to the example from Figure 4.19
and explain how it works.

Algorithm 4.11 Construction of the child table, based on the LCP-array.
CLD[1].R← n+ 1
push(〈1,−1〉) /* an element on the stack has the form 〈idx, lcp〉 */
for k ← 2 to n+ 1 do

while LCP[k] < top().lcp do
last← pop()
while top().lcp = last.lcp do
CLD[top().idx].R← last.idx
last← pop()

if LCP[k] < top().lcp then
CLD[top().idx].R← last.idx

else CLD[k].L← last.idx
push(〈k, LCP[k]〉)

To reduce the space requirement of the child table, only one array is
used in practice. As a matter of fact, the memory cells of CLD[i].R that

110 4 Enhanced Suffix Arrays

are unused can store the values of the CLD.L array. To see this, note that
CLD[i + 1].L 6= ⊥ if and only if LCP[i] > LCP[i + 1]. In this case, however,
we have CLD[i].R = ⊥. In other words, CLD[i].R is empty and can store the
value CLD[i + 1].L; see Figure 4.19. Finally, for a given index i, one can
decide whether CLD[i].R contains the value CLD[i+ 1].L by testing whether
LCP[i] > LCP[i+ 1]. To sum up, although the child table conceptually uses
two arrays, only space for one array is actually required.

4.4 Suffix trees

Suffix trees were born long before suffix arrays entered the world. For
constant-size alphabets, Weiner [330] devised the first linear-time suffix
tree construction algorithm, and a few years later McCreight [218] gave a
more space efficient algorithm to build suffix trees in linear time. These
papers have a reputation for being notoriously complicated. Later Ukko-
nen [315] developed an on-line algorithm that processes the input text
incrementally from left to right, and at each stage it has a suffix tree for
the part of the text that has been processed so far. Although Ukkonen’s
algorithm allows a much simpler explanation, many students still have
difficulties in fully understanding it. Giegerich and Kurtz [123] showed
that the three algorithms are in fact more closely related than one would
expect at first sight. For integer alphabets, Farach-Colton [93,94] devel-
oped a (complex) divide and conquer suffix tree construction algorithm.
This linear-time algorithm provided the basis of the linear-time SACA of
Kim et al. [180], and it most likely also inspired the work of Kärkkäinen &
Sanders [175] and Ko & Aluru [184].

Once constructed, the suffix tree can be used to efficiently solve a “myr-
iad” of string processing problems [15], and Gusfield devotes about 70
pages of his book [139] to applications of suffix trees. It is no exaggera-
tion to say that the suffix tree is one of the most important data structures
in string processing.

While suffix trees play a prominent role in algorithmics, they are not
as widespread in actual implementations of software tools as one would
expect. There are two major reasons for this:

(i) Although being asymptotically linear, the space consumption of typ-
ical implementations of suffix trees is quite large; see e.g. [193].

(ii) In most applications, the suffix tree suffers from poor locality of
memory reference, which causes a significant loss of efficiency on
cached processor architectures.

As we shall see, the suffix tree of a string S coincides with the lcp-
interval tree of S. The main difference is that the lcp-interval tree is

4.4 Suffix trees 111

10

$

3

aatg$

6

g$

4

aatg$

7

g$

1

c..$

9

g$

2

aatg$

5

g$

8

g$

a
t

aatat t

Figure 4.21: The suffix tree for S$ = ctaataatg$.

only conceptual (i.e., it is not really built) but it allows us to simulate
all manner of suffix tree traversals very efficiently. Moreover, algorithms
on lcp-interval trees are easier to implement because they are based on
arrays and not on real tree structures. On the other hand, in some appli-
cations several arrays are required and thus the memory requirement for
large strings (like genomes) is also high. Space issues will be discussed in
Chapter 6.

Definition 4.4.1 Let S be a string of length n. A suffix tree for S$ is a
rooted tree ST with the following properties:

(1) ST has exactly n+ 1 leaves numbered 1 to n+ 1.

(2) Each internal node of ST is branching, i.e., it has at least two chil-
dren.

(3) Each edge of ST is labeled with a non-empty substring of S$.

(4) For each node α in ST and each a ∈ Σ, there is only one a-edge α av β
for some string v and some node β in ST. In other words, no two
edges out of a node can have edge labels beginning with the same
character.

(5) The key feature of ST is that for any leaf i, the concatenation of the
edge labels on the path from the root to leaf i exactly spells out the
string S[i..n]$, the i-th suffix of the string S$.

Figure 4.21 shows the suffix tree for S$ = ctaataatg$.
The reader might wonder why we append the sentinel character $ to S.

If we did not do so, and a suffix s of S is a proper prefix of another suffix

112 4 Enhanced Suffix Arrays

of S, then s would be represented by an internal node and not by a leaf.
By contrast, because the sentinel character does not occur in S, no suffix
s of S$ can be a proper prefix of another suffix of S$. Hence every suffix
of S$ is represented by a leaf.

Let L(α) denote the concatenation of the edge labels on the path from
the root of ST to node α. Because of the property (4), node α can be
uniquely identified with L(α). Therefore, we denote α by w if and only if
L(α) = w (the root node is denoted by ε). A string w occurs in ST if ST
contains a node wu for some (possibly empty) string u. In other words, w
occurs in ST if it can be extended by some (possibly empty) string u so
that wu is a node in ST.

How much space does a suffix tree occupy? If S is a string of length
n, then the suffix tree of S$ has n + 1 leaves. Because each internal
node of a suffix tree is branching, there cannot be more than n internal
nodes. Clearly, the number of edges is one less than the number of nodes.
Consequently, there are at most 2n edges because there are at most 2n+1
nodes in the suffix tree. Since the nodes are not labeled, we can surely
represent each node in constant space. If we would represent edge labels
explicitly, then the space consumption of the suffix tree would be Ω(n2).
By contrast, if we represent the label S[i..j] of an edge by the pair of indices
(i, j), then each edge can also be stored in constant space. In this case,
the space requirement of the suffix tree is O(n).

Two sides of the same coin

Next, we briefly show that the suffix tree of a string S$ is equivalent to the
lcp-interval tree of S.

Consider an internal node u in ST. By the definition of the suffix tree,
the longest common prefix of all the suffixes represented by the leaves in
the subtree rooted at u is u. Let i and j be the leftmost and rightmost leaf,
respectively, in the subtree rooted at node u. The suffixes represented by
the leaves in this subtree can be found in the interval [ISA[i]..ISA[j]] of the
suffix array of S. The smallest value in the interval [ISA[i] + 1..ISA[j]] of
the LCP-array is |u|. Furthermore, LCP[ISA[i]] < |u| and LCP[ISA[j] + 1] < |u|.
Thus, [ISA[i]..ISA[j]] is an lcp-interval of lcp-value |u|. Moreover, a leaf in ST
with number i 6= n + 1 corresponds to the singleton interval [ISA[i]..ISA[i]].
(The leaf with number n+1 represents the suffix $ of S$; this suffix is not
represented in the lcp-interval tree of S.)

As an example, consider the node a in the suffix tree of S$ = ctaataatg$
in Figure 4.21 and the enhanced suffix array of S = ctaataatg in Figure
4.13 (page 86). The leaves in the subtree rooted at a can be found in
the interval [ISA[3]..ISA[7]] = [1..4] of the enhanced suffix array of S. The
smallest value in the interval [2..4] of the LCP-array is 1, which equals |a|.
Therefore, [1..4] is an lcp-interval of lcp-value 1; cf. Figure 4.14 (page 88).

4.4 Suffix trees 113

Conversely, it is not difficult to show that an lcp-interval tree of string
S corresponds to the suffix tree of S$.

4.4.1 Linear-time construction

It is also possible to directly construct the suffix tree of a string S$ in
linear time from the enhanced suffix array of S without making use of the
lcp-interval tree. Crochemore and Rytter [72, Thm. 7.5] sketched a simple
algorithm for this task, inspired by the work of Farach-Colton [93,94]; see
also [13]. In fact, their algorithm is very similar to the algorithm that
incrementally builds the Cartesian tree of an array; see Section 3.2.

Here, we assume that S is not terminated by the sentinel character
$. If S is of length n, then its suffix array SA has size n, whereas the
suffix tree of S$ has n+1 leaves. The algorithm creates intermediate trees
T0, T1, . . . , Tn so that Tn is the suffix tree of S$. The tree T0 consists of the
root, a leaf numbered n + 1, and an edge between them, which is labeled
with the pair of indices (n+ 1, n+ 1) representing the sentinel character $.
Then, the algorithm incrementally inserts the suffixes SSA[1], SSA[2], . . . , SSA[n]

into the tree,7 hence it is called suffix insertion algorithm.
Given the compact trie Ti−1 of the suffixes $, SSA[1], SSA[2], . . . , SSA[i−1], the

suffix SSA[i] must be inserted into Ti−1, yielding Ti. Since SSA[i] is lexico-
graphically larger than all the suffixes in Ti−1 and it shares the (longest)
prefix of length LCP[i] with SSA[i−1], we must add an edge on the rightmost
path in Ti−1 at the distance of LCP[i] characters from the root. To find
this location, we start at the rightmost leaf and climb up the rightmost
path, edge by edge. If the location is an internal node v, then we add a
new edge from v to a new leaf numbered i. The new edge gets the label
(SA[i] + LCP[i], n+ 1) representing the string S[SA[i] + LCP[i]..n]$. If the loca-
tion is “inside” an edge, then this edge must be split and a new node, say
w′, must be inserted at the location. Furthermore, a new edge from w′ to a
new leaf numbered i is added to the tree, and the new edge gets the label
(SA[i] + LCP[i], n+ 1).

Algorithm 4.12 provides pseudo-code of the suffix insertion algorithm.
We assume that every node v in the suffix tree has a pointer v.parent to
its parent and a field v.d that stores its distance from the root in charac-
ters. In the pseudo-code, the label of an edge (v, w) in the suffix tree is
denoted by (v, w).label. The procedure makeNewLeaf (j) creates a new leaf
with number j. Furthermore, splitEdge(w, v, `) takes an edge (w, v) and a
natural number ` with ` < |(w, v).label| as input, creates a new internal
node w′, and splits the edge (w, v) into two edges (w,w′) and (w′, v), i.e.,
w′.parent ← w and v.parent ← w′. The label (j, k) of the edge (w, v) is also

7Of course, $ must be appended to the suffixes.

114 4 Enhanced Suffix Arrays

Algorithm 4.12 Computation of the suffix tree of a string S$ from the
suffix array and the LCP-array of S.

LCP[1]← 0 /* needed in this application */
v ← root
v.parent = root
v.d← 0
v′ ← makeNewLeaf (n+ 1) /* $ is the (n+ 1)-th suffix of S$ */
v′.parent← v /* v′ is a child of the root node */
v′.d← 1
(v, v′).label ← (n+ 1, n+ 1) /* the edge (root, v′) is labeled with $ */
for i← 1 to n do /* insert S[SA[i]..n]$ into the suffix tree */
v′ ← makeNewLeaf (SA[i])
v′.d← n+ 2− SA[i] /* v′.d← |S[SA[i]..n]$| */
while v 6= root and (v.parent).d ≥ LCP[i] do
v ← v.parent

if v.d = LCP[i] then /* v′ is a child of the internal node v */
v′.parent← v
(v, v′).label ← (SA[i] + LCP[i], n+ 1) /* label S[SA[i] + LCP[i]..n]$ */

else /* v.d > LCP[i] */
w′ ← splitEdge(v.parent, v, LCP[i]− v.parent.d)
v′.parent← w′

(w′, v′).label← (SA[i] + LCP[i], n+ 1) /* label S[SA[i] + LCP[i]..n]$ */
v ← v′

split into two labels (w,w′).label ← (j, j + ` − 1) and (w′, v).label ← (j + `, k).
Because of the former, w′.d← w.d+ ` is the distance of w′ from the root.

We show by an amortized analysis that Algorithm 4.12 runs in O(n)
time. Obviously, the algorithm creates n + 1 leaf nodes and thus at most
n internal nodes. Consequently, the number of edges in the final tree Tn
(which is the suffix tree of S$) is at most 2n. Inserting the suffix SSA[i]

into Ti−1 requires walking up the rightmost path in Ti−1. Each edge that
is traversed ceases to be on the rightmost path in Ti, and thus is not
traversed again. When a new internal node w′ is created “inside” an edge
(w, v) in Ti−1, the edge is split into two edges (w,w′) and (w′, v), a new
edge from w′ to the leaf with number i is inserted, and the rightmost path
in Ti ends at the new leaf. Therefore, the edge (w′, v) ceases to be on
the rightmost path and is not traversed again. As each edge is charged
once for traversing, it follows as a consequence that the total run-time of
Algorithm 4.12 is O(n).

Exercise 4.4.2 Use Algorithm 4.12 to construct the suffix tree of the
string acaaacatat$.

Chapter 5
Applications of Enhanced Suffix Arrays

In this chapter, we discuss several applications of enhanced suffix ar-
rays. The prime motivation for developing suffix trees and suffix arrays
was fast exact string matching in situations in which the string S is kept
fixed. An application of special importance in bioinformatics is sequence
analysis, where S can be the DNA sequence of a chromosome. By con-
catenating the DNA sequences of all chromosomes (inserting a separator
between each string), it is also possible to analyze a complete genome.
This chapter is organized as follows. Section 5.1 discusses exact string
searching algorithms. We shall see that the suffix array is an index data
structure that significantly improves the speed of the search. Section 5.2
describes fast algorithms that compute the Lempel-Ziv factorization of a
string. This factorization plays an important role in data compression
and is also the basis for the detection of all tandem repeats. Section 5.3
presents several algorithms for finding various kinds of repeats. Repeat
analysis is important because repetitive sequences are abundant in eu-
karyotic genomes (especially in mammalian and plant genomes). Then,
we address the problem of comparing two or multiple strings. Sections
5.4 and 5.5 focus on the comparison of two strings. If one wishes to
compare two eukaryotic genomes, then one usually starts with the com-
putation of exact matches satisfying various criteria. A related problem
is computing the matching statistics between two strings. Suffix-links in
the (virtual) lcp-interval tree will prove to be the key in efficiently solving
these and related problems. Section 5.6 deals with problems that involve
multiple strings. Although it touches the field of document retrieval, the
main emphasis is on the analysis of large collections of DNA sequences.
Section 5.7 discusses string kernels. A kernel can be thought of as a sim-
ilarity measure that is used to compare the data, and kernel methods are
used e.g. for classification. Section 5.8 shows how to extract frequently
occurring patterns from a set of string databases.

116 5 Applications of Enhanced Suffix Arrays

5.1 Exact string matching

In the following, P denotes a string of length m, called a pattern. It is
assumed that m is small compared to the length n of the string S. We recall
from Chapter 2 that the exact string matching problem (find all positions
in S at which an occurrence of P begins) can be solved in O(n+m) time.

In several applications, the string S is static (i.e., does not change) and
many patterns P 1, . . . , P k have to be matched against S. If all patterns are
known in advance, then the Aho-Corasick algorithm (described in Section
2.5) finds all occurrences of P 1, . . . , P k in S in O(n+

∑k
i=1 |P i|+z) time, where

z denotes the overall number of occurrences. However, if yet another
pattern P is input (which was not known in advance) then O(n +m) time
is further needed to find all positions in S at which an occurrence of P
begins. In this situation, if the string S is static and the exact string
matching problem has to be solved for an unknown number of patterns
(which are successively input), it pays to build the enhanced suffix array
of S in O(n) time and to match each pattern against this index. We show
how the enhanced suffix array of S allows us to answer

• decision queries of the type “Is P a substring of S?” in optimal O(m)
time (for a constant-size alphabet),

• counting queries of the type “How often does P occur in S?” in optimal
O(m) time (for a constant-size alphabet),

• enumeration queries of the type “Where are all z occurrences of P in
S?” in optimal O(m+ z) time (for a constant-size alphabet),

totally independent of the size of S.

5.1.1 Forward search on suffix trees

Since the suffix tree ST for S$ contains all substrings of S$, it is easy
to verify whether some pattern P (of course, we assume that $ does not
occur in P) is a substring of S: just follow the path from the root directed
by the characters of P . If at some point one cannot proceed with the next
character in P , then P does not occur in the suffix tree and hence it is
not a substring of S. Otherwise, if P occurs in the suffix tree, then it
is a substring of S. This string matching algorithm answers a decision
query in O(m) time, provided that for each node α in ST and each a ∈ Σ
one can determine the a-edge outgoing from α (if it exists) in constant
time. Constant time access is possible if the outgoing edges are stored
in an array of size σ, i.e., the array has an entry for each character of
the alphabet Σ. This, however, increases the space consumption of the
suffix tree to O(nσ), which is not tolerable in larger applications. Thus,

5.1 Exact string matching 117

we assume that an internal node α stores its outgoing edges in an array
whose size equals the number of children of α. With this implementation,
the space usage of the suffix tree is in O(n). A small disadvantage is
that now a binary search on this array is required to determine an a-edge
outgoing from α. Because each binary search takes O(log σ) time in the
worst case, the string matching algorithm takes O(m log σ) time to answer
a decision query.

For example, consider the suffix tree for S$ = ctaataatg$ from Figure
4.21 (page 111), and let P = aatc. Starting at the root, we first follow the
outgoing a-edge. This leads to the branching node a. Then we read the
next two characters of P , follow the a-edge outgoing from node a and go
to the branching node aat. However, there is no c-edge outgoing from aat,
and we cannot proceed further. In other words, P does not occur in the
suffix tree and hence it is not a substring of S. Now suppose P = aat.
Because P occurs in the suffix tree (it is represented by the node aat), it
follows that P is a substring of S. Note that the positions at which P starts
in S are exactly the leaf numbers of the subtree rooted at node aat.

Exercise 5.1.1 Devise a string matching algorithm on suffix trees that
answers counting queries in optimal O(m) time and enumeration queries
in optimal O(m+ z) time (linear-time preprocessing is allowed).

5.1.2 Forward search on suffix arrays

The pattern matching algorithm described in the previous section can
be simulated by a variant of Algorithm 4.8 (page 98), which traverses
the (virtual) lcp-interval tree in a top-down fashion. The simulation is
accomplished by the procedure getInterval presented in Algorithm 5.1.
This procedure takes an lcp-interval [i..j] representing some string ω and a
character a as input, and it returns the ωa-interval (if ωa is not a substring
of S, it returns ⊥). Procedure getInterval generates the child intervals of
[i..j] one by one until the child interval is found that corresponds to the
string ωa (to understand how child intervals are determined, it may be
instructive to reread Sections 4.3.1 and 4.3.3). Note that Algorithm 5.1
runs in O(σ) time, hence in constant time for a constant-size alphabet.

Pseudo-code of the string matching algorithm on the enhanced suffix
array is shown in Algorithm 5.2. The algorithm calls getInterval([1..n], P [1])
to determine the interval [i..j] in which suffixes of S start with the prefix
P [1] of P . The following cases may occur:

• [i..j] = ⊥. In this case, P [1] is not a substring of S. Hence P does not
occur in S.

• [i..j] is a singleton interval. In this case, P occurs in S if and only if
S[SA[i]..SA[i] +m− 1] = P .

118 5 Applications of Enhanced Suffix Arrays

Algorithm 5.1 Procedure getInterval([i..j], a).
if i = j then

if S[SA[i]] = a then
return [i..i]

else
return ⊥

k ← i
m← RMQ(i+ 1, j) /* first `-index of [i..j] */
`← LCP[m]
repeat

if S[SA[k] + `] = a then
return [k..m− 1]

k ← m
if k = j then

break
else
m← RMQ(k + 1, j)

until LCP[m] 6= `
if S[SA[k] + `] = a then

return [k..j]
else

return ⊥

• [i..j] is an lcp-interval of lcp-value ` (note that ` = LCP[RMQLCP(i+1, j)]).
Let ω = S[SA[i]..SA[i]+`−1] be the longest common prefix of the suffixes
SSA[i], SSA[i+1], . . . , SSA[j]. There are the following subcases:

– ` ≥ m. Then, pattern P occurs in S if and only if ω[1..m] = P .

– ` < m. Clearly, if ω 6= P [1..`], then P does not occur in S. Oth-
erwise, the algorithm simply proceeds as it did before: it calls
getInterval([i..j], P [` + 1]) to determine the interval in which suf-
fixes of S start with the prefix P [1..`+ 1] of P , and so on.

Algorithm 5.2 runs in O(mσ) time, hence in O(m) time for a constant-
size alphabet. The algorithm answers decision queries but it can also be
used to answer counting queries: since the returned interval [i..j] is the
P -interval, there are j − i + 1 occurrences of P in S. Moreover, the start
positions of the occurrences of P are SA[i], . . . , SA[j]. Thus, enumeration
queries can be answered in optimal O(m + z) time, where z = j − i + 1 is
the number of occurrences of P in S.

Exercise 5.1.2 In the problem of position-restricted string matching [69,
213], one searches for all occurrences of a pattern P (|P | = m) in a sub-
string S[l..r] of the string S (|S| = n), under the assumption that an O(n)

5.1 Exact string matching 119

Algorithm 5.2 Exact string matching: searching P [1..m] in SA[1..n].
k ← 1
[i..j]← [1..n]
repeat
[i..j]← getInterval([i..j], P [k])
if [i..j] = ⊥ then

return ⊥
`← m
if i < j then
`← min{`, LCP[RMQLCP(i+ 1, j)]}

if S[SA[i] + k − 1..SA[i] + `− 1] 6= P [k..`] then
return ⊥

k ← `+ 1
until k > m
return [i..j]

time and space preprocessing of S is allowed. As we have seen, this prob-
lem can be solved in O(m + z) time on the enhanced suffix array of S,
where z is the number of occurrences of P in S. However, this is not
optimal because the number of occurrences of P in S[l..r] may be (much)
smaller than z. If the left boundary l equals one, then an optimal time
algorithm is known [70]. This algorithm preprocesses the suffix array SA
of S in O(n) time so that range minimum queries can be answered in con-
stant time. Then it takes the pattern P and the right boundary r of the
interval [1..r] as input, computes the P -interval [i..j], and calls the proce-
dure findOcc(i, j, r, ∅) from Algorithm 5.3. This procedure returns the set
occ of all occurrences of P in S[l..r]. The task of the exercise is to explain
how the algorithm works and to show that it takes O(m+ |occ|) time.

Algorithm 5.3 Procedure findOcc(i, j, r, occ).
if i > j then return occ
k ← RMQSA(i, j)
if SA[k] < r then
occ← occ ∪ {SA[k]}
occ← findOcc(i, k − 1, r, occ)
occ← findOcc(k + 1, j, r, occ)

return occ

120 5 Applications of Enhanced Suffix Arrays

5.1.3 Binary search

To find all occurrences of a pattern P in the string S, we have to find the
suffixes of S that have P as a prefix. Since the n suffixes of the string
S appear in lexicographically increasing order in the suffix array, i.e.,
SSA[1] < SSA[2] < · · · < SSA[n], we can use binary search to find the P -interval
in the suffix array. In the search, we have to compare P with suffixes of S,
and these comparisons are solely based on the first m characters, where
m is the length of P . The next definition formally defines the resulting
order.

Definition 5.1.3 Let < be the lexicographic order on the strings on the
alphabet Σ. For each string u, we define

u|m =

{
u if |u| ≤ m
u[1..m] otherwise

The strict order <m on Σ∗ is defined by: u <m v if and only if u|m < v|m.
Furthermore, we define the order ≤m as follows: u ≤m v if and only if
u|m < v|m or u|m = v|m.

In order to explain the practical method we are going to develop, we
define

lP = min ({i | P ≤m SSA[i]} ∪ {n+ 1})

and
rP = max ({i | SSA[i] ≤m P} ∪ {0})

The next lemma states that it suffices to compute lP and rP to find all
occurrences of P in S.

Lemma 5.1.4 Pattern P occurs in S if and only if the interval [lP ..rP] is not
empty. If [lP ..rP] is not empty, then the positions in S at which P occurs are
SA[lP], SA[lP + 1], . . . , SA[rP].

Proof The simple proof is left to the reader. �

Algorithm 5.4 gives pseudo-code for the procedures findleftmost(P) and
findrightmost(P), which compute lP and rP by binary search. Both binary
searches take O(log n) time, and each comparison in a binary search needs
O(m) character comparisons. Therefore, one can find the interval [lP ..rP]
in time O(m log n).

However, the practical run-time behavior can be improved. To see this,
let l and r be the current interval boundaries in a binary search. We
keep track of the lengths hl and hr of the longest common prefix of P
with SSA[l] and SSA[r], respectively. Because the suffixes in the suffix array
are lexicographically ordered, it is clear that all suffixes between l and

5.1 Exact string matching 121

Algorithm 5.4 Exact string matching using binary search.
procedure findleftmost(P)
l← 1
r ← n
if P ≤m SSA[1] then

return 1
if P >m SSA[n] then

return n+ 1
while r − l > 1 do
mid← b(l + r)/2c
if P ≤m SSA[mid] then
r ← mid

else
l← mid

return r

procedure findrightmost(P)
l← 1
r ← n
if P <m SSA[1] then

return 0
if P ≥m SSA[n] then

return n
while r − l > 1 do
mid← b(l + r)/2c
if SSA[mid] ≤m P then
l← mid

else
r ← mid

return l

r share the same prefix of length min{hl, hr}. Hence SSA[mid] and P have a
common prefix of length min{hl, hr}, where mid = b(l + r)/2c is the midpoint
between l and r. This common prefix can be skipped in the comparison of
SSA[mid] and P . Pseudo-code of this technique is given in Algorithm 5.5; it
originates from [2].

The procedure sasearch(P) in Algorithm 5.5 computes the boundaries of
the interval [lP ..rP] and outputs all occurrences of P in S; cf. Lemma 5.1.4.
The procedures findleftmost(P) and findrightmost(P) have the same func-
tionality as their relatives in Algorithm 5.4. The procedure cmp performs
the comparison of a suffix of S with some string w. More precisely, let
1 ≤ i ≤ n and v = SSA[i]$ and suppose that w and v have a common pre-
fix of length q. Then cmp(w, i, q) delivers a pair (c, fc) so that the following
holds:

• c is the length of the longest common prefix of w and v, and c ≥ q.

• If w is a prefix of v, i.e., c = m holds, then fc = 0.

• Otherwise, if w is not a prefix of v, then w[c + 1] 6= v[c + 1] (because v
ends with $, it cannot be a prefix of w). There are two cases:

– If w[c+ 1] < v[c+ 1], then fc = −1.
– If w[c+ 1] > v[c+ 1], then fc = 1.

In summary, for w = P we have

fc =

−1 if P < SSA[i]

0 if P is a prefix of SSA[i]

+1 if P > SSA[i]

122 5 Applications of Enhanced Suffix Arrays

Algorithm 5.5 Exact string matching: A practical method.
procedure findleftmost(P)
l← 1
r ← n
(hl, fl)← cmp(P, l, 0)
if fl ≤ 0 then

return 1
(hr, fr)← cmp(P, r, 0)
if fr > 0 then

return n+ 1
while r − l > 1 do
mid← b(l + r)/2c
(c, fc)← cmp(P,mid,min{hl, hr})
if fc ≤ 0 then

(hr, r)← (c,mid)
else

(hl, l)← (c,mid)
return r

procedure cmp(w, i, q)
v ← SSA[i]$
c← q
while c < min{|w|, |v|} do

if w[c+ 1] < v[c+ 1] then
return (c,−1)

else
if w[c+ 1] > v[c+ 1] then

return (c, 1)
else
c← c+ 1

return (c, 0) /* here c = |w| */

procedure findrightmost(P)
l← 1
r ← n
(hl, fl)← cmp(P, l, 0)
if fl < 0 then

return 0
(hr, fr)← cmp(P, r, 0)
if fr ≥ 0 then

return n
while r − l > 1 do
mid← b(l + r)/2c
(c, fc)← cmp(P,mid,min{hl, hr})
if 0 ≤ fc then

(hl, l)← (c,mid)
else

(hr, r)← (c,mid)
return l

procedure sasearch(P)
lP ← findleftmost(P)
rP ← findrightmost(P)
if lP ≤ rP then

for j ← lP to rP do
report “match at SA[j]”

else
report “no match found”

5.1 Exact string matching 123

so that fc ≤ 0 if P ≤m SSA[i] and 0 ≤ fc if SSA[i] ≤m P .
The string matching algorithm based on binary searches in the suffix

array was first presented by Manber and Myers [214]. They also showed
that the algorithm can be improved to a run time of O(m + log n), pro-
vided that in each binary search step the values |lcp(SSA[l], SSA[mid])| and
|lcp(SSA[mid], SSA[r])| are known. With range minimum queries, these values
can straightforwardly be computed by |lcp(SSA[l], SSA[mid])| = LCP[RMQLCP(l +
1,mid)] and |lcp(SSA[mid], SSA[r])| = LCP[RMQLCP(mid + 1, r)]. (Exercise 5.1.6
asks you to provide an implementation of the algorithm without range
minimum queries.) The improved version of the procedure findleftmost(P)
can be found in Algorithm 5.6; procedure findrightmost(P) can be improved
likewise. Again, the algorithm keeps track of the length hl and hr of the
longest common prefix of P with SSA[l] and SSA[r], respectively.

The correctness of Algorithm 5.6 relies on the following lemma, which
shows that in some cases it is possible to decide whether a string is lexico-
graphically smaller than another without further character comparisons.

Lemma 5.1.5 Let u, v, and w be strings so that u is lexicographically
smaller than v. If |lcp(u, v)| < |lcp(u,w)|, then w is also lexicographically
smaller than v.

Proof Let k = |lcp(u, v)|. Since u < v, it follows that the (k + 1)-th character
of u is smaller than the (k + 1)-th character of v. Moreover, the inequality
|lcp(u, v)| < |lcp(u,w)| implies that the (k+1)-th character of u coincides with
the (k+1)-th character of w. All in all, we have u[1..k] = v[1..k] = w[1..k] and
u[k + 1] = w[k + 1] < v[k + 1]. This shows the lemma. �

To prove the correctness of Algorithm 5.6, consider an iteration of the
while-loop and assume hl ≥ hr (the case hl < hr can be shown similarly).
There are the following cases.

(a) lcpl = |lcp(SSA[l], SSA[mid])| > |lcp(SSA[l], P)| = hl. Because SSA[l] < P , an
application of Lemma 5.1.5 with u = SSA[l], v = SSA[mid], and w = P
yields SSA[mid] < P . Moreover, |lcp(SSA[mid], P)| = |lcp(SSA[l], P)| = hl; a
graphical proof of this fact can be found in Figure 5.1. Therefore, l is
set to mid and hl remains unchanged.

(b) lcpl = |lcp(SSA[l], SSA[mid])| = |lcp(SSA[l], P)| = hl. In this case, we know
that the first hl characters of P and SSA[mid] coincide, but the relation-
ship between the remaining characters is unknown. Thus, the pro-
cedure call cmp(P,mid, hl) completes the comparison of P and SSA[mid].

(c) lcpl = |lcp(SSA[l], SSA[mid])| < |lcp(SSA[l], P)| = hl. Because SSA[l] < SSA[mid],
an application of Lemma 5.1.5 with u = SSA[l], v = P , and w = SSA[mid]

yields P < SSA[mid] (further note that P < SSA[mid] < SSA[r] implies
|lcp(SSA[mid], P)| ≥ |lcp(SSA[mid], SSA[r])| = hr). Moreover, it follows as in

124 5 Applications of Enhanced Suffix Arrays

Algorithm 5.6 This implementation of the procedure findleftmost(P) uses
less character comparisons.
l← 1
r ← n
(hl, fl)← cmp(P, l, 0)
if fl ≤ 0 then

return 1
(hr, fr)← cmp(P, r, 0)
if fr > 0 then

return n+ 1
while r − l > 1 do
mid← b(l + r)/2c
if hl ≥ hr then
lcpl ← |lcp(SSA[l], SSA[mid])|
if lcpl > hl then
(c, fc)← (hl, 1)

else if lcpl = hl then
(c, fc)← cmp(P,mid, hl)

else
(c, fc)← (lcpl,−1)

else
lcpr ← |lcp(SSA[mid], SSA[r])|
if lcpr > hr then
(c, fc)← (hr,−1)

else if lcpr = hr then
(c, fc)← cmp(P,mid, hr)

else
(c, fc)← (lcpr, 1)

if fc ≤ 0 then
(hr, r)← (c,mid)

else
(hl, l)← (c,mid)

return r

5.2 Lempel-Ziv factorization 125

SSA[l]

P

SSA[mid]

Figure 5.1: The equality |lcp(SSA[mid], P)| = |lcp(SSA[l], P)| is a consequence of
|lcp(SSA[l], P)| < |lcp(SSA[l], SSA[mid])|.

case (a) that |lcp(SSA[mid], P)| = |lcp(SSA[l], SSA[mid])| = lcpl. Therefore, r is
set to mid and hr is set to lcpl (note that the new value of hr is greater
than or equal to the old value of hr).

It is a consequence of the preceding considerations that neither hl nor hr
decreases in the binary search. Furthermore, if the procedure cmp detects
further character matches, then either hl or hr is increased by the number
of detected character matches. It follows that there are at most m = |P |
character matches in the binary search. Obviously, in each of the O(log n)
binary search steps at most one character mismatch occurs. To sum up,
the improved string matching algorithm has a worst-case time complexity
of O(m+ log n).

Exercise 5.1.6 Implement Algorithm 5.6 without range minimum
queries. First, show that the values |lcp(SSA[p], SSA[q])| of at most O(n) pairs
(p, q) of indices are required. Second, show that these values can be com-
puted incrementally (use the LCP-array for pairs of the form (p− 1, p)).

5.2 Lempel-Ziv factorization

For 30 years the Lempel-Ziv factorization [334] of a string has played an
important role in data compression (e.g. it is used in gzip), and more
recently it was used as the basis of linear-time algorithms for the detection
of all maximal repetitions (runs) in a string [141,185].

Definition 5.2.1 Let S be a string of length n on an alphabet Σ. The
Lempel-Ziv factorization (or LZ-factorization for short) of S is a factorization
S = s1s2 · · · sm so that each factor sj, 1 ≤ j ≤ m, is either

(a) a letter c ∈ Σ that does not occur in s1s2 · · · sj−1, or

(b) the longest substring of S that occurs at least twice in s1s2 · · · sj.

126 5 Applications of Enhanced Suffix Arrays

Algorithm 5.7 Reconstruction of the string S, given its LZ-factorization
(PrevOcc1, LPS1), . . . , (PrevOccm, LPSm).
i← 1
for j ← 1 to m do

if LPSj = 0 then
S[i]← PrevOccj
i← i+ 1

else
for k ← 0 to LPSj − 1 do
S[i]← S[PrevOccj + k]
i← i+ 1

The Lempel-Ziv factorization can be represented by a sequence of pairs
(PrevOcc1, LPS1), . . . , (PrevOccm, LPSm), where in case (a) PrevOccj = c and
LPSj = 0, and in case (b) PrevOccj is a position in s1s2 · · · sj−1, at which
an occurrence of sj starts and LPSj = |sj|.

For example, the LZ-factorization of S = acaaacatat is s1 = a, s2 = c, s3 = a,
s4 = aa, s5 = ca, s6 = t, s7 = at. This LZ-factorization can be represented by
(a, 0), (c, 0), (1, 1), (3, 2), (2, 2), (t, 0), (7, 2).

To appreciate the full value of this compression method, consider the
string an that consists solely of a’s. Its LZ-factorization is (a, 0), (1, n− 1).

In this section, we will develop efficient algorithms that compress a
string by computing its LZ-factorization. The corresponding decompres-
sion algorithm is very simple, it is given in Algorithm 5.7.

5.2.1 Longest previous substring

Because it is difficult to predict in advance at which position a factor of the
LZ-factorization starts, several algorithms compute the factors starting at
every position i in S and select the right ones afterwards.

Definition 5.2.2 For a string S of length n, the longest previous substring
(LPS) array of size n is defined by LPS[1] = 0 and

LPS[k] = max{` : 0 ≤ ` ≤ n−k+1;S[k..k+`−1] is a substring of S[1..k+`−2]}

for every k with 2 ≤ k ≤ n. That is, LPS[k] is the length of the longest prefix
of Sk that has another occurrence in S starting strictly before position k.

If there is no ` > 0 so that S[k..k + ` − 1] is a substring of S[1..k + ` − 2],
then LPS[k] = 0 because for ` = 0 we have S[k..k + ` − 1] = ε and the
empty string ε is a substring of any other string. Clearly, we are not

5.2 Lempel-Ziv factorization 127

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10
LPS[i] 0 0 1 2 3 2 1 0 2 1

PrevOcc[i] a c 1 3 1 2 5 t 7 8

Figure 5.2: The LPS and PrevOcc arrays of the string S = acaaacatat$.

Algorithm 5.8 Computation of the LZ-factorization based on LPS and
PrevOcc.
i← 1
while i < n do

if LPS[i] = 0 then
PrevOcc[i]← S[i]

output (PrevOcc[i], LPS[i])
i← i+max{1, LPS[i]}

only interested in LPS[k] but also in a position j < k at which the longest
previous substring occurred. Such a position j will be stored in the array
PrevOcc, i.e., PrevOcc[k] = j. If there is no such position, i.e., if LPS[k] = 0,
we set PrevOcc[k] = S[k]. As an example, the arrays LPS and PrevOcc of
S = acaaacatat are depicted in Figure 5.2.

Algorithm 5.8 shows that the Lempel-Ziv factorization can easily be
computed from the arrays LPS and PrevOcc.

The following lemma characterizes LPS[k]; it can be viewed as a first step
towards the computation of LPS[k].

Lemma 5.2.3 For every k with 2 ≤ k ≤ n, the following equality holds true:

LPS[k] = max{|lcp(Sp, Sk)| : 1 ≤ p < k}

Proof The equalities

LPS[k]

= max{` ∈ N : S[k..k + `− 1] is a substring of S[1..k + `− 2]}
= max{` ∈ N : S[k..k + `− 1] is a prefix of some S[p..k + `− 2], 1 ≤ p < k}
= max{|lcp(Sp, Sk)| : 1 ≤ p < k}

prove the lemma. �

We would like to enhance the suffix array of string S with the array
LPS. Thus, we need the values of the array LPS in the order SA[1], . . . , SA[n].

128 5 Applications of Enhanced Suffix Arrays

Observe that with k = SA[i] and p = SA[j], Lemma 5.2.3 can be rephrased
as

LPS[SA[i]] = max{|lcp(SSA[j], SSA[i])| : SA[j] < SA[i]} (5.1)

To deal with boundary cases, we introduce the following artificial entries
in the suffix array: SA[0] = 0 and SA[n + 1] = 0. Furthermore, we define
S0 = ε, so that SSA[0] and SSA[n+1] are the empty string. This implies that
LCP[1] and LCP[n + 1] must be 0 (and not −1 as in the preceding sections)
because

LCP[1] = |lcp(SSA[0], SSA[1])| = |lcp(ε, SSA[1])| = |ε| = 0

and analogously LCP[n + 1] = |lcp(SSA[n], SSA[n+1])| = 0. So in contrast to
previous and subsequent sections, in the rest of Section 5.2 we assume
that LCP[1] = 0 = LCP[n+ 1].

In the computation of LPS[SA[i]], we will employ two auxiliary arrays
PSVSA and NSVSA defined as follows.

Definition 5.2.4 For any index i with 1 ≤ i ≤ n, we define

PSVSA[i] = max{j : 0 ≤ j < i and SA[j] < SA[i]}

and
NSVSA[i] = min{j : i < j ≤ n+ 1 and SA[j] < SA[i]}

In the following, we will omit the subscript SA, i.e., we will write PSV

instead of PSVSA and NSV instead of NSVSA. The reader should be aware of
the fact that the PSV and NSV arrays used in Section 4.3.1 are different
arrays because they were defined w.r.t. the LCP-array and not w.r.t. the
suffix array.

According to Definition 5.2.4, if there is no index j with 1 ≤ j < i and
SA[j] < SA[i], we have PSV[i] = 0 because 0 < i and 0 = SA[0] < SA[i].
Analogously, if there is no index j with i < j ≤ n and SA[j] < SA[i], we have
NSV[i] = n+1 because i < n+1 and 0 = SA[n+1] < SA[i]. Figure 5.3 provides
an example of the auxiliary arrays PSV and NSV.

In essence, the next lemma improves Equation 5.1. That is, in order to
compute LPS[SA[i]] for a given index i, it suffices to consider the closest
index j with SA[j] < SA[i] preceding i (viz. PSV[i]) and the closest index j
with SA[j] < SA[i] succeeding i (viz. NSV[i]) in the suffix array of S.

Lemma 5.2.5 For every i with 1 ≤ i ≤ n, the following equality holds

LPS[SA[i]] = max{|lcp(SSA[PSV[i]], SSA[i])|, |lcp(SSA[i], SSA[NSV[i]])|}

where S0 is the empty string ε.

5.2 Lempel-Ziv factorization 129

i SA LCP SSA[i] PSV[i] NSV[i] LPS[SA[i]] PrevOcc[SA[i]]

0 0 ε
1 3 0 aaacatat 0 3 1 1
2 4 2 aacatat 1 3 2 3
3 1 1 acaaacatat 0 11 0 ⊥
4 5 3 acatat 3 7 3 1
5 9 1 at 4 6 2 7
6 7 2 atat 4 7 1 5
7 2 0 caaacatat 3 11 0 ⊥
8 6 2 catat 7 11 2 2
9 10 0 t 8 10 1 8
10 8 1 tat 8 11 0 ⊥
11 0 0 ε

Figure 5.3: The enhanced suffix array of the string S = acaaacatat.

Proof For every i with 1 ≤ i ≤ n, we have

LPS[SA[i]] = max{|lcp(SSA[j], SSA[i])| : SA[j] < SA[i]}

by Equation 5.1 and the extension of the suffix array with SA[0] = 0
and SA[n + 1] = 0. (Note that LPS[1] = max{|lcp(SSA[j], S1)| : SA[j] < 1} =
|lcp(S0, S1)| = |lcp(ε, S1)| = 0.) Clearly,

LPS[SA[i]] = max{|lcp(SSA[j], SSA[i])| : 0 ≤ j ≤ n+ 1 and SA[j] < SA[i]}
= max({|lcp(SSA[j], SSA[i])| : 0 ≤ j < i and SA[j] < SA[i]}

∪{|lcp(SSA[i], SSA[j])| : i < j ≤ n+ 1 and SA[j] < SA[i]})

We will show

|lcp(SSA[PSV[i]], SSA[i])| = max{|lcp(SSA[j], SSA[i])| : 0 ≤ j < i and SA[j] < SA[i]}

and

|lcp(SSA[i], SSA[NSV[i]])| = max{|lcp(SSA[i], SSA[j])| : i < j ≤ n+ 1 and SA[j] < SA[i]}

To prove the first equality, consider j with j < PSV[i] and SA[j] < SA[i].
Since SSA[j] is lexicographically smaller than SSA[PSV[i]], which in turn is
lexicographically smaller than SSA[i], it follows that lcp(SSA[j], SSA[i]) is also
a prefix of lcp(SSA[PSV[i]], SSA[i]). Thus, |lcp(SSA[j], SSA[i])| ≤ |lcp(SSA[PSV[i]], SSA[i])|.
Now the first equality follows from the fact that SA[j′] > SA[i] for all indices
j′ with PSV[i] < j′ < i. The second equality can be shown similarly. �

We are not only interested in LPS[SA[i]] but also in a position SA[j] < SA[i]
at which the longest previous substring occurred. Such a position SA[j]

130 5 Applications of Enhanced Suffix Arrays

Algorithm 5.9 Computing LPS and PrevOcc using SA, PSV, NSV, and LCP.
Compute the arrays PSV and NSV.
Prepare the LCP-array for constant time range minimum queries.
for i← 1 to n do
l← RMQLCP[PSV[i] + 1..i]
r ← RMQLCP[i+ 1..NSV[i]]
LPS[SA[i]]← max{LCP[l], LCP[r]}
if LPS[SA[i]] = 0 then PrevOcc[SA[i]]← ⊥
else if LPS[SA[i]] > LCP[r] then PrevOcc[SA[i]]← SA[PSV[i]]
else PrevOcc[SA[i]]← SA[NSV[i]]

will be stored in the array PrevOcc, i.e., PrevOcc[SA[i]] = SA[j]; see Figure 5.3.
Note that PrevOcc[SA[i]] is not necessarily the leftmost position at which the
longest previous substring occurred.

A simple case analysis yields PrevOcc[SA[i]]:

1. If LPS[SA[i]] = 0, then there is no previous occurrence. Consequently,
PrevOcc[SA[i]] = ⊥, i.e., PrevOcc[SA[i]] is undefined.

2. If LPS[SA[i]] > |lcp(SSA[i], SSA[NSV[i]])|, then LPS[SA[i]] = |lcp(SSA[PSV[i]], SSA[i])| >
0 and PrevOcc[SA[i]] = SA[PSV[i]].

3. Otherwise, LPS[SA[i]] = |lcp(SSA[i], SSA[NSV[i]])| > 0. Therefore, we set
PrevOcc[SA[i]] = SA[NSV[i]].

To obtain a linear-time algorithm, we compute LPS[SA[i]] by constant
time range minimum queries on the LCP-array. More precisely, for any
index i with 1 ≤ i ≤ n, we use the equalities (see Lemma 4.2.8)

|lcp(SSA[PSV[i]], SSA[i])| = LCP[RMQLCP[PSV[i] + 1..i]]

and
|lcp(SSA[i], SSA[NSV[i]])| = LCP[RMQLCP[i+ 1..NSV[i]]]

These considerations immediatley yield the correctness of Algorithm 5.9.
The worst-case time complexity of Algorithm 5.9 is indeed O(n). This is

because the arrays PSV and NSV can be computed in linear time (Algorithm
4.5 on page 93), the preprocessing of the LCP-array for constant time
range minimum queries can be done in linear time (Chapter 3), and each
execution of the for-loop takes constant time.

However, Algorithm 5.9 is not very practicable because it uses too much
space. In fact, we neither need the arrays PSV and NSV nor range minimum
queries. To see this, we depict the values of the suffix array and the LCP-
array in a (conceptual) graph introduced by Crochemore and Ilie [65]. The
graph has n + 2 nodes each of which is labeled with (i, SA[i]); to deal with

5.2 Lempel-Ziv factorization 131

0

3

0

4
2

1

1

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

Figure 5.4: The graph for the string S = acaaacatat. Each node (i, SA[i]) is
drawn as a circle with label SA[i] at the point (i, SA[i]) in the
plane R2; for better readability the x and y-axes are omitted.
Consecutive nodes (i, SA[i]) and (i + 1, SA[i + 1]) are connected
by an edge labeled with the value LCP[i+ 1].

boundary cases, the graph also contains the nodes labeled with (0, SA[0])
and (n+ 1, SA[n+ 1]). It is instructive to view each node (i, SA[i]) as a point
in the plane R2. Moreover, consecutive nodes (i, SA[i]) and (i + 1, SA[i + 1])
are connected by an edge labeled with the value LCP[i + 1]; see Figure 5.4
for an example.

As Algorithm 5.9, the algorithm we are going to develop is based on
Lemma 5.2.5. In the graph, |lcp(SSA[PSV[i]], SSA[i])| is the minimum of the edge
labels on the path from node (PSV[i], SA[PSV[i]]) to (i, SA[i]). Analogously,
|lcp(SSA[i], SSA[NSV[i]])| is the minimum of the edge labels on the path from
(i, SA[i]) to node (NSV[i], SA[NSV[i]]). Now consider a peak in the graph, i.e.,
a node (i, SA[i]) so that SA[i − 1] < SA[i] and SA[i + 1] < SA[i]. In this case,
(PSV[i], SA[PSV[i]]) = (i − 1, SA[i − 1]) and (NSV[i], SA[NSV[i]]) = (i + 1, SA[i + 1]).
Thus, we have LPS[SA[i]] = max{LCP[i], LCP[i + 1]} by Lemma 5.2.5. That
is, the correct value of LPS[SA[i]] can be computed as the maximum of the
labels of the edges with end point (i, SA[i]). The algorithm relies on the
key observation that a deletion of the peak node (i, SA[i]) does not change
the values PSV[j], NSV[j], SA[PSV[j]], and SA[NSV[j]] for any index j 6= i with
1 ≤ j ≤ n. So we delete node (i, SA[i]) and its edges from the graph, and add
an edge labeled with min(LCP[i], LCP[i+1]) between nodes (i−1, SA[i−1]) and
(i+1, SA[i+1]). In the transformed graph, for any index j 6= i with 1 ≤ j ≤ n,
LPS[SA[j]] can again be computed as the maximum of (a) the minimum of
the edge labels on the paths from node (PSV[j], SA[PSV[j]) to (j, SA[j]) and (b)
the minimum of the edge labels from node (j, SA[j]) to (NSV[j], SA[NSV[j]).

132 5 Applications of Enhanced Suffix Arrays

0

3

0

4
2

1

1

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

0

3

0

1

1

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

Figure 5.5: Removal of the first peak in the graph.

0

3

0

1

1

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

0

1
0

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

Figure 5.6: Removal of the second peak in the graph.

0

1
0

5

3

9

1 7

2

2

0

6

2

10

0 8

1

0

0

0

1
0

5

3

7

1

2

0

6

2

10

0 8

1

0

0

Figure 5.7: Removal of the third peak in the graph.

5.2 Lempel-Ziv factorization 133

Algorithm 5.10 Computing LPS and PrevOcc using SA and LCP.
SA[n+ 1]← 0
LCP[n+ 1]← 0
push(〈0,⊥〉)
for i← 1 to n+ 1 do
lcp← LCP[i]
while SA[i] < top.sa
last← pop
LPS[last.sa]← max(last.lcp, lcp)
lcp← min(last.lcp, lcp)
if LPS[last.sa] = 0 then PrevOcc[last.sa]← ⊥
else if last.lcp > lcp then PrevOcc[last.sa]← top.sa
else PrevOcc[last.sa]← SA[i]

push(〈SA[i], lcp〉)

This is because the label min(LCP[i], LCP[i + 1]) of the new edge is the
length of the longest common prefix of the suffixes SSA[i−1] and SSA[i+1] of
S. Hence it is safe to eliminate peak by peak from the graph. Obviously,
the order in which peaks are considered is arbitrary. Figures 5.5 to 5.7
illustrate the removal of the first three peaks (from left to right) from the
graph of Figure 5.4.

Algorithm 5.10 processes nodes and peaks from left to right. Nodes that
are not yet peaks are stored on a stack. As a matter of fact, we do not
store the whole node (i, SA[i]) but only its second component SA[i]. The
stack contains pairs 〈sa, lcp〉, where sa corresponds to the second compo-
nent of a node in the graph and lcp corresponds to the longest common
prefix between two suffixes of S. More precisely, Algorithm 5.10 main-
tains the following invariant: if 〈sa, lcp〉 appears directly above 〈sa′, lcp′〉 in
the stack, then sa ≥ sa′ (equality can hold solely for sa = SA[n + 1] = 0 and
sa′ = SA[0] = 0) and lcp is the length of the longest common prefix between
Ssa and Ssa′. Initially, 〈SA[0], LCP[0]〉 = 〈0,⊥〉 is pushed onto the stack. In
the i-th iteration, there are two cases that have to be distinguished by the
algorithm. If SA[i] ≥ top.sa, then the node corresponding to the top element
of the stack is not a peak yet. As a consequence, the pair 〈SA[i], LCP[i]〉 is
pushed onto the stack. If otherwise SA[i] < top.sa, then the node corre-
sponding to the top element of the stack is a peak. In this case, it is
popped from the stack, its LCP-value is set, and its previous occurrence
determined as in Algorithm 5.9. Upon termination of Algorithm 5.10, the
arrays LPS and PrevOcc contain correct values for all i with 1 ≤ i ≤ n
and the stack contains the two pairs 〈0, 0〉 and 〈0, 0〉 corresponding to the
boundary nodes (0, SA[0]) and (n+ 1, SA[n+ 1]).

Corollary 5.2.6 The LPS array is a permutation of the array LCP[1..n].

134 5 Applications of Enhanced Suffix Arrays

Proof This is a direct consequence of the preceding discussion. At the
beginning, the graph contains the values LCP[1], . . . , LCP[n + 1] as labels
of its edges. When a peak is removed from the graph, the maximum of
the two labels of the adjacent edges becomes an LPS-value, whereas the
minimum of the two labels becomes the label of the new edge. At the end,
the graph contains only the boundary nodes (0, SA[0]) and (n+1, SA[n+1]),
and an edge between them with label LCP[n + 1] = 0. That is, during
the transformation of the graph, the values LCP[1], . . . , LCP[n] have become
LPS-values. �

Exercise 5.2.7 Algorithm 5.10 is based on the fact that every peak, i.e.,
every node (i, SA[i]) with SA[i− 1] < SA[i] > SA[i + 1], can safely be removed
from the graph. Improve the algorithm by further considering the case
SA[i − 1] < SA[i] < SA[i + 1] and LCP[i] ≥ LCP[i + 1]. Argue that in this
case LPS[SA[i]] = LCP[i] and modify the pseudo-code from Algorithm 5.10
accordingly.

Exercise 5.2.8 Compute the longest previous substring array by a
bottom-up traversal of the lcp-interval tree (Algorithm 4.6 on page 94).

5.2.2 Ultra-fast factorization

According to Corollary 5.2.6, if one computes the LZ-factorization via the
arrays LPS and PrevOcc, the computation of lcp-values is necessary. If one
is solely interested in the factorization, however, it is disadvantageous to
precompute the LCP-array. Algorithm 5.11 intermingles the computation
of lcp-values with the computation of the arrays LPS and PrevOcc: it com-
putes these arrays by (virtually) building the above-mentioned graph in
text order and peak elimination.

More precisely, in the main procedure it computes lcp-values as in the
Φ-algorithm (Algorithm 4.4 on page 84). Suppose that the algorithm has
just computed the length ` of the longest common prefix of some suffix
Si of S and the suffix Sj that precedes Si in the suffix array (so among all
suffixes of S that are lexicographically smaller than Si, Sj is the largest).
In terms of the graph, this means that the algorithm has just detected an
edge with label ` between nodes i and j; but of course it does not build
the graph. Instead it stores this edge in the arrays LPS and PrevOcc. To
be precise, if i > j, it stores ` in LPS[i] and j in PrevOcc[i]. Otherwise,
if i < j, it stores ` in LPS[j] and i in PrevOcc[j]. However, collisions may
occur. If, for example i > j, it may be the case that the memory cells LPS[i]
and PrevOcc[i] are already occupied; say m = LPS[i] and k = PrevOcc[i]. In
terms of the graph, this means that a peak has been detected because
both k and j are smaller than i. Consequently, the peak is eliminated
by a case distinction: either (a) m < ` or (b) m ≥ `. Let us consider case

5.2 Lempel-Ziv factorization 135

Algorithm 5.11 Computation of the arrays LPS and PrevOcc.
main procedure

for i← 1 to n do
Φ[SA[i]]← SA[i− 1]

`← 0
for i← 1 to n do
j ← Φ[i]
while S[i+ `] = S[j + `] do
`← `+ 1

if i > j then
sop(i, `, j)

else
sop(j, `, i)

`← max(`− 1, 0)

procedure sop(i, `, j)
if LPS[i] = ⊥ then

LPS[i]← `
PrevOcc[i]← j

else
if LPS[i] < ` then

if PrevOcc[i] > j then
sop(PrevOcc[i], LPS[i], j)

else
sop(j, LPS[i],PrevOcc[i])

LPS[i]← `
PrevOcc[i]← j

else /* LPS[i] ≥ ` */
if PrevOcc[i] > j then
sop(PrevOcc[i], `, j)

else
sop(j, `,PrevOcc[i])

(a); case (b) is similar. Since m < `, we set LPS[i] ← ` and PrevOcc[i] ← j
in accordance with the peak elimination procedure described above. (It
should be pointed out that the entries LPS[i] and PrevOcc[i] are fixed from
this point on.) Moreover, we have to insert a new edge between nodes
j and k with label m. As we always store an edge at the index that is
the maximum of its node labels, we further distinguish between the cases
(i) k < j and (ii) k > j. Again, we only consider the first case because
the second case can be treated similarly. If the memory cells LPS[j] and
PrevOcc[j] are still empty (i.e, LPS[j] = ⊥ and PrevOcc[j] = ⊥), then we store
m in LPS[j] and k in PrevOcc[j]. Otherwise, we have just detected another
peak and we eliminate it in the same way as described above.

As an example, consider the execution of the main procedure of Algo-
rithm 5.11 for S = acaaacatat and i = 4. The upper part of Figure 5.8
shows the point of departure. Since j = Φ[4] = 3 (cf. Figure 5.3 on page
129), S4 is compared with S3 and the length of the longest common prefix
of S4 and S3 is 2. This results in the procedure call sop(4, 2, 3) because
i = 4 > 3 = j. Since LPS[4] = 1 < 2 = ` and PrevOcc[4] = 1 < 3 = j, there is
another procedure call sop(3, 1, 1). The lower part of Figure 5.8 shows the
situation without the effect of sop(3, 1, 1): peak node 4 is eliminated, i.e.,
LPS[4] is set to ` = 2 and PrevOcc[4] is set to j = 3. Let us turn to the effect
of the procedure call sop(3, 1, 1): LPS[3] = 0 < 1 and PrevOcc[3] = 0 < 1 result
in another procedure call sop(1, 0, 0). The upper part of Figure 5.9 depicts
the situation without the effect of sop(1, 0, 0) (peak node 3 is eliminated),

136 5 Applications of Enhanced Suffix Arrays

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10
LPS[i] 0 1 0

PrevOcc[i] 0 1 2

0

3

0

4

1

1

7

2

0

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10
LPS[i] 0 2 0

PrevOcc[i] 0 3 2

0

3

0

4
2

1

1

7

2

0

Figure 5.8: i = 4: Detection and removal of the first peak in the graph.

5.2 Lempel-Ziv factorization 137

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10

LPS[i] 1 2 0
PrevOcc[i] 1 3 2

0

3

0
1

1

7

2

0

S[i] a c a a a c a t a t

i 1 2 3 4 5 6 7 8 9 10
LPS[i] 0 1 2 0

PrevOcc[i] 0 1 3 2

0

1
0

7

2

0

Figure 5.9: i = 4: Detection and removal of the second peak in the graph.

138 5 Applications of Enhanced Suffix Arrays

while the lower part shows the final situation (after the execution of the
main procedure for i = 4).

Algorithm 5.11 runs in linear time. This is because the main procedure
without the calls to the procedure sop takes O(n) time (cf. Section 4.2.1)
and an amortized analysis shows that there are at most 2n calls to the
procedure sop.

Exercise 5.2.9 Setting j = SA[i] in Lemma 5.2.5 yields the equality

LPS[j] = max{|lcp(SSA[PSV[ISA[j]]], Sj)|, |lcp(Sj, SSA[NSV[ISA[j]]])|}

• Modify Algorithm 4.5 (page 93) in such a way that it computes ar-
rays PREV and NEXT defined by PREV[j] = SA[PSV[ISA[j]]] and NEXT[j] =
SA[NSV[[ISA[j]]].

• Give an algorithm that computes the array LPS using the arrays PREV

and NEXT and the equality above. The algorithm shall determine
|lcp(SPREV[j], Sj)| and |lcp(Sj, SNEXT[j])| by comparing the substrings, char-
acter by character. Note that the arrays PREV and NEXT are accessed
sequentially, so the algorithm has a good locality of reference.

• Modify the previous algorithm so that it directly computes the LZ-
factorization.

It goes beyond the scope of this book to review the history of compres-
sion algorithms based on the ideas of Abraham Lempel and Jacob Ziv.
Suffice it to say that Ziv and Lempel published two seminal papers on
lossless data compression algorithms in 1977 and 1978 [334,335], com-
monly known as LZ77 and LZ78. The LZ-factorization presented above
can be viewed as a variant of the LZ77 method, but it is not the same as
the method proposed originally in [334]. LZ-factorization algorithms that
rely on the suffix array and the LCP-array include [1,56,65–67]. The pre-
sentation of Section 5.2.1 follows the approach in [65], while Section 5.2.2
originates from [250]. The reader can find more material on the topic in
Section 7.5.6.

5.3 Finding repeats

In the analysis of a genome, a basic task is to locate and characterize
the repetitive sequences (repeats). While bacterial genomes usually do
not contain large amounts of repetitive sequences, a considerable portion
of the genomes of higher organisms is composed of repeats. For example,
more than half of the 3 billion basepairs of the (haploid) human genome is
composed of repeats [161]. The repetitive elements of the human genome
can be classified into two large groups: dispersed repetitive DNA and

5.3 Finding repeats 139

tandemly repeated DNA. Dispersed repetitions vary in size and content
and fall into two basic categories: transposable elements and segmental
duplications [161]. Transposable elements belong to one of the following
four classes: SINEs (short interspersed nuclear elements), LINEs (long
interspersed nuclear elements), LTRs (long terminal repeats), and trans-
posons. Segmental duplications, which might contain complete genes,
have been divided into two classes: those that are chromosome-specific
and those that have trans-chromosome duplications [255].

Tandem repeats (those that are found directly adjacent to one another)
can also be classified into two categories: simple sequence repetitions
(relatively short strings such as microsatellites) and larger ones, which
are called blocks of tandemly repeated segments.

Clearly, one needs extensive algorithmic support for a systematic study
of repetitive DNA on a genomic scale. References to software tools for find-
ing repeats in genome sequences can be found in [142]. In this section,
we present basic algorithms for this task. We start with the definitions of
the different types of repeats.

Definition 5.3.1 A non-empty substring ω of S is a repeat if it occurs at
least twice in S.

As an example, consider the string S = ctaataatg. The substring taat is a
repeat of length 4, aat and taa are repeats of length 3, etc.

Definition 5.3.2 A repeat ω of S is a maximal repeat if any extension of ω
occurs fewer times in S than ω.

In our example, the substring taat is a maximal repeat of the string
S = ctaataatg but the substrings aat and taa are not maximal repeats. For
instance, if we extend the substring aat by the character t to the left, then
the resulting substring taat occurs as often in S as aat.

Definition 5.3.3 A repeat ω of S is a supermaximal repeat if ω is not a
proper substring of another repeat.

As an example, consider the string S = aacaaccac. The supermaximal
repeats of length ≥ 2 are aac and ca. Note that ac is not a supermaxi-
mal repeat because it is a proper substring of the repeat aac. Exercise
5.3.4 asks you to prove that every supermaximal repeat is also a maximal
repeat.

Exercise 5.3.4 Show that a supermaximal repeat ω must necessarily be
a maximal repeat.

Articles on finding the above-mentioned kinds of repeats include [1,31,
114,139,235,260,263,265]. A tandem repeat consists of two occurrences
of the same substring that are directly adjacent to each other. For ex-
ample, aacaac is a tandem repeat of S = aacaaccac. We will treat tandemly
repeated substrings in Section 5.3.6.

140 5 Applications of Enhanced Suffix Arrays

i SA LCP S[SA[i]− 1] SSA[i] lcp-intervals
1 3 −1 t aataatg

0

1
3

2 6 3 t aatg
3 4 1 a ataatg

2
4 7 2 a atg
5 1 0 $ ctaataatg
6 9 0 t g
7 2 0 c taataatg

1
4

8 5 4 a taatg
9 8 1 a tg
10 −1

Figure 5.10: Enhanced suffix array and lcp-intervals of S = ctaataatg.

5.3.1 Longest repeats

Lemma 5.3.5 Let m be the maximum value in the LCP-array of S. A non-
empty substring ω of S is a longest repeat if and only if the ω-interval [i..j]
is an lcp-interval of lcp-value |ω| = m.

Proof “if”: If the ω-interval is a (non-singleton) lcp-interval of lcp-value
m, then ω is a repeat of length m. It is a longest repeat because there
cannot be a repeat of length greater than m (otherwise m would not be the
maximum value in the LCP-array).

“only if”: Suppose that ω is a longest repeat. If |ω| were not the maximum
value in the LCP-array, then there would be a longer repeat. So we must
have |ω| = m. Because ω is a repeat, the ω-interval [i..j] satisfies i < j and
LCP[k] ≥ m for all k with i < k ≤ j. Now the lemma follows from the fact
that LCP[k] > m is impossible. �

Lemma 5.3.5 can be rephrased as follows: ω is a longest repeat if and
only if |ω| = m and the ω-interval [i..j] satisfies i < j and LCP[k] = m for all
k with i < k ≤ j.

For example, the maximum value in the LCP-array of S = ctaataatg is 4;
see Figure 5.10. Consequently, all longest repeats in S must have length
4. There is only one lcp-interval of lcp-value 4, namely the interval [7..8].
Hence there is only one longest repeat in S. Because the lcp-interval 4-
[7..8] represents taat, the string taat is the longest repeat in S.

The simple computation of all longest repeats can be found in Algorithm
5.12. Note that the maximum entry m in the LCP-array of S can be ob-
tained as a by-product of the construction of the LCP-array or by a linear
scan of the LCP-array. It follows as a consequence that Algorithm 5.12

5.3 Finding repeats 141

Algorithm 5.12 Computation of all longest repeats.
m← max{LCP[i]|1 ≤ i ≤ n}
for i← 1 to n do

if LCP[i] = m and LCP[i+ 1] 6= m then /* avoids redundant output */
output S[SA[i]..SA[i] +m− 1]

runs in O(n) time. To prove the correctness of the algorithm, consider an
index i with LCP[i] = m and LCP[i+ 1] 6= m. Since m is the maximum entry
in the LCP-array, it follows that LCP[i+1] < m. In other words, i is the right
boundary of an m-interval. By Lemma 5.3.5, the string S[SA[i]..SA[i]+m−1]
is a longest repeat. Because Algorithm 5.12 considers all m-intervals, it
outputs all longest repeats.

At first glance, the worst-case time complexity of Algorithm 5.12 seems
to be O(n). Quite surprisingly, however, this is not true because the to-
tal length of all longest repeats of a string may be proportional to n log n.
To see this, we need a de Bruijn sequence. In combinatorial mathemat-
ics, a de Bruijn sequence (named after the Dutch mathematician Nicolaas
Govert de Bruijn) of order k on the alphabet Σ is a cyclic string that con-
tains each string from Σk exactly once as a substring. For example, the
cyclic string 0000100110101111 is a de Bruijn sequence of order 4 on the
binary alphabet {0, 1}. Figure 5.11 shows how cyclic and non-cyclic de
Bruijn sequences can be constructed. Several other algorithms that con-
struct de Bruijn sequences can be found in [182].

Lemma 5.3.6 The total length of all longest repeats in a non-cyclic binary
de Bruijn sequence S of order k is Ω(n log n), where n = 2k+k−1 is the length
of S.

Proof A de Bruijn sequence of order k on the alphabet Σ = {0, 1} contains
each string from Σk exactly once as a substring. In other words, all longest
repeats must have a length smaller than k. Let ω ∈ Σk−1. Since both ω0
and ω1 are substrings of S, ω is a repeat. In fact, it is a longest repeat
because it has length k − 1 and all longest repeats have a length < k.
This shows that all 2k−1 binary strings of length k − 1 are longest repeats;
see Figure 5.12. It follows as a consequence that the total length of all
longest repeats in S equals 2k−1(k− 1). Since n = 2k+k− 1, or equivalently,
2k−1 = n−k+1

2
, we derive

2k−1(k − 1) =
n− k + 1

2
log2

(
n− k + 1

2

)
In conjunction with k ≤ n

2
, this proves the lemma. �

142 5 Applications of Enhanced Suffix Arrays

001

100

010 101 111

011

000

110

0011

0101

1010

0100

0000

1100

1111

0111

1110

0110
1001

0001

1000

10110010

1101

Figure 5.11: In the de Bruijn graph for k and the alphabet Σ (here k = 4
and Σ = {0, 1}), there is a node for each string from Σk−1.
Furthermore, the graph has an edge (u, v) if there is a string
w ∈ Σk so that u is a prefix and v is a suffix of w. In this
case, the edge (u, v) is labeled with w. The de Bruijn graph
has an Eulerian cycle (a cycle that traverses each edge of the
graph exactly once) because each node has indegree and out-
degree |Σ|; see Exercise 5.3.7. In the graph above, the path
0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010,
0101, 1011, 0111, 1111, 1110, 1100, 1000 is an Eulerian
cycle. The concatenation of the first characters of the edge
labels spells out the cyclic string 0000100110101111. By
construction, the cyclic string ω obtained from an Eulerian
cycle has length |Σ|k, and it contains each length k string on
Σ exactly once as a substring. Hence it is a de Bruijn se-
quence of order k on the alphabet Σ. Note that a non-cyclic
de Bruijn sequence of length |Σ|k+k−1 can be obtained from
a cyclic de Bruijn sequence ω by appending the length k − 1
prefix ω[1..k−1] to it. In our example, the non-cyclic de Bruijn
sequence 0000100110101111000 is obtained from the cyclic
de Bruijn sequence 0000100110101111 by appending 000 to
it.

5.3 Finding repeats 143

i SA LCP S[SA[i− 1]] SSA[i]

1 19 −1 0 0
2 18 1 0 00
3 17 2 1 000
4 1 3 $ 0000100110101111000
5 2 3 0 000100110101111000
6 3 2 0 00100110101111000
7 6 3 1 00110101111000
8 4 1 0 0100110101111000
9 10 3 1 0101111000
10 7 2 0 0110101111000
11 12 3 1 01111000
12 16 0 1 1000
13 5 3 0 100110101111000
14 9 2 1 10101111000
15 11 3 0 101111000
16 15 1 1 11000
17 8 3 0 110101111000
18 14 2 1 111000
19 13 3 0 1111000
20 −1

Figure 5.12: Suffix array and LCP-array of the non-cyclic binary de Bruijn
sequence S = 0000100110101111000 of order 4.

Let us resume the analysis of the worst-case time complexity of Algo-
rithm 5.12. Its run time is O(n + z), where z is the size of the output,
but z is not bounded by O(n). In other words, the run time of Algorithm
5.12 depends not only on the size of the input but also on the size of
the output. An algorithm with this property is called output-sensitive al-
gorithm. If the output size varies widely, for example from linear in the
size of the input to quadratic in the size of the input, then analyses that
take the output size explicitly into account can produce better run time
bounds that differentiate algorithms that would otherwise have identical
asymptotic complexity. For example, an algorithm with worst-case time
complexity O(n + z), where z can (but must not) be proportional to n2, is
better than an algorithm with a run time Θ(n2). The latter always runs
in quadratic time, whereas the former runs in linear time whenever the
output size is linear.

Of course, Algorithm 5.12 can be turned into a linear-time algorithm.
If it just reports that a longest repeat of length m starts at position SA[i]
(so instead of the string S[SA[i]..SA[i] + m − 1], an implicit representation

144 5 Applications of Enhanced Suffix Arrays

thereof is output), then its worst-case time complexity is O(n) because at
most one longest repeat can start at any (fixed) position in S.

Exercise 5.3.7 An Eulerian cycle of a connected, directed graph G =
(V,E) is a cycle that traverses each edge of G exactly once, although it
may visit a vertex more than once.

• Show that G has an Eulerian cycle if and only if indegree(v) =
outdegree(v) for each node v ∈ V .

• Describe an O(|E|) time algorithm to find an Eulerian cycle of G if
one exists.

Exercise 5.3.8 Draw the de Bruijn graph for k = 2 and the alphabet
Σ = {a, c, g, t}. Find an Eulerian cycle in the graph and write down the
corresponding de Bruijn sequence.

Exercise 5.3.9 Show that a longest repeat ω must necessarily be a su-
permaximal repeat (hence a maximal repeat).

5.3.2 Supermaximal repeats

Lemma 5.3.11 provides a characterization of supermaximal repeats that
directly leads to a linear-time algorithm to find all of them.

Definition 5.3.10 An lcp-interval `-[i..j] is called a local maximum in the
LCP-array if LCP[k] = ` for all k with i+ 1 ≤ k ≤ j.

It is rather obvious that the local maxima in the LCP-array are the leaves
of the lcp-interval tree without singleton intervals. For instance, in the
LCP-array of Figure 5.10 (page 140), the local maxima are the intervals
[1..2], [3..4], and [7..8].

Lemma 5.3.11 A non-empty substring ω of S is a supermaximal repeat if
and only if

• the ω-interval [i..j] is an lcp-interval of lcp-value ` = |ω| that is a local
maximum in the LCP-array, and

• the characters S[SA[i] − 1], S[SA[i + 1] − 1], . . . , S[SA[j] − 1] are pairwise
distinct.1

1To cope with the case SA[i] = 1, we tacitly assume that S[0] = $, where $ is a character
that does not occur in S.

5.3 Finding repeats 145

Proof “if”: Since ω is a common prefix of the suffixes SSA[i], . . . , SSA[j] and
i < j, it is a repeat of length `. The characters S[SA[i] + `], S[SA[i + 1] +
`], . . . , S[SA[j] + `] are pairwise distinct because [i..j] is a local maximum in
the LCP-array. By the second condition, the characters S[SA[i]−1], S[SA[i+
1]− 1], . . . , S[SA[j]− 1] are also pairwise distinct. It follows that there is no
repeat in S that contains ω. In other words, ω is a supermaximal repeat.

“only if”: Suppose ω is a supermaximal repeat of length |ω| = `. Let [i..j]
be the ω-interval, i.e., SA[i], SA[i+1], . . . , SA[j], 1 ≤ i < j ≤ n, are the consec-
utive entries in SA so that ω is a common prefix of SSA[i], SSA[i+1], . . . , SSA[j],
but neither of SSA[i−1] nor of SSA[j+1]. Because ω is supermaximal, the
characters S[SA[i] + `], S[SA[i + 1] + `], . . . , S[SA[j] + `] are pairwise distinct.
Hence LCP[k] = ` for all k with i + 1 ≤ k ≤ j. Furthermore, LCP[i] < ` and
LCP[j + 1] < ` hold because [i..j] is the ω-interval (otherwise ω would also
be a prefix of SSA[i−1] or SSA[j+1]). All in all, [i..j] is a local maximum of the
array LCP. Finally, the characters S[SA[i]− 1], S[SA[i+ 1]− 1], . . . , S[SA[j]− 1]
are pairwise distinct because ω is supermaximal. �

In view of Lemma 5.3.11, we say that a local maximum `-[i..j] in the LCP-
array induces a supermaximal repeat if the string ω = S[SA[i]..SA[i] + `− 1]
is a supermaximal repeat. According to Lemma 5.3.11, we can compute
all supermaximal repeats of a string S as follows:

(a) Find all local maxima in the LCP-array of S.

(b) For every local maximum `-[i..j] check whether S[SA[i]−1], S[SA[i+1]−
1], . . . , S[SA[j] − 1] are pairwise distinct characters. If so, report that
`-[i..j] induces a supermaximal repeat.

Note that the output size of the algorithm is O(n) because the number of
local maxima (hence the number of supermaximal repeats) is smaller than
n. By contrast, if the algorithm would output all supermaximal repeats
explicitly, then the output size would not be linear (combine Lemma 5.3.6
with Exercise 5.3.9).

We claim that there is a procedure call superMax(〈`, lb, k−1〉) in Algorithm
5.13 only if `-[lb..k − 1] is a local maximum. Exercise 5.3.12 asks you to
prove that Algorithm 5.13 does not miss a local maximum (i.e., if `-[i..j]
is a local maximum, then the procedure superMax(〈`, i, j〉) will be called).
Altogether, this implies the correctness of Algorithm 5.13.

To prove our claim, we show that the for-loop of Algorithm 5.13 keeps
the invariant locMax = true if and only if the sequence LCP[lb], LCP[lb +
1], . . . , LCP[k] satisfies LCP[lb] < LCP[lb + 1] = · · · = LCP[k], where k is the
loop-variable. For each k, 2 ≤ k ≤ n + 1, the algorithm compares the
lcp-value m = LCP[k] with the previous lcp-value ` = LCP[k − 1] and distin-
guishes three cases (a) m > `, (b) m < `. and (c) m = `.
(a) If m > `, then lb is set to k−1 because a potential local maximum starts

146 5 Applications of Enhanced Suffix Arrays

Algorithm 5.13 Computation of local maxima.
`← −1 /* LCP[1] = −1 */
locMax← false
for k ← 2 to n+ 1 do
m← LCP[k]
if m > ` then
lb← k − 1
locMax← true

else if m < ` and locMax = true then
/* `-[lb..k − 1] is a local maximum */
superMax(〈`, lb, k − 1〉)
locMax← false

`← m

at this index and the Boolean variable locMax is set to true. Note that the
invariant holds because locMax = true and LCP[lb] = LCP[k−1] < LCP[k]. (In
particular, after the first iteration of the for-loop, we have locMax = true
and LCP[lb] = LCP[1] = −1 < LCP[2] = LCP[k].)
(b) If m < `, then there are two subcases. Either (i) locMax = true or (ii)
locMax = false. In case (i), we have LCP[lb] < LCP[lb + 1] = · · · = LCP[k − 1]
by the loop-invariant. In combination with LCP[k − 1] = ` > m = LCP[k],
this implies that `-[lb..k − 1] is a local maximum. Thus Algorithm 5.13
tests whether this local maximum induces a supermaximal repeat. Fur-
thermore, it sets locMax to false. Note that LCP[lb] < LCP[lb + 1] = · · · =
LCP[k − 1] = LCP[k] does not hold because LCP[k − 1] > LCP[k]. Therefore,
the invariant is satisfied. In case (ii), we have locMax = false and nothing
is done. As in case (i), we conclude that the invariant holds.
(c) If m = `, then nothing is done. It is readily verified that the invariant
holds in this case, too.

Exercise 5.3.12 Let `-[i..j] be an arbitrary but fixed local maximum.
Show that Algorithm 5.13 calls the procedure superMax(〈`, i, j〉).

For each local maximum `-[i..j], the procedure superMax must test if it
induces a supermaximal repeat. In principle, this rather simple problem
can be solved as follows:

• Initialize a bit array B of size σ containing a series of zeros.

• Scan through the sequence S[SA[i] − 1], S[SA[i + 1] − 1], . . . , S[SA[j] − 1]
of characters, and for each character c encountered do:

– if B[c] = 0 (c has not been seen before), set B[c] to 1,

– if B[c] = 1 (c has been seen before), stop the scan.

5.3 Finding repeats 147

Algorithm 5.14 Procedure superMax(〈`, i, j〉) tests whether the lcp-interval
`-[i..j] induces a supermaximal repeat. It uses two global variables: a bit
array B of size σ initially containing a series of zeros and an initially empty
list.
pd← true
k ← i
while k ≤ j and pd = true do
c← S[SA[k]− 1]
if B[c] = 0 then
B[c]← 1
add(list, c)
k ← k + 1

else
pd← false

for each c in list do /* reset B and list */
B[c]← 0
remove(list, c)

if pd = true then
report that `-[i..j] induces a supermaximal repeat

• If the scan was not stopped, report that `-[i..j] induces a supermaxi-
mal repeat.

There is a caveat, though. The run time of this algorithmic solution de-
pends on the alphabet size σ. The bit array B must be initialized for each
local maximum, and the time to do this is proportional to σ. Because the
number of local maxima can be proportional to n (see Exercise 5.3.13),
the time to compute all supermaximal repeats can be proportional to nσ.
However, it is not difficult to obtain an alphabet independent run-time of
O(n). To this end, Algorithm 5.14 uses two global variables: the bit array
B and an extra list that is used to record which characters have appeared
during the scan of the interval [i..j]. Note that the size of the list cannot
exceed the size of [i..j] (nor σ). After the scan, the list is used to reset B in
such a way that it again contains a series of zeros.

Exercise 5.3.13 Show that the number of local maxima in the LCP-array
of a non-cyclic binary de Bruijn sequence S of order k is Ω(n), where
n = 2k + k − 1 is the length of S.

Exercise 5.3.14 Prove that the combination of Algorithms 5.13 and 5.14
applied to a string of length n reports (implicit representations of) all su-
permaximal repeats in a worst-case time complexity of O(n).

148 5 Applications of Enhanced Suffix Arrays

5.3.3 Maximal repeats

We start with a characterization of maximal repeats that will help us to
develop a linear-time algorithm to find them all.

Lemma 5.3.15 A non-empty substring ω of S is a maximal repeat if and
only if

• the ω-interval [i..j] is an lcp-interval of lcp-value ` = |ω|, and

• the characters S[SA[i]− 1], S[SA[i+ 1]− 1], . . . , S[SA[j]− 1] are not all the
same.2

Proof “if”: Since ω is a common prefix of the suffixes SSA[i], . . . , SSA[j] and
i < j, it is a repeat of length `. The characters S[SA[i] + `], S[SA[i + 1] +
`], . . . , S[SA[j]+`] are not all the same because [i..j] is an lcp-interval. Thus,
if we extend ω by one character to the right, the resulting string occurs
less often in S than ω. Analogously, if we extend ω by one character to the
left, then the resulting string occurs less often in S than ω because the
characters S[SA[i] − 1], S[SA[i + 1] − 1], . . . , S[SA[j] − 1] are not all the same.
Consequently, ω is a maximal repeat.

“only if”: Suppose ω is a maximal repeat. Let [i..j] be the ω-interval,
i.e., SA[i], SA[i+ 1], . . . , SA[j] are the consecutive entries in SA so that ω is a
common prefix of SSA[i], SSA[i+1], . . . , SSA[j], but neither of SSA[i−1] nor of SSA[j+1].
First, [i..j] is a non-singleton interval because ω is a repeat. Second, we
have LCP[k] ≥ ` for all k with i + 1 ≤ k ≤ j and LCP[i] < ` as well as
LCP[j + 1] < `. Moreover, because ω is maximal, the characters S[SA[i] +
`], S[SA[i+1]+`], . . . , S[SA[j]+`] are not all the same. Hence LCP[k] = ` for a k
with i+1 ≤ k ≤ j. All in all, [i..j] is a non-singleton lcp-interval of lcp-value
` = |ω|. Finally, the characters S[SA[i]− 1], S[SA[i+1]− 1], . . . , S[SA[j]− 1] are
not all the same because ω is maximal. �

In view of Lemma 5.3.15, we say that an lcp-interval `-[i..j] induces a
maximal repeat if the string ω = S[SA[i]..SA[i] + `− 1] is a maximal repeat.

According to Lemma 5.3.15, maximal repeats can be computed by a
bottom-up traversal of the lcp-interval tree (Algorithm 4.6 on page 94). If
an lcp-interval lastInterval = [lb..rb] of lcp-value ` is popped from the stack
in the while-loop of Algorithm 4.6, then we have rb = k − 1, where k is the
current value of the loop variable. The procedure process must report that
lastInterval induces a maximal repeat (namely S[SA[lb]..SA[lb] + `− 1]) if and
only if the characters S[SA[lb] − 1], S[SA[lb + 1] − 1], . . . , S[SA[rb] − 1] are not
all the same. This test can be done by keeping track of the largest index
lastdiff < k at which S[SA[lastdiff −1]−1] and S[SA[lastdiff]−1] differ (initially

2To cope with the case SA[i] = 1, we tacitly assume that S[0] = $, where $ is a character
that does not occur in S.

5.3 Finding repeats 149

Algorithm 5.15 Computation of maximal repeats by a bottom-up traver-
sal of the lcp-interval tree.
push(〈0, 1〉)
lastdiff ← 1
for k ← 2 to n+ 1 do
lb← k − 1
while LCP[k] < top().lcp do
lastInterval← pop()
lb← lastInterval.lb
`← lastInterval.lcp
if lastdiff > lb then

report that `-[lb..k − 1] induces a maximal repeat
if LCP[k] > top().lcp then
push(〈LCP[k], lb〉)

if S[SA[k − 1]− 1] 6= S[SA[k]− 1] then
lastdiff ← k

lastdiff = 1). Since lastdiff ≤ rb, the characters S[SA[lb] − 1], S[SA[lb + 1] −
1], . . . , S[SA[rb]− 1] are not all the same if and only if lastdiff > lb.

Pseudo-code for the computation of maximal repeats by this approach
can be found in Algorithm 5.15. In contrast to Algorithm 4.6, the elements
on the stack are just pairs 〈lcp, lb〉, where lcp is the lcp-value of the interval
and lb is its left boundary. This is because the algorithm does not need
child information and the right boundary of an interval that is processed
is rb = k− 1. Algorithm 5.15 runs in linear time because there are at most
n − 1 lcp-intervals. If the algorithm would output all maximal repeats
explicitly, then its worst-case time complexity would be O(n + z), where
the output size z can be quadratic (this happens e.g. for the input S = an,
which consists of n copies of the character a).

5.3.4 Maximal repeated pairs

In this section, we address the problem of finding dispersed repeats in a
string S. The algorithm we are going to present was first discovered and
published by Baker [26]; see also [1,139].

Definition 5.3.16 Let us represent the occurrence of the substring S[i..j]
of S by the pair (i, j). A repeated pair 〈(i, j), (i′, j′)〉 is a pair of two different
occurrences (i, j) and (i′, j′) of the same substring S[i..j] = S[i′..j′] of S,
where i < i′. (i, j) is called the left instance of the repeated pair and (i′, j′)
is called the right instance.

150 5 Applications of Enhanced Suffix Arrays

a
i j

b︸ ︷︷ ︸
S[i..j]

c
i′ j′

d︸ ︷︷ ︸
S[i′..j′]

Figure 5.13: If S[i..j] = S[i′..j′] and i < i′, then 〈(i, j), (i′, j′)〉 is a repeated
pair. It is maximal if and only if S[i− 1] = a 6= c = S[i′ − 1] and
S[j + 1] = b 6= d = S[j′ + 1].

〈(3, 6), (8, 11)〉 gcgc maximal
〈(3, 5), (8, 10)〉 gcg
〈(4, 6), (9, 11)〉 cgc
〈(3, 4), (8, 9)〉 gc
〈(4, 5), (9, 10)〉 cg
〈(5, 6), (10, 11)〉 gc
〈(3, 4), (5, 6)〉 gc maximal
〈(3, 4), (10, 11)〉 gc maximal
〈(5, 6), (8, 9)〉 gc maximal
〈(8, 9), (10, 11)〉 gc maximal

Figure 5.14: All repeated pairs of the string S = aggcgctgcgcc that have at
least two characters.

Note that the left instance and the right instance of a repeated pair may
overlap. Although this definition seems reasonable at first glance, a closer
look reveals that it may lead to a huge number of repeated pairs: consider
for example the string S = an. To avoid redundant repeated pairs, we
confine ourselves to maximal repeated pairs.

Definition 5.3.17 A repeated pair 〈(i, j), (i′, j′)〉 is left maximal if i = 1 or
S[i − 1] 6= S[i′ − 1], and it is right maximal if j′ = n or S[j + 1] 6= S[j′ + 1]. A
repeated pair is maximal if it is left maximal and right maximal.

Figure 5.13 illustrates the notions, while Figure 5.14 lists all repeated
pairs of the string S = aggcgctgcgcc that have a length ≥ 2. The maximal
repeated pairs are marked in the last column. Note that non-maximal
repeated pairs can easily be obtained from the maximal repeated pairs.
For example, the five non-maximal repeated pairs in Figure 5.14 can be
derived from the first maximal repeated pair by the deletion of one or two
characters.

We now develop the algorithm that computes all maximal repeated pairs
and demonstrate how it operates on the string S = aggcgctgcgcc. Let [i..j]

5.3 Finding repeats 151

be an `-interval and ω = S[SA[i]..SA[i] + `− 1]. Define

P[i..j] = {SA[k] | i ≤ k ≤ j}

i.e., P[i..j] is the set of all positions p in S so that ω is a prefix of Sp. We divide
P[i..j] into disjoint and possibly empty sets according to the characters to
the left of each position: For any a ∈ Σ define

P[i..j](a) = {p | p ∈ P[i..j] and S[p− 1] = a}

The algorithm computes these sets of positions by a bottom-up traversal
of the lcp-interval tree. This means that the lcp-interval [i..j] is processed
after all its child intervals have been processed already.

Suppose that [i..j] is a singleton interval, i.e., i = j. In this case, the
preceding definitions imply P[i..i] = {p}, where p = SA[i], and

P[i..i](a) =

{
{p} if S[p− 1] = a
∅ otherwise

The lcp-interval tree of the string S = aggcgctgcgcc is shown in Figure 5.15.
It is annotated with the non-empty sets of positions at its singleton inter-
vals.

Now suppose that i < j. For each a ∈ Σ, P[i..j](a) is computed step by
step while processing the child intervals of [i..j]. These are processed from
left to right. Suppose that they are numbered, and that we have already
processed q child intervals of [i..j]. By Pq[i..j](a) we denote the subset of
P[i..j](a) obtained after processing the q-th child interval of [i..j]. Let [i′..j′]
be the (q+1)-th child interval of [i..j]. Due to the bottom-up strategy, [i′..j′]
has been processed and hence the set of positions P[i′..j′](b) is available for
any b ∈ Σ.

The interval [i′..j′] is processed in the following way: First, repeated pairs
are output by combining the sets of positions Pq[i..j](a) and P[i′..j′](b). To be
more precise, for all p ∈ Pq[i..j](a) and p′ ∈ P[i′..j′](b) with a 6= b, we output
〈(p, p+ `− 1), (p′, p′ + `− 1)〉 if p < p′ and 〈(p′, p′ + `− 1), (p, p+ `− 1)〉 if p′ < p.

It is clear that 〈(p, p+`−1), (p′, p′+`−1)〉 is indeed a repeated pair because
S[p..p + `− 1] = ω = S[p′..p′ + `− 1]. By construction, only those positions p
and p′ are combined for which the characters immediately to the left, i.e.,
at positions p− 1 and p′ − 1, are different. This guarantees left-maximality
of the reported repeated pairs. Moreover, the set of positions Pq[i..j](a) was
inherited from child intervals of [i..j] that are different from [i′..j′]. Hence
the characters immediately to the right of ω at positions p + ` and p′ + `
(if they exist) are different. As a consequence, the reported repeated pairs
are also right-maximal (hence maximal).

Once the maximal repeated pairs for the current child interval [i′..j′]
have been output, the union Pq+1

[i..j](c) = P
q
[i..j](c)∪P[i′..j′](c) is computed for all

c ∈ Σ. That is, [i..j] inherits the sets of positions from [i′..j′].

152 5 Applications of Enhanced Suffix Arrays

0−[1..12]

[1,1]

(⊥|1)

1−[2..6]

[2,2]

(c|12)

[3,3]

(g|11)

3−[4..5]

[4,4]

(g|9)

[5,5]

(g|4)

[6,6]

(g|6)

1−[7..11]

2−[7..10]

[7,7]

(c|10)

4−[8..9]

[8,8]

(t|8)

[9,9]

(g|3)

[10,10]

(c|5)

[11,11]

(a|2)

[12,12]

(c|7)

Figure 5.15: The lcp-interval tree of the string S = aggcgctgcgcc with po-
sition sets at singleton intervals. Only non-empty sets of
positions are shown, i.e., if P[i..i](a) = {SA[i]}, then this is dis-
played as (a|SA[i]).

5.3 Finding repeats 153

0−[1..12]

1−[7..11]

c 5;10

g 3

t 8

〈(8, 9)(10, 11)〉
〈(3, 4)(10, 11)〉
〈(5, 6)(8, 9)〉
〈(3, 4)(5, 6)〉

2−[7..10]

[7,7]

(c|10)

4−[8..9]

[8,8]

(t|8)

[9,9]

(g|3)

g 3

t 8

〈(3, 6)(8, 11)〉 [10,10]

(c|5)

[11,11]

(a|2)

[12,12]

(c|7)

Figure 5.16: The annotation for the right part of the lcp-interval tree of
Figure 5.15 and some repeated pairs.

154 5 Applications of Enhanced Suffix Arrays

Figure 5.16 exemplifies the computation of maximal repeated pairs by a
bottom-up traversal of the lcp-interval tree of the string aggcgctgcgcc. Sup-
pose that the traversal has reached node 2-[7..10], i.e., the child intervals
of 2-[7..10] have been processed already. The algorithm starts with the first
child interval [7..7] of 2-[7..10]. Because all sets of positions of 2-[7..10] are
initially empty, no repeated pair is output and node 2-[7..10] inherits the
set of positions P[7..7](c) = {10} from [7..7]. Then the second child interval
[8..9] is processed. This means that P[8..9](g) = {3} and P[8..9](t) = {8} are
combined with P[7..10](c) = {10}. The maximal repeated pairs 〈(3, 4), (10, 11)〉
and 〈(8, 9), (10, 11)〉 are output and node 2-[7..10] inherits P[8..9](g) = {3} and
P[8..9](t) = {8} from [8..9]. Finally, the third child interval [10..10] is pro-
cessed. Its set of positions P[10..10](c) = {5} can only be combined with
P[7..10](g) = {3} and P[7..10](t) = {8} but not with P[7..10](c) = {10}. Therefore,
the maximal repeated pairs 〈(3, 4), (5, 6)〉 and 〈(5, 6), (8, 9)〉 are output and
2-[7..10] inherits the set of positions P[10..10](c) = {5} from [10..10], so that
P[7..10](c) = {5, 10}, P[7..10](g) = {3}, and P[7..10](t) = {8}.

The algorithm described above can be implemented by Algorithm 4.6
(page 94), which traverses the lcp-interval tree in linear time in a bottom-
up fashion. The procedure process in Algorithm 4.6 must be implemented
in such a way that it outputs maximal repeated pairs and maintains sets
of positions on the stack (which are added as a fifth component to the
quadruples).

We now have a closer look at the two operations that are performed
when processing an lcp-interval [i..j]. To combine two sets of positions
boils down to computing their Cartesian product, and each element of the
Cartesian product is a maximal repeated pair. Thus, the combinations
can be computed in O(z) time, where z is the number of maximal repeated
pairs. The union of two sets of positions can be implemented in constant
time if one uses linked lists. For each lcp-interval, there are O(σ) union
operations. Since O(n) lcp-intervals have to be processed, the algorithm
runs in O(nσ + z) time.

Let us analyze the space consumption of the algorithm. A set of po-
sitions P[i..j](a) is the union of sets of positions of the child intervals of
[i..j]. If the child intervals of [i..j] have been processed, the correspond-
ing sets of positions are obsolete. Hence it is not required to copy sets of
positions. Moreover, we only have to store the sets of positions for those
lcp-intervals that are on the stack used for the bottom-up traversal of the
lcp-interval tree. So it is natural to store references to the sets of positions
on the stack together with other information about the lcp-interval. Thus
the space required for the sets of positions is determined by the maximal
size of the stack. Since this is O(n), the space requirement is O(nσ). In
practice, however, the stack size is much smaller.

5.3 Finding repeats 155

Exercise 5.3.18 Prove that ω is a maximal repeat if and only if there is a
maximal repeated pair 〈(i, j), (i′, j′)〉 so that ω = S[i..j].

Exercise 5.3.19 Show that the number of right maximal repeated pairs
is bounded by O(n2). Prove that the number of maximal repeated pairs
of a non-cyclic binary de Bruijn sequence S of order k is Ω(n2), where
n = 2k + k − 1 is the length of S.

5.3.5 Non-overlapping repeats

In the preceding sections, we did not care whether the repeats were over-
lapping or not. Next, we show how to find non-overlapping repeats.

Definition 5.3.20 A repeated pair 〈(i, j), (i′, j′)〉 is said to be non-
overlapping if j < i′, i.e., its left instance S[i..j] does not overlap with its
right instance S[i′..j′]. Otherwise, it is called overlapping. A repeat ω is
non-overlapping if there is a non-overlapping repeated pair 〈(i, j), (i′, j′)〉 so
that ω = S[i..j]. Otherwise, it is called overlapping.

Again, consider the string S = ctaataatg. The longest non-overlapping
repeats are aat and taa because the repeat taat is overlapping.

Lemma 5.3.21 Let `-[i..j] be an lcp-interval that represents the non-empty
string ω. Define p = min{SA[k] | i ≤ k ≤ j}, q = max{SA[k] | i ≤ k ≤ j}, and
m = min{q − p, `}. If m > 0, then we have:

1. The prefix u = S[SA[i]..SA[i] +m− 1] of ω is a non-overlapping repeat.

2. If m > `par, where `par is the lcp-value of the parent interval of `-[i..j],
then every prefix of ω that is longer than u (if there is one) is an over-
lapping repeat.

Proof (1) The pair 〈(p, p+m−1), (q, q+m−1)〉 is a repeated pair because m ≤ `
and S[p..p+ `− 1] = ω = S[q..q+ `− 1] have S[p..p+m− 1] = u = S[q..q+m− 1]
as a consequence. Furthermore, it is non-overlapping because m ≤ q − p
implies p+m− 1 < q. So u is a non-overlapping repeat.
(2) Let m > `par. If m = `, then u = ω and there is no prefix of ω that is
longer than u. So suppose m < ` and let v be a prefix of ω that is longer
than u. The inequalities `par < m < ` imply that [i..j] is the v-interval, i.e.,

• v is not a prefix of SSA[i−1],

• v is a prefix of SSA[k] for all i ≤ k ≤ j,

• v is not a prefix of SSA[j+1].

156 5 Applications of Enhanced Suffix Arrays

Moreover, m < ` means that m = q − p. It follows that for all r and s
with i ≤ r < s ≤ j the repeated pair 〈(SA[r], SA[r] + |v|), (SA[s], SA[s] + |v|)〉 is
overlapping because |SA[r] − SA[s]| ≤ q − p = m = |u| < |v|. Hence v is an
overlapping repeat. �

Exercise 5.3.22 Use the string S = aaaac to show the necessity of the
condition m > `par in statement (2) of Lemma 5.3.21.

With the help of Lemma 5.3.21, all longest non-overlapping repeats can
be computed by a bottom-up traversal of the lcp-interval tree; see Al-
gorithm 4.6 (page 94). Our algorithm maintains the currently longest
non-overlapping repeats in a list Lcur and their length in `cur. When the
procedure process in Algorithm 4.6 is applied to the current lcp-interval
`-[i..j], all its child intervals, say [i1..j1], [i2..j2], . . . , [ik..jk] are known (some
of them may be singleton intervals), as well as their minimum SA-values
p1, . . . , pk (where pr = min{SA[k] | ir ≤ k ≤ jr} for 1 ≤ r ≤ k) and their maxi-
mum SA-values q1, . . . , qk (where qr = max{SA[k] | ir ≤ k ≤ jr} for 1 ≤ r ≤ k).
Then, procedure process computes p = min{SA[k] | i ≤ k ≤ j} and q =
max{SA[k] | i ≤ k ≤ j} by p = min{pr | 1 ≤ r ≤ k} and q = max{qr | 1 ≤ r ≤ k},
respectively. Furthermore, it computes m = min{q− p, `} and the lcp-value
`par of the parent interval of `-[i..j] (recall that `par = max{LCP[i], LCP[j + 1]}
by Corollary 4.3.10). Now the algorithm proceeds by case analysis:

• If m ≤ `par, there is nothing to do because in this case the repeat
u = S[SA[i]..SA[i] +m − 1] will be considered when the parent interval
of `-[i..j] is processed.

• If m > `par, then by Lemma 5.3.21, u = S[SA[i]..SA[i] + m − 1] is the
longest prefix of ω that is a non-overlapping repeat. In this case
there are further case distinctions:

– If m > `cur, then u is longer than the currently longest non-
overlapping repeat. Hence we update `cur and Lcur by the as-
signments `cur ← m and Lcur ← [u].

– If m = `cur, then u is added to the list Lcur.

– If m < `cur, there is nothing to do.

Upon termination of the algorithm, the list Lcur contains all longest non-
overlapping repeats of S and `cur is their length.

Exercise 5.3.23 Analyze the worst-case time complexity of the algorithm
described above.

5.3 Finding repeats 157

a a c c a a c c a a c c a a
(2,13,4)

(1,12,4)

Figure 5.17: The tandem arrays (1, 12, 4) and (2, 13, 4) are overlapping.

5.3.6 Maximal periodicities

Next, we tackle the problem of finding tandemly repeated substrings in a
string S of length n. Before presenting an optimal time algorithm, we de-
velop a simpler O(n log n)-time algorithm to find all maximal periodicities.

In this section, it is convenient to use the following notation:

• lcp(i, j) = lcp(Si, Sj)

• lcs(i, j) = lcs(S[1..i], S[1..j])

Definition 5.3.24 If a non-empty string ω can be written as ω = uk for
some k ≥ 2, then it is called a tandem array (or integer repetition) with
period-length |u|; otherwise ω is called primitive. A tandem repeat (or
square) is a tandem array ω = uk with k = 2.

Let b and e be positions in S (i.e., 1 ≤ b ≤ e ≤ n) and ` be a positive integer.
The triple (b, e, `) is a tandem array in S if S[b..e] is a tandem array with
period-length `, i.e., S[b..e] = uk for some k ≥ 2, where u consists of the first
` characters of S[b..e] (note that this implies 1 ≤ ` ≤ e−b+1

2
). Such a tandem

array is called right-maximal if (b, e + `, `) is not a tandem array in S, i.e.,
if there is no additional occurrence of u immediately after S[b..e] = uk in S;
it is called left-maximal if (b − ` + 1, e, `) is not a tandem array in S, i.e., if
there is no additional occurrence of u immediately preceding S[b..e] = uk in
S. It is called maximal if it is left- and right-maximal.

As an example consider the string S = aaccaaccaaccaa. Clearly, every
occurrence of aa and cc is a maximal tandem repeat in S with period-
length 1. Besides those, there are the following maximal tandem arrays
in S: (1, 12, 4), (2, 13, 4), and (3, 14, 4). Note that these three tandem arrays
are overlapping; the overlap of (1, 12, 4) and (2, 13, 4) is visualized in Figure
5.17. To avoid overlapping tandem arrays with the same period-length,
we introduce periodicities.

Definition 5.3.25 If a non-empty string ω can be written as ω = ukv,
where k ≥ 2 and v is a proper prefix of u, then it is called a periodicity (or
fractional repetition) with period-length |u|. The triple (b, e, `) is a periodicity
in S if S[b..e] is a periodicity with period-length ` (note that this implies

158 5 Applications of Enhanced Suffix Arrays

1 ≤ ` ≤ e−b+1
2

). Such a periodicity in S is called left-maximal if it cannot be
extended to the left, i.e., if (b − 1, e, `) is not a periodicity in S; it is called
right-maximal if it cannot be extended to the right, i.e., if (b, e + 1, `) is not
a periodicity in S. It is said to be a maximal if it is left- and right-maximal.

Lemma 5.3.26

1. A string ω of length m is a periodicity with period-length ` if and only
if ` ≤ m

2
and ω[i] = ω[i+ `] for all i with 1 ≤ i ≤ m− `.

2. (b, e, `) is a periodicity in S if and only if ` ≤ e−b+1
2

and S[i] = S[i + `]
for all i with b ≤ i ≤ e − ` (or equivalently, S[i − `] = S[i] for all i with
b+ ` ≤ i ≤ e).

3. The periodicity (b, e, `) in S is right-maximal if and only if e = n or
S[e+ 1− `] 6= S[e+ 1].

4. The periodicity (b, e, `) in S is left-maximal if and only if b = 1 or S[b −
1 + `] 6= S[b− 1].

Proof (1) If ω is a periodicity with period-length `, then it can be written
as ω = ukv, where u = ω[1..`], k ≥ 2 and v is a proper prefix of u. This
immediately implies ` ≤ m

2
. For i with 1 ≤ i ≤ m − ` there exist unique

integers q and r so that i = q`+ r and 0 ≤ r < `. It follows that

ω[i] = ω[q`+ r] = u[r] = ω[(q + 1)`+ r] = ω[i+ `]

Conversely, let ` ≤ m
2

and ω[i] = ω[i + `] for all i with 1 ≤ i ≤ m − `. Let q
and r be the unique integers so that m = q` + r and 0 ≤ r < `. Note that
q ≥ 2 because ` ≤ m

2
. Define u = ω[1..`] and v = ω[1..r]. Then u = ω[1..`] =

· · · = ω[(q − 1)` + 1..q`] and v = ω[1..r] = ω[` + 1..r + `] = · · · = ω[q` + 1..r + q`].
Consequently, ω = uqv, where v is a proper prefix of u.
(2) This is a direct consequence of (1).
(3) “if”: If e = n, then the periodicity (b, e, `) cannot be extended to the right,
hence it is right-maximal. If e 6= n and S[e+1− `] 6= S[e+1], then (b, e+1, `)
is not a periodicity by (2). Consequently, (b, e, `) is right-maximal.
“only if”: If e 6= n and S[e + 1 − `] = S[e + 1], then (b, e + 1, `) is a periodicity
by (2). This means that (b, e, `) in S is not right-maximal.
(4) Analogous to (3). �

Figure 5.18 depicts all maximal periodicities in S = aaccaaccaaccaa. It is
obvious that the periodicity (2, 13, 4) is neither left- nor right-maximal in
the string S = aaccaaccaaccaa; see Figure 5.19.

5.3 Finding repeats 159

a a c c a a c c a a c c a a
(1,2,1)

(1,14,4)

(3,4,1) (5,6,1) (7,8,1) (9,10,1) (11,12,1) (13,14,1)

Figure 5.18: All maximal periodicities in the string S = aaccaaccaaccaa.

a a c c a a c c a a c c a a
(2,13,4)

Figure 5.19: The periodicity (2, 13, 4) is neither left- nor right-maximal.

An O(n log n)-time algorithm

Definition 5.3.27 We say that a periodicity (b, e, `) has a

• period to the left of position i if b + ` ≤ i ≤ e+ 1, i.e., if it contains the
`-length substring S[i− `..i− 1] of S ending immediately to the left of
i (exclusive of i).

• period starting at position i if b ≤ i ≤ e − ` + 1, i.e., if it contains the
`-length substring S[i..i+ `− 1] of S starting at position i.

Exercise 5.3.28 Let (b, e, `) be a periodicity. Show that b ≤ i ≤ e implies

• (b, e, `) has a period to the left of i, or

• (b, e, `) has a period starting at i (or both).

A first algorithm to find all maximal periodicities relies on the following
fact: If there is a periodicity in S with period length ` that has a period to
the left of position i in S, then the maximal extension of the periodicity

• to the left of i− ` (exclusive of i− `) consists of L = |lcs(i− 1− `, i− 1)|
characters (see Figure 5.20),

• to the right of position i (inclusive of i) consists of R = |lcp(i− `, i)|
characters (see Figure 5.21), and

• L+R ≥ ` (see Figure 5.22).

As a matter of fact, we prove a slightly more general statement in Lemma
5.3.29.

Lemma 5.3.29 For ` and i with 1 ≤ ` ≤ bn
2
c and ` + 1 ≤ i ≤ n + 1, let

L = |lcs(i− 1− `, i− 1)| and R = |lcp(i− `, i)|. Then the following statements
are equivalent:

160 5 Applications of Enhanced Suffix Arrays

lcs(i− 1− `, i− 1)

lcs(i− 1− `, i− 1)

S[1..i− 1]

S[1..i− 1− `]
i`

Figure 5.20: If there is a periodicity in S with period length ` having a
period to the left of position i, then the maximal extension of
the periodicity to the left of position i − ` (exclusive of i − `)
consists of |lcs(i− 1− `, i− 1)| characters.

lcp(i− `, i)

lcp(i− `, i)

Si

Si−`

i

Figure 5.21: If there is a periodicity in S with period length ` having a
period to the left of position i, then the maximal extension of
the periodicity to the right of position i (inclusive of i) consists
of |lcp(i− `, i)| characters.

L R

RL

SiS[1..i− 1]

Si−`S[1..i− 1− `]

Figure 5.22: If there is a periodicity in S with period length ` having a
period to the left of position i, then its maximal extension
to the left consists of L = |lcs(i− 1− `, i− 1)| characters, its
maximal extension to the right consists of R = |lcp(i− `, i)|
characters, and L+R ≥ `.

5.3 Finding repeats 161

1. There is a maximal periodicity (b, e, `) in S that has a period starting at
position i− ` in S (i.e., b ≤ i− ` ≤ e− `+ 1).

2. There is a maximal periodicity (b, e, `) in S that has a period to the left
of position i in S (i.e., b+ ` ≤ i ≤ e+ 1).

3. L+R ≥ `.

4. (i− `− L, i− 1 +R, `) is a maximal periodicity in S.

Proof (1)⇒ (2): Straightforward.
(2) ⇒ (3): S[b..e] can be written as S[b..e] = uvw with u = S[b..i − ` − 1],
v = S[i − `..i − 1], and w = S[i..e]. Observe that u = ε (i.e., b = i − `) and
w = ε (i.e., e = i − 1) is possible. According to Lemma 5.3.26, we have
S[j] = S[j − `] for all j with b + ` ≤ j ≤ e because (b, e, `) is a periodicity
in S. This implies that w = S[i..e] is a prefix of S[i − `..n]. Since (b, e, `) is
right-maximal, either e = n or the inequality S[e + 1] 6= S[e + 1 − `] holds.
Therefore, w is the longest common prefix of S[i..n] and S[i − `..n], i.e.,
w = lcp(i− `, i). A similar argumentation shows that u = lcs(i− 1− `, i− 1).
It is clear that e− b+1 = |S[b..e]| = |uvw| = L+ `+R. Moreover, 2` ≤ e− b+1;
cf. Definition 5.3.25. Hence L+R = e− b+ 1− ` ≥ `.
(3)⇒ (4): Define u = lcs(i− 1− `, i− 1), v = S[i− `..i− 1], and w = lcp(i− `, i).
Note that u = S[i − ` − L..i − 1 − `] and w = S[i..i − 1 + R]. It follows that
uvw = S[i− `− L..i− 1 +R].

We claim that (i − ` − L, i − 1 + R, `) is a periodicity in S. It is a direct
consequence of the definition of w that S[j− `] = S[j] for all i ≤ j ≤ i−1+R,
or equivalently, S[j] = S[j + `] for all i− ` ≤ j ≤ i− 1+R− `. Analogously, it
follows from the definition of u that S[j] = S[j+`] for all i−`−L ≤ j ≤ i−1−`.
In summary, we derive S[j] = S[j + `] for all i − ` − L ≤ j ≤ i − 1 + R − `.
Moreover, the string S[i−`−L..i−1+R] has length (i−1+R)−(i−`−L)+1 =
R + ` + L ≥ 2`, where the last inequality follows from the assumption
L+R ≥ `. According to Lemma 5.3.26, this proves the claim.

It is readily verified that S[i− ` + R] = S[i + R] would imply that w is not
the longest common prefix of Si−` and Si. Analogously, S[i − 1 − ` − L] =
S[i− 1− L] would contradict the fact that u = lcs(i− 1− `, i− 1). Therefore,
(i− `− L, i− 1 +R, `) is a maximal periodicity in S.
(4)⇒ (1): This is obvious. �

Lemma 5.3.30 Two maximal periodicities (b, e, `) and (b′, e′, `) with the
same period length ` coincide (i.e., b = b′ and e = e′) if they overlap by
at least ` characters .

Proof Suppose that for some `′ ≥ `, the last `′ characters of S[b..e] overlap
the first `′ characters of S[b′..e′], i.e., S[e − `′ + 1..e] = S[b′..b′ + `′ − 1]. By
Lemma 5.3.26, we have S[i] = S[i + `] for all i with b ≤ i ≤ e − ` and
S[j] = S[j + `] for all j with b′ ≤ j ≤ e′ − `. The combination of these facts

162 5 Applications of Enhanced Suffix Arrays

Algorithm 5.16 Finding all maximal periodicities in S.
for `← 1 to bn

2
c do

i← 2`+ 1
while i ≤ n+ 1 do
L← |lcs(i− 1− `, i− 1)|
R← |lcp(i− `, i)|
if L+R ≥ ` and R < ` then

output maximal periodicity (i− `− L, i− 1 +R, `)
i← i+ `

yields S[i] = S[i+ `] for all i with min{b, b′} ≤ i ≤ max{e− `, e′− `}. Since both
periodicities are left-maximal, b = b′ follows. Similarly, we derive e = e′

from the right-maximality of the periodicities. �

As a corollary to the preceding lemma, we conclude that if there is a
maximal periodicity (b, e, `) in S that has a period to the left of position i
in S, then (b, e, `) is the only maximal periodicity with this property. More-
over, b = i − ` − |lcs(i− 1− `, i− 1)| and e = i − 1 + |lcp(i− `, i)| by Lemma
5.3.29.

A naive algorithm for finding all maximal periodicities would use Lemma
5.3.29 for every position i in S and every possible period-length ` to test
whether there is a maximal periodicity. Clearly, this naive algorithm has
a worst-case running time of O(n2). The time complexity can be improved
if one does not test at every position, but only at every `-th position. The
pseudo-code of this improved algorithm can be found in Algorithm 5.16.
We would like to stress that the extra conditions R < ` in Algorithm 5.16
solely serves the purpose of avoiding that a maximal periodicity is output
more than once.

Theorem 5.3.31 Algorithm 5.16 outputs each maximal periodicity (b, e, `)
exactly once.

Proof Consider a fixed period length `, where 1 ≤ ` ≤ bn
2
c. In Algorithm

5.16, i is initially set to 2` + 1 and then incremented by ` at the end of
each iteration of the while-loop. Thus, at the beginning of the (k − 1)-th
iteration of the while-loop, we have i = k`+ 1, where 2 ≤ k ≤ bn

`
c. We show

that in this iteration Algorithm 5.16 outputs every maximal periodicity
(b, e, `) with k` ≤ e < (k + 1)` exactly once. Note that such a maximal
periodicity must have a period to the left of position i = k`+ 1.

In the (k−1)-th iteration of the while-loop, Algorithm 5.16 tests whether
L + R ≥ ` holds. If so, there is a maximal periodicity (i− `− L, i− 1 + R, `)
having a period to the left of position i by Lemma 5.3.29 (hence k` ≤
e). This maximal periodicity will be output only if R < `, which implies

5.3 Finding repeats 163

i − 1 + R = k` + R < (k + 1)`. It should be emphasized that if the same
maximal periodicity was detected in a previous iteration of the while-loop,
it was not output there because of the condition R < `. Moreover, the
same maximal periodicity will not be detected in the k-th iteration of the
while-loop (nor in later iterations), because it does not have a period to the
left of position (k + 1)` + 1. This is because it ends strictly before position
(k + 1)`. �

Let us analyze the worst-case complexity of Algorithm 5.16. It employs
period-lengths from 1 to bn

2
c in the outer for-loop, and for every period-

length `, it tests O(n
`
) positions in the inner while-loop. Therefore, the

overall number of positions that are tested is O(
∑n

2
`=1

n
`
). We have

n
2∑
`=1

n

`
= n

n
2∑
`=1

1

`
≤ n (1 + loge

n

2
)

because 1 + loge n is an upper bound for the n-th harmonic number Hn =∑n
`=1

1
`
; see e.g. [61]. Consequently, the algorithm tests O(n log n) positions.

This coincides with its overall running time because one execution of the
body of the while-loop requires only constant time; see Section 4.2.2.

An optimal time algorithm

Below we present an optimal time algorithm, which in its final form is
due to Kolpakov and Kucherov [185]. (An alternative algorithm was de-
veloped contemporaneously by Gusfield and Stoye [141].) To deal with
boundary cases, we assume from now on that S ends with the sentinel
character $. The algorithm is based on the Lempel-Ziv factorization S =
s1 . . . sm of S, which is explained in Section 5.2. For each factor sj, let
bj and ej be its start and end position in S. As in Section 5.2, we as-
sume that the LZ-factorization of S is represented by a sequence of pairs
(PrevOcc1, LPS1), . . . , (PrevOccm, LPSm):

• If LPSj = 0, then sj = PrevOccj = c is the first occurrence of the char-
acter c in S.

• Otherwise, LPSj = |sj| > 0 and PrevOccj is a position in s1s2 · · · sj−1 at
which a previous occurrence of sj starts.

Definition 5.3.32 A periodicity (b, e, `) is of type 2 if it is properly con-
tained in some factor sj = S[bj..ej] of the Lempel-Ziv factorization of S, that
is, bj < b < e < ej. A periodicity that is not of type 2 is of type 1.

The overall structure of the optimal time algorithm is:

164 5 Applications of Enhanced Suffix Arrays

1. Compute the Lempel-Ziv factorization of S in linear time.

2. Find all maximal periodicities of type 1.

3. Find all maximal periodicities of type 2.

We shall see that each of these three steps can be done in optimal time.
As already mentioned, the algorithm was given by Kolpakov and Kucherov
[185]. However, crucial parts should be attributed to Crochemore [64]
(who first used the Lempel-Ziv factorization in this context) and to Main
and Lorentz [210,211] (who showed how to find all maximal periodicities
of type 1).

Throughout this section, we use the string S = aaccaaccaaccaa$ as an ex-
ample. Figure 5.23 shows its Lempel-Ziv factorization, Figure 5.24 depicts
all maximal periodicities of type 1, and Figure 5.25 depicts all maximal pe-
riodicities of type 2.

a a c c a a c c a a c c a a $

Figure 5.23: Lempel-Ziv factorization of the string S = aaccaaccaaccaa$.

a a c c a a c c a a c c a a $

(1,2,1)

(1,14,4)

(3,4,1) (5,6,1) (13,14,1)

Figure 5.24: All maximal periodicities of type 1.

a a c c a a c c a a c c a a $

(7,8,1) (9,10,1) (11,12,1)

Figure 5.25: All maximal periodicities of type 2.

Computation of maximal periodicities of type 1

In the following, let S = s1 . . . sm be the Lempel-Ziv factorization of S, where
sj = S[bj..ej]. Let (b, e, `) be a maximal periodicity of type 1 that ends within
some factor, say sj. There are the following cases:

5.3 Finding repeats 165

a a c c a a c c a a c c a a $

(1,2,1)

(1,14,4)

(3,4,1)

Figure 5.26: Maximal periodicities that cross the border between factors.

a a c c a a c c a a c c a a $

(5,6,1)

Figure 5.27: The maximal periodicity (5, 6, 1) starts at b5 = 5.

1. b < bj ≤ e ≤ ej, i.e., (b, e, `) crosses the border to the neighboring factor
sj−1; see Figure 5.26.

In this case, (b, e, `) has a period to the left of bj or a period starting at
bj (or both). To get mutually exclusive cases, we further divide this
case into the following two subcases:

a) (b, e, `) has a period to the left of bj.

b) (b, e, `) has a period starting at bj, but no period to the left of bj.

In this case, the period length ` must satisfy ` ≤ |sj| because the
periodicity ends within sj.

2. b = bj < e ≤ ej, i.e., (b, e, `) starts at position bj and ends at or before
position ej; see Figure 5.27.

As in the previous case, this means that (b, e, `) has a period starting
at bj and ` ≤ |sj|.

3. bj < b < e = ej, i.e., (b, e, `) starts after position bj and ends at position
ej: see Figure 5.28.

In this case, (b, e, `) has a period to the left of bj+1. Because it starts
after bj, the period length ` must satisfy ` ≤ |sj|.

a a c c a a c c a a c c a a $

(13,14,1)

Figure 5.28: The maximal periodicity (13, 14, 1) ends at e5 = 14.

166 5 Applications of Enhanced Suffix Arrays

In other words, we can find all maximal periodicities of type 1 by testing
at each position bj whether there is a maximal periodicity having a period
to the left of bj or starting at bj. Moreover, the test for a periodicity having
a period starting at bj can be restricted to period lengths ` that are smaller
than or equal to |sj|. (If ` > |sj| were true, then the periodicity would not
end within sj.) The key observation that will yield a linear-time algorithm
to find all maximal periodicities of type 1 is that the test for a periodicity
having a period left of bj can also be restricted to certain period lengths,
as shown in the next lemma; cf. [210,211].

Lemma 5.3.33 Let (b, e, `) be a periodicity that has a period to the left of
position bj, the beginning of factor sj, 2 ≤ j ≤ m. Then we have:

1. e ≤ ej.

2. If ej−1 < e, then (b, e, `) does not have a period to the left of bj−1.

3. If ej−1 < e, then |S[b..e]| < 2|sj−1sj| (hence ` < |sj−1sj|).

Proof (1) Suppose to the contrary that e > ej. Consider the suffix
ω = S[bj..e] of S[b..e] and note that |ω| > |sj| = |S[bj..ej]| because e > ej.
Since (b, e, `) has a period to the left of position bj and ej < e, it follows
b+ ` ≤ bj ≤ ej < e. Moreover, because S[b..e] is a periodicity of period length
`, we have S[i − `] = S[i] for all i with b + ` ≤ i ≤ e by Lemma 5.3.26. This
implies S[bj− `..e− `] = S[bj..e], and hence S[bj− `..e− `] is a previous occur-
rence of ω in S. This, however, contradicts the definition of the Lempel-Ziv
factorization, according to which sj is the longest prefix of S[bj..n] having
a previous occurrence in S.
(2) If (b, e, `) also has a period to the left of position bj−1, then we infer from
(1) that e ≤ ej−1. This, however, contradicts the assumption e > ej−1.
(3) Suppose to the contrary that |S[b..e]| ≥ 2|sj−1sj|, or equivalently, that
1
2
|S[b..e]| ≥ |sj−1sj|. This implies that at least half of S[b..e] occurs strictly

before factor sj−1. Since |S[b..e]| ≥ 2`, at least ` characters of S[b..e] oc-
cur strictly before the start position bj−1 of factor sj−1. In other words,
(b, e, `) has a period to the left of position bj−1. This, however, contradicts
statement (2). �

The pseudo-code for the computation of all maximal periodicities of type
1 can be found in Algorithm 5.17.

Theorem 5.3.34 Algorithm 5.17 outputs every maximal periodicity of type
1 exactly once.

Proof Let s1 . . . sm be the Lempel-Ziv factorization of S, where sj = S[bj..ej].
For a fixed j, 2 ≤ j ≤ m, we show that Algorithm 5.17 outputs every
maximal periodicity (b, e, `) exactly once, which

5.3 Finding repeats 167

Algorithm 5.17 Computation of all maximal periodicities of type 1.
Compute the Lempel-Ziv factorization s1 . . . sm of S, where sj = S[bj..ej].
for j ← 2 to m do

/* test for a maximal periodicity having a period to the left of bj */
for `← 1 to min{|sj−1sj| − 1, ej−1} do
L← |lcs(ej−1 − `, ej−1)|
R← |lcp(bj − `, bj)|
if L+R ≥ ` and (R ≥ 1 or bj − `− L > bj−1) then

output maximal periodicity (bj − `− L, ej−1 +R, `)
/* test for a maximal periodicity having a period starting at bj */

for `← 1 to |sj| do
L′ ← |lcs(ej−1, ej−1 + `)|
R′ ← |lcp(bj, bj + `)|
if L′ +R′ ≥ ` and bj + `− 1 +R′ ≤ ej and L′ < ` then

output maximal periodicity (bj − L′, ej−1 + `+R′, `)

1. ends within factor sj and crosses the border to the neighboring factor
sj−1 (i.e., b < bj ≤ e ≤ ej), where either

a) (b, e, `) has a period to the left of bj (hence ` < |sj−1sj| by Lemma
5.3.33), or

b) (b, e, `) has a period starting at bj, but no period to the left of bj
(hence ` ≤ |sj|);

2. starts at bj and ends at or before ej (hence ` ≤ |sj|);

3. starts after bj−1 and ends at ej−1 (hence ` ≤ |sj−1|).

If (b, e, `) has a period to the left of bj, i.e., b + ` ≤ bj < e, then we have
e ≤ ej by Lemma 5.3.33. Algorithm 5.17 detects the maximal periodicity
(b, e, `) because L + R ≥ ` must hold by Lemma 5.3.29. It outputs (b, e, `)
only if (case 1a) it ends within sj (this is the case if R ≥ 1), or if (case 3) it
ends at position ej−1 and starts after position bj−1 (this is the case if R = 0
and bj − `− L > bj−1).

If (b, e, `) has a period starting at bj and ` ≤ |sj| (cases 1b and 2), then
Algorithm 5.17 detects the maximal periodicity (b, e, `) because L′ + R′ ≥ `
by Lemma 5.3.29. It outputs (b, e, `) only if it ends within sj (this is the
case if bj + `− 1 +R′ ≤ ej) and if (b, e, `) does not have a period to the left of
bj (this is the case if L′ < `). �

Let us analyze the worst-case complexity. It is clear that Algorithm 5.17
needs only linear space. Moreover, we have seen that the Lempel-Ziv fac-
torization of S can be computed in linear time. Because the calculations
within the for-loops can be done in constant time (see Section 4.2.2), it

168 5 Applications of Enhanced Suffix Arrays

a a c c a a c c a a c c a a $

(9,10,1)

(5,6,1)

Figure 5.29: The maximal periodicity (5, 6, 1) of type 1 is a previous occur-
rence of the maximal periodicity (9, 10, 1) of type 2.

a a c c a a c c a a c c a a $

(11,12,1)

(7,8,1)

Figure 5.30: The maximal periodicity (7, 8, 1) of type 2 is a previous occur-
rence of the maximal periodicity (11, 12, 1) of type 2.

suffices to find out how often they are performed. It is quite obvious that
this number is at most

m∑
j=2

(|sj−1sj| − 1 + |sj|) < 2n+ n = 3n

Consequently, the algorithm runs in O(n) time.

Computation of maximal periodicities of type 2

The final task is to find all maximal periodicities of type 2. To accomplish
this, we make use of the fact that every maximal periodicity of this type
has a previous occurrence to the left; see Figures 5.29 and 5.30.

Lemma 5.3.35 Let b and e be positions in S so that bj < b < e < ej, where
sj = S[bj..ej] is a factor of the Lempel-Ziv factorization of S. Then (b, e, `) is a
maximal periodicity if and only if (b − δj, e − δj, `) is a maximal periodicity,
where δj = bj − PrevOccj.

Proof The condition bj < b < e < ej implies |sj| ≥ 4. Thus, PrevOccj is the
start position of a previous occurrence of sj in S. This previous occurrence
will be denoted by tj. With δj = bj − PrevOccj, we have

tj = S[bj − δj..ej − δj] = sj

The statement of the lemma “(b, e, `) is a maximal periodicity if and only
if (b − δj, e − δj, `) is a maximal periodicity” is an obvious consequence of

5.3 Finding repeats 169

Algorithm 5.18 Computation of all maximal periodicities of type 2.
Let s1 . . . sm be the Lempel-Ziv factorization of S, where sj = S[bj..ej].
For 1 ≤ i ≤ n, let L(i) be the list of all maximal periodicities of type 1
with starting position i, sorted in increasing order of the end positions.
for j ← 2 to m do

if |sj| ≥ 4 then /* a smaller factor has no periodicities of type 2 */
δj ← bj − PrevOccj
for i← bj + 1 to ej − 1 do

for each (i− δj, e, `) in L(i− δj) do
if e+ δj ≥ ej then break
output (i, e+ δj, `) and prepend it to L(i)

S[b..e] = S[b − δj..e − δj] and the fact that the characters to the left and to
the right of the occurrences coincide. More precisely, S[b− 1] = S[b− δj − 1]
and S[e + 1] = S[e − δj + 1] holds because S[b..e] is properly contained in sj
(i.e., bj < b < e < ej) and S[b− δj..e− δj] is properly contained in tj = sj (i.e.,
bj − δj < b− δj < e− δj < ej − δj). �

To retrieve all maximal periodicities of type 2, we set up an array A[1..n]
of initially empty lists L(i). Moreover, we change Algorithm 5.17 so that
each detected maximal periodicity (b, e, `) is not output, but put instead
into the list L(e) corresponding to its end position. Then we process all
lists in increasing order and sort the maximal periodicities by bucket sort
into n lists according to their starting position. After this sort, maximal
periodicities having the same starting position b occur inside list L(b) in
increasing order of their end positions. Obviously, this sorting procedure
takes linear time because there are O(n) maximal periodicities of type 1.

Now we use Lemma 5.3.35 to identify all maximal periodicities of type 2.
The pseudo-code can be found in Algorithm 5.18. The algorithm assumes
that all maximal periodicities of type 1 have been computed and those
that start at position i are stored in the list L(i) in increasing order of
their end positions. Then, for each position i strictly within factor sj, all
maximal periodicities that start at i and end strictly within factor sj can
be determined from the list L(i − δj). This is because by Lemma 5.3.35
(i − δj, e, `) is a maximal periodicity if and only if (i, e + δj, `) is a maximal
periodicity, provided that bj < i < e+δj < ej. Thus, we scan the list L(i−δj)
from left to right (in increasing order of the end positions) and an entry
(i− δj, e, `) with e < ej− δj correspond to a maximal periodicity (i, e+ δj, `) of
type 2 because it is properly contained in factor sj. Once we find an entry
(i− δj, e, `) with e ≥ ej − δj in the list L(i− δj), we can proceed with the next
position i + 1, because neither (i − δj, e, `) nor the remaining members of
the list L(i− δj) are maximal periodicities of type 2.

170 5 Applications of Enhanced Suffix Arrays

We would like to stress that Algorithm 5.18 maintains the following
invariant: after each execution of the inner for-loop, the entries in list L(i)
appear in increasing order of their end positions. This is because the new
entries have their end positions inside sj, whereas the old entries of type
1 have their end positions outside sj. Since Algorithm 5.18 proceeds from
left to right, it finds all maximal periodicities of type 2. Upon termination
of the algorithm, all maximal periodicities (of types 1 and 2) have been
computed and are stored in the lists L(i), where 1 ≤ i ≤ n.

Let us analyze the worst-case time complexity of the algorithm. When-
ever the body of the inner for-loop is executed, a maximal periodicity is
output. Therefore, the time spent by Algorithm 5.18 is proportional to the
number of all maximal periodicities of type 2. Consequently, Algorithm
5.18 computes maximal periodicities in O(n+ z) time, where z is the num-
ber of all maximal periodicities. This is optimal because n is the size of
the input and z is the size of the output.

Exercise 5.3.36 The sequence of Fibonacci strings is defined by f0 = 0,
f1 = 1, and fi = fi−1fi−2. Thus, the sequence continues with f2 = 10,
f3 = 101, f4 = 10110, and f5 = 10110101. Determine all maximal periodicities
in f7 = 101101011011010110101.

Exercise 5.3.37 Given all maximal periodicities in a string S, develop an
algorithm that computes all

• maximal tandem arrays in S,

• tandem arrays in S,

• tandem repeats in S.

Apply the algorithm to the Fibonacci string f7 = 101101011011010110101.

How many maximal periodicities can a string contain?

Definition 5.3.38 A maximal periodicity (b, e, `) is called a run if its period
length ` is minimal, i.e., for all `′ < ` the triple (b, e, `′) is not a maximal
periodicity.

The exponent of a run (b, e, `) is e−b+1
`

, i.e., it is the length of the run
divided by the period length.

The next deep theorem states that the number of runs in S is in O(n).

5.3 Finding repeats 171

Theorem 5.3.39 The following statements hold.

1. A string of length n contains at most O(n) runs; an upper bound is
c1n = 1.029n.

2. The sum of the exponents of all runs in a string of length n is in O(n);
an upper bound is c2n = 4.1n.

Proof Both results were first proved by Kolpakov and Kucherov [186], and
the upper bounds are due to Crochemore et al. [68,71]. �

Our next goal is to characterize the relationship between runs and max-
imal periodicities. Fine and Wilf’s theorem [102] (Theorem 5.3.41) plays a
crucial role, as we shall see.

Lemma 5.3.40 Let ω be a periodicity with period-lengths p and q. If p < q,
then ω is also a periodicity with period-length q − p.

Proof According to Lemma 5.3.26, we have

1. ω[i] = ω[i+ p] for all 1 ≤ i ≤ m− p and 2p ≤ m,

2. ω[i] = ω[i+ q] for all 1 ≤ i ≤ m− q and 2q ≤ m.

It follows
ω[i] = ω[i+ q] = ω[i+ q − p]

for all i with 1 ≤ i ≤ m− q, and

ω[i] = ω[i− p] = ω[i+ q − p]

for all i with p+ 1 ≤ i ≤ m− (q − p) = m− q + p. Moreover, 2(q − p) < 2q ≤ m.
Hence ω is a periodicity with period-length q − p. �

Theorem 5.3.41 If ω is a periodicity with period-lengths p and q, then it
is also a periodicity with period-length gcd(p, q), where gcd(p, q) denotes the
greatest common divisor of p and q.

Proof This follows from the repeated application of Lemma 5.3.40 in
conjunction with the correctness of the well-known Euclidean algorithm,
which determines the greatest common divisor gcd(p, q) of two positive in-
tegers p and q; see Algorithm 5.19. �

Corollary 5.3.42 There is a maximal periodicity (b, e, `) if and only if there
is a run (b, e, p) so that ` = qp for some natural number q ≤ e−b+1

2p
.

172 5 Applications of Enhanced Suffix Arrays

Algorithm 5.19 Euclidean algorithm to determine the greatest common
divisor gcd(p, q) of two positive integers p and q.
gcd(p, q)

if p = q then return p
if p < q then return gcd(p, q − p)
else return gcd(p− q, q)

Proof The if-direction is straightforward. To prove the only-if-direction,
suppose that (b, e, `) is a maximal periodicity, and observe that this im-
plies ` ≤ e−b+1

2
. Among all maximal periodicities with start position b and

end position e, let (b, e, p) be the one with smallest period-length. Clearly,
(b, e, p) is a run. According to Theorem 5.3.41, (b, e, gcd(p, `)) is also a max-
imal periodicity. Because p is minimal, it follows that p = gcd(p, `). There-
fore, ` = qp for some natural number q. �

It follows as a consequence that we can enumerate all maximal pe-
riodicities provided that all runs are known: If (b, e, p) is a run, then
(b, e, p), (b, e, 2p), (b, e, 3p), . . . , (b, e, qp) are maximal periodicities, where q =
b e−b+1

2p
c.

Corollary 5.3.43 A string S of length n contains at most c2
2
n maximal peri-

odicities, where c2 is the constant from Theorem 5.3.39.

Proof Let (b, e, p) be a run in S with exponent exp = e−b+1
p

. Because there
are q = b e−b+1

2p
c maximal periodicities corresponding to the run (b, e, p) and

2q = 2b e−b+1
2p
c ≤ exp, it follows that q ≤ exp

2
. According to Theorem 5.3.39,

the sum of the exponents of all runs in S is less than c2n. Consequently,
the number of maximal periodicities in S is bounded by c2

2
n. �

Recall that the algorithm for finding all maximal periodicities has the
worst-case time complexity O(n+ z), where z is the number of all maximal
periodicities in S. It follows from Corollary 5.3.43 that z is in O(n), so that
the worst-case time complexity of the algorithm is in fact O(n).

If one is interested in all runs of a string, then these can be obtained
in O(n) time by first computing all maximal periodicities and then remov-
ing all those having a non-minimal period length. A better solution is
to modify the algorithm for finding all maximal periodicities as follows:
When all maximal periodicities of type 1 have been stored in the lists L(i),
1 ≤ i ≤ n, in increasing order of their end positions, then maximal pe-
riodicities having the same start position b and the same end position e
occur consecutively in the list L(b). Therefore, when we scan the list L(b)
and find entries, say (b, e, `1), (b, e, `2), . . . , (b, e, `k), having the same start

5.4 Comparing two strings 173

and end positions but different period lengths, then we just keep the en-
try with minimum period length and delete the others from the list. The
resulting lists contain all runs of type 1. The rest of the algorithm remains
the same.

5.4 Comparing two strings

In solving problems that deal with the comparison of strings, it is often
desirable to know the lexicographic order of their suffixes. In this sec-
tion, we focus on two strings, but the material will later be generalized to
multiple strings.

5.4.1 Generalized suffix array

In what follows, we are given two strings of length n1 and n2, respectively.
Because these strings may share identical suffixes, we append the special
character # to the first and the sentinel character $ to the second string.
The resulting strings S1 and S2 have lengths |S1| = n1 + 1 and |S2| = n2 + 1.
We assume # < $ and that all other characters in the alphabet Σ are
larger than $. The common suffix array of S1 and S2 is an array that stores
the lexicographic order of all suffixes of S1 and S2. It can be obtained by
merging the suffix arrays SA1 and SA2 of S1 and S2; see Figures 5.31, 5.32,
and 5.33. Note that the i-th lexicographically smallest string among all
suffixes may be a suffix of S1 or of S2. To deal with this, the common suffix
array of S1 and S2 actually consists of two arrays D and SA′ defined as
follows: Sjp is the i-th lexicographically smallest string among all suffixes
of S1 and S2 if and only if D[i] = j and SA′[i] = p. In other words, the
document array D tells us to which document (string) a suffix belongs,
while the array SA′ provides its start position in that document.

The common enhanced suffix array of S1 and S2 can be obtained by
merging their enhanced suffix arrays (SA1, LCP1) and (SA2, LCP2). The merg-
ing procedure is similar to that of the merge sort algorithm; see e.g. [61].
It uses a subroutine compare(j1, j2, q), detailed in Algorithm 5.20, which
compares the suffixes S1

SA1[j1]
and S2

SA2[j2]
with offset q. More precisely,

compare(j1, j2, q) compares S1[SA1[j1]+q..n1+1] and S2[SA2[j2]+q..n2+1] char-
acter by character, and it increments q for every character match. When
the first character mismatch occurs, the procedure compare returns the
pair (q, s) consisting of the new offset q and

s =

{
1 if S1

SA1[j1]
< S2

SA2[j2]

2 otherwise

In what follows let s = 3− s, i.e., s = 1 if s = 2 and s = 2 if s = 1.

174 5 Applications of Enhanced Suffix Arrays

i SA LCP SSA[i]

1 10 −1 #
2 3 0 aataatg#
3 6 3 aatg#
4 4 1 ataatg#
5 7 2 atg#
6 1 0 ctaataatg#
7 9 0 g#
8 2 0 taataatg#
9 5 4 taatg#
10 8 1 tg#
11 −1

Figure 5.31: The enhanced suffix array of the string S1 = ctaataatg#.

i SA LCP SSA[i]

1 11 −1 $
2 3 0 aaacatat$
3 4 2 aacatat$
4 1 1 acaaacatat$
5 5 3 acatat$
6 9 1 at$
7 7 2 atat$
8 2 0 caaacatat$
9 6 2 catat$
10 10 0 t$
11 8 1 tat$
12 −1

Figure 5.32: The enhanced suffix array of the string S2 = acaaacatat$.

5.4 Comparing two strings 175

i D[i] SA′[i] LCP S
D[i]
SA′[i]

1 1 10 −1 #
2 2 11 0 $
3 2 3 0 aaacatat$
4 2 4 2 aacatat$
5 1 3 2 aataatg#
6 1 6 3 aatg#
7 2 1 1 acaaacatat$
8 2 5 3 acatat$
9 2 9 1 at$
10 1 4 2 ataatg#
11 2 7 3 atat$
12 1 7 2 atg#
13 2 2 0 caaacatat$
14 2 6 2 catat$
15 1 1 1 ctaataatg#
16 1 9 0 g#
17 2 10 0 t$
18 1 2 1 taataatg#
19 1 5 4 taatg#
20 2 8 2 tat$
21 1 8 1 tg#
22 −1

Figure 5.33: The common enhanced suffix array of S1 = ctaataatg# and
S2 = acaaacatat$.

176 5 Applications of Enhanced Suffix Arrays

Algorithm 5.20 Procedure compare(j1, j2, q) compares the suffixes S1
SA1[j1]

and S2
SA2[j2]

with offset q.

while S1[SA1[j1] + q] = S2[SA2[j2] + q] do
q ← q + 1

if S1[SA1[j1] + q] < S2[SA2[j2] + q] then
return (q, 1)

else
return (q, 2)

The pseudo-code of the merging procedure is shown in Algorithm 5.21,
and we exemplify it by merging the ESAs of the strings S1 = ctaataatg#
and S2 = acaaacatat$; see Figures 5.31 and 5.32. Let j1 and j2 be the
current indices in SA1 and SA2, respectively. After placing # and $ as the
first two entries in the common ESA, we have j1 = 2 and j2 = 2. The
procedure call compare(2, 2, 0) yields the pair (q, snew) = (2, 2), showing that
q = |lcp(S1

SA1[2]
, S2

SA2[2]
)| = 2 and S1

SA1[2]
= aataatg# > aaacatat$ = S2

SA2[2]
. Since

snew = 2 = s, LCP[3] is set to LCP2[2] = 0 and aaacatat$ is placed as the third
entry in the common ESA. Furthermore, j and j2 are incremented by one.
The merging procedure then distinguishes between the following cases:
LCPs[js] is smaller than q, larger than q, or equal to q. In our example, the
third case applies because LCP2[j2] = LCP2[3] = 2 equals q = 2. In this case,
the procedure compare is called with the parameters j1 = 2, j2 = 3, and
q = 2. Again, it returns the pair (q, snew) = (2, 2), sets LCP[4] to LCP2[3] = 2,
places aacatat$ as the fourth entry in the common ESA, and increments j
and j2 by one. Now LCP2[j2] = LCP2[4] = 1 is smaller than q = 2. This implies
that S1

SA1[j1]
= S1

SA1[2]
= aataatg# is lexicographically smaller than S2

SA2[j2]
=

S2
SA2[4]

= acaaacatat$. Consequently, aataatg# will be the fifth entry in the
common ESA. Because the previous entry aacatat$ belongs to the other
string, LCP[5] is set to q = 2, q itself gets the new value LCP2[4] = 1, and s
and s are swapped (that is, now s = 1 and s = 2). Then, aataatg# is placed
as the fifth entry in the common ESA, and both j and j1 are incremented
by one. Because LCP1[j1] = LCP1[3] = 3 > 1 = q, it follows that S1

SA1[3]
= aatg#

is also lexicographically smaller than S2
SA2[4]

= acaaacatat$. Thus, LCP[6]

is set to LCP1[3] = 3, aatg# becomes the sixth entry in the common ESA,
and j as well as j1 is incremented. The next comparison of LCP1[j1] with
q shows that these are equal (LCP1[j1] = LCP1[4] = 1). This means that the
first characters of S1

SA1[4]
= ataatg# and S2

SA2[4]
= acaaacatat$ coincide, but in

order to find out which of these two suffixes is lexicographically smaller
than the other, the procedure compare must be called with the parameters
j1 = 4, j2 = 4, and q = 1. It returns the pair (q, snew) = (1, 2), sets LCP[7]
to qold = 1, swaps s and s (so that s = 2 and s = 1), places acaaacatat$ as

5.4 Comparing two strings 177

Algorithm 5.21 Merging the suffix arrays SA1 and SA2 and the LCP-arrays
LCP1 and LCP2 of S1 and S2.
D[1]← 1; SA′[1]← SA1[1]; LCP[1]← −1
D[2]← 2; SA′[2]← SA2[1]; LCP[2]← 0
j ← 3
(j1, j2)← (2, 2)
(s, s)← (1, 2)
q ← 0
while j ≤ n1 + n2 + 2 do

/* Invariants: SsSAs[js−1] < SsSAs[js]
) and */

/* q = |lcp(SsSAs[js−1], S
s
SAs[js]

)|, where q = 0 if js > ns + 1 or js > ns + 1 */

qold ← q
if j1 ≤ n1 + 1 and j2 ≤ n2 + 1 then

(q, snew)← compare(j1, j2, q)
else

(q, snew)← (−1, s)
if snew = s then

LCP[j]← LCPs[js]
else

LCP[j]← qold
swap(s, s)

D[j]← s
SA′[j]← SAs[js]
(j, js)← (j + 1, js + 1)
while js ≤ ns + 1 and LCPs[js] 6= q do

if LCPs[js] > q then
LCP[j]← LCPs[js]

else /* LCPs[js] < q */
LCP[j]← q
q ← LCPs[js]
swap(s, s)

D[j]← s
SA′[j]← SAs[js]
(j, js)← (j + 1, js + 1)

LCP[n1 + n2 + 3]← −1

178 5 Applications of Enhanced Suffix Arrays

the seventh entry in the common ESA, and increments j and j2 by one.
Now LCP2[j2] = LCP2[5] = 3 is larger than q = 1. Hence S2

SA2[5]
= acatat$ is

lexicographically smaller than S1
SA1[4]

= ataatg#. It is placed in the common
ESA, and so on.

In order to prove the correctness of Algorithm 5.21, let j, j1, and j2 be the
current indices in SA, SA1, and SA2, respectively, and let q be the current
offset. Let us assume for a moment that j1 ≤ n1+1 and j2 ≤ n2+1. We show
that both while-loops maintain the following invariants (which obviously
hold true when the outer while-loop is reached for the first time):

1. SsSAs[js−1] < SsSAs[js]
(so D[j − 1] = s and SA[j − 1] = SAs[js − 1])

2. q = |lcp(SsSAs[js−1], S
s
SAs[js]

)|

The merging procedure stores the value of q in the variable qold and calls
the subroutine compare(j1, j2, q), which returns the pair (q, snew), where
q = |lcp(SsSAs[js]

, SsSAs[js]
)|. If snew = s, then SsSAs[js]

< SsSAs[js]
and thus SsSAs[js]

becomes the j-th entry in the common suffix array. Because this suffix
belongs to the same string Ss as the (j − 1)-th entry in the common suffix
array, LCP[j] must be set to the length of their longest common prefix,
which is LCPs[j]. Otherwise, if snew = s, then SsSAs[js]

> SsSAs[js]
and thus

SsSAs[js]
will be the j-th entry in the common suffix array. By the second

invariant, LCP[j] is correctly set to qold = |lcp(SsSAs[js−1], S
s
SAs[js]

)|. Then SsSAs[js]

is placed into the common suffix array by swapping s and s and using
the same three lines of code as in the previous case. It is readily verified
that the invariants hold when the inner while-loop is reached. The merg-
ing procedure proceeds by distinguishing between the cases (1) LCPs[js] is
larger than q, (2) smaller than q, or (3) equal to q.

1. LCPs[js] > q. The combination of the first invariant SsSAs[js−1] < SsSAs[js]

and the second invariant q = |lcp(SsSAs[js−1], S
s
SAs[js]

)| yields

Ss[SAs[js − 1] + q] < Ss[SAs[js] + q]

It further follows from

LCPs[js] = |lcp(SsSAs[js−1], S
s
SAs[js])| > |lcp(S

s
SAs[js−1], S

s
SAs[js]

)| = q

that |lcp(SsSAs[js]
, SsSAs[js]

)| = q. This, in conjunction with the fact that
the characters Ss[SAs[js − 1] + q] and Ss[SAs[js] + q] coincide, implies
that SsSAs[js]

is lexicographically smaller than SsSAs[js]
. Hence the suf-

fix SsSAs[js]
can be placed into the common ESA without any further

character comparison. Since SsSAs[j]
is a suffix of the same string as

the (j − 1)-th entry in the common suffix array, the j-th entry in the
common LCP-array must be set to LCPs[js]. After the increment of js,
both invariants are true.

5.4 Comparing two strings 179

2. LCPs[js] < q. Similar to the previous case,

LCPs[js] = |lcp(SsSAs[js−1], S
s
SAs[js])| < |lcp(S

s
SAs[js−1], S

s
SAs[js]

)| = q

has |lcp(SsSAs[js]
, SsSAs[js]

)| = LCPs[js] as a consequence. Moreover,

Ss[SAs[js] + LCPs[js]] = Ss[SAs[js − 1] + LCPs[js]] < Ss[SAs[js] + LCPs[js]]

Therefore, SsSAs[js]
is lexicographically smaller than SsSAs[js]

and it be-
comes the j-th entry in the common suffix array. Clearly, the j-th
entry in the common LCP-array must be set to q because q equals
|lcp(SsSAs[js−1], S

s
SAs[js]

)|. To ensure that the second invariant holds after
the execution of the inner while-loop, q is set to LCPs[js].

3. LCPs[js] = q. In this case, the inner while-loop is not executed at all.
Hence the invariants hold.

The boundary case (j1 > n1 + 1 or j2 > n2 + 1) still needs an explanation.
Because the last element that was inserted into the common ESA belongs
to the string Ss, the boundary case occurs for js > ns + 1. That is, all
suffixes of Ss have been placed into the common ESA and the remaining
suffixes of Ss must be inserted one by one at the end of the common
ESA. The algorithm accomplishes this by setting (q, snew) to (−1, s), having
the effect that the first of the remaining suffixes of Ss is placed into the
common ESA by the lines of code before the inner while-loop, while the
others are successively inserted by the inner while-loop.

Although Algorithm 5.21 works well in practice, it has a quadratic worst-
case time complexity. The worst case occurs when the algorithm merges
the ESAs of the same de Bruijn sequence; see Figure 5.11 (page 142). The
proof of this fact is left to the reader. Section 5.5.5 will show that the com-
mon ESA of two strings can be obtained by merging the individual suffix
arrays in linear time. As we shall see in a moment, the common suffix
array of S1 and S2 can easily be obtained from the generalized suffix array
of S1 and S2, defined as follows.

Definition 5.4.1 Given two strings S1 and S2 that do not contain the spe-
cial characters # and $, the suffix array SA of the string S = S1#S2$ is
called the generalized suffix array of S1 and S2. If S1 and S2 have # and $,
respectively, at the end (and nowhere else), then their generalized suffix
array is the suffix array SA of the string S = S1S2. If the generalized suffix
array of S1 and S2 is enhanced with further arrays, e.g. with the LCP-array,
then it will be called generalized enhanced suffix array or GESA for short.

In the rest of Section 5.4, it is convenient to assume that S1 and S2 are
already terminated by # and $.

180 5 Applications of Enhanced Suffix Arrays

i SA LCP SSA[i] D[i] SA′[i] S
D[i]
SA′[i]

1 10 −1 #acaaacatat$ 1 10 #
2 21 0 $ 2 11 $
3 13 0 aaacatat$ 2 3 aaacatat$
4 14 2 aacatat$ 2 4 aacatat$
5 3 2 aataatg#acaaacatat$ 1 3 aataatg#
6 6 3 aatg#acaaacatat$ 1 6 aatg#
7 11 1 acaaacatat$ 2 1 acaaacatat$
8 15 3 acatat$ 2 5 acatat$
9 19 1 at$ 2 9 at$
10 4 2 ataatg#acaaacatat$ 1 4 ataatg#
11 17 3 atat$ 2 7 atat$
12 7 2 atg#acaaacatat$ 1 7 atg#
13 12 0 caaacatat$ 2 2 caaacatat$
14 16 2 catat$ 2 6 catat$
15 1 1 ctaataatg#acaaacatat$ 1 1 ctaataatg#
16 9 0 g#acaaacatat$ 1 9 g#
17 20 0 t$ 2 10 t$
18 2 1 taataatg#acaaacatat$ 1 2 taataatg#
19 5 4 taatg#acaaacatat$ 1 5 taatg#
20 18 2 tat$ 2 8 tat$
21 8 1 tg#acaaacatat$ 1 8 tg#
22 −1

Figure 5.34: The suffix array of S = ctaataatg#acaaacatat$ coincides with
the common suffix array of the strings S1 = ctaataatg# and
S2 = acaaacatat$.

Figure 5.34 shows that the lexicographic order of the suffixes of S = S1S2

corresponds to the lexicographic order of all suffixes of S1 and S2. In fact,
the common suffix array of S1 and S2 can easily be obtained from the
suffix array SA of S as follows:

D[i] =

{
1 if SA[i] ≤ n1 + 1
2 otherwise

and

SA′[i] =

{
SA[i] if D[i] = 1
SA[i]− (n1 + 1) if D[i] = 2

Conversely, given the arrays D and SA′, the array SA can readily be com-
puted in linear time. Thus, the common suffix array and the suffix array

5.4 Comparing two strings 181

of the concatenated strings are two representations of the same informa-
tion. In the following, we identify them and call both the generalized suffix
array of S1 and S2. In applications, we will always use the representation
that best suits our purpose.

5.4.2 Longest common substring

Definition 5.4.2 A common substring of two strings S1 and S2 is a string
that is a substring of both S1 and S2.

The problem of finding a longest common substring of two or more strings
is a classical problem in computer science. In 1970 Donald E. Knuth con-
jectured that a linear-time algorithm for solving this problem cannot exist.
However, when Weiner [330] showed in 1973 that the suffix tree of a string
can be built in linear time, it became clear that he was wrong. A solution
to the longest common substring problem that uses the generalized suffix
tree of two strings S1 and S2 can be found, for example, in [139]. Here we
present a solution based on the GESA of S1 and S2. The following theorem
contains the key idea of our solution.

Theorem 5.4.3 Given the GESA (of size n) of the strings S1 and S2, define

M = {i | 2 ≤ i ≤ n and D[i− 1] 6= D[i]}

to be the set of all indices i so that the two consecutive entries SA[i− 1] and
SA[i] belong to different strings. Moreover, let j be an index from M so that
LCP[j] = max{LCP[i] | i ∈ M}. Then S[SA[j]..SA[j] + LCP[j] − 1] is a longest
common substring of S1 and S2.

Proof SA[j − 1] and SA[j] belong to different strings because j ∈ M . It is
a property of the ESA of S (the GESA of S1 and S2) that the length of the
longest common prefix of the suffixes SSA[j−1] and SSA[j] of S is LCP[j]. In
particular, the string

S[SA[j − 1]..SA[j − 1] + LCP[j]− 1] = S[SA[j]..SA[j] + LCP[j]− 1]

is a common substring of S1 and S2. (We observe that if LCP[j] = 0, then
S[SA[j]..SA[j] + LCP[j] − 1] is the empty string, and the empty string is a
common substring of S1 and S2.) For an indirect proof of the theorem,
suppose that there is a longer common substring ω of S1 and S2. Then
there exist indices k and l with 1 ≤ k < l ≤ n so that D[k] 6= D[l] and ω
is a common prefix of the suffixes SSA[k] and SSA[l] of S. Clearly, ω is also
a prefix of every suffix SSA[m] with k < m < l (if such an m exists). Let m
be an index so that k < m ≤ l and D[m − 1] 6= D[m]; such an index must
exist because D[k] 6= D[l]. Consequently, m ∈ M . Moreover, since ω is a

182 5 Applications of Enhanced Suffix Arrays

Algorithm 5.22 Finding a longest common substring of S1 and S2.
construct the generalized enhanced suffix array of S1 and S2

/* the first two entries correspond to # and $ */
j ← 3 /* LCP[3] = 0 */
for i← 4 to n do /* n = n1 + n2 + 2 */

if D[i− 1] 6= D[i] then
if LCP[i] > LCP[j] then
j ← i

output S[SA[j]..SA[j] + LCP[j]− 1]

common prefix of SSA[m−1] and SSA[m], it follows that LCP[m] ≥ |ω| > LCP[j].
This contradicts the fact that LCP[j] = max{LCP[i] | i ∈M}. �

It is a corollary to Theorem 5.4.3 that Algorithm 5.22 returns a longest
common substring of two strings S1 and S2. In the example of Figure 5.34,
Algorithm 5.22 returns S[SA[11]..SA[11] + LCP[11]− 1] = S[17..19] = ata.

Exercise 5.4.4 A palindrome is a string ω that reads the same backwards
as forwards, i.e., ω = ωrev, where ωrev denotes the reverse string of ω.

Given string S of length n, an odd-length substring ω of S is called a
maximal palindrome of radius k with midpoint q if ω = S[q − k..q + k] is a
palindrome but S[q − (k + 1)..q + k + 1] is not a palindrome. For example,
if S = gtaacacaagtt, then ω = aacacaa is a maximal palindrome of radius
3 with midpoint 6. Similarly, an even-length substring ω of S is called a
maximal palindrome of radius k with midpoint q if ω = S[q − k + 1..q + k] is
a palindrome but S[q − k..q + k + 1] is not a palindrome. For example, if
S = gtaaccaagtt, then ω = aaccaa is a maximal palindrome of radius 3 with
midpoint 5.

A substring ω of S is called a maximal palindrome if it is a maximal
palindrome of radius k with midpoint q for some k with 1 ≤ k ≤ n/2 and
some q with 1 ≤ q ≤ n.

Develop an algorithm that identifies all maximal palindromes of a string
S of length n in O(n) time.
Hint: Focus on how to find all even-length maximal palindromes. The
odd-length maximal palindromes can be found similarly.

• Prove that an even-length string ω is a palindrome if and only if
(ω[1..m/2])rev = ω[m/2 + 1..m], where m = |ω|.

• For a fixed position q in S, show that the radius k of the (even-length)
maximal palindrome with midpoint q (if there is one) can be com-
puted by k = |lcp(Srevn−q+1, Sq+1)|.

• Build the GESA of S and Srev and use Lemma 4.2.8.

5.4 Comparing two strings 183

5.4.3 Finding exact matches

In this section, we tackle a problem that has its origin in genome com-
parisons. Nowadays, the DNA sequences of entire genomes are being
determined at a rapid rate. When the genome sequences of closely re-
lated organisms become available, one of the first questions researchers
ask is how they align. (Alignments will be discussed in Chapter 8.) This
alignment may help, for example, in understanding why a strain of a bac-
terium is pathogenic or resistant to antibiotics while another is not. The
starting point for any comparison of large genomes (like mammalian or
plant genomes) is the computation of exact matches between their DNA
sequences. Exact matches between two strings S1 and S2 fall into three
basic categories:

• common k-mers (common substrings of a fixed length k),

• maximal unique matches (these occur only once in S1 and S2),

• maximal exact matches (these cannot be extended in either direction
towards the beginning or end of S1 and S2 without allowing for a
mismatch).

Here we show how exact matches that belong to the last two categories
can be computed. In Section 8.3, these will be used for whole genome
alignment. That is the reason why we are not really interested in the
matching substrings, but rather in their start positions and lengths.

Definition 5.4.5 An exact match between two strings S1 and S2 is a triple
(`, p1, p2) so that S1[p1..p1 + ` − 1] = S2[p2..p2 + ` − 1]. An exact match is
called right maximal if S1[p1 + `] 6= S2[p2 + `] (note that S1[n1 + 1] = # and
S2[n2 + 1] = $). It is called left maximal if S1[p1 − 1] 6= S2[p2 − 1].3 A left and
right maximal exact match is called maximal exact match (MEM).

As an example, consider the exact match (2, 4, 7) between the strings
S1 = ctaataatg# and S2 = acaaacatat$ (note that S1[4..5] = at = S2[7..8]). It is
left maximal because S1[3] = a 6= c = S2[6] but it is not right maximal as
S1[6] = a = S2[9]. By contrast, the exact match (2, 4, 9) is both left and right
maximal because S1[3] = a 6= t = S2[8] and S1[6] = a 6= $ = S2[11].

Lemma 5.4.6 A triple (`, p1, p2) is an exact match between two strings S1

and S2 if and only if 〈(p1, p1+ `− 1), (p2+n1+1, p2+n1+ `)〉 is a repeated pair
in the string S = S1S2. An exact match (`, p1, p2) is (left/right) maximal if and
only if the repeated pair 〈(p1, p1 + `− 1), (p2 + n1 + 1, p2 + n1 + `)〉 is (left/right)
maximal.

3To cope with boundary cases, we tacitly assume that S1[0] = $ and S2[0] = #.

184 5 Applications of Enhanced Suffix Arrays

Proof Straightforward. �

Consequently, maximal exact matches can be computed by the algo-
rithm that computes maximal repeated pairs; see Section 5.3.4. (A differ-
ent algorithm is presented in Section 7.6.2.)

Definition 5.4.7 A maximal unique match (MUM) between two strings S1

and S2 is a maximal exact match (`, p1, p2) between them so that the string
S1[p1..p1 + `− 1] = S2[p2..p2 + `− 1] occurs exactly once in S1 and once in S2.

The exact match (3, 4, 7) between S1 = ctaataatg# and S2 = acaaacatat$
is a maximal unique match because S1[4..6] = ata = S2[7..9] occurs exactly
once in S1 and once in S2. As a negative example, consider the maximal
exact match (2, 4, 9) between S1 and S2: it is not unique.

Lemma 5.4.8 A triple (`, p1, p2) is a maximal unique match between two
strings S1 and S2 if and only if there is an index i in the GESA of S1 and S2

so that

1. SA[i− 1] = p1 and SA[i] = p2 + n1 + 1 or vice versa,

2. ` = LCP[i],

3. S[SA[i− 1]− 1] 6= S[SA[i]− 1],4

4. LCP[i] > LCP[i− 1] and LCP[i] > LCP[i+ 1].

Proof “if”: It is a consequence of conditions (1) and (2) that (`, p1, p2) is a
right maximal exact match. By (3), it is also left maximal, hence maximal.
Condition (4) implies that there is no other suffix with prefix S1[p1..p1 + `−
1] = S2[p2..p2 + `− 1]. It follows that (`, p1, p2) is a MUM.

“only if”: If (`, p1, p2) is a maximal unique match, then the suffixes S1
p1

and S2
p2

share a common prefix ω of length ` and none of the other suffixes
starts with ω. Therefore, S1

p1
and S2

p2
must occur consecutively in the

GESA of S1 and S2. In other words, there is an index i ≥ 1 so that (1)
SA[i−1] = p1 and SA[i] = p2+n1+1 or vice versa. Because none of the other
suffixes starts with ω, we have (4) LCP[i] > LCP[i− 1] and LCP[i] > LCP[i+1].
Moreover, (2) ` = LCP[i] and (3) S[SA[i − 1] − 1] 6= S[SA[i] − 1] hold because
(`, p1, p2) is a maximal exact match. �

As a corollary, it follows that Algorithm 5.23 outputs all MUMs between
two strings S1 and S2.

Exercise 5.4.9 Apply Algorithm 5.23 to the strings S1 = ccaacga# and
S2 = cagacga$.

Exercise 5.4.10 Modify Algorithm 5.23 so that it outputs only maximal
unique matches of length ≥ `, where ` is a user-defined length threshold.

4To cope with boundary cases, we tacitly assume that S[0] = $.

5.5 Traversals with suffix links 185

Algorithm 5.23 Finding maximal unique matches of S1 and S2.
construct the generalized enhanced suffix array of S1 and S2

/* the first two entries correspond to # and $ */
for i← 4 to n do /* n = n1 + n2 + 2 */

if D[i− 1] 6= D[i] then
if S[SA[i− 1]− 1] 6= S[SA[i]− 1] then

if LCP[i] > LCP[i− 1] and LCP[i] > LCP[i+ 1]) then
if D[i− 1] = 1 then

output (LCP[i], SA[i− 1], SA[i]− n1 − 1)
else

output (LCP[i], SA[i], SA[i− 1]− n1 − 1)

5.5 Traversals with suffix links

Suffix links are a key feature of older linear-time suffix tree construction
algorithms [123, 218, 315]. We did not yet need them because the suffix
insertion algorithm presented in Section 4.4 constructs a suffix tree with
the aid of a suffix array. However, suffix links are very useful in some
applications; a prime example is the computation of matching statistics.

5.5.1 Suffix links in the suffix tree

Definition 5.5.1 Let aω be an internal node in the suffix tree ST of a
string S that is terminated by $. A pointer slink(aω) from aω to the internal
node ω is called a suffix link. The suffix link of the root node points to the
root node itself.

As a matter of fact, it is a priori not clear that for any internal node
aω, there is also an internal node ω in ST. However, it is not difficult to
see that this is indeed the case. Because every internal node aω in ST is
branching, there are two leaves i and j in the subtrees of different children
of aω. That is, aω is the longest common prefix of the suffixes Si and Sj of
S. Thus, ω is the longest common prefix of the suffixes Si+1 and Sj+1 of S.
This implies that ω is an internal node in ST.

As already mentioned, some suffix tree construction algorithms like
Ukkonen’s online algorithm [315] determine suffix links while the suf-
fix tree is built. Because we constructed suffix trees via suffix arrays, we
next provide a linear-time algorithm that establishes suffix links after the
suffix tree has been constructed.

Preprocess the suffix tree ST of string S for constant time LCA queries. In
a linear-time bottom-up traversal of ST, label each internal node aω with
a pair of leaves (i, j) so that i and j are in the subtrees of different children

186 5 Applications of Enhanced Suffix Arrays

of aω. To establish the suffix link from aω, we must find the internal node
ω. It is clear from the preceding considerations that ω = LCA(i + 1, j + 1).
Thus, ω can be found by a constant time LCA query provided that the
leaves with suffix numbers i + 1 and j + 1 can be accessed in constant
time. This can, for example, be accomplished with an array of n pointers,
where the i-th pointer points to the leaf numbered i.

Consequently, all suffix links for the O(n) internal nodes of the suffix
tree can be computed in O(n) time. In the next section, we use the same
idea in the context of suffix arrays.

5.5.2 Suffix links in the lcp-interval tree

This section shows that suffix links can be computed on the fly (i.e., they
are not stored explicitly) if SA, ISA, PSVLCP, and NSVLCP, and RMQLCP are
available. Because we deal with enhanced suffix arrays (not with suffix
trees), the string S of length n must not necessarily be terminated by $.

Definition 5.5.2 For every (non-singleton) lcp-interval `-[i..j] represent-
ing a string aω, the ω-interval is called the suffix link interval of `-[i..j]. The
suffix link interval of the lcp-interval 0-[1..n] is 0-[1..n] itself.

Observe that the suffix link interval of an lcp-interval of lcp-value 1 is
the lcp-interval 0-[1..n]. The following lemma shows that every suffix link
interval is in fact a non-singleton lcp-interval.

Lemma 5.5.3 For every lcp-interval `-[i..j] representing a string aω, where
a ∈ Σ, there is an lcp-interval of lcp-value `− 1 representing the string ω.

Proof By definition, aω is the longest common prefix of SSA[i], . . . , SSA[j]. In
particular, we have S[SA[i]..SA[i] + ` − 1] = aω = S[SA[j]..SA[j] + ` − 1] and
S[SA[i] + `] 6= S[SA[j] + `]. If we omit the first character a in aω, then we get
S[SA[i]+1..SA[i]+`−1] = ω = S[SA[j]+1..SA[j]+`−1] and S[SA[i]+`] 6= S[SA[j]+`].
In other words, ω is the longest common prefix of SSA[i]+1, . . . , SSA[j]+1. Hence
the ω-interval is an lcp-interval with lcp-value |ω| = `− 1. �

The following function will help us to find suffix link intervals.

Definition 5.5.4 For each i with SA[i] < n, define ψ[i] = ISA[SA[i] + 1].

So ψ[i] is the index at which the suffix SSA[i]+1 occurs in the suffix array.
Let us turn to the problem of finding the suffix link interval of an lcp-
interval `-[i..j] representing a string aω. The suffixes SSA[i] and SSA[j] at the
indices i and j have aω as longest common prefix. The suffixes SSA[i]+1

and SSA[j]+1 in turn have ω as longest common prefix. They can be found
at the indices ψ[i] = ISA[SA[i] + 1] and ψ[j] = ISA[SA[j] + 1]. Therefore, the

5.5 Traversals with suffix links 187

indices ψ[i] and ψ[j] belong to the ω-interval. We know by Lemma 5.5.3
that this ω-interval is an lcp-interval of lcp-value `−1, but we do not know
the boundaries of this interval. These boundaries can be identified with
the help of the arrays PSVLCP and NSVLCP; see Definition 4.3.7. First, the
range minimum query RMQLCP(ψ[i] + 1, ψ[j]) yields an (`− 1) index of the ω-
interval, say index k, and then we obtain the boundaries of the ω-interval
by p = PSVLCP[k] and q = NSVLCP[k] − 1; see Lemma 4.3.8. Algorithm 5.24
shows pseudo-code for this method. It is clear that the computation of
one suffix link can be done in constant time.

Algorithm 5.24 Computation of the suffix link of an lcp-interval [i..j].
k ← RMQLCP(ψ[i] + 1, ψ[j])
return [PSVLCP[k]..NSVLCP[k]− 1]

For example, consider the lcp-interval 2-[1..2] representing the string
aa in Figure 5.35. The range minimum query RMQLCP(ψ[1] + 1, ψ[2]) =
RMQLCP(3, 4) yields the 1-index 3 and thus the boundaries of the a-interval
are p = PSVLCP[3] = 1 and q = NSVLCP[k] − 1 = 6. Therefore, the suffix link
interval of the lcp-interval 2-[1..2] is 1-[1..6].

Some readers may wish to navigate in the (virtual) lcp-interval tree with-
out range minimum queries. We would like to point out that one can re-
place the range minimum query RMQLCP(ψ[i]+1, ψ[j]) in the computation of
a suffix link interval by a simple binary search. The task of the range min-
imum query RMQLCP(ψ[i]+1, ψ[j]) is to find an (`−1)-index, from which the
boundaries of the suffix link interval can be identified by means of the ar-
rays PSVLCP and NSVLCP. We know that the suffixes SSA[ψ[i]] and SSA[ψ[j]] have a
common prefix of length `−1 and that c = S[SA[ψ[i]]+`−1] 6= S[SA[ψ[j]]+`−1].
A binary search yields the smallest index k, ψ[i] + 1 ≤ k ≤ ψ[j], so that
S[SA[k] + `− 1] 6= c. Clearly, this index k satisfies LCP[k] = `− 1.

Exercise 5.5.5 Show that the boundaries of a suffix link interval can be
identified without PSVLCP and NSVLCP in O(log n) time by a binary search
on the LCP-array (using range minimum queries), provided that an (`− 1)
index of the suffix link interval is known.

5.5.3 Computing suffix links space efficiently

In this section, we present a linear-time algorithm that computes and
stores all suffix link intervals explicitly. Of course, the previous algorithm
can be used for this, but a big drawback is its space consumption. Aside
from the arrays SA and LCP, it needs the data structure supporting con-
stant time range minimum queries and three additional arrays ψ, PSVLCP,
and NSVLCP.

188 5 Applications of Enhanced Suffix Arrays

i SA ISA ψ LCP SSA[i] PSVLCP NSVLCP slink

1 3 3 2 −1 aaacatat
2 4 7 4 2 aacatat 1 3 [1..6]
3 1 1 7 1 acaaacatat 1 7 [1..10]
4 5 2 8 3 acatat 3 5 [7..8]
5 9 4 9 1 at 1 7
6 7 8 10 2 atat 5 7 [9..10]
7 2 6 1 0 caaacatat 1 11 [1..10]
8 6 10 6 2 catat 7 9 [1..6]
9 10 5 0 t 1 11
10 8 9 5 1 tat 9 11 [1..10]
11 −1

Figure 5.35: The enhanced suffix array of the string S = acaaacatat.

The algorithm that is described below was presented in [165] without a
proof of its linear-time complexity. It bears a strong resemblance to the
computation of the failure links in the Aho-Corasick algorithm; cf. Section
2.5. Other algorithms to compute suffix links can be found e.g. in [1,209].

First of all, how can suffix links be stored? Remember that in appli-
cations the lcp-interval tree is traversed but not really constructed. So
in contrast to suffix trees, we do not implement suffix links as pointers.
Instead, suffix links are stored in an array slink, called suffix link table. Of
course, it is sufficient to store the left and right boundary of an interval (or
alternatively, the left boundary and the size of the interval). As discussed
in Section 4.3.3, information coupled to an lcp-interval can be stored at
different locations. In the suffix link table slink, we store the suffix link
interval [p..q] of an lcp-interval `-[i..j] at the first `-index of [i..j]; see Figure
5.35 for an example.

Our space-economical algorithm computes suffix links in linear time by
a top-down traversal of the lcp-interval tree. In our opinion, the explana-
tion of how the algorithm works is easier to grasp if we use the suffix tree
instead of the lcp-interval tree. That is why we start with suffix trees.

Computing suffix links in a suffix tree

The suffix link of the root node points to the root node itself. To compute
the other suffix links, we traverse the suffix tree in a top-down fashion.
Whenever we encounter an internal node having depth d ≥ 1, we use the
fact that the suffix link of its parent node (which has depth d − 1) has
already been computed. More precisely, if node aω is the child of node α,

5.5 Traversals with suffix links 189

then we can follow the suffix link of α and reach node slink(α) in constant
time. There are two cases:

1. If α is not the root node, then (a) α = au, where u is a (possible empty)
prefix of ω, (b) slink(α) = u, and (c) ω = uv, where v is the label of the
edge from au to aω.

2. If α is the root node, then so is slink(α).

To deal with both cases simultaneously, in case (2) we set u = root (so
u = ε) and v = ω. Now we walk down from node u along the path labeled
v until the node ω is found. There is one subtlety, however, which must
be made explicit.5 Because we know that ω is a node in the suffix tree,
the edge labels on the path from the root to ω spell out the string ω = uv.
Therefore, from node u we follow the unique edge whose label, say v1,
starts with the first character of v and reach the node of uv1. This node
must be on the path from u to ω and it is unnecessary to inspect the whole
label v1. Of course, v1 is a prefix of v and we have v = v1v

′ for some string
v′. Then we follow the edge whose label v2 starts with the first character
of v′ and reach node uv1v2, again without inspecting the rest of v2. This
process is repeated until the node ω is found, and the suffix link from aω
to ω is established. It follows from the preceding discussion that the total
time to traverse the path is proportional to the number of nodes on it,
rather than the number of characters on it. Consequently, the run time
of the algorithm that computes all suffix links in this way is proportional
to the overall number of nodes traversed.

As an example, we show how the suffix link of the internal node zaxy
(node 39) in the suffix tree of the string S = azaxyzaxyzbxyzbxyzaxyx$ is
found; see Figure 5.36. The algorithm follows the suffix link of the parent
node z (node 38) to the root node, determines the edge whose label starts
with the character a, reaches node a (node 25), determines the edge whose
label starts with the character x, and reaches node axy (node 26). Thus,
the suffix link of zaxy to axy is the pointer from node 39 to node 26.

The amortized time analysis of the algorithm goes as follows. In the sit-
uation described above, if v is just one character, then the path from node
slink(α) = u to node ω has just one edge. In this case, the identification
of ω takes constant time. The algorithm must traverse extra nodes in the
down-walk only if the path from u to ω = uv has more than one node.
Suppose v = v1v2 . . . vm and the algorithm has to traverse m nodes in the
down-walk from node u to node ω, i.e., from u to uv1, from uv1 to uv1v2,
etc. We say that v is split into v1, v2, . . . , vm. We charge the split into vk and
vk+1, where 1 ≤ k < m, to the following position pk in S: Let i be the largest
suffix number in the subtree rooted at node aω; so S[i..i + |aω| − 1] = aω.

5This is known as the skip and count trick of Ukkonen’s suffix tree construction algo-
rithm [315].

190 5 Applications of Enhanced Suffix Arrays

2
4

2
3

$

2
5

1

z
..
$

2
6

1
9x
$

2
7

3

a
..
$

7

b
..
$

2
8

1
5

a
..
$

1
1

b
..
$

2
9

2
2

$

3
0

2
0x
$

3
1

3
2

1
6x
$

4

z
..
$

3
3

1
2

a
..
$

8

b
..
$

3
4

2
1x
$

3
5

3
6

1
7x
$

5

z
..
$

3
7

1
3

a
..
$

9

b
..
$

3
8

3
9

1
8x
$

4
0

2

a
..
$

6

b
..
$

4
1

1
4

a
..
$

1
0

b
..
$

a
b
x
y
z

x
y

z

x
y

z

y

z

a
x
y

b
x
y
z

z

a
x
y

b
x
y
z

a
x
y

z

b
x
y
z

Figure 5.36: Suffix tree of S = azaxyzaxyzbxyzbxyzaxyx$.

5.5 Traversals with suffix links 191

Moreover, let pk, i < pk ≤ i + |aω| − 1 be the position in S at which vk+1

starts, where 1 ≤ k < m. In other words, the split into vk and vk+1 occurs
on the path from the root to the leaf with suffix number i+ 1 between the
positions pk − 1 and pk (between the characters S[pk − 1] and S[pk]).

To illustrate this, we go back to the example of Figure 5.36. To establish
the suffix link of node bxyz (node 28), the algorithm starts at the root and
traverses the nodes x, xy, and xyz. In this case, v = xyz is split into v1 = x,
v2 = y, and v3 = z. The largest suffix number in the subtree rooted at
node bxyz is 15 and we have S[15..18] = bxyz. The split positions are p1 = 17
(because S[16..17] = xy is split into v1 = x and v2 = y) and p2 = 18 (because
S[17..18] = yz is split into v2 = y and v3 = z). As another example, consider
the construction of the suffix link of node axy (node 26). Since the suffix
link of the parent node a (node 25) points to the root, the algorithm starts
at the root and traverses the nodes x and xy. In this case, the split position
is 21 (because S[20..21] = xy is split into x and y).

We claim that for every position p in S, there is at most one split. To
substantiate the claim, we need the following lemma.

Lemma 5.5.6 Let p be a position in S and let i < p be a suffix number
so that the label Si of the path from the root to leaf i is split between the
positions p− 1 and p, i.e., the characters S[p− 1] and S[p] belong to different
edge labels. Then the same is true for every suffix number j with i < j < p.

Proof Let β be the node in the suffix tree that separates the positions p− 1
and p on the path from the root to the leaf i. That is, S[p − 1] is the last
character of the label of β’s incoming edge and S[p] is the first character
of the label of an outgoing edge. It is easy to verify that node slink(β)
separates the positions p − 1 and p on the path from the root to the leaf
i+ 1. The lemma follows by repeating the argument. �

Suppose that a split between the positions p − 1 and p occurs in the
suffix tree, and let i be the smallest leaf number so that there is such a
split on the path from the root to leaf i (in other words, on every path from
the root to leaf k, where k < i, the positions p− 1 and p belong to the same
edge label). According to Lemma 5.5.6, on every path from the root to leaf
j, where i < j < p, the positions p − 1 and p are split. Obviously, for all l
with p ≤ l, the path from the root to leaf l does not contain the position
p − 1. In summary, for every position p in S, there is at most one split.
It follows as a consequence that the overall number of extra nodes that
have to be traversed in the down-walks cannot exceed n, resulting in a
worst-case time complexity of O(n).

Computing suffix links on enhanced suffix arrays

From now on we deal with enhanced suffix arrays, so the string S of length
n must not necessarily be terminated by $. The algorithm described above

192 5 Applications of Enhanced Suffix Arrays

Algorithm 5.25 Suppose the suffix link interval [p..q] of an `-interval [i..j]
is already known. computeLink(`, p, q, i′, j′) computes the suffix link interval
[p′..q′] of a child interval `′-[i′..j′] of [i..j], stores it at the first `′-index m′ of
[i′..j′], and returns the quadruple (`′,m′, p′, q′).
m′ ← RMQLCP(i

′ + 1, j′) /* find first `′-index of [i′..j′] */
`′ ← LCP[m′]
[p′..q′]← [p..q]
c← max{`− 1, 0}
while c 6= `′ − 1 do
[p′..q′]← getInterval([p′..q′], S[SA[i′] + 1 + c])
c← LCP[RMQLCP(p

′ + 1, q′)]
slink[m′]← [p′..q′]
return (`′,m′, p′, q′)

works on lcp-interval trees as follows (Algorithm 5.26 shows pseudo-code
of the final algorithm). In a top-down traversal of the lcp-interval tree (cf.
Algorithm 4.8 on page 98), let `-[i..j] be the current lcp-interval and sup-
pose that its suffix link interval [p..q] has already been computed. The suf-
fix link interval of a child interval `′-[i′..j′] of [i..j] is computed by the pro-
cedure computeLink with input `, p, q, i′, j′; see Algorithm 5.25 for pseudo-
code.

Algorithm 5.25 determines the first `′-index m′ of [i′..j′] by the range
minimum query RMQLCP(i

′ + 1, j′) (or alternatively, with the help of the
child table; cf. Theorem 4.3.25). This takes constant time. Further-
more, the interval [p′..q′], which will eventually store the suffix link in-
terval we are searching for, is initially set to [p..q]. To determine the suf-
fix link interval of [i′..j′], we apply Lemma 5.5.3. Let aω be the string
that is represented by `′-[i′..j′]. Then, the suffix link interval of [i′..j′] is
the ω-interval, where ω = S[SA[i′] + 1..SA[i′] + `′ − 1]. If `′ = 1, then the
procedure returns (`′,m′, p′, q′). Otherwise `′ > 1. In this case, the pro-
cedure follows the path in the lcp-interval tree that corresponds to the
string ω = S[SA[i′] + 1..SA[i′] + `′ − 1], starting at the lcp-interval [p′..q′] =
[p..q] with lcp-value ` − 1. In case ` − 1 ≤ 0, the node [p′..q′] is the root
node [1..n] and the procedure getInterval([1..n], S[SA[i′] + 1]) (cf. Algorithm
5.1 on page 118) is called to find the S[SA[i′] + 1]-interval. Otherwise,
if ` − 1 > 0, then [p′..q′] = [p..q] is not the root node and the procedure
getInterval([p′..q′], S[SA[i′] + `]) is called to find the S[SA[i′] + `]-interval. In
Algorithm 5.25, both cases are treated simultaneously by setting c to
max{` − 1, 0} and calling getInterval([p′..q′], S[SA[i′] + c + 1]). Starting from
the lcp-interval returned by that procedure call, Algorithm 5.25 further
follows the path in the lcp-interval tree until the suffix link interval of
[i′..j′] is found (this is the case if c = `′−1). This path can be found charac-

5.5 Traversals with suffix links 193

Algorithm 5.26 Given an lcp-interval `-[i..j] with first `-index fst, for
which the suffix link interval [p..q] has already been computed, the proce-
dure LinkTopDown(`, i, j, fst, p, q) recursively constructs the suffix link table
of all lcp-intervals in the lcp-interval tree rooted at [i..j].
k ← i
m← fst
repeat

if k 6= m− 1 then
(`′,m′, p′, q′)← computeLink(`, p, q, k,m− 1)
LinkTopDown(`′, k,m− 1,m′, p′, q′)

k ← m /* k is left boundary of the next child interval */
if k = j then

return /* there is no more non-singleton child interval */
else
m← RMQ(k + 1, j) /* m is the next `-index unless LCP[m] 6= ` */

until LCP[m] 6= `
/* [k..j] is the last non-singleton child interval of [i..j] */
(`′,m′, p′, q′)← computeLink(`, p, q, k, j)
LinkTopDown(`′, k, j,m′, p′, q′)

ter by character if one increments c by 1 in each iteration of the while-loop.
As explained above, however, it suffices to use the first character (in the
suffix tree, one has to find the edge whose label starts with this first char-
acter). That is why we set c to the lcp-value of the current lcp-interval in
the while-loop of Algorithm 5.25.

Exercise 5.5.7 Consider the enhanced suffix array of the string S =
acaaacatat from Figure 5.35 (page 188). Under the assumption that the
suffix link interval [1..10] of the lcp-interval 1-[1..6] has already been com-
puted, the suffix link interval of the child interval 3-[3..4] can be computed
by the procedure call computeLink(1, 1, 10, 3, 4). Execute the procedure by
hand.

The procedure LinkTopDown(`, i, j, fst, p, q), detailed in Algorithm 5.26,
takes an lcp-interval `-[i..j] with first `-index fst and suffix link interval
[p..q] as input and recursively constructs the suffix link table of all lcp-
intervals in the lcp-interval tree rooted at [i..j]. Therefore, the procedure
call LinkTopDown(0, 1, n,RMQLCP(2, n), 1, n) builds the whole suffix link ta-
ble, except for the root interval 0-[1..n].6 Because the suffix link interval
of this interval is 0-[1..n] itself, the assignment slink[RMQLCP(2, n)] ← [1..n]
completes the job.

6If S is terminated by $, then 2 is the first 0-index of [1..n] because LCP[1] = −1 and
LCP[2] = 0; so the range minimum query RMQLCP(2, n) is superfluous in this case.

194 5 Applications of Enhanced Suffix Arrays

Although the first `-index fst of an lcp-interval `-[i..j] can be obtained
by RMQLCP(i + 1, j), it is better to have it as a parameter of the procedure
LinkTopDown in Algorithm 5.26 because its renewed computation can be
avoided in this way.

Exercise 5.5.8 Compute the suffix links of the enhanced suffix array
from Figure 5.35 with the help of Algorithm 5.26, i.e., execute the pro-
cedure call LinkTopDown(0, 1, 10,RMQLCP(2, 10), 1, 10) manually.

5.5.4 Matching statistics

As in Section 5.4, we consider two strings S1 and S2 of lengths n1 + 1 and
n2 + 1, where S1 is terminated by # and S2 is terminated by $.7

Matching statistics were introduced by Chang and Lawler [54] in the
context of approximate string matching. The following definition is a pre-
liminary definition of the matching statistics of S2 w.r.t. S1 (this definition
will be refined later).

Definition 5.5.9 The matching statistics of S2 w.r.t. S1 is an array ms of
size n2 + 1 so that for every entry ms[p2] = k the following holds: S2[p2..p2 +
k − 1] is the longest prefix of S2

p2
that occurs as a substring of S1.

For ease of presentation, we first show how to compute the matching
statistics of S2 w.r.t. S1 with the help of a suffix tree. First, the suffix tree
ST of S1 is built.

The naive way to compute ms[p2], where p2 is a fixed position in S2, is to
match the initial characters of S2

p2
against ST by following the unique path

of character matches until no further matches are possible. The length of
the matching path is ms[p2]. To achieve a linear time algorithm, however,
we use the naive method only for p2 = 1. Suppose that the algorithm has
just computed ms[p2 − 1] = k by following a matching path for position
p2 − 1, where p2 ≥ 2. If the path is empty (i.e., k = 0) or it ends within the
label of an edge outgoing from the root, then the search for ms[p2] starts
at the root. Otherwise, the matching path is S1[p1 − 1..p1 + k − 2] = aω =
S2[p2 − 1..p2 + k − 2] for some position p1 in S1, some character a ∈ Σ, and
some string ω ∈ Σ∗, and it either ends at an internal node au or within the
label of an edge outgoing from an internal node au. In the former case,
u = ω; in the latter case, let v be the string so that ω = uv. To match the
next suffix S2

p2
against ST, one follows the suffix link slink(au) from node

au to node u. Because aω = auv is a prefix of S2
p2−1, the string ω = uv is a

prefix of S2
p2

. That is, the search for ms[p2] can start at node u. Moreover,
instead of traversing the path labeled v by examining every character on it,
the algorithm merely inspects the first character of each edge; cf. Section

7For enhanced suffix arrays, the use of # and $ is convenient but not really necessary.

5.5 Traversals with suffix links 195

5.5.3. This technique is known under the name skip and count technique.
To elaborate on this, let u, uv1, uv1v2, . . . , uv1v2 . . . vm be the path in ST so
that v = v1v2 . . . vmvm+1, where vm+1 is either the empty string or there is an
edge outgoing from uv1v2 . . . vm so that vm+1 is a non-empty proper prefix
of the edge label. For each node uv1v2 . . . vi, one follows the edge whose
first character (of the label) coincides with the first character of vi+1. In
this manner, the correct child node uv1v2 . . . vivi+1 is reached in constant
time. If vm+1 = ε, the matching phase continues by following (character
by character) the unique matching path of S2

p2+k−1, starting from node
ω = uv1v2 . . . vm. Otherwise ms[p2] = k − 1, because the label of the edge
outgoing from uv1v2 . . . vm with proper prefix vm+1 cannot continue with the
character S2[p2 + k − 1]. For an indirect proof of this claim, suppose that
the matching path ω continues with the character S2[p2 + k − 1]. So on
the one hand, the string ωS2[p2 + k − 1] occurs in ST. On the other hand,
because the matching path of aω = S2[p2−1..p2+k−2] ended in a mismatch
S1[p1 + k − 1] = b 6= S2[p2 + k − 1], it follows that the string ωb also occurs in
ST. Consequently, ω must be an internal (branching) node, contradicting
the fact that the path ω ended within an edge.

To illustrate the algorithm, let us compute the matching statistics of the
string S2 = abcdebc$ w.r.t. S1 = abcdefabcdefdebc#. The suffix tree ST of S1

can be found in Figure 5.37. The unique matching path of S2
1 = abcdebc$

ends within the edge labeled abcdef outgoing from the root. Since the first
five characters abcde match and the first mismatch occurs at position 6
in S2, it follows that ms[1] = 5. As explained above, the search for ms[2]
starts at the root, and it follows the path labeled bcde using the skip and
count technique. To be precise, the algorithm follows the edge whose label
starts with the character S2[2] = b and reaches node bc (node 20). Then
it determines the edge whose label starts with the character S2[4] = d.
Because the matching path bcde ends within the edge labeled def , it follows
that ms[2] = 4. Then, the algorithm follows the suffix link of node bc to
node c (node 22), gets stuck in the edge with label def , and sets ms[3] = 3.
Thereafter, it first follows the suffix link of node c to the root node, then
the edge whose label starts with the character S2[4] = d, and reaches node
de. From there it matches S2[6..8] = bc$ character by character against the
edge with label bc#. Clearly, ms[4] = 4 because the matching path debc has
length 4. The computation of the rest of the matching statistics is left as
an exercise to the reader.

We postpone the time analysis of the algorithm until we have learned
how it works on enhanced suffix arrays. The following definition refines
our preliminary definition of the matching statistics.

Definition 5.5.10 The matching statistics of S2 w.r.t. S1 is an array ms of
size n2 + 1 so that for every entry ms[p2] = (k, [lb..rb]) the following holds:

196 5 Applications of Enhanced Suffix Arrays

1
8

1
7

#

1
9

1

a
..
#

7

d
..
#

2
0

1
5#

2
1

2

a
..
#

8

d
..
#

2
2

1
6#

2
3

3

a
..
#

9

d
..
#

2
4

1
3

bc
#

2
5

4

a
..
#

1
0

d
..
#

2
6

1
4

bc
#

2
7

5

a
..
#

1
1

d
..
#

2
8

6

a
..
#

1
2

d
..
#

a
bc
d
ef

bc
c

d
e

ef

d
ef

d
ef

f
f

Figure 5.37: Suffix tree of S1 = abcdefabcdefdebc#.

5.5 Traversals with suffix links 197

i SA LCP SSA[i] slink

1 17 −1 #
2 1 0 abcdefabcdefdebc# [1..17]
3 7 6 abcdefdebc# [5..6]
4 15 0 bc#
5 2 2 bcdefabcdefdebc# [7..9]
6 8 5 bcdefdebc# [8..9]
7 16 0 c#
8 3 1 cdefabcdefdebc# [1..17]
9 9 4 cdefdebc# [11..12]
10 13 0 debc#
11 4 2 defabcdefdebc# [13..15]
12 10 3 defdebc# [14..15]
13 14 0 ebc#
14 5 1 efabcdefdebc# [1..17]
15 11 2 efdebc# [16..17]
16 6 0 fabcdefdebc#
17 12 1 fdebc# [1..17]
18 −1

Figure 5.38: The ESA of the string S1 = abcdefabcdefdebc#.

1. S2[p2..p2 + k − 1] is the longest prefix of S2
p2

that occurs as a substring
of S1.

2. [lb..rb] is the S2[p2..p2 + k − 1]-interval in the ESA of S1.

As an example, consider the ESA of the string S1 = abcdefabcdefdebc# in
Figure 5.38. The matching statistics of S2 = abcdebc$ w.r.t. S1 is depicted
in Figure 5.39. In the matching statistic ms[p2] = (k, [lb..rb]), the interval
[lb..rb] can be a singleton interval; see ms[4] in Figure 5.39. This case
occurs if the matching path in the suffix tree ends within an edge to a leaf.
If [lb..rb] is a non-singleton lcp-interval, then its lcp-value may differ from
k. Consider for instance ms[1] = (5, [2..3]) in Figure 5.39. The lcp-interval
[2..3] has lcp-value 6 but k = 5. This is the case if the matching path in the
suffix tree ends within an edge to an internal node. The interval [lb..rb] is
an lcp-interval of lcp-value k only if the matching path in the suffix tree
ends at an internal node; see ms[6] in Figure 5.39.

If the matching path ends within an edge to a node, it is helpful to have
its parent node at hand. In the lcp-interval tree, this parent node is the
maximal lcp-interval that matches a prefix of S2

p2
, defined as follows.

198 5 Applications of Enhanced Suffix Arrays

p2 1 2 3 4 5 6 7 8
ms[p2] 5, [2..3] 4, [5..6] 3, [8..9] 4, [10..10] 3, [13..13] 2, [4..6] 1, [7..9] 0, [1..17]

interval [1..17] [4..6] [7..9] [10..12] [13..15] [4..6] [7..9] [1..17]

Figure 5.39: Matching statistics of the string S2 = abcdebc$ w.r.t. the string
S1 = abcdefabcdefdebc#; cf. Figure 5.38. The row “interval” con-
tains the maximal lcp-interval that matches S2

p2
.

Definition 5.5.11 We say that an lcp-interval `-[i..j] in the ESA of S1

matches (a prefix of) S2
p2

if S1[SA[i]..SA[i]+`−1] = S2[p2..p2+`−1]. A maximal
lcp-interval that matches (a prefix of) S2

p2
is a (non-singleton) lcp-interval

`-[i..j] that matches (a prefix of) S2
p2

, but none of its non-singleton child
intervals does.

Below we explain how the algorithm described above works on enhanced
suffix arrays. In our running example, we match the string S2 = abcdebc$
against the ESA of the string S1 = abcdefabcdefdebc#; see Figures 5.38 and
5.39.

As already mentioned, the naive way to compute matching statistics is
to match S2

p2
character by character against the ESA of S1 until a mis-

match occurs, and we use the naive method for position p2 = 1. This is
done by calling procedure match_char_by_char from Algorithm 5.27 with
the parameters ([1..n1 + 1], 1, 0). This procedure call determines the S2[1]-
interval [lb..rb] by means of the procedure call getInterval([1..n1 + 1], S2[1]);
see Algorithm 5.1 on page 118. If this interval exists (i.e., if [lb..rb] 6= ⊥),
then its lcp-value ` is computed, and S2[1..` − 1] is matched character by
character against S1[SA[lb]..SA[lb]+ `−1]. If a mismatch occurs in this com-
parison, the procedure match_char_by_char returns 〈(k, [lb..rb]), [1..n1 + 1]〉,
where k = |lcp(S1[SA[lb]..SA[lb] + ` − 1], S2[1..` − 1])| < `. With regard to
the lcp-interval tree, this means that the first mismatch occurred on the
edge from the root node 0-[1..n1 + 1] to the internal node `-[lb..rb], and
that k characters of the edge label matched. If no mismatch occurs in
this comparison, then the interval [i..j] is used to store this last match-
ing lcp-interval [lb..rb], the procedure call getInterval([i..j], S2[`]) determines
the S2[1..`]-interval in the ESA of S1, and the while-loop is repeated. (In
our example, this would happen if we would match—by the procedure
call match_char_by_char([1..n1 + 1], 2, 0)—the second suffix of S2 against the
ESA of S1.) It may happen that during this process a singleton inter-
val is found, and Algorithm 5.27 deals with this case. (In our example,
this would happen if we would match the fourth suffix of S2 against the
ESA of S1.) In either case, the return value 〈(k, [lb..rb]), [i..j]〉 of the pro-
cedure call match_char_by_char([1..n1 + 1], 1, 0) yields the matching statistic
ms[1] = (k, [lb..rb]) and the maximal lcp-interval [i..j] that matches S2.

5.5 Traversals with suffix links 199

Algorithm 5.27 Procedure match_char_by_char([i..j], pos, k) takes an lcp-
interval [i..j], a position pos in S2, and a natural number k as input, where
[i..j] is the S2[pos..pos + k − 1]-interval. It returns a tuple 〈(k′, [lb..rb]), [i′..j′]〉
so that S2[pos..pos + k′ − 1] is a substring of S1, but S2[pos..pos + k′] is not a
substring of S1, [lb..rb] is the S2[pos..pos + k′ − 1]-interval, and [i′..j′] is the
maximal lcp-interval that matches S2

pos.

[lb..rb]← getInterval([i..j], S2[pos+ k])
while [lb..rb] 6= ⊥

if lb 6= rb then
`← LCP[RMQLCP(lb+ 1, rb)]
while k < ` and S1[SA[lb] + k] = S2[pos+ k] do
k ← k + 1

if k < ` then
return 〈(k, [lb..rb]), [i..j]〉

[i..j]← [lb..rb]
[lb..rb]← getInterval([i..j], S2[pos+ k])

else /* singleton interval found */
while (S1[SA[lb] + k] = S2[pos+ k]) do
k ← k + 1

return 〈(k, [lb..rb]), [i..j]〉
return 〈(LCP[RMQLCP(i+ 1, j)], [i..j]), [i..j]〉

Algorithm 5.28 contains pseudo-code for the computation of the match-
ing statistics. It maintains the following invariants: before the for-loop
is executed for a position p2 ≥ 2, (k, [lb..rb]) is the matching statistic for
position p2 − 1 and [i..j] is the maximal lcp-interval that matches S2

p2−1.
If k = 0, we use match_char_by_char([1..n1 + 1], p2, 0) to match S2

p2−1 against
the ESA of S1. Otherwise k > 0. Because the k-length prefix of S2

p2−1, say
aω = S2[p2 − 1..p2 + k − 2], matches a substring of S1, the (k − 1)-length
prefix ω = [p2..p2+k−2] of S2

p2
also matches a substring of S1. The maximal

lcp-interval [i..j] that matches S2
p2−1 represents some string au, where u is

a prefix of ω. In turn, the u-interval is the suffix link interval [p..q] of [i..j],
and Algorithm 5.28 determines [p..q] as well as its lcp-value `. Henceforth,
the interval [i..j] stores the (currently best) lcp-interval that matches S2

p2
.

Since the lcp-interval `-[p..q] matches S2
p2

, Algorithm 5.28 sets [i..j] to [p..q].
Now, starting from the suffix link interval `-[p..q], which is the u-interval

(where u = S2[p2..p2+`−1]), the algorithm searches for the ω-interval (where
ω = S2[p2..p2+k−2]), using the skip and count technique. In the first while-
loop, if ` < k − 1 and p 6= q, the procedure call getInterval([p..q], S2[p2 + `])
identifies the child interval of the current lcp-interval [p..q] that starts with
the characters S2[p2..p2 + `]. This child interval is the new current lcp-
interval, hence it is stored in [p..q]. If p 6= q, i.e., [p..q] is a non-singleton

200 5 Applications of Enhanced Suffix Arrays

Algorithm 5.28 Computing matching statistics.
〈(k, [lb..rb]), [i..j]〉 ← match_char_by_char([1..n1 + 1], 1, 0)
ms[1]← (k, [lb..rb])
for p2 ← 2 to n2 do

/* Invariants: ms[p2 − 1] = (k, [lb..rb]) and */
/* [i..j] is the maximal lcp-interval that matches S2

p2−1 */
if k = 0 then
〈(k, [lb..rb]), [i..j]〉 ← match_char_by_char([1..n1 + 1], p2, 0)
ms[p2]← (k, [lb..rb])

else
[p..q]← slink[RMQLCP(i+ 1, j)] /* suffix link interval of [i..j] */
`← LCP[RMQLCP(p+ 1, q)] /* lcp-value of [p..q] */
[i..j]← [p..q]
while ` < k − 1 and p 6= q do /* skip and count */
[p..q]← getInterval([p..q], S2[p2 + `])
if p 6= q then /* lcp-interval found */
`← LCP[RMQLCP(p+ 1, q)]
if ` ≤ k − 1 then
[i..j]← [p..q]

if ` = k − 1 then
〈(k, [lb..rb]), [i..j]〉 ← match_char_by_char([i..j], p2, k − 1)
ms[p2]← (k, [lb..rb])

else
k ← k − 1
ms[p2]← (k, [p..q])

interval, the algorithm determines the lcp-value of [p..q] and stores it in
the variable `. If ` ≤ k−1, then [p..q] is the (currently best) lcp-interval that
matches S2

p2
, and thus it is stored in [i..j]. The first while-loop is left either

because ` < k−1 or p = q (both conditions cannot simultaneously be true).
We consider the following three mutually exclusive cases:

1. If ` = k − 1 , then we match S2
p2+k−1 character by character against

the ESA of S1 until a mismatch occurs. (In the suffix tree, this cor-
responds to the case in which the matching path ends at an internal
node.)

2. If ` > k−1, then every suffix in the interval [p..q] has the same charac-
ter b at position k−1, and b is different from S2[p2+k−1]. Therefore, the
matching path cannot be continued with the character S2[p2 + k − 1],
and ms[p2] can be set to (k − 1, [p..q]). (In the suffix tree, this corre-
sponds to the case in which the matching path ends within the edge
to an internal node.)

5.5 Traversals with suffix links 201

3. If p = q, then the ω-interval we are looking for is the singleton interval
[p..p], that is, ω = S2[p2..p2 + k − 2] = S1[SA[p]..SA[p] + k − 2]. As in the
previous case, we have S2[p2 + k− 1] 6= S1[SA[p] + k− 1] and thus ms[p2]
can be set to (k − 1, [p..q]). (In the suffix tree, this corresponds to the
case in which the matching path ends within the edge to a leaf.)

We shall illustrate Algorithm 5.28 for p2 = 2. As mentioned above,
matching S2 = abcdebc$ character by character against the enhanced suf-
fix array of the string S1 = abcdefabcdefdebc# yields ms[1] = (5, [2..3]) and
[1..17] as the maximal lcp-interval that matches S2

1 . Clearly, the suffix link
interval of [1..17] is the root interval 0-[1..17] itself. Then the skip and count
phase starts. The child interval of [1..17] that starts with the character
S2[2] = b is the b-interval [4..6]; cf. Figure 5.38. Because the lcp-value ` = 2
of the lcp-interval [4..6] is less than k − 1 = 4, we know that every suffix in
the interval [4..6] starts with S2[p2..p2 + ` − 1] = S2[2..3] = bc. Furthermore,
the interval [i..j] = [4..6] is the (currently best) lcp-interval that matches S2

2 ,
and the while-loop is executed again. The child interval of the bc-interval
[4..6] that continues with the character S2[4] = d is the bcd-interval [5..6];
cf. Figure 5.38. Because its lcp-value ` = 5 is greater than k − 1 = 4, the
while-loop is left without updating [i..j], and according to case (2) we set
ms[2] = (4, [5..6]). Similarly, we obtain ms[3] = (3, [8..9]) and [7..9] as the max-
imal lcp-interval that matches S2

3 . Since the suffix link interval of [7..9] is
the root interval 0-[1..17], the search for ms[4] starts at the node 0-[1..17]. In
the skip and count phase, the algorithm first finds the d-interval [10..12],
having lcp-value ` = 2. Because ` = k − 1 = 3− 1, the algorithm continues
as demanded by case (1): it matches S2

6 character by character against
the ESA of S1 until a mismatch occurs.

The time analysis of the algorithm is based on the depth of a node `-[i..j]
in the lcp-interval tree of S1, which is the length of the path from the root
node 0-[1..n1 + 1] to node `-[i..j].

Lemma 5.5.12 Let `-[i..j] 6= 0-[1..n1+1] be an lcp-interval and let (`−1)-[p..q]
be its suffix link interval. Then the depth of `-[i..j] in the lcp-interval tree of
S1 is at most one greater than the depth of (`− 1)-[p..q].

Proof Suppose the nodes on the path from the root node 0-[1..n1+1] to node
`-[i..j] represent the strings ε, aω1, aω1ω2, . . . , aω1ω2 . . . ωm, i.e., the depth of
node `-[i..j] is m. Note that ω1 may be the empty string. By Lemma 5.5.3,
the intervals representing the strings ω1, ω1ω2, . . . , ω1ω2 . . . ωm are all lcp-
intervals, and the lcp-interval (`− 1)-[p..q] represents the string ω1ω2 . . . ωm.
Since ω1ω2 . . . ωr is a prefix of ω1ω2 . . . ωm for every r with 1 ≤ r ≤ m, it follows
that every ω1ω2 . . . ωr-interval is a node on the path from the root to (`− 1)-
[p..q]. If ω1 = ε, then the depth of node (`−1)-[p..q] is at least m−1, otherwise
it is at least m. �

202 5 Applications of Enhanced Suffix Arrays

Let us resume the analysis of the worst-case time complexity of the al-
gorithm. The algorithm starts with p2 = 1 by matching S2 character by
character against the enhanced suffix array of S1. There are k + 1 com-
parisons if S2[1..k] matches, but S2[1..k + 1] does not. Then it determines
the suffix link interval of the maximal lcp-interval that matches S2, uses
the skip and count technique to find the descendant of the suffix link
interval corresponding to S2[2..k], and matches S2

2 character by character
against the ESA of S1 starting with S2[k + 1], and so on. In general, it de-
termines the suffix link interval of the current maximal lcp-interval (this
takes only constant time), uses the skip and count technique to find the
corresponding descendant of the suffix link interval (this takes time pro-
portional to the number of nodes on the path from the suffix link interval
to the descendant), and then proceeds with the character-by-character
matching (this takes time proportional to the number of character com-
parisons). Over the entire algorithm, n2 suffix link intervals have to be
determined, taking O(n2) time. Because the traversal from the current
maximal lcp-interval to its suffix link interval decreases the depth by at
most one (Lemma 5.5.12), the overall decrements to current depth cannot
exceed n2. Since the current depth is bounded by n2, the overall incre-
ments to current depth cannot exceed 2n2. Thus, the skip and count
phases require O(n2) time in total. We still have to analyze the overall
number of character comparisons in the character-by-character match-
ing phases. Once a character of S2 matched a character of S1, it will not
be considered again. Consequently, the number of character matches is
bounded by n2. Because every character-by-character matching phase
ends with a mismatch, there are n2 + 1 mismatches over the entire al-
gorithm. Thus, the character-by-character matching phases also require
only O(n2) time in total.

Exercise 5.5.13 Suppose that the suffix array of the string S1 is given
and its LCP-array is preprocessed so that range minimum queries can be
answered in constant time. Furthermore, let the inverse suffix array and
the matching statistics of the string S2 w.r.t. S1 be known. Show that
|lcp(S1

p , S
2
q)| can be computed in constant time for all 1 ≤ p ≤ n1 + 1 and

1 ≤ q ≤ n2 + 1.

Exercise 5.5.14 The bidirectional matching statistics of S2 w.r.t. S1 is an
array bms[1..n2 + 1] so that for each entry bms[i] = (k, p) the string S2[p..p +
k−1] is a longest substring of S2 containing position i (i.e., p ≤ i ≤ p+k−1)
that matches a substring somewhere in S1. Describe an O(n1 + n2) time
algorithm that computes the bidirectional matching statistics.

Exercise 5.5.15 Let the generalized suffix array of the two strings S1 and
S2 in form of the arrays D[i] and SA′ be given. The mutual matching statis-
tics of S1 and S2 is an array mms so that an entry mms[i] = k implies:

5.5 Traversals with suffix links 203

1. If D[i] = 1, then S1[SA′[i]..SA′[i]+k−1] is the longest prefix of S1
SA′[i] that

occurs as a substring of S2.

2. If D[i] = 2, then S2[SA′[i]..SA′[i]+k−1] is the longest prefix of S2
SA′[i] that

occurs as a substring of S1.

Show that the array mms can be computed in O(n1 + n2) time.
Hint: It may be instructive to have a second look at the reasoning used in
Section 5.2.1.

Exercise 5.5.16 Suppose that S1 and S2 are two strings with |S1| ≤ |S2|.
Use the technique of matching S2 against the enhanced suffix array of S1

to compute a longest common substring of S1 and S2. (This solution to
the longest common substring problem is more space efficient than the
previous one because it just needs space for the suffix array of the smaller
of the two strings.)

Exercise 5.5.17 Use the technique of matching S2 against the enhanced
suffix array of S1 to compute all maximal unique matches (MUMs) between
S1 and S2.

Exercise 5.5.18 Given a threshold t, a maximal exact match is rare if it
occurs at most t times in each of the strings S1 and S2. (For t = 1, rare
MEMs coincide with MUMs.) Outline an algorithm that computes rare
MEMs by matching S2 against the ESA of S1.

5.5.5 Merging two suffix arrays in linear time

Jeon et al. [165] showed that the generalized suffix array SA of two strings
S1 and S2 can be obtained by merging the suffix arrays SA1 and SA2 of
S1 and S2 in linear time. As usual, we assume that S1 is terminated by
#, S2 is terminated by $, |S1| = n1 + 1, and |S2| = n2 + 1. The algorithm
uses an auxiliary array cnt of size n1 + 2. Initially, cnt[i] = 0 for all i with
1 ≤ i ≤ n1 + 2. Using suffix links, we match S2 against SA1 in O(n2) time.
During the matching phase, cnt[i] is incremented by one if a suffix of S2 is
detected to be lexicographically larger than S1

SA1[i−1] and smaller than S1
SA1[i]

(if it is larger than the last suffix S1
SA1[n1+1] in SA1, then cnt[n1 + 2] is incre-

mented by one). Of course, we have to modify the procedures getInterval,
match_char_by_char, and (a variant of) the computation of the matching
statistics for this task; see Exercise 5.5.20. For example, if we match the
string S2 = acaaacatat$ against the suffix array of the string S1 = ctaataatg#
(shown in Figure 5.40), then we find that the suffix aatg# at index 3 is
lexicographically smaller than acaaacatat$, whereas the suffix ataatg# at
index 4 is lexicographically larger than acaaacatat$. Consequently, cnt[4]
is incremented by 1 for S2

1 . Subsequently, cnt[6] is incremented by 1 for

204 5 Applications of Enhanced Suffix Arrays

i SA LCP SSA[i] cnt

1 10 −1 # 0
2 3 0 aataatg# 3
3 6 3 aatg# 0
4 4 1 ataatg# 3
5 7 2 atg# 1
6 1 0 ctaataatg# 2
7 9 0 g# 0
8 2 0 taataatg# 1
9 5 4 taatg# 0
10 8 1 tg# 1
11 −1 0

Figure 5.40: ESA of the string S1 = ctaataatg# with cnt-array.

S2
2 , and so on. The final state of the cnt-array is depicted in Figure 5.40.

The generalized suffix array SA of S1 and S2 is then built incrementally
as follows: Since there are cnt[1] suffixes in SA2 that are lexicographically
smaller than S1

SA1[1]
, the suffixes in the interval [1..cnt[1]] of SA2 are stored

as the first suffixes in SA. After this, the suffix S1
SA1[1]

is placed at in-
dex cnt[1] + 1. Similarly, because there are cnt[2] suffixes in SA2 that are
lexicographically larger than S1

SA1[1]
and smaller than S1

SA1[2]
, the suffixes

in the interval [cnt[1] + 1..cnt[1] + cnt[2]] of SA2 are stored at the interval
[cnt[1] + 2..cnt[1] + cnt[2] + 1] in SA, and so on. In general, if PS[i] denotes the
prefix sum

∑i
j=1 cnt[j], then the suffix S1

SA1[i]
is placed at index PS[i]+ i in SA

and the suffixes in the interval [PS[i] + 1..PS[i + 1]] of SA2 are stored at the
interval [PS[i]+ i+1..PS[i+1]+ i] in SA (where PS[0] = 0). It is rather obvious
that the worst-case time complexity of the merging algorithm is O(n1 + n2)
time.

As a matter of fact, the combined LCP-array of the arrays LCP1 and LCP2

of S1 and S2, respectively, can also be computed in linear time with the
merging algorithm. The next lemma from [190] is the key.

Lemma 5.5.19 Suppose suffix S2
j is placed between the suffixes S1

SA1[i−1]

and S1
SA1[i]

in the merging algorithm, and let ms[j] = (`, [p..q]).

1. If p ≤ i ≤ q, then

a) |lcp(S2
j , S

1
SA1[i]

)| = `

b) |lcp(S1
SA1[i−1], S

2
j)| = LCP1[i]

5.5 Traversals with suffix links 205

2. Otherwise i− 1 = q and

a) |lcp(S1
SA1[i−1], S

2
j)| = `

b) |lcp(S2
j , S

1
SA1[i]

)| = LCP1[i]

Proof The longest common prefix ω of S1
SA1[i−1] and S1

SA1[i]
has length LCP1[i].

Because suffix S2
j is placed between them, ω must also be a prefix of S2

j .
Let ωa, ωb, and ωc be the length (LCP1[i] + 1) prefixes of S1

SA1[i−1], S
2
j , and

S1
SA1[i]

, respectively:
i− 1 ωa . . . = S1

SA1[i−1]

ωb . . . = S2
j

i ωc . . . = S1
SA1[i]

Clearly, a 6= c and there are three mutually exclusive cases.
(i) If b = a, then i − 1 = q and |lcp(S1

SA1[i−1], S
2
j)| = `. Since b 6= c, we have

|lcp(S2
j , S

1
SA1[i]

)| = |ω| = LCP1[i].
(ii) If b = c, then i = p and |lcp(S2

j , S
1
SA1[i]

)| = `. Because a 6= b, it follows that
|lcp(S1

SA1[i−1], S
2
j)| = |ω| = LCP1[i].

(iii) If a < b < c, then p ≤ i − 1 < i ≤ q and ` = |ω| = LCP1[i]. Hence
|lcp(S2

j , S
1
SA1[i]

)| = ` and |lcp(S1
SA1[i−1], S

2
j)| = LCP1[i]. �

As in the merging algorithm, the auxiliary array cnt is computed by
matching S2 against SA1. This time, however, the matching statistics ms
are calculated as well. In the merging phase, the LCP-array can be com-
puted with the help of cnt and ms as follows: Suppose that a suffix S2

SA2[j]

must be placed in between the suffixes S1
SA1[i−1] and S1

SA1[i]
, say at index k,

and let ms[j] = (`, [p..q]). Recall that there are cnt[i] many suffixes of S2 that
must be placed in between the suffixes S1

SA1[i−1] and S1
SA1[i]

.

• If S2
SA2[j]

is the first of these, then by Lemma 5.5.19

LCP[k] =

{
LCP1[i] if p ≤ i ≤ q
` otherwise

• If S2
SA2[j]

is not the first of these, then LCP[k] = LCP2[j].

• If S2
SA2[j]

is the last one, then SA[k + 1] = SA1[i] and by Lemma 5.5.19

LCP[k + 1] =

{
` if p ≤ i ≤ q
LCP1[i] otherwise

Exercise 5.5.20 Modify the procedures getInterval (Algorithm 5.1 on page
118), match_char_by_char (Algorithm 5.27 on page 199), and the computa-
tion of the matching statistics (Algorithm 5.28 on page 200) so that they
compute the cnt-array.

206 5 Applications of Enhanced Suffix Arrays

5.6 Comparing multiple strings

In this section, we will compare more than two strings. Again, generalized
enhanced suffix arrays play the key role.

5.6.1 Generalized suffix array

Let S1, S2, . . . , Sm be strings of sizes n1, n2, . . . , nm, respectively. We are in-
terested in the lexicographic order of all suffixes

S1
1 , . . . , S

1
n1
, S2

1 , . . . , S
2
n2
, . . . , Sm1 , . . . , S

m
nm

of these strings. Note that two suffixes Sjp and Skq with j 6= k may coincide,
i.e., Sjp = Skq is possible. (In this case, it is natural to demand that the
suffix with the smaller superscript shall appear before the suffix with the
larger superscript.) Because the strings may share identical suffixes, we
use m pairwise distinct characters #1,#2, . . . ,#m to tell the suffixes apart.
To be precise, for each j with 1 ≤ j ≤ m, we obtain the string Sj#j of length
nj +1 by appending the special character #j to Sj. This ensures that each
suffix can uniquely be assigned to one of the m strings: if the suffix ends
with #j, then it belongs to Sj. If we assume that #1 < #2 < · · · < #m and
that all other characters in the alphabet Σ are larger than these symbols,
then the suffixes of the strings S1#1, S

2#2, . . . , S
m#m are not only pairwise

distinct, but we also have Sjp#j < Skq#k if and only if either Sjp < Skq or
Sjp = Skq and j < k.

The common suffix array of the strings S1#1, S
2#2, . . . , S

m#m consists of
two arrays, the document array D and the array SA′, having the following
properties:

• For every suffix Sjk#j, there is an index i so that j = D[i] and k = SA′[i].

• SD[i]
SA′[i]#D[i] < S

D[i+1]
SA′[i+1]#D[i+1] for all i with 1 ≤ i ≤ m− 1 +

∑m
j=1 nj.

In other words, the arrays D and SA′ specify the lexicographic order of
all the suffixes of the m strings. An example can be found in (the two
rightmost columns of) Figure 5.41.

The common suffix array of multiple strings can be obtained from their
generalized suffix array, defined as follows.

Definition 5.6.1 Given m strings S1, S2, . . . , Sm, the suffix array SA of the
string S = S1#1S

2#2 . . . S
m#m is called the generalized suffix array of

S1, S2, . . . , Sm. If the generalized suffix array of the strings is enhanced
with further arrays, e.g. with the LCP-array, then it will be called general-
ized enhanced suffix array or GESA for short.

5.6 Comparing multiple strings 207

i SA ISA LCP SSA[i] S#
SA[i] D SA′

1 5 9 −1 #1aac#2caac#3 #1 1 5
2 9 14 0 #2caac#3 #2 2 4
3 14 6 0 #3 #3 3 5
4 6 10 0 aac#2caac#3 aac#2 2 1
5 11 1 3 aac#3 aac#3 3 2
6 3 4 1 ac#1aac#2caac#3 ac#1 1 3
7 7 7 2 ac#2caac#3 ac#2 2 2
8 12 11 2 ac#3 ac#3 3 3
9 1 2 2 acac#1aac#2caac#3 acac#1 1 1
10 4 13 0 c#1aac#2caac#3 c#1 1 4
11 8 5 1 c#2caac#3 c#2 2 3
12 13 8 1 c#3 c#3 3 4
13 10 12 1 caac#3 caac#3 3 1
14 2 3 2 cac#1aac#2caac#3 cac#1 1 2
15 −1

Figure 5.41: The enhanced suffix array of S = acac#1aac#2caac#3 coincides
with the common enhanced suffix array of the strings acac#1,
aac#2, and caac#3 (consisting of the two arrays D and SA′).

Figure Figure 5.41 shows an example. Note that the string S has length
m+

∑m
j=1 nj.

Given the inverse ISA of the generalized suffix array SA of S1, S2, . . . , Sm,
Algorithm 5.29 constructs the common suffix array of these strings in
linear time. Conversely, given the arrays D and SA′, the suffix array SA
can easily be computed in linear time; see Exercise 5.6.2. Therefore, the
common suffix array and the generalized suffix array are two representa-
tions of the same information. In the following, we identify them and call
both the generalized suffix array. In applications, we will always use the
representation that best suits our purpose. Given S = S1#1S

2#2 . . . S
m#m

and its suffix array SA, S#
SA[i] henceforth denotes the prefix of SSA[i] that

ends with the first separator symbol. In other words, S#
SA[i] = S

D[i]
SA′[i]#D[i];

see Figure 5.41. In fact, we will often identify SSA[i] with S#
SA[i]. That is,

when we write SSA[i], we often actually mean S#
SA[i].

Exercise 5.6.2 Let the common suffix array of S1#1, S
2#2, . . . , S

m#m in
form of the two arrays D and SA′ be given. Give a linear-time algorithm
that computes the generalized suffix array SA of the strings S1, S2, . . . , Sm.

208 5 Applications of Enhanced Suffix Arrays

Algorithm 5.29 Computation of the arrays SA′ and D from ISA.
offset← 0
for j ← 1 to m do

for k ← offset+ 1 to offset+ nj + 1 do
D[ISA[k]]← j
SA′[ISA[k]]← k − offset

offset← offset+ nj + 1

Exercise 5.6.3 What are the time complexities of the following two algo-
rithms? (Both share the first phase, and merging is done as in Section
5.5.5.)

(1) For every j, 1 ≤ j ≤ m, build the suffix array SAj of string Sj#j.

(2a) Construct the common suffix array of S1#1, S
2#2, . . . , S

m#m by suc-
cessively merging the suffix arrays SA1, SA2, . . . , SAm. That is, merge
SA1 with SA2, yielding the common suffix array SA12 of S1#1 and S2#2,
merge SA12 with SA3, and so on.

(2b) Merge SA1 with SA2, yielding the common suffix array SA12 of S1#1 and
S2#2, merge SA3 with SA4, yielding the common suffix array SA34 of
S3#3 and S4#4 etc., then merge SA12 with SA34, yielding the common
suffix array of S1#1, S2#2, S3#3, and S4#4 etc., until the common
suffix array of S1#1, S

2#2, . . . , S
m#m is obtained.

5.6.2 Longest common substring

In Section 5.4.2, we have solved the problem of finding a longest com-
mon substring of two strings. It is left as an exercise for the reader to
develop a linear-time algorithm that finds a longest substring common to
multiple strings S1, . . . , Sm. A non-obvious algorithm can be found in Ex-
ercise 5.6.9. Here, we focus on the following generalization of the longest
common substring problem.

Definition 5.6.4 Given m strings S1, . . . , Sm, the k-common substring prob-
lem is to simultaneously find, for all k with 2 ≤ k ≤ m, a longest substring
common to at least k of the strings.

In the following, let `k denote the length of the longest substrings that
are common to at least k of the strings. Furthermore, let SA and LCP be the
suffix array and the lcp-array of the length n string S = S1#1S

2#2 . . . S
m#m.

Theorem 5.6.5 The string ω is a longest substring common to at least k of
the strings S1, . . . , Sm if and only if there exist indices p and q with 1 ≤ p <
q ≤ n so that

5.6 Comparing multiple strings 209

1. |{D[p], D[p+ 1], . . . , D[q]}| ≥ k,

2. ω is common prefix of SSA[p], SSA[p+1], . . . , SSA[q] and |lcp(SSA[p], SSA[q])| = |ω|,

3. LCP[p] < |ω| and LCP[q + 1] < |ω| hold true.

4. |ω| = `k.

Proof “if”: (1) and (2) imply that ω is a substring common to at least k
strings and (4) implies that ω is a longest string with this property.
“only if”: If ω is a longest substring common to at least k strings, then |ω| =
`k and there are indices p′ and q′ with 1 ≤ p′ < q′ ≤ n so that |{D[p′], D[p′ +
1], . . . , D[q′]}| ≥ k, ω is a common prefix of SSA[p′], SSA[p′+1], . . . , SSA[q′], and
|lcp(SSA[p], SSA[q])| = |ω|. Let p be the largest index with p ≤ p′ and LCP[p] < |ω|,
and let q be the smallest index with q′ ≤ q and LCP[q+1] < |ω|. These indices
p and q satisfy (1)–(4). �

Of course, we do not know `k. That is why we successively compute all
strings having properties (1)–(3) and keep track of the currently longest
string with these properties.

Exercise 5.6.6 Use the notion of lcp-intervals to reformulate Theorem
5.6.5. Give an algorithm that solves the k-common substring problem by
a bottom-up traversal of the lcp-interval tree. Analyze its worst-case time
complexity.

A naive solution

We use an array A of size m − 1 that stores for each k, 2 ≤ k ≤ m, a
pair (lcs, idx), where lcs is the length of a (currently) longest substring ω
common to at least k strings and idx is an index so that S[SA[idx]..SA[idx]+
lcs − 1] = ω. In what follows, we denote the first and second component
of an array element A[k] by A[k].lcs and A[k].idx, respectively. Initially,
A[k] = (0,⊥) for all k with 2 ≤ k ≤ m.

Moreover, we employ a doubly linked list consisting of exactly m ele-
ments. For each string Sj, 1 ≤ j ≤ m, there is exactly one element in the
list and a pointer strptr[j] to that element. Furthermore, there is a pointer
LV to the last element in the list. (The name LV is an acronym for last
visited because—as we shall see later—LV points to the element that cor-
responds to the last visited index in the suffix array.) Every element e in
the list is a pair (lcp, idx), where lcp is an lcp-value and idx is a position
in the suffix array. We denote the first and second component of a list
element e by e.lcp and e.idx, respectively. Initially, the list has the form
[(0, 1), (0, 2), . . . , (0,m− 1), (|SSA[m]|,m)] and for all j, 1 ≤ j ≤ m, strptr[j] points

210 5 Applications of Enhanced Suffix Arrays

idx

1
lcp

0

idx

4
lcp

3

idx

5
lcp

(4)
LV

1 2 3
strptr

idx

1
lcp

0

idx

4
lcp

6 3 1

idx

5
lcp

6 4 1
LV

1 2 3
strptr

idx

4
lcp

1

idx

5
lcp

1

idx

6
lcp

(3)
LV

1 2 3
strptr

Figure 5.42: Left: List after i = 5 has been processed. The last suffixes
of the strings 1, 2, and 3 are SSA[1] = #1, SSA[4] = aac#2, and
SSA[5] = aac#3. The longest common prefixes of these suffixes
with SSA[i] have length 0, 3, and 4. Furthermore, A[2] = A[3] =
(0,⊥). Middle: In step i = 6, the function lcp_update is called
with lcp-value LCP[6] = 1 and the lcp-values of list elements
are being updated. Moreover, A[2] is set to (3, 4). Right: List
after the procedure call list_update(6).

to the element with second component j. This is because the m lexico-
graphically smallest suffixes are #1,#2, . . . ,#m; cf. Figure 5.41. Note that
|SSA[m]| = |#m| = 1.

Our algorithm linearly scans the generalized enhanced suffix array start-
ing at index m + 1, and for each i with m + 1 ≤ i ≤ n, it first calls the pro-
cedure lcp_update with parameter LCP[i] and then the procedure list_update
with parameter i.

• lcp_update(LCP[i]) linearly scans the list from right to left (the right-
most element can be found with the LV pointer) and compares the
value e.lcp of the current element e with LCP[i]. Suppose that e is
the k-th element from right to left. If e.lcp > LCP[i], then we compare
the (currently best) value A[k].lcs with e.lcp. In case A[k].lcs ≤ e.lcp,
we update A[k] by the assignment A[k] ← e. Furthermore, in the
case e.lcp > LCP[i], the value e.lcp is updated by the assignment
e.lcp ← LCP[i], and the next list element is considered. Otherwise
(i.e., e.lcp ≤ LCP[i]) the procedure stops the scan of the list.

• list_update(i) updates the list by standard list operations as follows: It
deletes the element to which strptr[D[i]] points from the list and adds
a new element (|SSA[i]|, i) at the end of the list. The pointers LV and
strptr[D[i]] are updated so that they both point to the added element.

Figures 5.42 and 5.43 illustrate the algorithm for the example from
Figure 5.41.

Each execution of the procedure lcp_update takes O(m) time, while each
execution of the procedure list_update takes constant time. Because these

5.6 Comparing multiple strings 211

idx

7
lcp

2

idx

8
lcp

2

idx

9
lcp

(5)
LV

1 2 3
strptr

idx

7
lcp

6 2 0

idx

8
lcp

6 2 0

idx

9
lcp

6 5 0
LV

1 2 3
strptr

idx

7
lcp

0

idx

8
lcp

0

idx

10
lcp

(2)
LV

1 2 3
strptr

Figure 5.43: Left: List after i = 9 has been processed. Middle: In iteration
i = 10, the function lcp_update is called with lcp-value LCP[10] =
0 and A[3] is set to (2, 7). Right: List after the procedure call
list_update(10).

procedures are called O(n) times, the worst-case time complexity of the
naive algorithm is in O(m · n).

We show that for each i with m ≤ i ≤ n the algorithm maintains the
following invariants:

1. The idx-values of the list elements are in strict ascending order (left-
to-right).

2. If strptr[j] points to the element e, then D[e.idx] = j and D[p] 6= j for
all p with idx < p ≤ i. In words, the element e to which strptr[j] points
corresponds to the last suffix seen so far that belongs to string Sj.

3. The lcp-values of the list elements are in ascending order (from left to
right).

4. Each element e in the list satisfies e.lcp = |lcp(SSA[e.idx], SSA[i])|.

It is straightforward to verify that our algorithm maintains the invariants
(1)-(3). We prove by induction that the crucial property (4) is an invariant
and make use of the following fact: for all indices p and q with 1 ≤ p <
q ≤ n the equality |lcp(SSA[p], SSA[q])| = minp<l≤q{LCP[l]} holds true. For i = m
property (4) holds. The induction hypothesis states that after index i − 1
(where i− 1 ≥ m) has been considered, every element e in the list satisfies
e.lcp = |lcp(SSA[e.idx], SSA[i−1])| = mine.idx<l≤i−1{LCP[l]}. After the procedure call
lcp_update(LCP[i]), we have

e.lcp = min{|lcp(SSA[e.idx], SSA[i−1])|, LCP[i]} = min
e.idx<l≤i

{LCP[l]} = |lcp(SSA[e.idx], SSA[i])|

Hence property (4) is satisfied. This is also true after the procedure
call list_update(i) because for the new element enew = (i, |SSA[i]|), we have
enew.lcp = |SSA[i]| = |lcp(SSA[enew.idx], SSA[i])|.

Theorem 5.6.7 The algorithm solves the k-common substring problem.

212 5 Applications of Enhanced Suffix Arrays

Proof Recall that `k denotes the length of a longest substring common
to at least k strings, where 2 ≤ k ≤ m. Furthermore, let q be the largest
index for which there is an index p, 1 ≤ p < q ≤ n, so that the suffixes
SSA[p], SSA[p+1], . . . , SSA[q] have a common prefix of length `k and |{D[p], D[p +
1], . . . , D[q]}| ≥ k. Because q is the largest index with this property, it
follows that LCP[q+1] < `k. Now consider the list before lcp_update(LCP[q+1])
is called. By the fourth invariant, we know that each element e in the
list satisfies e.lcp = |lcp(SSA[e.idx], SSA[q])|. Let e′ be k-th element in the list
(from right to left). As the suffixes SSA[p], SSA[p+1], . . . , SSA[q] have a common
prefix of length `k and |{D[p], D[p + 1], . . . , D[q]}| ≥ k, the first k elements
(from right to left) in the list have an lcp-value ≥ `k. Moreover, e′.lcp = `k
because otherwise there would be a longer substring common to k strings.
Consequently, when the procedure lcp_update(LCP[q + 1]) is called, A[k] is
correctly updated by A[k] ← e′. By the choice of index q, A[k] remains
unchanged from that point on. �

A linear-time solution

To obtain a linear-time solution, we combine all elements having the same
lcp-value into intervals. This implies that every interval can be identified
by its unique lcp-value. Because the lcp-values of the elements are in
ascending order (from left to right) in the list, it follows that the lcp-values
of the intervals are also in strict ascending order (from left to right) in the
list. To represent intervals, each list element now has the five components
(lcp, idx, begin, end, size).

• begin: Pointer (from the last element of the interval) to the first ele-
ment of the interval.

• end: Pointer (from the first element of the interval) to the last element
of the interval.

• size: Number of elements in the interval.

Although each list element has five components (lcp, idx, begin, end, size),
they are only relevant for the first and last element of an interval. To be
precise, the four components (lcp, idx, end, size) are solely relevant for the
first element of an interval and the component begin is solely relevant for
the last element of an interval.

We can access all intervals by following the begin pointers as follows: We
start with the LV pointer and find the last element of the first interval I1
(from right to left). Following the begin pointer of that last element, we
reach the first element e1 of I1. Note that the size information can be
used to compute the position k1 (from right to left) of e1 in the list, namely
k1 = e1.size. Then we find the element left to it with the help of the usual

5.6 Comparing multiple strings 213

links of the doubly linked list. This element is the last element of the
second interval I2 and we can reach the first element e2 of I2 by following
the begin pointer of the last element of I2. The position k2 (from right to
left) of e2 in the list is k2 = k1+ e2.size. In this way, we can proceed until all
intervals have been found.

It will also be necessary to access an interval of a certain lcp-value in
constant time. To this end, we use an array intptr[1..n] of interval pointers.
To be precise, intptr[j] points to the first element of the interval with lcp-
value j.

Initially, the list contains the elements (0, 1), (0, 2), . . . , (0,m−1), (|SSA[m]|,m)
divided into two intervals: The first m− 1 elements (from left to right) form
an interval and the second interval solely consists of the last element.

The linear-time algorithm has the same structure as the naive algo-
rithm. It satisfies invariants (1)–(2) for all elements and invariants (3)–(4)
for all elements that are the first element of an interval. The algorithm
linearly scans the enhanced suffix array starting at index m + 1, and for
each i with m + 1 ≤ i ≤ n, it first calls the procedure lcp_update and then
the procedure list_update.

• lcp_update(LCP[i]) linearly scans the list of intervals from right to left
as described above. Let e be the first element of the current interval
and let k be its position (from right to left) in the list. If e.lcp ≥ LCP[i],
then we compare the (currently best) value A[k].lcs with e.lcp. In case
A[k].lcs ≤ e.lcp, we update A[k] by the assignment A[k] ← (e.lcp, e.idx).
Then the next interval (provided it exists) is considered. If its lcp-
value is greater than or equal to LCP[i], it will be set to be the current
interval and so on. Otherwise, if the lcp-value of the next interval
is strictly smaller than LCP[i], then e is the first element of a new
interval with lcp-value LCP[i] and size k. Consequently, we update
these values by e.lcp ← LCP[i] and e.size ← k. Furthermore, we set
e.end← e′ and e′.begin← e, where e′ is the last element of the list (LV
points to it). Finally, the interval pointer intptr[LCP[i]] must point to e
and it is updated accordingly.

• list_update(i) deletes the element ẽ from the list to which strptr[D[i]]
points. However, this must be done with care. First, the size of the
interval to which ẽ belongs must be decreased by one. Second, if ẽ is
the first or the last element of its interval, then begin and end pointers
must be modified accordingly. Nevertheless, these updates can be
done in constant time provided that the first and last element of the
interval to which ẽ belongs can be found in constant time. According
to invariant (4), this interval has lcp-value |lcp(SSA[ẽ.idx], SSA[i])|, and the
lcp-value can be identified in constant time by LCP[RMQ(ẽ.idx + 1, i)].
Then, one finds the first element e of the interval to which ẽ belongs
by following the interval pointer intptr[LCP[RMQ(ẽ.idx+1, i)]], while the

214 5 Applications of Enhanced Suffix Arrays

0 1 2 3 4 5 . . . intptr

3
lcp

1
lcp lcp

3
lcp

3
lcp lcp

2
lcp

4
lcp

1
lcp

12 LV

1 2 3 4 5 6 7 8 9 strptr

0 1 2 3 4 5 . . . intptr

3
lcp

1
lcp lcp

6
lcp

6 3 2
lcp lcp lcp lcp lcp

LV

1 2 3 4 5 6 7 8 9 strptr

0 1 2 3 4 5 . . . intptr

6 3 2
lcp

1
lcp

6
lcp

2
lcp lcp lcp lcp lcp

1
lcp

21 LV

1 2 3 4 5 6 7 8 9 strptr

Figure 5.44: In this fictitious example, there are nine strings and the up-
per figure depicts the point of departure. For each element e
in the list, the component e.idx is omitted. Furthermore, the
component e.lcp is only shown for the relevant elements, viz.
the first element of intervals. The begin and end pointers of an
interval are drawn as an arc with two arrowheads, and the
size of the interval is represented by the number above this
arc. In the next iteration i, we have LCP[i] = 2, D[i] = 2, and
|SSA[i]| = 21. The middle figure shows the situation after the
procedure call lcp_update(2), while the lower figure depicts the
situation after the procedure call list_update(i).

5.6 Comparing multiple strings 215

last element of that interval can be found with the help of the pointer
e.end. Moreover, the procedure list_update(i) adds a new interval at
the end of the list. This interval solely consists of the element e =
(|SSA[i]|, i, e, e, 1), i.e., both pointers e.begin and e.end point to e itself.
Finally, the pointers LV , strptr[D[i]], and intptr[|SSA[i]|] are updated so
that they all point to the added element.

Figure 5.44 illustrates how the algorithm works.
In contrast to the naive algorithm, when the algorithm updates an entry

in the array A, say A[k], then it does not check whether other entries A[k′]
with k′ < k have to be updated as well. This is because the algorithm
directly jumps from the last element of an interval to the first element
and skips the elements in between them. Consequently, in the final state
of the array A, there may be entries A[k] and A[k′] with 2 ≤ k′ < k ≤ m
so that `k = A[k].lcs > A[k′].lcs. This means that the algorithm has found
a string common to k strings that is longer than the (currently longest)
string common to k′ strings, where k′ < k. Therefore, in a final phase, the
algorithm scans the array A from right to left and for j = m down to j = 3
it tests whether A[j].lcs > A[j− 1].lcs holds true. If so, it updates A[j− 1] by
the assignment A[j − 1]← A[j].

Let us turn to the overall complexity of the algorithm. In each iteration,
at most two intervals are created. Thus, the algorithm creates at most 2n
intervals. When the procedure lcp_update(LCP[i]) reads an interval, it either
overwrites this interval with a new interval or it stops at this interval.
Clearly, every interval can be overwritten only once. Thus, in all iterations
the procedure lcp_update can overwrite at most 2n intervals. Hence it takes
O(n) time. Since the same is true for the procedure list_update, the overall
running time of the algorithm is O(n).

The algorithm described in this section stems from [18]. There, it is also
shown that it can be modified so that it solves the more general k-common
repeated substring problem in linear time.

Definition 5.6.8 Given S1, S2, . . . , Sm and positive integers x1, x2, . . . , xm,
the k-common repeated substring problem is to find, for all k with 1 ≤ k ≤
m, a longest string ω for which there are at least k strings Si1 , Si2 , . . . , Sik

(1 ≤ i1 < i2 < . . . < ik ≤ m) so that ω occurs at least xij times in Sij for each
j with 1 ≤ j ≤ k.

Exercise 5.6.9 Consider Algorithm 5.30.

1. Apply it to the example from Figure 5.41.

2. Explain how it works.

3. Analyze its worst-case time complexity.

216 5 Applications of Enhanced Suffix Arrays

Algorithm 5.30 Exercise 5.6.9: Show that this algorithm (taken from [17])
computes a longest common substring of the strings S1, . . . , Sm.

construct the GESA of S1, . . . , Sm

b lb← m+ 1
rb← m+ 1
str_cnt[1..m]← [0..0]
nos← 0 /* nos is an acronym for number of strings */
lcs← 0
ω ← ε
repeat

while nos 6= m and rb ≤ n do
if str_cnt[D[rb]] = 0 then
nos← nos+ 1

str_cnt[D[rb]]← str_cnt[D[rb]] + 1
rb← rb+ 1

if rb ≤ n then
idx← RMQLCP(lb+ 1, rb)
if LCP[idx] > lcs then
lcs← LCP[idx]
ω ← SA[idx..idx+ lcs− 1]

while lb < idx do
str_cnt[D[lb]]← str_cnt[D[rb]]− 1
if str_cnt[D[lb]] = 0 then
nos← nos− 1

lb← lb+ 1
until rb = n+ 1
return ω

5.6.3 Document frequency

Let D be a database (or library) of strings (or documents) S1, . . . , Sm on the
alphabet Σ. The document frequency of a string φ ∈ Σ+ is defined as the
number of strings (documents) in D that have φ as a substring. Formally,

df(φ,D) = |{Sj ∈ D | φ is a substring of Sj}|

If the database D is clear from the context, then we will simply write df(φ)
instead of df(φ,D).

The problem is to preprocess the database D so that document fre-
quency queries df(φ) can be answered quickly. A straightforward solution
is to precompute the GESA of S1, . . . , Sm in O(n) time. Then, for any string
φ, df(φ) can be determined by finding the φ-interval [p..q] in the GESA and
computing |{j | D[i] = j for some i with p ≤ i ≤ q}| in a scan of the interval.
This, however, takes time proportional to the size of the interval [p..q].

5.6 Comparing multiple strings 217

Another simple solution can be obtained by counting how often a suffix
from Sj appeared up to position i in the GESA of S1, . . . , Sm. We use an
array count of dimension n×m so that

count[i, j] = |{q | 1 ≤ q ≤ i and D[q] = j}|

Clearly, the array count can be computed in O(m · n) time. To compute
df(φ), we first determine the φ-interval [p..q] in the GESA of S1, . . . , Sm in
O(|φ|) time. Obviously,

df(φ) = |{j | 1 ≤ j ≤ m, count[q, j]− count[p− 1, j] > 0}|

can then be computed in O(m) time. In summary, after an O(m · n) time
preprocessing phase, this simple method computes df(φ) in O(|φ|+m) time.

Quite surprisingly, there is a method that is able to compute df(φ)
in O(|φ|) time, using only O(n) time in the preprocessing phase. This
is achieved with the help of the so-called correction terms devised by
Hui [159]. Let us introduce some useful notations.

Definition 5.6.10 For a string φ, define

χj(φ) =

{
1 if φ is a substring of Sj

0 otherwise

Nj(φ) = |{i | 1 ≤ i ≤ nj, S
j[i..i+ |φ| − 1] = φ}|

CTj(φ) =

{
Nj(φ)− 1 if Nj(φ) > 0
0 otherwise

So χj(φ) indicates whether or not φ is a substring of Sj, Nj(φ) is the
numbers of occurrences of φ in the string Sj, and CTj(φ) “corrects” this
number in the following sense.

Lemma 5.6.11 The following equality holds:

χj(φ) = Nj(φ)− CTj(φ)

Proof Straightforward. �

Lemma 5.6.12 Let N(φ) =
∑m

j=1Nj(φ) and CT (φ) =
∑m

j=1CTj(φ). Then

df(φ) = N(φ)− CT (φ)

Proof df(φ) =
∑m

j=1 χj(φ) =
∑m

j=1(Nj(φ)− CTj(φ)) = N(φ)− CT (φ). �

CT (φ) is called correction term because it “corrects” N(φ) in the sense
that φ occurs in N(φ)− CT (φ) of the m strings S1, . . . , Sm.

218 5 Applications of Enhanced Suffix Arrays

Algorithm 5.31 Computation of CT ′
j

last← j /* index of #j */
for i← 1 to n do
CT ′

j [i]← 0
for i← m+ 1 to n do

if D[i] = j then
l← RMQLCP(last+ 1, i)
CT ′

j [l]← CT ′
j [l] + 1

last← i

N(φ), the number of occurrences of φ in the strings S1, . . . , Sm, equals
the size of the φ-interval in the GESA of S1, . . . , Sm, and we can determine
this interval in O(|φ|) time. Moreover, by Hui’s [159] method we are able
to attach information to the boundaries of the φ-interval so that the cor-
rection term CT (φ) can be computed in constant time. Below we present
Hui’s [159] method, whose preprocessing phase takes only O(n) time.

The trick of the improved algorithm is to count in a different way as in
the simple algorithm described above. We explain the new way of counting
first for a fixed j, 1 ≤ j ≤ m. Let us assume that the LCP-array of the GESA
of S1, . . . , Sm has been preprocessed in linear time so that range minimum
queries can be answered in constant time. We use an array CT ′

j of size n.
Initially CT ′

j [i] = 0 for all 1 ≤ i ≤ n. During a linear scan of the GESA, we
keep track of the last index last with D[last] = j. Whenever a new index i
is considered, we test whether or not D[i] = j holds true. If so, and last
is not undefined, then we increment CT ′

j [RMQLCP(last + 1, i)] by one. Of
course, we must provide a reason for this. According to Lemma 4.2.8,
` = LCP[RMQLCP(last + 1, i)] is the length of the longest common prefix ω of
SSA[last] and SSA[i]. To account for the fact that an(other) occurrence of ω in
Sj has been detected, we increment an entry in the array CT ′

j. This entry
should be within the lcp-interval `-[p..q] that represents ω but not within
one of its child intervals. In other words, this entry should be an `-index,
and RMQLCP(last+ 1, i) is an `-index.

The pseudo-code for the computation of CT ′
j is shown in Algorithm 5.31

and an example can be found in Figure 5.45.
The next lemma provides the link between array CT ′

j and CTj(ω).

Lemma 5.6.13 If the lcp-interval [p..q] represents the string ω, then we
have CTj(ω) =

∑q
i=p+1CT

′
j [i].

Proof Suppose Nj(ω) > 1 (the case Nj(ω) ≤ 1 follows by a similar reason-
ing), and let r = Nj(ω). By definition, CTj(ω) = r − 1. Let p1, p2, . . . , pr be the
indices in the interval [p..q] so that D[pl] = j, 1 ≤ l ≤ r. Without loss of gen-
erality, we may assume p ≤ p1 < p2 < · · · < pr ≤ q. For every l with 1 ≤ l < r,

5.6 Comparing multiple strings 219

i SA[i] ISA[i] LCP[i] S#
SA[i] D[i] CT ′

1[i] CT ′
2[i] CT ′

3[i] CT ′[i]

1 5 9 −1 #1 1 0 0 0 0
2 9 14 0 #2 2 1 0 0 1
3 14 6 0 #3 3 0 1 0 1
4 6 10 0 aac#2 2 0 0 1 1
5 11 1 3 aac#3 3 0 0 0 0
6 3 4 1 ac#1 1 0 1 1 2
7 7 7 2 ac#2 2 1 0 0 1
8 12 11 2 ac#3 3 0 0 0 0
9 1 2 2 acac#1 1 0 0 0 0
10 4 13 0 c#1 1 1 1 1 3
11 8 5 1 c#2 2 1 0 0 1
12 13 8 1 c#3 3 0 0 0 0
13 10 12 1 caac#3 3 0 0 1 1
14 2 3 2 cac#1 1 0 0 0 0
15 −1

Figure 5.45: The generalized enhanced suffix array of the strings acac, aac,
and caac and the arrays CT ′

j.

Algorithm 5.31 increments the value of CT ′
j [RMQLCP(pl+1, pl+1) by one (this

happens for i = pl+1 in the for-loop). Since p < pl + 1 ≤ pl+1 ≤ q, it follows
that Algorithm 5.31 increments the values of CT ′

j [p + 1], . . . , CT ′
j [q] at least

r− 1 times, i.e., CTj(ω) = r− 1 ≤
∑q

i=p+1CT
′
j [i]. To see that the inequality is

in fact an equality, consider any pair of indices i1 6= i2 with D[i1] = j = D[i2]
and D[i] 6= j for all i1 < i < i2, so that at least one of them does not lie in
the interval [p..q]. If i1 < i2 ≤ p, then RMQLCP(i1 + 1, i2) ≤ p. Hence none of
the values CT ′

j [p + 1], . . . , CT ′
j [q] is incremented. Analogously, if q ≤ i1 < i2,

then q < RMQLCP(i1 +1, i2). Again, none of the values CT ′
j [p+1], . . . , CT ′

j [q] is
incremented. Finally, if i1 < p or q < i2 (or both), then the longest common
prefix of the suffixes SSA[i1] and SSA[i2] must be shorter than ω. Because
the ω-interval [p..q] is an lcp-interval of lcp-value |ω|, every index i with
p < i ≤ q satisfies LCP[i] ≥ |ω|. It follows as a consequence that the index
RMQLCP(i1 + 1, i2) cannot lie in the interval [p+ 1..q], i.e., none of the values
CT ′

j [p+ 1], . . . , CT ′
j [q] is incremented. �

The attentive reader might have noticed already that one does not need
m arrays CT ′

1, . . . , CT
′
m, but just one array CT ′ to compute correction terms.

The CT ′ array is the accumulation of the arrays CT ′
1, . . . , CT

′
m, i.e., CT ′[i] =∑m

j=1CT
′
j [i] for every index i, 1 ≤ i ≤ n.

220 5 Applications of Enhanced Suffix Arrays

Algorithm 5.32 Computation of CT ′.
for j ← 1 to m do
last[j]← j /* index of #j */

for i← 1 to n do
CT ′[i]← 0

for i← m+ 1 to n do
j ← D[i]
l← RMQLCP(last[j] + 1, i)
CT ′[l]← CT ′[l] + 1
last[j]← i

Lemma 5.6.14 If the lcp-interval [p..q] represents the string ω, then we
have CT (ω) =

∑q
i=p+1CT

′[i].

Proof The equalities

CT (ω) =
m∑
j=1

CTj(ω) =
m∑
j=1

q∑
i=p+1

CT ′
j [i] =

q∑
i=p+1

m∑
j=1

CT ′
j [i] =

q∑
i=p+1

CT ′[i]

prove the lemma, where the second equality follows from Lemma 5.6.13
and the last equality follows from the definition CT ′[i] =

∑m
j=1CT

′
j [i]. �

Pseudo-code for the linear-time computation of CT ′ can be found in
Algorithm 5.32, and an example can be found in Figure 5.45.

The final trick is to use the prefix sum array CT ′′, defined by CT ′′[q] =∑q
i=1CT

′[i], instead of the array CT ′. This allows us to compute CT (ω) =∑q
i=p+1CT

′[i] = CT ′′[q] − CT ′′[p] in constant time for every ω-interval [p..q].
Clearly, the array CT ′′ can be precomputed in O(n) time.

Algorithm 5.33 summarizes the whole method.

A direct application

As a direct application of the correction term method, we give an alterna-
tive solution to the k-common substring problem. The algorithm is based
on the same preprocessing phase as Algorithm 5.33. Furthermore, as
with the algorithms in Section 5.6.2, it uses an array A of size m − 1 that
stores for each k, 2 ≤ k ≤ m, a pair (lcs, idx), where lcs is the length of a
(currently) longest substring ω common to at least k strings and idx is an
index so that S[SA[idx]..SA[idx] + lcs− 1] = ω, where S = S1#1S

2#2 . . . S
m#m.

Initially, A[k] = (0,⊥) for all k with 2 ≤ k ≤ m.
Then, the algorithm traverses the lcp-interval tree of S. Here, we will

exemplify the method for a bottom-up traversal as described in Algo-
rithm 4.6 (page 94), but other kinds of traversals are possible. As dis-
cussed in Section 4.3.2, we merely have to specify the procedure call

5.6 Comparing multiple strings 221

Algorithm 5.33 An algorithm to solve the document frequency problem.
Let D be a database (or library) of strings (or documents) S1, . . . , Sm.

• Preprocessing phase:

– Construct the GESA of S1, . . . , Sm.

– Preprocess the LCP-array so that range minimum queries can be
answered in constant time.

– Compute the array CT ′′.

• Computation of df(φ) for a string φ:

– Determine the φ-interval [p..q] by a string matching algorithm.

– Compute df(φ) = N(φ)− CT (φ) = q − p+ 1− (CT ′′[q]− CT ′′[p]).

process(〈`, p, q, childList〉) in Algorithm 4.6, where `-[p..q] is an lcp-interval
representing a string ω. The algorithm proceeds as follows: It computes
the number

k = df(ω) = N(ω)− CT (ω) = q − p+ 1− (CT ′′[q]− CT ′′[p])

and compares the (currently best) value A[k].lcs with `. In case A[k].lcs < `,
it updates A[k] by the assignment A[k] ← (`, p). This takes constant time.
Hence the entire traversal requires only O(n) time. As in the linear-time
algorithm presented in Section 5.6.2, the array A must be updated in a
final phase. As explained there, the algorithm scans the array A from right
to left and for j = m down to j = 3 it tests whether A[j].lcs > A[j − 1].lcs
holds true. If so, it updates A[j − 1] by the assignment A[j − 1]← A[j].

In contrast to the O(n) time algorithm presented in Section 5.6.2, it
seems that this algorithm cannot be modified so that it also solves the
more general k-common repeated substring problem in O(n) time.

5.6.4 Document retrieval

In Section 5.6.3, we have seen how the document frequency df(φ) of a
string φ in a database (or library) D of strings (or documents) S1, . . . , Sm can
be computed. A related problem is the document listing problem, whose
task is to retrieve all documents that contain φ. Formally, we wish to
compute the set

dl(φ) = {j | φ is a substring of Sj, 1 ≤ j ≤ m}

As in Section 5.6.3, a straightforward solution to the document listing
problem is to compute the φ-interval [p..q] in the GESA of S1, . . . , Sm and,

222 5 Applications of Enhanced Suffix Arrays

Algorithm 5.34 An algorithm to solve the document listing problem.
Let D be a database (or library) of strings (or documents) S1, . . . , Sm.

• Preprocessing phase:

– Construct the GESA of S1, . . . , Sm.

– Preprocess the D-array so that distinct elements range queries
can be answered in optimal time.

• Computation of dl(φ) for a string φ:

– Determine the φ-interval [p..q] by a string matching algorithm.

– Compute dl(φ) = derqD(p, q).

in a scan of the interval, compute {j | D[i] = j for some i with p ≤ i ≤ q}.
However, we have already seen that this takes time proportional to the
size of the interval [p..q]. Given the φ-interval, we are interested in an
algorithm that retrieves all df(φ) documents containing φ in optimal time
O(df(φ)). Muthukrishnan [233] showed that this can be done by solving a
more general problem, namely the distinct elements range query problem.

Definition 5.6.15 Given an array A[1..n] of elements from the set
{1, . . . ,m}, m ≤ n and two indices i and j with 1 ≤ i ≤ j ≤ n, a distinct
elements range query derqA(i, j) on the interval [i..j] returns the set of all
distinct elements in A[i..j].

We will show that after a linear-time preprocessing, every query derqA(i, j)
can be answered in optimal O(d) time, where d = |derqA(i, j)| is the number
of distinct elements in the subarray A[i..j]. With this result, the document
listing problem can be solved as shown in Algorithm 5.34. Note that the
preprocessing phase of Algorithm 5.34 needs only O(n) time and dl(φ) can
be computed in O(|φ|+ df(φ)) time.

It remains to provide a solution to the distinct elements range query
problem. Define an array Prev[1..n] by

Prev[i] = max ({j | 1 ≤ j < i and A[j] = A[i]} ∪ {0})

In other words, among all indices j with j < i and A[j] = A[i], Prev[i] is the
largest index. If there is no index j with j < i and A[j] = A[i], then Prev[i] =
0. Figure 5.46 shows an example. It is left as an exercise to the reader
to show that the array Prev can be computed in linear time. Moreover,
Prev is preprocessed in linear time so that range minimum queries can be
answered in constant time.

The solution to the problem relies on the following simple lemma.

5.6 Comparing multiple strings 223

i SA LCP S#
SA[i] D Prev

1 4 −1 #1 1 0
2 8 0 #2 2 0
3 12 0 #3 3 0
4 15 0 #4 4 0
5 20 0 #5 5 0
6 3 0 a#1 1 1
7 14 1 a#4 4 4
8 19 1 a#5 5 5
9 2 1 aa#1 1 6
10 18 2 aa#5 5 8
11 1 2 aaa#1 1 9
12 17 3 aaa#5 5 10
13 5 2 aac#2 2 2
14 9 2 aag#3 3 3
15 6 1 ac#2 2 13
16 10 1 ag#3 3 14
17 7 0 c#2 2 15
18 11 0 g#3 3 16
19 13 1 ga#4 4 7
20 16 2 gaaa#5 5 12
21 −1

Figure 5.46: The generalized enhanced suffix array of the strings S1 = aaa,
S2 = aac, S3 = aag, S4 = ga, and S5 = gaaa and the array Prev.

Lemma 5.6.16 An element e ∈ {1, . . . ,m} occurs in A[i..j] if and only if there
is exactly one index k with i ≤ k ≤ j so that A[k] = e and Prev[k] < i.

Proof “if:” Obvious.
“only if:” Let k1 < k2 < · · · < kq be all indices in the interval [i..j] so that
A[kp] = e, where 1 ≤ p ≤ q. Clearly, Prev[k1] < i because otherwise there
would be a smaller index k0 in [i..j] with A[k0] = e. Moreover, by the defini-
tion of Prev, we have Prev[kp] = kp−1 > i for all 2 ≤ p ≤ q. Thus, the lemma
follows. �

It is a consequence of Lemma 5.6.16 that derqA(i, j) = {A[k] | k ∈ I},
where I = {k | i ≤ k ≤ j and Prev[k] < i}. Thus, it is sufficient to compute
the set I. This is done by an application of procedure PrevIndices from
Algorithm 5.35: PrevIndices(i, i, j, ∅) returns the set I in O(|I|) time.

224 5 Applications of Enhanced Suffix Arrays

Algorithm 5.35 Procedure PrevIndices(b, i, j, set).
q ← RMQPrev(i, j)
if Prev[q] < b then
set← set ∪ {q}
set← PrevIndices(b, i, q − 1, set)
set← PrevIndices(b, q + 1, j, set)

return set

5.6.5 Shortest unique substrings

A primer is an oligonucleotide (an oligonucleotide is a relatively short
single-stranded DNA or RNA molecule) that serves as a starting point for
DNA synthesis. Primers are required because DNA polymerases, the en-
zymes that catalyze replication, can only add new nucleotides to an ex-
isting strand of DNA. The polymerase starts replication at the 3′-end of
the primer, and copies the opposite strand. In most cases of natural DNA
replication, the primer for DNA synthesis and replication is a short strand
of RNA. Many of the laboratory techniques of biochemistry and molec-
ular biology that involve DNA polymerase, such as DNA sequencing and
the polymerase chain reaction (PCR), require DNA primers. These primers
are chemically synthesized oligonucleotides, with a length of about twenty
bases. They are hybridized to a target DNA (i.e., they form base pairs with
a complementary region of the target DNA), which is then copied by the
polymerase.

The polymerase chain reaction (PCR) is a scientific technique in molecu-
lar biology to amplify a single or few copies of a piece of DNA across several
orders of magnitude, generating thousands to millions of copies of a par-
ticular DNA sequence. The method relies on thermal cycling, consisting
of cycles of repeated heating and cooling of the reaction for DNA melt-
ing and enzymatic replication of the DNA. Primers containing sequences
complementary to the target region along with a DNA polymerase (after
which the method is named) are key components to enable selective and
repeated amplification. As PCR progresses, the DNA generated is itself
used as a template for replication, setting in motion a chain reaction in
which the DNA template is exponentially amplified.

PCR is done with two primers, one for each end of the piece of DNA to
be amplified. Here we confine ourselves to finding potential primers on
one strand because the search for primers on the opposite strand can be
done analogously. Ideally, the nucleotide sequence to which the primer
hybridizes should not appear elsewhere in the long DNA sequence. So
we can formulate the exact matching version of the primer selection prob-
lem: For every position i in a given string (DNA sequence) S, compute the

5.6 Comparing multiple strings 225

Algorithm 5.36 For each position i in string S, this algorithm finds the
shortest substring that begins at i and appears nowhere else in S. More-
over, it outputs all shortest unique substrings of S.

construct the ESA of S
for i← 1 to n do
sus[i]←∞ /* initialize shortest unique substring array */

minlen← n /* S itself is a unique substring */
for i← 1 to n do
cur ← 1 + max{LCP[i], LCP[i+ 1]}
if |SSA[i]| ≥ cur then
sus[SA[i]]← cur
if cur < minlen then
minlen← cur

if minlen < n then
for i← 1 to n do

if sus[i] = minlen then
output S[i..i+minlen− 1] /* a shortest unique substring */

else
output S itself is the shortest unique substring

shortest substring (if any) that begins at i and does not appear anywhere
else in S.

In fact, one can determine the length of the shortest unique substring
starting at position SA[i] by simply looking at LCP[i] and LCP[i+1]. Because
the longest common prefix of SSA[i−1] and SSA[i] has length LCP[i], the length
LCP[i] prefix of SSA[i] is not unique. However, the length LCP[i] + 1 prefix of
SSA[i] is unique among all suffixes of S that are lexicographically smaller
than SSA[i]. Analogously, we infer that the length LCP[i + 1] + 1 prefix of
SSA[i] is unique among all suffixes of S that are lexicographically larger
than SSA[i], and it is the shortest prefix with this property. There is one
caveat though. It may happen that SSA[i] is a prefix of SSA[i+1], in which
case |SSA[i]| = LCP[i + 1], so that there is no length LCP[i + 1] + 1 prefix
of SSA[i] (note, however, that SSA[i] cannot be a prefix of SSA[i−1]). The cur-
length prefix of SSA[i], where cur = 1+max{LCP[i], LCP[i+1]}, is the shortest
unique substring of S that starts at position SA[i] unless |SSA[i]| + 1 = cur.
Algorithm 5.36 computes and stores the lengths of these locally shortest
unique substrings in the array sus[1..n].

Moreover, Algorithm 5.36 provides an alternative method to compute all
globally shortest unique substrings of S (in Section 4.3.3, these have been
determined by a breadth-first traversal of the lcp-interval tree). Of course,
in this context S must not be terminated by the sentinel character $ be-
cause otherwise $ itself would be the globally shortest unique substring.

226 5 Applications of Enhanced Suffix Arrays

Without loss of generality, assume that S contains at least two different
characters (otherwise S itself is the shortest unique substring). When the
first for-loop of Algorithm 5.36 is finished, then the length of all shortest
unique substrings of S is minlen, and the second for-loop outputs them.

Exercise 5.6.17 Analyze the worst-case time complexity of Algorithm
5.36. Apart from the output, it is quite obvious that the run-time is O(n).
So the question is, how big is the output in the worst case?

DNA microarrays are a widely used tool to monitor gene expression. An
oligonucleotide array (“chip”) is a plastic or glass slide containing many
spots, each consisting of many copies of a known oligonucleotide (a short
DNA sequence) attached to the chip. In an experiment, an mRNA sample
is extracted from several cells, reverse-transcribed into complementary
DNA (cDNA), and fluorescently labeled. The labeled cDNA is then allowed
to bind to (hybridize with) the oligonucleotides on the array. Whenever the
Watson-Crick complementary sequence of an oligonucleotide is present in
a cDNA sequence, that cDNA will hybridize to the oligonucleotide. Un-
hybridized cDNA is washed off the chip, and the amount of hybridized
cDNA at each spot can be measured via the fluorescent dye intensity.
The idea behind this procedure is that each spot represents one gene
and that the amount of hybridized cDNA at a spot is a measure of the
gene’s transcript abundance in the cell sample, which is often interpreted
as the gene expression level or its “activity” in the cell sample. Oligonu-
cleotides should be gene-specific, i.e., only the transcripts of a single gene
should hybridize to a given oligonucleotide, so the measurement taken at
the oligonucleotide’s spot can be interpreted as the corresponding gene’s
expression level in the sample. Note that a cDNA need not contain the
perfect Watson-Crick complement of an oligonucleotide to hybridize.

We formulate the exact matching version of the oligonucleotide selection
problem: Given a set D = {S1, . . . , Sm} of cDNA sequences (transcribed
genes), for every k with 1 ≤ k ≤ m, find a shortest substring of Sk that does
not appear as a substring of any of the other strings.

Definition 5.6.18 A string φ ∈ Σ∗ is called string-specific if df(φ) = 1, i.e.,
if φ occurs in exactly one of the strings S1, . . . , Sm. Furthermore, φ is said
to be Sk-specific if it is string-specific and a substring of Sk.

With this definition, the oligonucleotide selection problem reads as:
Given a set D = {S1, . . . , Sm} of strings, find a shortest Sk-specific string
for every k with 1 ≤ k ≤ m.

We solve the oligonucleotide selection problem by a two-phase algo-
rithm. In the first phase, we compute the GESA of S1, . . . , Sm and pre-
process it so that the document frequency of each string that is rep-
resented by an lcp-interval can be determined in constant time. This

5.6 Comparing multiple strings 227

first phase takes linear time (O(n) time, where |S| = n = m +
∑m

k=1 nk and
|Sk| = nk). The second phase consists of a breadth-first traversal of the
lcp-interval tree of the GESA of S1, . . . , Sm, using a queue. Initially, the
queue contains only the root interval 0-[1..n]. The algorithm maintains the
following invariant: If, during the traversal, an lcp-interval representing
a string u is added to the queue, then df(u) > 1, i.e., u is not string-
specific. Our algorithm keeps two arrays minlen[1..m] and minpos[1..m],
where initially minlen[k] = ∞ = minpos[k] for all k with 1 ≤ k ≤ m. The en-
try minlen[k] stores the length of the currently shortest Sk-specific string,
while minpos[k] stores a position in Sk at which a currently shortest Sk-
specific string starts.

Suppose that `-[i..j] is removed from the front of the queue, i.e., it is the
lcp-interval that is processed next during the breadth-first traversal. By
the invariant, [i..j] represents a string u with df(u) > 1, i.e., u is not string-
specific. The algorithm computes all child intervals of [i..j] and proceeds
by case distinction:

1. If a singleton child interval [p..p] of [i..j] is detected, then it tests
whether S#

SA[p][` + 1] is the separator symbol #k, where k = D[p]. This
is the case if and only if ` = nk.

a) If S#
SA[p][` + 1] = #k, then all prefixes of S#

SA[p] without the last
character #k are not string-specific. Thus, nothing needs to be
done.

b) If S#
SA[p][` + 1] 6= #k, then the length ` + 1 prefix of S#

SA[p] is Sk-
specific. So the algorithm tests whether ` + 1 < minlen[k], and if
the test is positive, it sets minlen[k]← `+1 and minpos[k]← SA′[p].

2. If an lcp-interval [lb..rb] is detected, then the algorithm checks whether
the string ω that is represented by [lb..rb] is string-specific.

a) If df(ω) = 1, the length ` + 1 prefix of S#
SA[lb] is Sk-specific, where

k = D[lb]. If it is shorter than the currently shortest Sk-specific
string, the algorithm sets minlen[k]← `+1 and minpos[k]← SA′[lb].
Clearly, it is superfluous to inspect the subtree rooted at the in-
terval [lb..rb], so the lcp-interval [lb..rb] is not added to the queue.

b) If df(ω) > 1, then [lb..rb] is added to the back of the queue.

Then, the algorithm proceeds with the next lcp-interval at the front of the
queue, as described above, until the queue is empty.

It is not difficult to see that the algorithm takes time proportional to the
number of processed intervals. In the worst case, this is O(n).

228 5 Applications of Enhanced Suffix Arrays

5.6.6 A distance measure for genomes

In a series of papers, Haubold et al. used matching statistics to compute
pairwise distances of genome sequences for phylogenetic reconstruction;
see [82,148] and the references therein. (Phylogenetic reconstruction will
be discussed in Chapter 10.) As usual, we consider m strings S1, . . . , Sm

of lengths n1, . . . , nm. In [82], Domazet-Lošo and Haubold showed that the
(non-symmetric) matrix8

`ij =

ni∑
k=1

msij[k]

can be computed in O(m · n) time on a generalized suffix tree. Recall that
the matching statistics msij of Si w.r.t. Sj is an array so that for every
k with 1 ≤ k ≤ ni we have msij[k] = ` if and only if Si[k..k + ` − 1] is the
longest prefix of Sik that occurs as a substring of Sj. Since the average
lengths `ij/ni and `ji/nj do not necessarily coincide, Domazet-Lošo and
Haubold [82] used

Kij
r = max{`ij/ni, `ji/nj}

as a distance measure for phylogenetic reconstruction.
The matrix `ij can be computed as follows. For each i with 1 ≤ i ≤ m do:

1. Construct the ESA of string Si in O(ni) time.

2. For each j 6= i, compute the matching statistics msij of Si w.r.t. Sj

in O(nj) time by matching Sj against the lcp-interval tree of Si as in
Section 5.5.4. Of course, the matching statistics need not be stored
because `ij =

∑ni

k=1msij[k] can be obtained by successively summing
up the values.

For a fixed i, this requires O(n) time. Thus, the overall worst-case time
complexity of this method is O(m · n).

In practice, it is faster to compute the matrix `ij on the GESA of S1, . . . , Sm

provided that the GESA fits into main memory. To develop the algorithm
that does this, we need the next lemma.

Lemma 5.6.19 Let idx be the index in the GESA of S1, . . . , Sm at which one
can find Sik, the k-th suffix of Si. For j 6= i, msij[k] is the lcp-value of the
smallest lcp-interval that contains both idx and an index idx′ with D[idx′] = j
(i.e., the interval contains Sik and a suffix of Sj).

Proof Let `-[lb..rb] be the smallest lcp-interval that contains both idx and
an index idx′ with D[idx′] = j. If Sjk′ is the suffix of Sj that occurs at

8In fact, they used `ij =
∑ni

k=1(1 + msij [k]) = ni +
∑ni

k=1msij [k] and mention that their
method is based on “locally shortest unique substrings.” This is because the shortest
prefix of Si

k that is not a substring of Sj has length 1 +msij [k].

5.6 Comparing multiple strings 229

idx′, then u = Si[k..k + ` − 1] is the longest common prefix of Sik and Sjk′.
Hence u is a prefix of Sik that occurs as a substring of Sj. So msij[k] ≥ `.
We claim that equality holds. For a proof by contradiction, suppose that
msij[k] > `. Then, there must be a prefix ω = uv of Sik that has length
|ω| = msij[k] and occurs as a substring of Sj. Obviously, the ω-interval is
an lcp-interval of lcp-value |ω|. It is readily verified that this lcp-interval
is embedded in [lb..rb]. This, however, contradicts our assumption that
`-[lb..rb] is the smallest lcp-interval that contains both idx and an index
idx′ with D[idx′] = j. �

The following algorithm computes the matrix `ij in O(m · n) time. (It
is a simple exercise to show that the worst-case time complexity of this
algorithm is indeed O(m · n).)

1. Initialize a matrix `ij containing zeros.

2. Construct the GESA of S1, . . . , Sm in O(n) time.

3. In a bottom-up traversal of the lcp-interval tree, for each lcp-interval
`-[lb..rb] compute occ[lb..rb](S1), . . . , occ[lb..rb](S

m), where

occ[lb..rb](S
j) = |{k | lb ≤ k ≤ rb and D[k] = j}|

is the number of suffixes in the interval [lb..rb] that belong to string Sj.
Clearly, when an lcp-interval is reached in the bottom-up traversal,
the corresponding values of all its child intervals are known. During
the traversal, if the current lcp-interval `-[lb..rb] has a

a) singleton child interval [idx..idx] with D[idx] = i, then for all j 6= i
with occ[lb..rb](S

j) > 0 set

`ij ← `ij + `

b) non-singleton child interval [p..q] so that occ[p..q](S
j) = 0 but

occ[lb..rb](S
j) > 0, then for all i 6= j with occ[p..q](S

i) 6= 0 set

`ij ← `ij + ` · occ[p..q](Si)

We use Figures 5.47 and 5.48 to exemplify the algorithm. Suppose that
the lcp-interval 1-[4..9] is processed during the bottom-up traversal of the
lcp-interval tree. Its child intervals are [4..4], 2-[5..6], and 2-[7..9]. The non-
singleton child intervals 2-[5..6] and 2-[7..9] have already been processed
and the current state of the matrix `ij is shown in Figure 5.48 at the
upper right corner (`ij = 2 for all i 6= j, except for `12 = 4). Furthermore, we
have D[4] = 3, occ[5..6](S1) = 0, occ[5..6](S2) = 1, occ[5..6](S3) = 1, occ[7..9](S1) = 2,
occ[7..9](S

2) = 1, and occ[7..9](S
3) = 0. Therefore, occ[4..9](S1) = 2, occ[4..9](S2) = 2,

and occ[4..9](S
3) = 2. For the singleton child interval [4..4], ` = 1 is added

230 5 Applications of Enhanced Suffix Arrays

i LCP S#
SA[i] lcp-intervals

1 −1 #1

0

2 0 #2

3 0 #3

4 0 a#3

1

5 1 aa#3 2
6 2 aac#2

7 1 ac#1

28 2 ac#2

9 2 acac#1

10 0 c#1

1
11 1 c#2

12 1 caa#3 2
13 2 cac#1

14 −1

Figure 5.47: The LCP-array and the lcp-interval tree (singleton intervals
are not shown) of the generalized suffix array of the strings
acac, aac, and caac.

to `31 and `32 because D[4] = 3, occ[4..9](S1) = 2, and occ[4..9](S
2) = 2. Since

occ[5..6](S
1) = 0 and occ[4..9](S

1) = 2, ` · occ[5..6](S2) = 1 · 1 is added to `21 and
` · occ[5..6](S3) = 1 · 1 is added to `31. Analogously, ` · occ[7..9](S1) = 1 · 2 is added
to `13 and ` · occ[7..9](S2) = 1 · 1 is added to `23 because occ[7..9](S

3) = 0 and
occ[4..9](S

3) = 2; see Figure 5.48.

We still have to argue that the algorithm correctly computes the ma-
trix `ij. To this end, fix i and j with i 6= j. Let idx be the index in the
GESA at which one can find Sik. On the path from the singleton interval
[idx..idx] to the root 0-[1..n] of the lcp-interval tree, let `-[lb..rb] be the first
lcp-interval (lowest node in the tree) so that occ[lb..rb](Sj) > 0. This means
that `-[lb..rb] is the smallest lcp-interval that contains idx and an index
idx′ with D[idx′] = j. According to Lemma 5.6.19, msij[k] = `. If `-[lb..rb]
is the parent interval of [idx..idx], then ` is correctly added to `ij by case
3a). If `-[lb..rb] is not the parent interval of [idx..idx], then the non-singleton
child interval [p..q] of [lb..rb] that lies on the path to [idx..idx] must satisfy
occ[p..q](S

j) = 0. So when `-[lb..rb] is processed, then ` · occ[p..q](Si) is added to
`ij by case 3b). Clearly, at that point in time msij[k] = ` is accounted for.
Therefore, when the bottom-up traversal terminates at the root node, we
have `ij =

∑ni

k=1msij[k].

5.6 Comparing multiple strings 231

2-[5..6] 1 2 3
1 − 0 0
2 0 − 0 + 2
3 0 0 + 2 −

2-[7..9] 1 2 3
1 − 0 + 2 + 2 0
2 0 + 2 − 2
3 2 2 −

1-[4..9] 1 2 3
1 − 4 0 + 1 · 2
2 2 + 1 · 1 − 2 + 1 · 1
3 2 + 1 + 1 · 1 2 + 1 −

2-[12..13] 1 2 3
1 − 4 2 + 2
2 3 − 3
3 4 + 2 3 −

1-[10..13] 1 2 3
1 − 4 + 1 + 1 · 1 4 + 1
2 3 + 1 − 3 + 1
3 6 3 + 1 · 1 −

0-[1..13] 1 2 3
1 − 6 5
2 4 − 4
3 6 4 −

Figure 5.48: State of the matrix `ij after the lcp-interval shown in the up-
per left corner has been processed.

5.6.7 All-pairs suffix-prefix matching

The all-pairs suffix-prefix matching problem is a key problem that arises
in the context of DNA sequencing. It is formally defined as follows.

Definition 5.6.20 Given m strings S1, S2, . . . , Sm the all-pairs suffix-prefix
matching problem is the problem of finding, for all j 6= k with 1 ≤ j ≤ m
and 1 ≤ k ≤ m, the longest suffix of Sj that is a prefix of Sk.

Why is the all-pairs suffix-prefix matching problem important in the
context of DNA sequencing? DNA sequencers cannot read whole genomes
in one go, but rather produce short DNA fragments, called reads. To
determine the order of bases within a long DNA sequence, the following
strategy can be used. The DNA sequence is amplified and randomly frac-
tured into millions of small fragments (shotgun step). These fragments
are then sequenced and the original DNA sequence is reconstructed from
the reads (assembly step). This strategy can be compared to taking many
copies of a book, passing them all through a shredder, and piecing the text
of the book back together just by looking at the shredded pieces. Finding
all pairs of overlapping reads is a key task in sequence assembly because
the source is reconstructed by merging overlapping reads. It must be
stressed, however, that the assembly process is exacerbated by

232 5 Applications of Enhanced Suffix Arrays

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

�����
�����
�����
�����

���������
���������
���������
���������

��������
��������
��������
��������

Figure 5.49: Schematic view of a mis-assembled genomic region. The top
of the figure shows the true structure of the genomic region,
where the white regions represent (nearly) identical copies
of the same DNA sequence. If the repeat is long enough,
then the assembler will not have a read containing the entire
repeat and its unique flanking sequences (the left and right
region, respectively). Because the copies of the repeat appear
identical to the assembler, the result of the genome assembly
(shown on the lower half of the figure, left-hand side) has
just one copy of the repeat and the region in between the two
copies of the repeat is being lost (lower half, right-hand side).

• the shear volume of data (next-generation sequencing technologies
produce billions of bases in a single run at a relatively low cost),

• repeats (identical and nearly identical sequences), and

• sequencing errors.

Repeats confuse the assembly process because reads originating from
distinct copies of the repeat appear identical to the assembler. Figure 5.49
illustrates this phenomenon; for more details see e.g. [277]. Techniques
to deal with sequencing errors can be found e.g. in [292,316].

The all-pairs suffix-prefix matching problem was first solved in optimal
time by Gusfield et al. [140]; see also [139]. They used suffix trees for this
purpose. In this section, we present an algorithm that solves the all-pairs
suffix-prefix matching problem with the help of enhanced suffix arrays; it
originates from [249]. Other approaches include [128,291]. The method
of Simpson and Durbin [291] will be discussed in Section 7.7.3.

Now let us address the problem itself. We build the GESA of the strings
S1, S2, . . . , Sm, i.e., the ESA of the string S = S1#1S

2#2 . . . S
m#m, which

has length n = m +
∑m

l=1 nl; see Figure 5.50 for an example. A solution
to the problem will be stored in a matrix Ov (Ov is called overlap matrix
because Ov[j, k] contains the longest overlap of the end of string Sj with
the beginning of string Sk).

The following simple lemma is the basis of the solution to the all-pairs
suffix-prefix matching problem.

5.6 Comparing multiple strings 233

i SA LCP S#
SA[i] D SA′

1 4 −1 #1 1 4
2 8 0 #2 2 4
3 12 0 #3 3 4
4 15 0 #4 4 3
5 20 0 #5 5 5
6 3 0 a#1 1 3
7 14 1 a#4 4 2
8 19 1 a#5 5 4
9 2 1 aa#1 1 2
10 18 2 aa#5 5 3
11 1 2 aaa#1 1 1 i1
12 17 3 aaa#5 5 2
13 5 2 aac#2 2 1 i2
14 9 2 aag#3 3 1 i3
15 6 1 ac#2 2 2
16 10 1 ag#3 3 2
17 7 0 c#2 2 3
18 11 0 g#3 3 3
19 13 1 ga#4 4 1 i4
20 16 2 gaaa#5 5 1 i5
21 −1

Figure 5.50: The generalized enhanced suffix array of the strings S1 = aaa,
S2 = aac, S3 = aag, S4 = ga, and S5 = gaaa. The indices
i1, i2, . . . , i5 satisfy SA′[ij] = 1.

Lemma 5.6.21 In the generalized enhanced suffix array of S1, S2, . . . , Sm,
let i be an index with SA′[i] = 1 and D[i] = k, i.e., S#

SA[i] = Sk#k. If the suffix
Sjp of string Sj is a prefix of string Sk, where j 6= k, then either

• Sjp#j appears before index i in the GESA of S1, S2, . . . , Sm, or

• Sjp#j appears at an index q with i < q ≤ i + j − k in the GESA of
S1, S2, . . . , Sm (in this case k < j and all suffixes—without their last
character—between i and q are identical with Sk).

Proof If Sjp is a proper prefix of Sk, then (by the definition of the lexico-
graphic order) Sjp is lexicographically smaller than Sk. It is quite obvious
that this implies that Sjp#j is lexicographically smaller than Sk#k. There-
fore, it appears before index i.

234 5 Applications of Enhanced Suffix Arrays

Algorithm 5.37 All-pairs suffix-prefix matching
for i← m+ 1 to n do
k ← D[i]
if SA′[i] = 1 then

for j ← 1 to m do
if j 6= k then
Ov[j, k]← top(stack[j])

/* The next five lines handle suffixes identical with Sk */
if i < n then
q ← i+ 1

while q ≤ n and LCP[q] = nk and |SD[q]
SA′[q]| = nk do

Ov[D[q], k]← SA′[q]
q ← q + 1

if i < n then
if LCP[i+ 1] < LCP[i] then

for `← LCP[i] downto LCP[i+ 1] + 1 do
for each j in list[`] do
pop(stack[j])
remove(list[`], j)

else if |SkSA′[i]| = LCP[i+ 1] then
/* |SkSA′[i]| = LCP[i+ 1] implies that SkSA′[i] is a prefix of SD[i+1]

SA′[i+1] */

push(stack[k], SA′[i])
add(list[LCP[i+ 1]], k)

Otherwise, Sjp is a non-proper prefix of Sk, i.e., Sjp = Sk. We further
distinguish two cases.
(1) If j < k, then Sjp#j appears before index i because #j < #k, i.e., Sjp#j is
lexicographically smaller than Sk#k.
(2) If k < j, then Sjp#j is lexicographically larger than Sk#k. We observe
that only the length nk + 1 suffixes of Sk+1#k+1, S

k+2#k+2, . . . , S
j−1#j−1 can

possibly lie lexicographically in between Sk#k and Sjp#j. Moreover a length
nk + 1 suffix of Sh#h, where k < h < j and nk ≤ nh, lies lexicographically in
between Sk#k and Sjp#j if and only if the length nk suffix of Sh is identical
with Sk. Thus, Sjp#j appears at an index q with i < q ≤ i+ j − k. �

Algorithm 5.37 scans the generalized enhanced suffix array from index
m+ 1 to index n. During the scan, it keeps track of all suffixes seen so far
that are a prefix of the current suffix. This is achieved by the usage of m
stacks stack[1], stack[2], . . . , stack[m], one for each string S1, S2, . . . , Sm. To ef-
ficiently administer stacks, the algorithm uses at most max{n1, n2, . . . , nm}
lists list[1], list[2], Initially, all stacks and lists are empty.

5.6 Comparing multiple strings 235

2 (aa) 3 (aa)
3 (a) 2 (a) 4 (a)

stack[1] stack[2] stack[3] stack[4] stack[5]

Figure 5.51: The stacks before the outer for-loop of Algorithm 5.37 is ex-
ecuted for i = 11. For example, the top element of stack[1] is 2
(the corresponding suffix S1

2 = aa of S1 is supplied in paren-
theses).

We apply Algorithm 5.37 to the strings from Figure 5.50. Before the
outer for-loop is executed for i = 11, the stacks contain the elements
depicted in Figure 5.51 and we have list[1] = [1, 4, 5] and list[2] = [1, 5]. In
the execution of the outer for-loop for i = 11, one has SA′[11] = 1 and
k = D[11] = 1, so that the first column of the Ov-matrix is filled in by
the assignments Ov[2, 1]← ⊥ (the operation top applied to an empty stack
returns ⊥), Ov[3, 1] ← ⊥, Ov[4, 1] ← 2, and Ov[5, 1] ← 3. However, the suffix
S5
2 = aaa of S5 equals S1 and S5

2#5 directly follows S1#1 in the generalized
suffix array. Algorithm 5.37 detects this by means of the subsequent five
lines of code: the suffix Sjp, where j = D[q] and p = SA′[q] equals Sk if
and only if LCP[q] = nk and |Sjp| = nk. Note that |Sjp| can be determined in
constant time because |Sjp| = nj − p + 1. In our example, LCP[12] = 3 = n1

and |S5
2 | = n5 − 2 + 1 = 3 = n1 and thus Algorithm 5.37 assigns SA′[12] = 2

to Ov[5, 1]. Because the else-if-condition is true, SA′[11] = 1 is pushed onto
stack[1] and the string number 1 is added to list[LCP[12]] = list[3] (which was
empty). In the execution of the outer for-loop for i = 12, the top element is
removed from the stack stack[1] (hence the stacks again have the elements
as in Figure 5.51) and the string number 1 is removed from list[3] (hence
list[3] is empty again), During the execution of the outer for-loop for i = 13,
the second column of the Ov-matrix is filled in (see Figure 5.52); for i = 14,
the third column of the Ov-matrix is filled in, etc.

To prove the correctness of Algorithm 5.37, we show that the following
properties are invariants of the outer for-loop: before the for-loop is exe-
cuted for some i with m+ 1 ≤ i ≤ n, the stacks stack[1], stack[2], . . . , stack[m]
contain exactly the suffixes9 (in increasing order of string length) seen so
far that are a prefix of SD[i]

SA′[i]
. Furthermore, j is in list[`] if and only if stack[j]

contains the suffix Sjnj−`+1 (the suffix of Sj that has length `).
Under the assumption that the above-mentioned properties hold before

the for-loop is executed for some i, we show that the properties also hold
before the for-loop is executed for i+ 1. We proceed by case analysis.

9As a matter of fact, the stacks do not contain suffixes but suffix numbers. For example,
if p = top(stack[j]), then the suffix number p corresponds to the suffix Sj

p of Sj.

236 5 Applications of Enhanced Suffix Arrays

Ov 1 2 3 4 5
1 − 2 (aa) 2 (aa) ⊥ ⊥
2 ⊥ − ⊥ ⊥ ⊥
3 ⊥ ⊥ − 3 (g) 3 (g)
4 2 (a) 2 (a) 2 (a) − 1 (ga)
5 2 (aaa) 3 (aa) 3 (aa) ⊥ −

Figure 5.52: The overlap matrix Ov after Algorithm 5.37 was applied to
the strings of Figure 5.50. For example, Ov[4, 1] = 2 means
that S4

2 = a is the longest suffix of S4 = ga that matches a
prefix of S1 = aaa.

If LCP[i+1] ≥ LCP[i], then all suffixes seen so far that are a prefix of SD[i]

SA′[i]

are also a prefix of SD[i+1]

SA′[i+1]
. Moreover, the else-if-condition tests whether

SkSA′[i] (where k = D[i]) is a prefix of SD[i+1]

SA′[i+1]
. If this is the case, the suffix

number SA′[i] representing the suffix SkSA′[i] is pushed onto stack[k] and the
string number k is added to list[|SkSA′[i]|]. Therefore, the properties also hold
before the for-loop is executed for i+ 1.

Otherwise, if LCP[i+1] < LCP[i], then all suffixes of length ` with LCP[i] ≥
` ≥ LCP[i+ 1] + 1 must be removed from the stacks because these suffixes
are not a prefix of SD[i+1]

SA′[i+1]
. For each ` (in decreasing order) we use the list

list[`] to find all stacks that have a suffix of length ` on top and successively
remove these top elements from the stacks and the string numbers from
list[`] until list[`] is empty. Again, the properties also hold before the for-
loop is executed for i + 1. (Observe that in this case SkSA′[i] cannot be a

prefix of SD[i+1]

SA′[i+1]
because |SkSA′[i]| ≥ LCP[i] > LCP[i+ 1].)

The correctness of Algorithm 5.37 now follows from the invariant prop-
erties. If the for-loop is executed for some i with SA′[i] = 1 and D[i] = k,
then the topmost element of stack[j], say t = top(stack[j]), represents the
longest suffix Sjt of Sj seen so far that is a prefix of Sk. Lemma 5.6.21
implies that Sjt is the longest suffix of Sj that is a prefix of Sk, unless k < j
and there is a suffix Sjp of Sj so that Sjp = Sk. However, all suffixes that are
identical with Sk directly (precede or) succeed Sk in the suffix array and
the algorithm deals with this special case.

Let us analyze the worst-case time complexity of Algorithm 5.37. Each
of the n suffixes is pushed at most once onto a stack. This implies that
there are at most n elements added to the lists. Consequently, there
are at most 2n push and pop operations on the stacks, and at most 2n
add and remove operations on the lists. There are m indices i1, i2, . . . , im
so that SA′[ij] = 1. For every ij, the inner for-loop is executed m times.
Furthermore, there are at most m − 1 suffixes that are identical with the

5.7 String kernels 237

current suffix Sk (excluding Sk itself). Thus, for every ij the algorithm
takes O(m) time. This sums up to O(m2) time for all m indices i1, i2, . . . , im.
Altogether, the worst-case time complexity of Algorithm 5.37 is O(n+m2).
This is optimal because n is the size of the input and m2 is the size of the
output.

Exercise 5.6.22 Formulate the all-pairs prefix-prefix matching problem
and give two algorithms that solve it: one with range minimum queries
and one without range minimum queries. Analyze the worst-case time
complexity of the algorithms.

Exercise 5.6.23 Define the all-pairs suffix-suffix matching problem and
show that it is equivalent to the all-pairs prefix-prefix matching problem.

Exercise 5.6.24 Formulate the all-pairs longest common substring prob-
lem and give an O(m · n) time algorithm that solves it, where m is the
number of input strings and n is the sum of their lengths. (It is an open
problem whether an O(n+m2) time solution exists.)

5.7 String kernels

5.7.1 Machine learning

If a classification problem is non-linear, one can map the input data into a
high (possibly infinite) dimensional feature space, where each coordinate
corresponds to one feature of the data items. A map φ : X → F from the
input space X to a feature space F (endowed with an inner product 〈., .〉)
is called a feature map. In the feature space F , a variety of methods can
be used to find relations in the data, and a linear relation in F usually
corresponds to a non-linear relation in the input space X . Kernel meth-
ods owe their name to the use of kernel functions k : X × X → R that
enable them to operate in the feature space F without ever computing
the coordinates of the data in that space, but rather by simply computing
k(x, y) = 〈φ(x), φ(y)〉. This operation is often computationally more efficient
than the explicit computation of the coordinates. Among other things,
kernel functions have been introduced for strings, graphs, and images.
Algorithms capable of operating with kernels include support vector ma-
chines, linear discriminant analysis, principal components analysis, and
many others; see [285].

Support vector machines (SVMs) are a set of related supervised learning
methods used for classification. Let {(x1, y1), . . . , (xm, ym)} be given, where
each xi is a training example from the input space X belonging to one
of two classes, and each yi ∈ {−1, 1} indicates to which class xi belongs.
Roughly speaking, SVMs learn a linear decision boundary to discriminate

238 5 Applications of Enhanced Suffix Arrays

between the two classes. To be more precise, they use the training data
{(x1, y1), . . . , (xm, ym)} and the kernel matrix with the entries k(xi, xj), where
i, j ∈ {1, . . . ,m}, to construct a classifier f(x) = sgn (

∑m
i=1 αiyik(xi, x) + b), by

finding optimal10 coefficients αi and offset b. In the classifier, sgn is the
signum function, and the set {xi | 1 ≤ i ≤ m,αi 6= 0} is called the set of
support vectors. The classifier f(x) can then be used to classify new test
examples: it predicts whether a new example x falls into one class or the
other.

To implement this discriminative approach to classification, one has to
solve the following subproblems:

1. Compute the kernel matrix, i.e., compute k(xi, xj) for i, j ∈ {1, . . . ,m}.

2. Find the coefficients αi and offset b (learning phase).

3. For x ∈ X , compute f(x) = sgn (
∑m

i=1 αiyik(xi, x) + b) (classification).

In the following, we show how steps (1) and (3) can be implemented for
string kernels. Problem (1) is tackled in Sections 5.7.2 and 5.7.3, and a
solution to problem (3) is sketched in Section 5.7.4. Solutions to problem
(2) are discussed e.g. in [63,285].

We would like to point out that the approach was successfully applied
to the protein classification problem by Leslie et al. [201], albeit with a
different sequence-similarity kernel (called spectrum kernel).

5.7.2 Calculating a string kernel

In our context, the input space X is the set Σ∗ of all finite strings on an
alphabet Σ, and the feature map φ : X → R∞ maps a string S ∈ Σ∗ to the
vector (

√
W (ω) · occω(S))ω∈Σ∗, where W : Σ∗ → R is a weight function with

W (ω) ≥ 0, and occω(S) denotes the number of substring occurrences of ω
in S. The string kernel (or weighted all-substrings kernel) of two strings
S1 and S2 is defined by

k(S1, S2) = 〈φ(S1), φ(S2)〉 =
∑
ω∈Σ∗

W (ω) occω(S
1) occω(S

2)

For example, the linear string kernel of S1 = acaaacatat and S2 = caact for
the constant weight function W (ω) = 1 is k(S1, S2) = 26; see Figure 5.53 (in
which strings ω ∈ Σ+ with occω(S

1) = 0 or occω(S2) = 0 are omitted).
Vishwanathan, Smola, and Teo [307,320] have shown that such a string

kernel can be computed in linear time with the help of suffix arrays
and matching statistics, and we will follow their approach. The follow-
ing lemma is the key to the solution.

10See e.g. [63] for formulations of SVM optimization problems.

5.7 String kernels 239

ω ∈ Σ+ a c t aa ac ca aac caa
occω(S

1) = occω(acaaacatat) 6 2 2 2 2 2 1 1
occω(S

2) = occω(caact) 2 2 1 1 1 1 1 1
occω(S

1) · occω(S2) 12 4 2 2 2 2 1 1

Figure 5.53: k(S1, S2) =
∑

ω∈Σ+ occω(S
1) occω(S

2) = 26.

Lemma 5.7.1 For strings ω, S ∈ Σ∗, we write ω < S if ω is a prefix of S.
Then,

k(S1, S2) =

n2∑
p2=1

∑
ω<S2

p2

W (ω) occω(S
1)

Proof Of course, a summand W (ω) occω(S
1) occω(S

2) is zero if ω does not oc-
cur in S1 or S2. Thus, it suffices to sum over all ω ∈ Σ∗ that are substrings
of both S1 and S2. Fix such a string ω. We claim that

occω(S
2) = |{p2 | 1 ≤ p2 ≤ n2, ω < S2

p2
}|

To verify the claim, suppose that occω(S2) = k, and let i1, . . . , ik be all the
positions in S2 at which ω occurs, i.e., ω = S2[ij..ij + |ω| − 1] for all j with
1 ≤ j ≤ k. In other words, i1, . . . , ik are the positions in S2 so that ω is a
prefix of S2

ij
for all j with 1 ≤ j ≤ k. Now the claim follows:

occω(S
2) = k = |{i1, . . . , ik}| = |{p2 | 1 ≤ p2 ≤ n2, ω < S2

p2
}|

Consequently,

∑
ω∈Σ∗

W (ω) occω(S
1) occω(S

2) =

n2∑
p2=1

∑
ω<S2

p2

W (ω) occω(S
1)

�

The next two lemmata generalize Lemma 4.3.18.

Lemma 5.7.2 Let [lb..rb] be an lcp-interval and let [b..e] be its parent in-
terval in the lcp-interval tree of S1. Suppose [b..e] represents u and [lb..rb]
represents uv, where u and uv are substrings of S1 with v 6= ε. For each
prefix p of v we have

∑
ω<up

W (ω) occω(S
1) =

∑
ω<u

W (ω) occω(S
1) +

(∑
ω<up,ω 6<u

W (ω)

)
(rb− lb+ 1)

240 5 Applications of Enhanced Suffix Arrays

Proof Let ω be a substring of S1 so that ω < up but ω 6< u. The key
observation is that the ω-interval coincides with the uv-interval. In other
words, ω occurs as often in S1 as uv does, namely (rb− lb+1) times. Thus,∑

ω<up

W (ω) occω(S
1) =

∑
ω<u

W (ω) occω(S
1) +

∑
ω<up,ω 6<u

W (ω) occω(S
1)

=
∑
ω<u

W (ω) occω(S
1) +

∑
ω<up,ω 6<u

W (ω) occuv(S
1)

=
∑
ω<u

W (ω) occω(S
1) +

(∑
ω<up,ω 6<u

W (ω)

)
(rb− lb+ 1)

�

There are some interesting weight functions for which W (ω) can be com-
puted in constant time. To keep the presentation simple, we here focus
on length-dependent weights. Nevertheless, the subsequent considera-
tions also apply, with a grain of salt, to many other weights; see [320] for
details. A weight function W is called length-dependent if, for all strings
u, v ∈ Σ+, |u| = |v| implies W (u) = W (v). In other words, the weight of a
string solely depends on its length; so strings of the same length get the
same weight. As an example, consider W (ω) = λ−|ω| for some constant
0 < λ < 1. Since a length dependent weight function W : Σ∗ → R can
be viewed as a function W : N → R, we will also write W (|ω|) instead of
W (ω). Clearly, the prefix sum of all weights of strings up to length j can
be precomputed by PS(j) =

∑j
i=0W (i).

Lemma 5.7.3 Let W be a length-dependent weight function. In the situa-
tion of Lemma 5.7.2, let [b..e] (the parent interval of [lb..rb]) have lcp-value `
(i.e., |u| = `). Then, we have∑

ω<up

W (ω) occω(S
1) =

∑
ω<u

W (ω) occω(S
1) + (PS(|up|)− PS(`)) (rb− lb+ 1)

Proof This follows from Lemma 5.7.2 because
∑

ω<up,ω 6<uW (ω) equals

|up|∑
k=|u|+1

W (k) =

|up|∑
k=`+1

W (k) =

|up|∑
k=1

W (k)−
∑̀
k=1

W (k) = PS(|up|)− PS(`)

�

5.7 String kernels 241

i SA LCP SSA[i] VAL

1 3 −1 aaacatat
2 4 2 aacatat 8
3 1 1 acaaacatat 6
4 5 3 acatat 10
5 9 1 at 6
6 7 2 atat 8
7 2 0 caaacatat 0
8 6 2 catat 4
9 10 0 t 0
10 8 1 tat 2
11 −1

Figure 5.54: The enhanced suffix array of S = acaaacatat with VAL array.

In the above situation, if val([b..e]) =
∑

ω<uW (ω) occω(S
1) is already known,

then we can compute the value val([lb..rb]) =
∑

ω<uvW (ω) occω(S
1) by

val([lb..rb]) = val([b..e]) + (PS(r)− PS(`)) (rb− lb+ 1) (5.2)

in constant time, where r = |uv| is the lcp-value of [lb..rb]. It follows as
a consequence that we can compute the value val for each lcp-interval
by a top-down traversal of the lcp-interval tree in O(n1) time (the value
val([1..n1]) of the root interval is set to 0). For the constant weight function
W (ω) = 1, Section 4.3.3 contains an algorithm that computes these values
and stores them in an array VAL; it is easy to modify the algorithm so that
it can cope with length-dependent weight functions. Recall that for an
lcp-interval `-[b..e], val([b..e]) is stored at each of its `-indices in the array
VAL; see Figure 5.54.

The second component of a linear-time algorithm to calculate the string
kernel k(S1, S2) is the linear-time algorithm that computes the matching
statistics of S2 w.r.t. S1 in O(n2) time; see Algorithm 5.28 (page 200). Recall
that the matching statistics of S2 w.r.t. S1 is an array ms so that for every
entry ms[p2] = (q, [lb..rb]), 1 ≤ p2 ≤ n2, the following holds:

1. S2[p2..p2 + q − 1] is the longest prefix of S2
p2

that occurs as a substring
of S1.

2. [lb..rb] is the S2[p2..p2 + q − 1]-interval in the ESA of S1.

According to Lemma 5.7.1,

k(S1, S2) =

n2∑
p2=1

∑
ω<S2

p2

W (ω) occω(S
1)

242 5 Applications of Enhanced Suffix Arrays

p2 1 2 3 4 5
ms[p2] 3, [7..7] 3, [2..2] 2, [3..4] 1, [7..8] 1, [9..10]

summand 4 + 1 · 1 8 + 1 · 1 6 + 1 · 2 0 + 1 · 2 0 + 1 · 2

Figure 5.55: The second row shows the matching statistics of S2 = caact
w.r.t. S1 = acaaacatat. cf. Figure 5.54. The last row shows the
summands

∑
ω<S2

p2
occω(S

1).

Therefore, when Algorithm 5.28 determines the matching statistic ms[p2] =
(q, [lb..rb]), the summand

∑
ω<S2

p2
W (ω) occω(S

1) can be computed by Lemma
5.7.3: ∑

ω<S2
p2

W (ω) occω(S
1) = val([b..e]) + (PS(q)− PS(`)) (rb− lb+ 1) (5.3)

where `-[b..e] is the parent interval of [lb..rb]. Each summand can be ob-
tained in constant time by Lemma 4.3.9:

1. If LCP[lb] = LCP[rb + 1], then ` = LCP[lb] = LCP[rb + 1] and val([b..e]) =
VAL[lb] = VAL[rb + 1] because both lb and rb + 1 are `-indices of the
parent interval of [lb..rb].

2. If LCP[lb] > LCP[rb+ 1], then ` = LCP[lb] and val([b..e]) = VAL[lb] because
lb is the last `-index of the parent interval of [lb..rb].

3. If LCP[lb] < LCP[rb + 1], then ` = LCP[rb + 1] and val([b..e]) = VAL[rb + 1]
because rb+ 1 is the first `-index of the parent interval of [lb..rb].

As an example consider Figures 5.54 and 5.55 and the constant weight
function W (ω) = 1. The first summand is computed with the help of
ms[1] = (q, [lb..rb]) = (3, [7..7]) as follows: The comparison of LCP[lb] with
LCP[rb+ 1] yields LCP[7] = 0 < 2 = LCP[8], so the third case applies. Thus,∑
ω<S2

1

W (ω) occω(S
1) = VAL[rb+ 1] + (q − LCP[rb+ 1]) (rb− lb+ 1) = 4 + 1 · 1 = 5

The second summand is computed with ms[2] = (q, [lb..rb]) = (3, [2..2]). Be-
cause LCP[2] = 2 > 1 = LCP[3], the second case applies. Therefore,∑

ω<S2
2

W (ω) occω(S
1) = VAL[lb] + (q − LCP[lb]) (rb− lb+ 1) = 8 + 1 · 1 = 9

All summands are listed in the last row of Figure 5.55. Because there are
n2 summands, each of which can be computed in constant time, the string
kernel k(S1, S2) can be computed in O(n2) time—after an O(n1) time pre-
processing phase. (Of course the matching statistics need not be stored.)

5.7 String kernels 243

5.7.3 Calculating the kernel matrix

Given m strings S1, . . . , Sm on a constant-size alphabet Σ, their m×m string
kernel matrix can be calculated as follows.

For each i with 1 ≤ i ≤ m do:

1. Construct the ESA of string Si in O(ni) time, where ni = |Si|.

2. Precompute the array VALi by a top-down traversal of the lcp-interval
tree of Si in O(ni) time as in Section 4.3.3.

3. For each j 6= i, compute k(Si, Sj) in O(nj) time by matching Sj against
the lcp-interval tree of Si as described in the previous section.

For a fixed i, this requires O(n) time: O(ni) time for the first two phases,
and

∑
j 6=iO(nj) = O(n − ni) time for the last phase. Because the three

phases must be applied to each of the m strings, the overall worst-case
time complexity of calculating the m×m string kernel matrix is O(m · n).

However, this method of Vishwanathan, Smola, and Teo [307,320] can-
not handle the important TF-IDF weighting scheme. We will see in Section
5.7.5 how to deal efficiently with this weighting scheme.

5.7.4 Classification

To determine to which class a new string S of length N belongs, we have to
compute f(S) = sgn(

∑m
i=1 αiyik(S

i, S) + b). It will be shown how to calculate
g(S) =

∑m
i=1 αiyik(S

i, S) efficiently. The computation of f(S) = sgn(g(S) + b)
is then straightforward.

According to Section 5.7.2, we have

g(S) =
m∑
i=1

αiyi

 N∑
p=1

∑
ω<Sp

W (ω) occω(S
i)

=

N∑
p=1

∑
ω<Sp

W (ω)

(
m∑
i=1

αiyi occω(S
i)

)

It follows as a consequence that we can proceed exactly as in Section 5.7.2
provided that we work with the GESA of the support vectors S1, . . . , Sm

and replace the factor rb− lb+ 1 in Equations (5.2) and (5.3) by the factor∑rb
k=lb αD[k]yD[k] (if an index k in the ω-interval [lb..rb] belongs to string Si,

i.e., D[k] = i, then the summand must be αD[k]yD[k] = αiyi). Using the same
prefix-sum-trick as for length-dependent weights, this factor can be com-
puted in constant time. More precisely, define PS′(0) = 0 and precompute

244 5 Applications of Enhanced Suffix Arrays

PS′(j) =
∑j

k=1 αD[k]yD[k] for 1 ≤ j ≤ n. Then,

rb∑
k=lb

αD[k]yD[k] = PS′(rb)− PS′(lb− 1)

With these modifications, the same techniques as in Section 5.7.2 can be
used to compute g(S) in O(N) time. So one can classify a string S in linear
time, independent of the size of the support vectors.

5.7.5 The TF-IDF weighting scheme

Given a database (library) D of strings (documents) S1, . . . , Sm on a constant-
size alphabet Σ and a string ω ∈ Σ∗, the term frequency (TF) is the raw
frequency of the string (the term) ω inside string Sj. In other words, it is
occω(S

j), the number of times ω occurs in Sj. The document frequency df(ω)
is the number of strings (documents) in D in which ω occurs at least once.
We would like to point out that Yamamoto and Church [332] first showed
how the term frequency and the document frequency of all substrings in
a database can be computed with the help of suffix arrays.

For every string ω occurring in D, the inverse document frequency (IDF)
is defined by

idf(ω) = log
m

df(ω)

Using this as weight function, we obtain the so-called TF-IDF score

occω(S
j) log

m

df(ω)

of the string ω with respect to the document Sj.
The kernel matrix for the TF-IDF weighting scheme can be computed in

O(m · n) time as follows:

1. Construct the GESA of S1, . . . , Sm in O(n) time, where n = m+
∑m

i=1 ni.

2. In a bottom-up traversal of the corresponding lcp-interval tree, com-
pute the values occω(S1), . . . , occω(S

m) and

df(ω) = |{k | 1 ≤ k ≤ m and occω(S
k) > 0}|

for every string ω that is represented by an lcp-interval (and store
these values; for example, at all lcp-indices of the ω-interval). This
takes O(m · n) time.

3. In a top-down traversal, simultaneously precompute the functions
val1, . . . , valm and store them in the arrays VAL1, . . . ,VALm (one for each

5.7 String kernels 245

i LCP S#
SA[i] lcp-intervals

1 −1 #1

0

2 0 #2

3 0 #3

4 0 a#3

1

5 1 aa#3 2
6 2 aac#2

7 1 ac#1

28 2 ac#2

9 2 acac#1

10 0 c#1

1
11 1 c#2

12 1 caa#3 2
13 2 cac#1

14 −1

Figure 5.56: The LCP-array of the strings acac#1, aac#2, and caa#3 and its
lcp-interval tree (singleton intervals are not shown).

string). Initially, valk([1..n]) = 0 for each k with 1 ≤ k ≤ m. In the top-
down traversal, let [lb..rb] be the current lcp-interval representing the
string ω of length q and let `-[b..e] be its parent interval. Then set

valk([lb..rb]) = valk([b..e]) + (q − `) (log m

df(ω)
) occω(S

k)

Again, this takes O(m · n) time.

4. During the top-down traversal, if the lcp-interval [lb..rb] has a sin-
gleton child interval, say belonging to string Sj, then add vali([lb..rb])
to k(Si, Sj) for each i 6= j. Since there are n singleton intervals, this
computation also takes O(m · n) time.

As an example, consider the GESA of the strings acac#1, aac#2, and
caa#3 shown in Figure 5.56. The corresponding occ, df , and val values can
be found in Figure 5.57, while Figure 5.58 contains the kernel matrix. In
an actual implementation, each valk([lb..rb]) is stored in the array VALk at
all `-indices of [lb..rb]; cf. Section 5.7.2. Note that the occ arrays can be
overwritten by the VAL arrays.

Theorem 5.7.4 The algorithm correctly computes the kernel matrix for the
TF-IDF weighting scheme.

246 5 Applications of Enhanced Suffix Arrays

`-[lb..rb] 0-[1..13] 1-[4..9] 1-[10..13] 2-[5..6] 2-[7..9] 2-[12..13]
ω ε a c aa ac ca

occω(S
1) 5 2 2 0 2 1

occω(S
2) 4 2 1 1 1 0

occω(S
3) 4 2 1 1 0 1

df(ω) 3 3 3 2 2 2
val1([lb..rb]) 0 0 0 0 2 · log2(3/2) log2(3/2)
val2([lb..rb]) 0 0 0 log2(3/2) log2(3/2) 0
val3([lb..rb]) 0 0 0 log2(3/2) 0 log2(3/2)

Figure 5.57: occω(S1), . . . , occω(S
m) and df(ω) for every string ω that is rep-

resented by an lcp-interval [lb..rb], and the corresponding val-
ues valk([lb..rb]). Note that log2(3/2) = 0.585.

k 1 2 3
1 − 2 log2(3/2) log2(3/2)
2 log2(3/2) + log2(3/2) − log2(3/2)
3 log2(3/2) log2(3/2) −

Figure 5.58: The kernel matrix of the strings acac#1, aac#2, and caa#3

(only the non-zero summands are shown).

Proof According to Lemma 5.7.1, we have

k(Si, Sj) =

nj∑
p=1

∑
ω<Sj

p

idf(ω) occω(S
i)

Since every suffix Sjp of Sj is taken into account in the top-down traversal
(when the singleton child interval corresponding to Sjp is encountered), it
suffices to show that ∑

ω<Sj
p

idf(ω) occω(S
i) = vali([lb..rb])

where [lb..rb] is the parent interval of the singleton interval representing Sjp.
The proof of this claim is by induction on the depth d of node [lb..rb] in the
lcp-interval tree of the GESA of S1, . . . , Sm. If d = 0, then [lb..rb] is the root,
i.e., [lb..rb] = [1..n]. In this case, the empty string ε is the longest prefix of
Sjp that is a substring of Si. In other words, for each non-empty prefix ω of
Sjp, we have occω(S

i) = 0. Therefore,
∑

ω<Sj
p
idf(ω) occω(S

i) = 0 = vali([1..n]).

5.8 String mining 247

Now suppose that node [lb..rb] has depth d+1. Clearly, the parent interval
[b..e] of [lb..rb] has depth d. Let [b..e] represent the string u of length ` and
let [lb..rb] represent the string uv of length q. Note that uv is a prefix of Sjp.
By the inductive hypothesis, the equality∑

ω<u

idf(ω) occω(S
i) = vali([b..e])

holds true. Furthermore,∑
ω<Sj

p

idf(ω) occω(S
i) =

∑
ω<uv

idf(ω) occω(S
i)

=
∑
ω<u

idf(ω) occω(S
i) +

∑
ω<uv,ω 6<u

idf(ω) occω(S
i)

= vali([b..e]) +
∑

ω<uv,ω 6<u

idf(ω) occuv(S
i)

= vali([b..e]) +
∑

ω<uv,ω 6<u

(log
m

df(uv)
) occuv(S

i)

= vali([b..e]) + (q − `) (log m

df(uv)
) occuv(S

i)

= vali([lb..rb])

and the theorem is proven. �

5.8 String mining

In string mining problems, one is given m databases D1, . . . ,Dm of strings
and searches for unknown strings that fulfill certain constraints, which
are usually specified by the user. To study the problem, let us use an
example from the medical field. Suppose a genetic disease, e.g. Hunting-
ton’s disease, is suspected of being caused by a defect on a certain locus
of a certain chromosome, say on the short arm of chromosome 4. To
find the cause of the disease, a possible approach would be to sequence
that segment of the DNA molecules of many healthy individuals and ill
persons. Then one database contains the DNA sequences of the healthy
individuals, while the second databases contains the DNA sequences of
the ill individuals. Now, one searches for all strings that occur frequently
(or always) in one of the database and not too often (or never) in the other
database. If one finds, for example, that the string CAGCAGCAG...CAG (in
which the codon CAG—coding for the amino acid glutamine—is tandemly
repeated more than 36 times) occurs frequently in the database of ill per-
sons, but not too often in the database of healthy persons, then this gives
a hypothesis for the cause of the disease. This example is an instance of
the frequent string mining problem.

248 5 Applications of Enhanced Suffix Arrays

Definition 5.8.1 The frequent string mining problem is defined as follows:
Given m databases D1, . . . ,Dm of strings on the alphabet Σ and m pairs
of positive frequency thresholds (minf1,maxf1), . . . , (minfm,maxfm), find all
strings φ ∈ Σ+ that satisfy minfi ≤ df(φ,Di) ≤ maxfi for all 1 ≤ i ≤ m.

Recall from Section 5.6.3 that df(φ,Di) = |{ω ∈ Di : φ is substring of ω}|.
A string φ ∈ Σ+ satisfying minfi ≤ df(φ,Di) ≤ maxfi is called relevant sub-
string of Di. The solution to the frequent string mining problem is the
intersection of the relevant substrings of the databases D1, . . . ,Dm. As an
example, let D1 consist of the strings acac, aac, and caac, while D2 contains
the strings aaaa, caaac, and aca. Both pairs of frequency thresholds are
(2, 2), i.e., 2 ≤ df(φ,Di) ≤ 2 for both i = 1 and i = 2. In other words, we are
searching for all strings that occur as a substring of exactly two strings in
both databases. The relevant substrings of D1 are aa, aac and ca; those of
D2 are aa, aaa, ac, c, and ca. Consequently, the solution to this instance of
the frequent string mining problem are the strings aa and ca.

Algorithm 5.38 gives an overview of the solution to the frequent string
mining problem. The phases of the algorithm, which originates from [190],
are subsequently explained in more detail. It builds on the work of Fis-
cher et al. [109], who first presented an algorithm that solves the frequent
string mining problem in optimal time, i.e., in time linear in the size of
the input (the databases) and the output (the strings that satisfy the con-
straints). Other solutions to the problem include [79,111,329].

5.8.1 Extraction phase

The extraction of the relevant substrings of a database D is done by a
bottom-up traversal of the lcp-interval tree of the string SD. We store rel-
evant substrings implicitly and process them later in lexicographic order.

Each relevant substring of D is a prefix of at least one suffix of SD,
i.e., it is possible to assign each relevant substring to exactly one suffix
that has this substring as a prefix. We assign a relevant substring to the
lexicographically largest suffix that has this substring as a prefix.

Lemma 5.8.2 Let SD
j be a suffix with at least one assigned relevant sub-

string. Let a be the minimum length and b the maximum length of all relevant
substrings assigned to SD

j . Then, for each ` with a ≤ ` ≤ b, there exists a
relevant substring of length ` that is assigned to SD

j .

Proof For an indirect proof, suppose that there is an ` with a ≤ ` ≤ b
so that no relevant substring of length ` was assigned to SD

j . The string
SD[j..j + `− 1] must be a relevant substring because minf ≤ df(SD[j..j + b−
1],D) ≤ df(SD[j..j + ` − 1],D) ≤ df(SD[j..j + a − 1],D) ≤ maxf . If the prefix
SD[j..j+`−1] of SD

j has not been assigned to SD
j , it must have been assigned

5.8 String mining 249

Algorithm 5.38 An algorithm that solves the frequent string mining prob-
lem.

• For each database D ∈ {D1, . . . ,Dm} of size k = |D| do:

– Preprocessing phase:

∗ Set SD = S1#1 . . .#k−1S
k#k, where D = {S1, . . . , Sk}.

∗ Construct the suffix array SA and the LCP-array of SD.

∗ Preprocess the LCP-array so that range minimum queries
can be answered in constant time.

– Extraction phase:

∗ Calculate the array CT ′′
D; see Section 5.6.3.

∗ For each lcp-interval `-[i..j] representing a string ω, compute
df(ω,D) = j − i + 1 − CTD(ω), where CTD(ω) = CT ′′

D[j] − CT ′′
D[i]

is the correction term.

∗ Store each relevant substring φ (i.e., minf ≤ df(φ,D) ≤ maxf)
at the lexicographically largest suffix that has φ as a prefix.

• Iteratively calculate the intersection of the relevant substrings of the
databases D1 and D2, then the intersection of the result with the
relevant substrings of D3, and so on.

– Intersection of relevant substrings of two databases D1 and D2:

∗ Compute the matching statistics of SD2 w.r.t. SD1 as in Sec-
tion 5.5.4. While matching the string SD2 against the en-
hanced suffix array of SD1, also compute the auxiliary array
cnt, which can be used to merge the enhanced suffix arrays
of SD1 and SD2; see Section 5.5.5.

∗ Process all suffixes of SD1 and SD2 in lexicographic order by
simulating the merging of the enhanced suffix arrays of SD1

and SD2 and compute common relevant substrings.

250 5 Applications of Enhanced Suffix Arrays

to a lexicographically larger suffix. But then SD[j..j+a−1] can be assigned
to the same suffix. This contradicts the fact that SD[j..j + a − 1] has been
assigned to the lexicographically largest suffix that has SD[j..j+ a− 1] as a
prefix. �

In other words, for each suffix, the lengths of assigned relevant sub-
strings form a (possibly empty) interval [a..b]. Let us call this interval the
results interval. We use two arrays a and b of size n = |SD| to store the
left and right boundaries of the results intervals. Initially, all results in-
tervals are empty: a[k] = ∞ and b[k] = 0 for 1 ≤ k ≤ n. In a bottom-up
traversal of the lcp-interval tree, when the procedure process of Algorithm
4.6 (page 94) is applied to an lcp-interval `-[i..j] representing the string ω,
it executes the following code:

if minf ≤ j − i+ 1− (CT ′′
D[j]− CT ′′

D[i]) ≤ maxf then
if a[j] =∞ then b[j]← `
a[j]← max{LCP[i], LCP[j + 1]}+ 1

The first if-statement tests whether ω is relevant, i.e., whether minf ≤
df(ω,D) ≤ maxf is true. If so, the second if-statement tests whether the
results interval [a..b] is still empty, i.e., whether a[j] = ∞ holds. If this
is also true, then b[j] is set to `. Note that j is the largest index with
the property that ω is a prefix of SD

SA[j] because it is the right boundary
of the ω-interval. Since the algorithm traverses the lcp-interval tree in a
bottom-up fashion, b[j] remains unchanged once it is set (every ancestor
of the ω-interval in the lcp-interval tree represents a string that is a proper
prefix of ω). Furthermore, the left-boundary a[j] of the results interval [a..b]
must be set to k+1, where k is the lcp-value of the parent interval of `-[i..j].
This is because the frequency constraint does not necessarily hold for the
parent interval (during the bottom-up traversal, the frequency constraint
will be checked separately for the parent interval). According to Corollary
4.3.10, the parent interval of `-[i..j] has lcp-value max{LCP[i], LCP[j + 1]}.

Continuing our small example, Figures 5.59 and 5.60 show the results
intervals of the databases D1 and D2.

5.8.2 Intersection phase

To perform the intersection phase, we match the string SD2 against the
enhanced suffix array of SD1 and compute the matching statistics of SD2

w.r.t. SD1 (see Figure 5.60) as well as the auxiliary array cnt (see Figure
5.59). With this information, it is possible to merge the enhanced suffix
arrays SA1 and SA2 of SD1 and SD2 in linear time; cf. Section 5.5.5. How-
ever, since we are not interested in the common enhanced suffix array
of SA1 and SA2, we merely simulate the merging without actually build-
ing the common ESA. This simulation allows us to process all suffixes of

5.8 String mining 251

i SA1[i] LCP1[i] SD1

SA1[i]
D1[i] CT ′′

D1
[i] a1[i] b1[i] cnt[i]

1 5 -1 #1 1 0 ∞ 0 0
2 9 0 #2 2 1 ∞ 0 0
3 14 0 #3 3 2 ∞ 0 0
4 6 0 aac#2 2 3 ∞ 0 9
5 11 3 aac#3 3 3 2 3 0
6 3 1 ac#1 1 5 ∞ 0 1
7 7 2 ac#2 2 6 ∞ 0 0
8 12 2 ac#3 3 6 ∞ 0 0
9 1 2 acac#1 1 6 ∞ 0 2

10 4 0 c#1 1 9 ∞ 0 0
11 8 1 c#2 2 10 ∞ 0 0
12 13 1 c#3 3 10 ∞ 0 0
13 10 1 caac#3 3 11 ∞ 0 3
14 2 2 cac#1 1 11 2 2 0
15 -1 0

Figure 5.59: Generalized enhanced suffix array of the strings acac, aac,
and caac with the array cnt and results intervals for the fre-
quency constraint 2 ≤ df(φ,D1) ≤ 2.

i SA2[i] LCP2[i] SD2

SA2[i]
D2[i] CT ′′

D2
[i] a2[i] b2[i] ms[SA2[i]]

1 5 -1 $1 1 0 ∞ 0 ⊥
2 11 0 $2 2 1 ∞ 0 ⊥
3 15 0 $3 3 2 ∞ 0 ⊥
4 4 0 a$1 1 3 ∞ 0 (1,[4..9])
5 14 1 a$3 3 4 ∞ 0 (1,[4..9])
6 3 1 aa$1 1 5 ∞ 0 (2,[4..5])
7 2 2 aaa$1 1 6 ∞ 0 (2,[4..5])
8 1 3 aaaa$1 1 7 ∞ 0 (2,[4..5])
9 7 3 aaac$2 2 7 3 3 (2,[4..5])

10 8 2 aac$2 2 8 2 2 (3,[4..5])
11 9 1 ac$2 2 9 ∞ 0 (2,[6..9])
12 12 2 aca$3 3 9 2 2 (3,[9..9])
13 10 0 c$2 2 11 ∞ 0 (1,[10..14]
14 13 1 ca$3 3 12 ∞ 0 (2,[13..14])
15 6 2 caaac$2 2 12 1 2 (3,[13..13])

Figure 5.60: Generalized enhanced suffix array of the strings aaaa, caaac,
and aca with matching statistics and results intervals for the
frequency constraint 2 ≤ df(φ,D2) ≤ 2.

252 5 Applications of Enhanced Suffix Arrays

SD1 and SD2 in lexicographic order, and to compute all common relevant
substrings.

Recall from Section 5.5.5 that PS[p1 − 1] denotes the sum
∑p1−1

j=1 cnt[j] of
the first p1 − 1 entries of the array cnt (by definition, PS[0] = 0), and the
suffix SD1

SA1[p1−1] is placed at index PS[p1 − 1] + p1 − 1 in the common suffix
array SA of SD1 and SD2 because the suffixes SD1

SA1[1]
, . . . , SD1

SA1[p1−2] and the
suffixes SD2

SA2[1]
, . . . , SD2

SA2[PS[p1−1]] are lexicographically smaller than SD1

SA1[p1−1].
The suffixes in the interval [PS[p1 − 1] + 1..PS[p1]] of SA2 are stored at the
interval [PS[p1 − 1] + p1..PS[p1] + p1 − 1] in SA, then suffix SD1

SA1[p1]
is placed

at index PS[p1] + p1, and so on. In what follows, if ms[SA2[p2]] = (k, [i..j]),
then ms[SA2[p2]].lcp = k, ms[SA2[p2]].lb = i, and ms[SA2[p2]].rb = j. According
to Lemma 5.5.19, if suffix SD2

SA2[p2]
is placed between the suffixes SD1

SA1[p1−1]

and SD1

SA1[p1]
, then we have:

1. If ms[SA2[p2]].lb ≤ p1 ≤ ms[SA2[p2]].rb, then

a) |lcp(SD2

SA2[p2]
, SD1

SA1[p1]
)| = ms[SA2[p2]].lcp

b) |lcp(SD1

SA1[p1−1], S
D2

SA2[p2]
)| = LCP1[p1]

2. Otherwise

a) |lcp(SD1

SA1[p1−1], S
D2

SA2[p2]
)| = ms[SA2[p2]].lcp

b) |lcp(SD2

SA2[p2]
, SD1

SA1[p1]
)| = LCP1[p1]

Algorithm 5.39 processes the suffixes of SD1 and SD2 in lexicographic
order. For each relevant substring φ of D2, it locates the lexicographically
largest suffix of SD1 that has φ as a prefix (if there is such a suffix of SD1).
Algorithm 5.39 does this by maintaining a set of relevant substrings of D2

that are a prefix of the currently processed suffix of SD1. When the body
of the outer for-loop is executed for a certain value of the loop variable p1,
the processed suffix is SD1

SA1[p1−1]. The set consists of all relevant substrings
of D2 assigned to suffixes of SD2 that are lexicographically smaller than
SD1

SA1[p1]
. It can be shown as in Lemma 5.8.2 that this set can be represented

as an interval, which will be denoted by [acur..bcur]. Exercise 5.8.4 asks you
to show that the following property (P) is an invariant of the outer for-loop
of Algorithm 5.39:

(P) Before the loop body is executed for a certain value of the loop vari-
able p1, we have: The length ` prefix of the suffix SD1

SA1[p1−1] is a relevant
substring of D2 assigned to a suffix of SD2 that is lexicographically
smaller than SD1

SA1[p1−1] if and only if acur ≤ ` ≤ bcur.

With the help of the loop invariant and the next lemma, we are able
to show that Algorithm 5.39 correctly computes common relevant sub-
strings.

5.8 String mining 253

Algorithm 5.39 Intersection of result intervals, based on the following
input: suffix arrays SA1 and SA2, lcp-arrays LCP1 and LCP2, result-interval-
arrays a1, b1, a2, b2, matching statistics ms, and the cnt-array.
acur ←∞
bcur ← 0
anext ←∞
bnext ← 0
p2 ← 1
for p1 ← k1 + 1 to n1 + 1 do /* D1 contains k1 strings */

if LCP1[p1] ≥ acur then
bnext ← min{bcur, LCP1[p1]}

else
anext ←∞
bnext ← 0

for i← 1 to cnt[p1] do
if a2[p2] ≤ b2[p2] then /* results interval is not empty */

if ms[SA2[p2]].lb ≤ p1 ≤ ms[SA2[p2]].rb then
lcp1 ← LCP1[p1]
lcp2 ← ms[SA2[p2]].lcp

else
lcp1 ← ms[SA2[p2]].lcp
lcp2 ← LCP1[p1]

/* now lcp1 = |lcp(SD1

SA1[p1−1], S
D2

SA2[p2]
)| and lcp2 = |lcp(SD2

SA2[p2]
, SD1

SA1[p1]
)| */

if lcp1 ≥ a2[p2] then
acur ← min{acur, a2[p2]}
bcur ← max{bcur,min{lcp1, b2[p2]}}

if lcp2 ≥ a2[p2] then
anext ← min{anext, a2[p2]}
bnext ← max{bnext,min{lcp2, b2[p2]}}

p2 ← p2 + 1
end for
a1[p1 − 1]← max{acur, a1[p1 − 1]}
b1[p1 − 1]← min{bcur, b1[p1 − 1]}
acur ← anext
bcur ← bnext

end for

254 5 Applications of Enhanced Suffix Arrays

acur bcur
p1 − 1 SD1

SA1[p1−1] a1[p1 − 1] b1[p1 − 1]

SD2

SA2[p2]
a2[p2] b2[p2]

.

p1 SD1

SA1[p1]
a1[p1] b1[p1]

Figure 5.61: To compute common relevant substrings of D1 and D2 that
must be stored at index p1 − 1, one must consider relevant
substrings of D2 represented by the interval [acur..bcur] and
those that are assigned to suffixes of SD2 that are lexico-
graphically in between SD1

SA1[p1−1] and SD1

SA1[p1]
.

Lemma 5.8.3 Let φ be a relevant substring of D2 and let SD2

SA2[p2]
be the lex-

icographically largest suffix in SA2 that has φ as a prefix, i.e., φ is stored
at index p2. Furthermore, suppose that in a (simulated) merging of SA1

and SA2, the suffix SD2

SA2[p2]
is placed in between SD1

SA1[p1−1] and SD1

SA1[p1]
, i.e.,

SD1

SA1[p1−1] < SD2

SA2[p2]
< SD1

SA1[p1]
. If φ is also a relevant substring of D1, then it is

stored at an index ≥ p1 − 1.

Proof For an indirect proof, suppose that φ is stored at an index k < p1−1,
i.e., SD1

SA1[k]
is the lexicographically largest suffix in SA1 that has φ as a

prefix. Note that φ is a common prefix of SD1

SA1[k]
and SD2

SA2[p2]
. Because

SD1

SA1[k]
< SD1

SA1[p1−1] < SD2

SA2[p2]
, it follows that φ is also a prefix of SD1

SA1[p1−1]. This,
however, contradicts the fact that SD1

SA1[k]
is the lexicographically largest

suffix in SA1 that has φ as a prefix. �

In order to compute common relevant substrings of D1 and D2 that
must be stored at index p1 − 1, it suffices to consider—apart from the
relevant substrings of D2 represented by the interval [acur..bcur]—relevant
substrings of D2 assigned to suffixes of SD2 that are lexicographically in
between SD1

SA1[p1−1] and SD1

SA1[p1]
; see Figure 5.61. This is because the others

will be stored at an index ≥ p1 by Lemma 5.8.3.
To show the correctness of Algorithm 5.39, we prove the following claim:

Upon termination of the inner for-loop, the length ` prefix of the suffix
SD1

SA1[p1−1] is a relevant substring of D2 assigned to a suffix of SD2 that is
lexicographically smaller than SD1

SA1[p1]
if and only if acur ≤ ` ≤ bcur. It then

follows that the common relevant substrings of D1 and D2 that must be
stored at index p1 − 1 are represented by the intersection of the inter-
vals [acur..bcur] and [a1[p1 − 1]..b1[p1 − 1]]. That is, the left boundary of the
common results interval is max{acur, a1[p1 − 1]} and the right boundary is
min{bcur, b1[p1 − 1]}.

5.8 String mining 255

By property (P), the claim is true for all suffixes of SD2 that are lexi-
cographically smaller than SD1

SA1[p1−1]. In addition to those, it suffices to
consider the suffixes of SD2 that are lexicographically in between SD1

SA1[p1−1]

and SD1

SA1[p1]
. This is done in the inner for-loop of Algorithm 5.39. Whenever

the results interval stored at the current index p2 is non-empty, the algo-
rithm computes lcp1 = |lcp(SD1

SA1[p1−1], S
D2

SA2[p2]
)| and tests whether lcp1 ≥ a2[p2].

If so, then the length ` prefix of the suffix SD1

SA1[p1−1] is a relevant substring
of D2 assigned to the suffix SD2

SA2[p2]
if and only if a[p2] ≤ ` ≤ min{lcp1, b[p2]}.

Consequently, the interval [acur..bcur] is widened by the assignments acur ←
min{acur, a2[p2]} and bcur ← max{bcur,min{lcp1, b2[p2]}}. Therefore, upon ter-
mination of the inner for-loop, the length ` prefix of the suffix SD1

SA1[p1−1] is a
relevant substring of D2 assigned to a suffix of SD2 that is lexicographically
smaller than SD1

SA1[p1]
if and only if acur ≤ ` ≤ bcur. In other words, the claim

and thus the correctness of Algorithm 5.39 is proven.
Continuing the example from Figures 5.59 and 5.60, let us consider

the situation before the body of the outer for-loop in Algorithm 5.39 is
executed for p1 = 13. At that point in time, we have acur = ∞, bcur = 0,
anext = ∞, bnext = 0, and p2 = 13. Then, anext is set to ∞ and bnext is set
to 0 because LCP1[p1] = 1 6≥ ∞ = acur. In the inner for-loop, only p2 = 15
satisfies a2[p2] = 1 ≤ 2 = b2[p2]. In this case, ms[SA2[p2]].lb = 13 ≤ p1 ≤ 13 =
ms[SA2[p2]].rb. So lcp1 is set to LCP1[p1] = 1 and lcp2 is set to ms[SA2[p2]].lcp =
3. When the inner for-loop terminates, we have acur = 1, bcur = 1, anext = 1,
and bnext = 2 because lcp1 ≥ a2[p2] and lcp2 ≥ a2[p2]. At the end of the body
of the outer for-loop, a1[p1 − 1] = a1[12] is set to max{acur, a1[p1 − 1]} = ∞,
b1[p1 − 1] = b1[12] is set to min{bcur, b1[p1 − 1]} = 0, and both variables acur
and bcur are updated. Before the body of the outer for-loop is executed
for p1 = 14, we have acur = anext = 1, bcur = bnext = 2, and p2 = 16. Then,
bnext is set to min{bcur, LCP1[p1]} = 2 because LCP1[p1] = 2 ≥ 1 = acur. Since
cnt[p1] = 0, the body of the inner for-loop is not executed. Again, a1[p1−1] is
set to ∞, b1[p1 − 1] is set to 0, and both variables acur and bcur are updated.
Before the body of the outer for-loop is executed for p1 = 15, we have
acur = anext = 1, bcur = bnext = 2, and p2 = 16. Then, anext is set to ∞ and bnext
is set to 0 because LCP1[p1] = −1. Again, the body of the inner for-loop is
not executed at all. Finally, a1[p1−1] = a1[14] is set to max{acur, a1[p1−1]} = 2,
and b1[p1 − 1] = b1[14] is set to min{bcur, b1[p1 − 1]} = 2. This means that ca,
the length 2 prefix of SD1

SA1[14]
= cac#1, is a common relevant substring of D1

and D2.
How much time does it take to intersect the results intervals of all

databases D1,D2, . . . ,Dm? We successively intersect D2 with D1, then D3

with D1, and so on until we have intersected Dm with D1. Since in-
tersecting the results intervals of database Di with the results intervals
of the database D1 takes O(n1 + ni) time, the overall time complexity is
O((m − 1) · n1 +

∑m
i=2 ni). Without loss of generality, we may assume that

256 5 Applications of Enhanced Suffix Arrays

D1 is the smallest database (i.e., n1 is smaller than or equal to ni for all
1 < i ≤ m). It follows that (m − 1) · n1 +

∑m
i=2 ni ≤ 2 ·

∑m
i=1 ni, so the overall

time complexity to intersect all databases is linear in the total size of all
databases.

We conclude this section with two important remarks. Since a database
contains many strings, the use of pairwise different separator symbols
blows up the alphabet. For this reason, it is valuable to know that just
one separator symbol suffices; see [190] for details. Moreover, the restric-
tion that all frequency thresholds minfi, 1 ≤ i ≤ m, must be positive is
unnecessarily severe. In fact, it is enough to demand that at least one of
these values is positive—the others may be 0; again see [190] for details.

Exercise 5.8.4 Prove that property (P) is really an invariant of the outer
for-loop of Algorithm 5.39.

Chapter 6
Making the Components of Enhanced
Suffix Arrays Smaller

Up to this point, we did not trouble ourselves much about memory re-
quirements. However, in some applications of enhanced suffix arrays we
needed more than just one or two arrays. In large scale applications,
the total memory usage of these arrays may be prohibitive. Fortunately,
the various components of enhanced suffix arrays can be made smaller.
We shall learn in this chapter how this can be done for the suffix array
and the LCP-array. Moreover, we shall see that essentially one small data
structure suffices to support the following tasks:

• find the parent interval of an lcp-interval,

• find all child intervals of an lcp-interval,

• find the suffix link interval of an lcp-interval,

• answer a range minimum query.

These results rely on the fact that rank and select queries can be answered
in constant time. From now on, we state the alphabet size explicitly in
complexity analyses.

6.1 Constant time rank and select queries

Virtually all methods to compress the components of enhanced suffix ar-
rays take advantage of the following theorem.

Theorem 6.1.1 A bit vector B[1..n] can be preprocessed in linear time so
that the following operations are supported in constant time:

• rankb(B, i): returns the number of occurrences of bit b in B[1..i].

258 6 Making the Components of Enhanced Suffix Arrays Smaller

2

43 6

5

7 8

1

5

1

6
2

3 4

14

7
8

13

12
11

10

9

Figure 6.1: A preorder traversal of the tree follows the consecutively num-
bered arrows. Each node is labeled with its preorder index i,
i.e., node i is the i-th node visited in the preorder traversal.

• selectb(B, i): returns the position of the i-th occurrences of bit b in B[1..n].

The bit vector B[1..n] uses n bits and the supporting data structures use only
o(n) bits.

For the bit vector B = 1110100111010000, we have for example rank1(B, 6) =
4 and select0(B, 4) = 11. If it is clear from the context which bit vector B is
meant, we write rankb(i) and selectb(i) instead of rankb(B, i) and selectb(B, i).

It is beyond the scope of this book to provide a proof of the theorem.
The reader is referred to the seminal work of Jacobson [162, 163] who
showed that attaching a dictionary of size o(n) bits to the bit vector B[1..n]
is enough to answer rank queries in constant time. His solution for the
select operation was not optimal, but later Clark [58] proved that o(n) bits
are enough to answer select queries in constant time; see also [228].

Jacobson [163] was interested in the rank and select operations because
they allowed him to simulate tree traversals on bit vectors. There are
several possibilities to represent a (static) tree by a bit vector. Here we
will review just one of them [230]: the tree T is represented by a bal-
anced sequence of parentheses that is obtained by a preorder (depth-first)
traversal of T ; cf. Figure 6.1. To be precise, start with the root of T and
do the following:

1. Write an opening parenthesis.

2. For each child node (from left to right), write its balanced parentheses
sequence.

3. Write a closing parenthesis.

6.1 Constant time rank and select queries 259

((() ()) ((() ())))
1 2 3 3 4 4 2 5 6 7 7 8 8 6 5 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.2: The balanced parentheses sequence BPSpre of the tree from
Figure 6.1. The lower row of numbers shows the positions
of the parentheses in the sequence. The row below the bal-
anced parentheses sequence is only for illustrative purposes:
the opening parentheses are numbered consecutively and a
closing parenthesis has the number of its matching opening
parenthesis.

The resulting balanced sequence of parentheses is denoted by BPSpre.
The i-th opening parenthesis in BPSpre represents the node with preorder
index i, which is defined as follows.

Definition 6.1.2 Let v be a node in a rooted tree T . If v is the i-th node
visited in a preorder traversal of T , then we say that the preorder index of
v is i.

We exemplify the procedure by the example of Figure 6.1. The pre-
order traversal of the tree starts at the root (node 1) and writes an opening
parenthesis. It visits its left child (node 2), writes an opening parenthesis,
visits node 3 (the left child of node 2), and again writes an opening paren-
thesis. Because node 3 does not have children it then writes a closing
parenthesis, etc. The resulting nested balanced sequence of parentheses
BPSpre is shown in Figure 6.2.

Simulations of tree traversals that are based on this representation
make use of the following theorem.

Theorem 6.1.3 Given a balanced sequence of n opening and n closing
parentheses (requiring 2n bits), the following operations can be supported
in constant time with only o(n) bits of extra space:

• rank((i): returns the number of opening parentheses up to and includ-
ing position i. The operation rank)(i) is defined analogously.

• select((i): returns the position of the i-th opening parenthesis. The op-
eration select)(i) is defined analogously.

• findclose(i): returns the position of the closing parenthesis matching
the opening parenthesis at position i. The operation findopen(i) is de-
fined analogously.

260 6 Making the Components of Enhanced Suffix Arrays Smaller

• enclose(i): given a parenthesis pair whose opening parenthesis is at
position i, it returns the position of the opening parenthesis corre-
sponding to the closest matching parenthesis pair enclosing i.

• double-enclose(i, j): given two opening parentheses at positions i
and j with findclose(i) < j, the operation double-enclose(i, j) re-
turns the position k of an opening parenthesis so that the parenthe-
sis pair (k, findclose(k)) most tightly encloses the parenthesis pairs
(i, findclose(i)) and (j, findclose(j)) .

• rr-enclose(i, j) (an acronym for range-restricted-enclose): given two
opening parentheses at positions i and j so that findclose(i) < j, the
operation rr-enclose(i, j) returns the smallest position, say k, of an
opening parenthesis so that findclose(i) < k < j and findclose(j) <
findclose(k).

We are not going to prove the theorem, but instead refer to the orig-
inal literature. The rank and select operations have already been dealt
with (representing an opening parenthesis by 1 and a closing parenthe-
sis by 0 yields a bit vector). Jacobson [163] also studied the operations
findclose and findopen, but it was Munro and Raman [229,230] who pro-
vided the first constant time and o(n) extra space solution for findclose,
findopen, and enclose. Later, Geary et al. [121] gave a simpler solution
for these operations. Based on [121], Gog and Fischer [125] showed how
the double-enclose and rr-enclose operations can be implemented. (The pa-
per [229] also contained a solution for the double-enclose operation, but
it was dropped in the journal version [230] because it was erroneous).
Sadakane and Navarro [275] proposed a simple and flexible data struc-
ture, called the range min-max tree, that supports all operations in con-
stant time with only o(n) bits of extra space.

Given the balanced parentheses sequence BPSpre of the tree T and the
position pos of an opening parenthesis in BPSpre, the preorder index i of
the node represented by that parenthesis is

i = rank((pos)

Conversely, given the preorder index i of node v, the opening parenthesis
that represents v is the i-th opening parenthesis in BPSpre. In what follows,
i(denotes the i-th opening parenthesis and)i denotes its matching closing
parenthesis in BPSpre. It is easy to see that i(can be found at position

ipos = select((i)

and)i can be found at position

cipos = findclose(ipos)

6.1 Constant time rank and select queries 261

For example, node 2—the node with preorder index 2—in the tree of Figure
6.1 is represented in the BPSpre of Figure 6.2 by the opening parenthesis
at position select((2) = 2. Its matching closing parenthesis can be found at
position findclose(2) = 7.

One can find the parent, leftmost child, next sibling, and the subtree
size of v in constant time on the BPSpre as follows:

• The parent node of v is given by the closest parenthesis pair k(. . .)k
enclosing the pair i(. . .)i. Thus, if v is not the root, then enclose(ipos)
returns the position of k(. In our example, enclose(2) = 1 yields the po-
sition of the opening parenthesis that represents the parent of node
2 in BPSpre. The parent node has preorder index rank((1) = 1.

• If the parenthesis next to i((at position ipos + 1) is a closing paren-
thesis, then it must be)i because BPSpre is balanced. Hence v has
no children because it is a leaf. Otherwise, if the parenthesis next
to i(is an opening parenthesis, then it must be i+1(and the pair
i+1(. . .)i+1 represents the leftmost child of v. In our example, at po-
sition ipos + 1 = 3 in BPSpre there is an opening parenthesis, so the
leftmost child of node 2 has preorder index rank((3) = 3.

• If the parenthesis next to)i (at position cipos + 1) is a closing paren-
thesis, then v has no sibling. Otherwise, if the parenthesis next to)i
is an opening parenthesis, say k(, then the pair k(. . .)k represents the
next sibling of v. In our example, at position cipos + 1 = 8 in BPSpre

there is an opening parenthesis, so the next sibling of node 2 has
preorder index rank((8) = 5.

• The size of the subtree of T rooted at node v can be determined by
cipos−ipos+1

2
. In our example, the size of the subtree rooted at node 2 is

7−2+1
2

= 3.

Furthermore, given the preorder index j of another node w, the lowest
common ancestor u = LCA(v, w) of v and w can be computed in constant
time as follows. Without loss of generality, suppose that ipos < jpos =
select((j). If the pair i(. . .)i encloses the pair j(. . .)j, then u = v. Other-
wise, if cipos < jpos, then the position of the opening parenthesis repre-
senting u is pos = double-enclose(ipos, jpos). That is, the preorder index of
u = LCA(v, w) is rank((pos). In our example, the lowest common ancestor
of the nodes 2 and 6 is represented by the opening parenthesis at position
double-enclose(2, 9) = 1; its preorder index is rank((1) = 1.

The proof of these facts is left to the reader because we will not use the
balanced parentheses sequence BPSpre in this book (instead, we will use a
different balanced parentheses sequence).

The number of different binary trees with n nodes is Cn = 1
n+1

(
2n
n

)
; cf.

Exercise 3.4.7. For large n this is about 22
n (use Stirling’s approxima-

262 6 Making the Components of Enhanced Suffix Arrays Smaller

tion as in Section 3.3.1), so asymptotically log2Cn ≈ 2n bits are neces-
sary to encode a binary tree. Clearly, the same is true for non-binary
trees. Consequently, the 2n + o(n) bit representation of a tree sketched
above uses only sublinear space on top of the information-theoretic lower
bound, while at the same time supporting navigation on the tree in con-
stant time. A data structure that uses an amount of space that is so close
to the information-theoretic lower bound, but still allows for efficient op-
erations, is called succinct data structure.

6.2 Compressed suffix and LCP-arrays

6.2.1 Compressed suffix array

In large scale applications, the space consumption of the index structure
is often a bottleneck. Thus, scientists started to investigate how index
structures like the suffix array can be compressed. One line of research
[135, 270] uses the Ψ-function for this purpose as it tends to be easier
to compress than the suffix array itself. This is because the ψ-values in
every c-interval, c ∈ Σ, form an increasing integer sequence; see Lemma
6.2.1. Therefore, the ψ-array consists of σ increasing integer sequences.

Lemma 6.2.1 If i < j and S[SA[i]] = S[SA[j]], then ψ[i] < ψ[j].

Proof The suffixes of S appear in lexicographic order in the suffix array,
so i < j if and only if SSA[i] < SSA[j]. With S[SA[i]] = c = S[SA[j]], we have
SSA[i] = cSSA[i]+1 and SSA[j] = cSSA[j]+1.1 If we drop the first character c, we
get the suffixes SSA[i]+1 and SSA[j]+1. Clearly, these suffixes appear in the
same lexicographic order as SSA[i] and SSA[j]. Hence SSA[i]+1 < SSA[j]+1. We
conclude that SSA[ψ[i]] < SSA[ψ[j]] because SA[ψ[i]] = SA[i] + 1 by Definition
5.5.4. Thus, ψ[i] < ψ[j]. �

Increasing integer sequences can be compressed by so-called gap encod-
ing methods. For instance, Sadakane [270,272] used Elias δ coding [88]
to encode ψ differentially (i.e., ψ[i + 1] − ψ[i] is encoded) within the areas
where it is increasing. It is beyond the scope of this book to discuss the
different approaches; the reader is referred to the overview article [238] in-
stead. Here, we assume that the ψ-function is available in a compressed
form so that its values can be accessed in constant time. The main pur-
pose of an index is to allow efficient exact string matching, and we will
now show that constant time access to ψ is enough to answer decision
queries (“Is P a substring of S?”) and counting queries (“How often does
P occur in S?”) in O(m log n) by the same binary search as in Algorithm

1To cope with boundary cases, we tacitly assume that S is terminated by $.

6.2 Compressed suffix and LCP-arrays 263

Algorithm 6.1 Store every s-th suffix of the string S in the array SSA.
j ← 1
for i← 1 to n do

if (SA[i] mod s) = 0 then
Bs[i]← 1
SSA[j]← SA[i]

j ← j + 1

5.4 (page 121). The key observation is that one must merely be able to
lexicographically compare the pattern P with the length m prefix of the
suffixes of S at certain indices. In other words, given index i, it suffices to
retrieve S[SA[i]..SA[i] +m− 1] from the compressed ψ-function. This can be
done with the help of the C-array (if we consider all characters in Σ that
are smaller than c, then C[c] is the overall number of their occurrences in
S).

Because the first characters of all suffixes in the suffix array are in
increasing order, the first character S[SA[i]] of S[SA[i]..SA[i] + m − 1] must
be the character c satisfying C[c] < i ≤ C[c + 1]. Clearly, c can be found in
O(log σ) time by a binary search on C, but it is also possible to determine
c in constant time as follows. Let BC [1..n] be a bit vector so that BC [k] = 1
if and only if k = C[a] + 1 for a character a ∈ Σ. In other words, the ones
in the bit vector BC mark indices at which the lexicographically ordered
suffixes of S change their first character. If BC is enhanced with an o(n)
space data structure that supports constant time rank queries, then c =
Σ[rank1(BC , i)] can be found in constant time.2 The second character of
S[SA[i]..SA[i] +m− 1] is S[SA[i] + 1] = S[SA[ψ(i)]] = Σ[rank1(BC , ψ(i))] because
SA[ψ(i)] = SA[i] + 1, the third character is Σ[rank1(BC , ψ(ψ(i)))], and so on.
To sum up, S[SA[i]..SA[i] +m− 1] can be determined in O(m) time from the
compressed ψ-function and hence a binary search delivers the P -interval
in SA in O(m log n) time.

However, to answer enumeration queries (“Where are all z occurrences
of P in S?”) we need to retrieve occurrence positions. Again, there are
several ways to do this [238], and we present only the simplest solution.
This method uses a sampling parameter s and stores every s-th position
(suffix) of the string S in the array SSA. The array SSA is called sparse
suffix array; see e.g. [176,179,322]. To be able to decide whether a suffix
is sampled or not, we use a bit vector Bs[1..n] with Bs[i] = 1 if and only if the
suffix at index i is sampled, or equivalenty, if and only if SA[i] mod s = 0;
see Algorithm 6.1.

2Here, we assume that all characters of the alphabet Σ occur in S. If this is not the
case, then c = Σ′[rank1(BC , i)], where Σ′ denotes the ordered subalphabet of Σ that
contains exactly the characters of S.

264 6 Making the Components of Enhanced Suffix Arrays Smaller

Algorithm 6.2 Find SA[i] in the array SSA.
d← 0
while Bs[i] = 0 do
i← ψ(i)
d← d+ 1

k ← SSA[rank1(Bs, i)]− d
if SSA[rank1(Bs, i) > d then

return k
else

return n+ k

Algorithm 6.2 shows how the value SA[i] can be retrieved from the ar-
ray SSA and the bit vector Bs. Given an index i, if Bs[i] = 1, then SA[i]
is sampled and it can be found at index rank1(Bs, i) in the array SSA.
Otherwise, we compute ψ(i), ψ2(i), . . . , ψd(i) until a d with Bs[ψ

d(i)] = 1 is
found. This means that the suffix SA[ψd(i)] is sampled, and SA[ψd(i)] =
SSA[rank1(Bs, ψ

d(i))]. If SA[ψd(i)] > d, then SA[i] = SA[ψd(i)] − d because
SA[ψ(i)] = SA[i] + 1, . . . , SA[ψd(i)] = SA[i] + d. Otherwise, if SA[ψd(i)] ≤ d, then
SA[i] = n+ SA[ψd(i)]− d.

Exercise 6.2.2 Show that Algorithm 6.2 has a worst-case time complexity
of O(s).

Exercise 6.2.3 The sparse suffix array stores every s-th position of the
text. Give an algorithm in pseudo-code that takes every s-th entry of
the suffix array SA as sample, and an algorithm that retrieves SA[i] from
this sampled suffix array. What advantages and disadvantages does this
approach have, compared to the previous method?

6.2.2 Compressed LCP-array

We recall from Corollary 4.2.5 that PLCP[i− 1]− 1 ≤ PLCP[i] for 2 ≤ i ≤ n. If
we add i on both sides of the inequality, we get

(i− 1) + PLCP[i− 1] ≤ i+ PLCP[i]

In other words, the sequence 1 + PLCP[1], 2 + PLCP[2], . . . , n + PLCP[n] is in-
creasing. We define PLCP[0] = 0 and add the element 0 = 0 + PLCP[0] at the
beginning of the sequence. Furthermore, we define a function d that com-
putes the difference between two consecutive elements of the extended
sequence. To be precise,

d(i) = i+ PLCP[i]− (i− 1 + PLCP[i− 1]) = PLCP[i]− PLCP[i− 1] + 1

6.3 The balanced parentheses sequence of the LCP-array 265

Algorithm 6.3 Retrieve LCP[j] from SA and the encoded bit vector Bd.
i← SA[j] /* now retrieve PLCP[i] from Bd */
ipos← select1(Bd, i)
return ipos− 2i

for 1 ≤ i ≤ n. Now we use a unary code to encode each value d(i) in the
increasing sequence of natural numbers d(1), d(2), . . . , d(n). That is, d(i) is
encoded by d(i) zeros followed by a one. For example, 0 is encoded as 1, 1
is encoded as 01, 2 is encoded as 001, and so on. The encoded sequence Bd

consists of n ones and at most n − 1 zeros because PLCP[k] ≤ n − 1 for all
k with 1 ≤ k ≤ n. It has the following crucial property: before the position
ipos of the i-th one in Bd, there are

z(i) =
i∑

k=1

d(k) =
i∑

k=1

(PLCP[k]− PLCP[k − 1] + 1) = PLCP[i] + i

many zeros. We can retrieve PLCP[i] = z(i) − i by the equation PLCP[i] =
ipos− 2i because the number of zeros z(i) before the position ipos is z(i) =
ipos − i. Clearly, the position ipos of the i-th one in Bd can be found in
constant time, provided that we use a data structure that supports select1
queries on the encoded sequence in constant time.

So the good news is that at most 2n − 1 bits are required to encode the
PLCP-array, plus o(n) bits to retrieve a value PLCP[i] in constant time. The
bad news is that we usually do not need a value PLCP[i] = LCP[ISA[i]] but
a value LCP[j]. In order to retrieve LCP[j] from the encoded sequence, we
must first determine i = SA[j] and then retrieve PLCP[i] because PLCP[i] =
LCP[ISA[i]] = LCP[ISA[SA[j]]] = LCP[j]; see Algorithm 6.3. This is a disad-
vantage because the retrieval of SA[j] is relatively slow on a compressed
suffix array. Moreover, the compressed representation does not benefit
from sequential access to the LCP-array because lcp-values are stored in
text order and not in suffix array order. Sadakane [271], the inventor of
the compression technique, has already stated the disadvantages.

6.3 The balanced parentheses sequence of the
LCP-array

This section introduces a balanced parentheses sequence of the LCP-
array, which originates from [247, 248]. Although it can be constructed
without the Super-Cartesian tree (Definition 4.3.23) of the LCP-array, it
is instructive to introduce it with the help of this tree. The reader should

266 6 Making the Components of Enhanced Suffix Arrays Smaller

i SA LCP SSA[i]

1 3 −1 aaacatat
2 4 2 aacatat
3 1 1 acaaacatat
4 5 3 acatat
5 9 1 at
6 7 2 atat
7 2 0 caaacatat
8 6 2 catat
9 10 0 t
10 8 1 tat
11 −1

Figure 6.3: The LCP-array of the string S = acaaacatat.

keep in mind that a node in a Super-Cartesian tree has either a right sib-
ling or a right child but not both. As an example, consider the LCP-array
in Figure 6.3 and its Super-Cartesian tree in Figure 6.4.

The Super-Cartesian tree of an array can be represented by a balanced
parentheses sequence BPS. To obtain the BPS do the following:

1. Write the balanced parentheses sequence of the left child.

2. Write an opening parenthesis.

3. Write the balanced parentheses sequence of the right child/sibling.

4. Write a closing parenthesis.

Figure 6.5 shows an example. However, two different Super-Cartesian
trees may have the same sequence of balanced parentheses. (For in-
stance, consider the LCP-arrays of the strings acg and acc.) This is be-
cause the cases “right child” and “right sibling” are treated in the same
fashion. To compensate for the lack of information as to whether there
is a right child or a right sibling, we enhance the BPS with a bitstring B.
This bitstring B is obtained by replacing step (4) of the procedure above
with

4’. Write a closing parenthesis. If the node under consideration is a right
sibling, append 0 to B; otherwise append 1 to B.

Again, see Figure 6.5 for an example. The Super-Cartesian tree is only
conceptual. To be precise, the BPS with the additional bitstring B, which
we call enhanced BPS, can be obtained solely based on the LCP-array; see

6.3 The balanced parentheses sequence of the LCP-array 267

1 2 3 4 5 6 7 8 9 10 11

4

3

2

5

6

7 9

8 10

1 11

Figure 6.4: The Super-Cartesian tree of the LCP-array from Figure 6.3.

1 1 1 0 1 1 1 0 1 0 1
(() (() (())) (() (())) ())
1 2 2 3 4 4 5 6 6 5 3 7 8 8 9 10 10 9 7 11 11 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6.5: Enhanced BPS of the Super-Cartesian tree of Figure 6.4. The
lower row of numbers shows the positions of the parentheses
in the sequence. The row below the BPS is only for illustrative
purposes: the opening parentheses are numbered consecu-
tively and a closing parenthesis has the number of its match-
ing opening parenthesis. The row above the BPS shows the
bitstring B.

268 6 Making the Components of Enhanced Suffix Arrays Smaller

Algorithm 6.4 Construction of the enhanced BPS based on the LCP-array.
push(1) /* LCP[1] = −1 */
B ← ε /* bitstring B is initially empty */
write ’(’
for i← 2 to n+ 1 do

while LCP[i] < LCP[top()] do
last← pop()
write ’)’
if LCP[last] = LCP[top()] then

append a 0 to the bitstring
else

append a 1 to the bitstring
push(i) and write ’(’

write ’))’ and append 01 to the bitstring /* for LCP[1] and LCP[n+ 1] */

Algorithm 6.4. It is worth mentioning that the stack can be implemented
with n+ o(n) bits [105, Section 4.2].

Obviously, the BPS has 2n+ 2 parentheses and thus can be represented
with 2n + 2 bits. With a linear-time preprocessing and o(n) bits of extra
space, we obtain a data structure that supports the operations described
in Section 6.1 in constant time. Furthermore, the bitstring B of length n+1
is preprocessed so that rank/select queries can be answered in constant
time (again, this requires only o(n) bits of extra space). Consequently,
the enhanced BPS with the above-mentioned operations thereon needs
3n+ o(n) bits.

Each index i, 1 ≤ i ≤ n + 1, in the LCP-array is represented by the
i-th opening parenthesis (and the matching closing parenthesis) in the
BPS. The position ipos of the i-th opening parenthesis in the BPS can be
found by ipos = select((i). Conversely, given the position pos of an opening
parenthesis in the BPS, we can determine the index i to which this opening
parenthesis corresponds by i = rank((pos).

Let us denote the i-th opening parenthesis by i(and the matching clos-
ing parenthesis by)bi , where b is its mark (bit in B). Note that i(and)bi
occur at positions ipos = select((i) and cipos = findclose(ipos) in the BPS.
Moreover, b occurs at position bcipos = rank)(cipos) in the bitstring B. Con-
versely, given the position bpos in B, its corresponding index in the LCP-
array can be determined by rank((findopen(select)(bpos))).

With the help of the BPS, we can find NSVLCP-values in constant time. As
in Section 4.3.1, we write NSV instead of NSVLCP.

6.3 The balanced parentheses sequence of the LCP-array 269

Lemma 6.3.1 For each index i with 1 < i < n+ 1, NSV[i] can be determined
on the BPS in constant time by

NSV[i] = rank((findclose(select((i))) + 1

Proof The i-th opening parenthesis is written when the for-loop of Algo-
rithm 6.4 is executed for i. Apart from that, i is pushed onto the stack.
It is popped from the stack when the first index j with LCP[j] < LCP[i]
is encountered. Clearly, j = NSV[i]. Therefore, the closing parenthe-
sis matching the i-th opening parenthesis (this is findclose(select((i))) is
written when the for-loop of Algorithm 6.4 is executed for j. More-
over, in the same execution of the for-loop, j is pushed onto the stack
and the j-th opening parenthesis is written. In other words, between
findclose(select((i)) and select((j) there is no opening parenthesis. Conse-
quently, j = rank((findclose(select((i))) + 1. �

In the example of Figures 6.3 and 6.5, NSV[5] is computed as follows:
select((5)) returns the position 7 of the fifth opening parenthesis. Then,
findclose(7) returns the position 10 of the closing parenthesis matching
the fifth opening parenthesis. Because there are six opening parentheses
up to position 10, NSV[5] = rank((10) + 1 = 6 + 1 = 7.

Lemma 6.3.2 For an lcp-interval [i..j], we have

1. LCP[i] > LCP[j + 1] if and only if NSV[i] = j + 1,

2. LCP[i] ≤ LCP[j + 1] if and only if NSV[i] > j + 1.

Proof Because [i..j] is an lcp-interval, we have

• LCP[k] > LCP[i] for all k with i+ 1 ≤ k ≤ j,

• LCP[k] > LCP[j + 1] for all k with i+ 1 ≤ k ≤ j.

Hence NSV[i] ≥ j + 1.
(1) Clearly, if NSV[i] = j + 1, then LCP[i] > LCP[j + 1]. Conversely, LCP[i] >
LCP[j + 1] in conjunction with NSV[i] ≥ j + 1 implies NSV[i] = j + 1.
(2) This follows from NSV[i] ≥ j + 1 and (1). �

Lemmata 6.3.1 and 6.3.2 together imply that we can test in constant
time whether LCP[i] > LCP[j+1] or LCP[i] ≤ LCP[j+1]. This test can be done
on the BPS without access to the LCP-array.

270 6 Making the Components of Enhanced Suffix Arrays Smaller

Algorithm 6.5 Computing the parent interval of an lcp-interval [i..j].
if NSV[i] > j + 1 then /* LCP[i] ≤ LCP[j + 1] */

return [PSV[j + 1]..NSV[j + 1]− 1]
else /* LCP[i] > LCP[j + 1] */

return [PSV[i]..j]

6.3.1 Finding the parent interval

The parent interval of an lcp-interval can be determined by Algorithm 6.5
with the help of PSV and NSV-values; cf. Lemma 4.3.9. We have seen that
NSV[i] can be computed in constant time on the BPS. We will show in this
section that PSV[i] can also be computed in constant time, provided we use
the enhanced BPS (the BPS with the additional bitstring B) instead of the
plain BPS. This implies that the parent interval of an lcp-interval can be
found in constant time.

In terms of the balanced parentheses sequence, PSV[i] is the largest in-
dex k with k < i so that the parenthesis pair k(. . .)k encloses the pair i(. . .)i
and LCP[k] 6= LCP[i]. Without the LCP-array, however, we cannot directly
test whether or not LCP[k] 6= LCP[i]. For this reason, we first show how
PSEV[i] can be determined on the BPS in constant time, where

PSEV[i] = max{j | 1 ≤ j < i and LCP[j] ≤ LCP[i]}

Lemma 6.3.3 Let i be an index with 1 < i < n+1. PSEV[i] can be determined
on the BPS in constant time by

PSEV[i] = rank((enclose(select((i)))

Proof When the for-loop of Algorithm 6.4 is executed for i, i is pushed
onto the stack and the i-th opening parentheses is written. At that
moment, let i1, . . . , im, i be the elements on the stack. Clearly, we have
i1 < · · · < im < i and LCP[i1] ≤ · · · ≤ LCP[im] ≤ LCP[i]. Moreover, the non-
matched opening parentheses before position select((i) are those at the
positions select((i1), . . . , select((im). Note that the parenthesis pairs cor-
responding to i1, . . . , im are exactly the pairs enclosing the pair i(. . .)i.
Clearly, PSEV[i] = im because each index k with im < k < i satisfies
LCP[k] > LCP[i]. Since the pair im(. . .)im most tightly encloses the pair
i(. . .)i, the index im can be found by rank((enclose(select((i))). All in all,
PSEV[i] = rank((enclose(select((i))). �

At this point the bitstring B of the enhanced BPS comes into play.

Lemma 6.3.4 Let i be an index with 1 < i < n+1. PSV[i] can be determined
in constant time on the enhanced BPS by Algorithm 6.6.

6.3 The balanced parentheses sequence of the LCP-array 271

Algorithm 6.6 Computing PSV[i] in constant time on the enhanced BPS.
bcipos = rank)(findclose(select((i)))
if B[bcipos] = 1 then
PSV[i]← PSEV[i]

else /* determine the position bpos of the next 1 in the bitstring B */
bpos← select1(rank1(bcipos) + 1)
ip ← rank((findopen(select)(bpos)))
PSV[i]← PSEV[ip]

Proof Let j = NSV[i]. Suppose that the elements on the stack are i1, . . . , im
when the for-loop of Algorithm 6.4 is executed for index j. Since i is on
the stack, we have i = ik for some 1 ≤ k ≤ m. Note that i1 < i2 < · · · < im
as well as LCP[i1] ≤ LCP[i2] ≤ · · · ≤ LCP[im]. Let ip, . . . , iq be the indices with
LCP[ip] = LCP[i] = LCP[iq]. Clearly, i = ik is one of these indices, so p ≤ k ≤ q.
Because LCP[j] < LCP[i] = LCP[ip], it follows that ip, . . . , iq, . . . , im (and pos-
sibly more elements) are popped from the stack. The crucial observation
is that)0iq . . .)

0
ip+1

)1ip form a contiguous subsequence of the enhanced BPS.
Moreover, if we can determine the index ip, then PSV[i] = PSEV[ip].

As observed above, i = ik for some k with p ≤ k ≤ q. That is, the closing
parenthesis)bi at position cipos = findclose(select((i)) is one of the closing
parentheses in)0iq . . .)

0
ip+1

)1ip. Algorithm 6.6 computes the position of the
mark b in the bitstring B by bcipos = rank)(cipos), i.e., b = B[bcipos]. If b = 1,
then i = ip and PSV[i] = PSEV[i]. Otherwise, b = 0 and i 6= ip. In a left-to-right
scan of the enhanced BPS, starting at position cipos,)ip is the first closing
parenthesis that is marked with 1. Thus, the position of)ip in the BPS can
be obtained by determining the position bpos of the next 1 in the bitstring
B and finding the corresponding closing parenthesis by select)(bpos). The
index ip itself is rank((findopen(select)(bpos))). Now, PSV[i] = PSEV[ip].

It is obvious that Algorithm 6.6 runs in constant time. �

Exercise 6.3.5 Prove that Algorithm 6.7 computes PSV[i] in O(σ) time.
Note that the algorithm needs access to the LCP-array and the BPS, but
not to the bitstring B.

Algorithm 6.7 Computing PSV[i] in O(σ) time.
j ← PSEV[i]
while LCP[j] = LCP[i] do
j ← PSEV[j]

PSV[i]← j

272 6 Making the Components of Enhanced Suffix Arrays Smaller

Algorithm 6.8 For an lcp-interval `-[i..j], this procedure returns its first
`-index solely based on the BPS.

if NSV[i] > j + 1 then /* LCP[i] ≤ LCP[j + 1] */
return rank((findopen(select((j + 1)− 1))

else
return rank((findopen(findclose(select((i))− 1))

Exercise 6.3.6 Devise an algorithm that computes PSV[i] in O(log(σ)) time
by a binary search. The algorithm is allowed to access the LCP-array and
the BPS, but not the bitstring B.

6.3.2 Finding child intervals

According to Lemma 4.3.5, determining the child intervals of an `-interval
[i..j] boils down to finding its `-indices. On the BPS, the first `-index of
[i..j] can be found by Algorithm 6.8.

Lemma 6.3.7 Algorithm 6.8 takes an lcp-interval `-[i..j] as input and de-
termines its first `-index k in constant time.

Proof Let i1 < i2 < · · · < im be the `-indices of [i..j]. Algorithm 6.8 first
tests whether or not LCP[i] ≤ LCP[j + 1]. By Lemma 6.3.2, we know that
LCP[i] ≤ LCP[j + 1] if and only if NSV[i] > j + 1.

If LCP[i] ≤ LCP[j + 1], then)im . . .)i2)i1 j+1(is a contiguous subsequence of
the BPS. That is, the closing parenthesis corresponding to the first `-index
i1 of [i..j] directly precedes the opening parenthesis corresponding to j+1.
Therefore, i1 = rank((findopen(select((j + 1)− 1)).

If LCP[i] > LCP[j+1], then)im . . .)i2)i1)i is a contiguous subsequence of the
BPS. That is, the closing parenthesis corresponding to the first `-index i1
of [i..j] directly precedes the closing parenthesis corresponding to i. Thus,
i1 = rank((findopen(findclose(select((i))− 1)). �

Once we have found the first `-index of an lcp-interval [i..j], it is possible
to determine all `-indices i1 < i2 < · · · < im of [i..j]. In essence, this is be-
cause)0im . . .)

0
i2
)1i1 is a contiguous subsequence of the enhanced BPS. With

the help of the `-indices, the k-th child interval of [i..j] (if it exists) can be
found in constant time. Algorithm 6.9 gives the pseudo-code.

Lemma 6.3.8 Algorithm 6.9 takes an lcp-interval [i..j] as input and com-
putes its k-th child interval in constant time (where 1 ≤ k ≤ σ). If [i..j] has
less than k child intervals, it returns ⊥.

6.3 The balanced parentheses sequence of the LCP-array 273

Algorithm 6.9 For an lcp-interval [i..j], this procedure returns the k-th
child interval based on the enhanced BPS, where 1 ≤ k ≤ σ. If [i..j] has
less than k child intervals, it returns ⊥.

if NSV[i] > j + 1 then /* LCP[i] ≤ LCP[j + 1] */
ci1pos = select((j + 1)− 1)

else
ci1pos = findclose(select((i))− 1)

bci1pos← rank)(ci1pos)
if BPS[ci1pos− 1] = ”(” or (BPS[ci1pos− 1] = ”)” and B[bci1pos− 1] = 1) then
cimpos← ci1pos

else /* BPS[ci1pos− 1] = ”)” and B[bci1pos− 1] = 0 */
bpos← select1(rank1(bci1pos)− 1) + 1
cimpos← select)(bpos))

m← ci1pos− cimpos+ 1 /* the number of `-indices is m */
if m = 1 then
i1 ← rank((findopen(ci1pos))
return [i..i1 − 1]

else if 2 ≤ k ≤ m then
ik−1 ← rank((findopen(ci1pos− (k − 1) + 1))
ik ← rank((findopen(ci1pos− k + 1))
return [ik−1..ik − 1]

else if k = m+ 1 then
im ← rank((findopen(cimpos))
return [im..j]

else
return ⊥

Proof Let i1 < i2 < · · · < im be the `-indices of [i..j], where m ≥ 1. After
the execution of the first if-then-else statement in Algorithm 6.9, ci1pos is
the position of the closing parenthesis corresponding to the first `-index
i1 of [i..j]; cf. Lemma 6.3.7. In the enhanced BPS, the closing parenthesis
)i1 is marked with a 1, and the position of its mark in the bitstring B
is bci1pos = rank)(ci1pos). Now, if)1i1 is directly preceded by an opening
parenthesis or a closing parenthesis marked with a 1, then i1 is the only
`-index of [i..j] (hence m = 1). In this case, the position cimpos of the
closing parenthesis corresponding to the last `-index im coincides with
ci1pos. Otherwise,)1i1 is directly preceded by a closing parenthesis marked
with a 0. Because)0im . . .)

0
i2
)1i1 is a contiguous subsequence of the enhanced

BPS, it follows that m > 1, i.e., there is more than one `-index. Note that
the closing parenthesis preceding)0im (if it exists) must be marked with a
1. In this case, we compute bpos = select1(rank1(bci1pos)−1)+1, the position
directly right to the position of the first 1 in B that is left to bci1pos (to

274 6 Making the Components of Enhanced Suffix Arrays Smaller

ensure that there is always such a 1 we set B[0] = 1, i.e., an additional 1 is
added at the beginning of B). The position cimpos of the closing parenthesis
corresponding to the last `-index im is cimpos ← select)(bpos)). Because
)0im . . .)

0
i2
)1i1 is a contiguous subsequence of the enhanced BPS, the number

of `-indices of [i..j] is m = ci1pos − cimpos + 1. Moreover the k-th `-index
ik, 1 ≤ k ≤ m, satisfies ik = rank((findopen(ci1pos − k + 1)). According to
Lemma 4.3.5, Algorithm 6.9 returns the k-th child interval of [i..j] (if it
exists). Since each of its statements can be done in constant time, the
whole algorithm takes only constant time. �

6.3.3 Computing getInterval([i..j], c)

In exact string matching, the procedure getInterval (Algorithm 5.1 on page
118) searches for a specific child interval. To be precise, if the lcp-interval
[i..j] represents the string ω, the procedure call getInterval([i..j], c) com-
putes the lcp-interval [lb..rb] that represents the string ωc, where c ∈ Σ.

Using Algorithm 6.9, we can enumerate all child intervals [lb..rb] of [i..j]
until the one with S[SA[lb] + |ω|] = · · · = S[SA[rb] + |ω|] = c is found. In other
words, the procedure getInterval can be implemented on a data structure
using 3n + o(n) bits. It needs access to the suffix array SA and the string
S, but not to the LCP-array.

As a matter of fact, the enhanced BPS allows us to implement the pro-
cedure getInterval in such a way that the specific child interval can be
found by a binary search in O(log σ) time. It is plain to see that in a binary
search on 1, . . . , σ the respective child interval can be found by Algorithm
6.9. However, a more efficient implementation can be obtained by a sim-
ple modification of that algorithm. This goes as follows. As in Algorithm
6.9, we determine the positions ci1pos and cimpos of the closing parenthe-
ses corresponding to the first and the last `-index i1 and im, respectively.
Then, m = ci1pos − cimpos + 1 is the number of `-indices and)0im . . .)

0
i2
)1i1 is

a contiguous subsequence of the enhanced BPS, where i1 < i2 < · · · < im
are the `-indices of [i..j]. Therefore, the binary search can be done on the
sequence)0im . . .)

0
i2
)1i1 of closing parenthesis. Let k be the current value in

the binary search (initially, k = b(1 + m)/2c). Recall that the k-th `-index
ik, 1 ≤ k ≤ m, can be found by ik = rank((findopen(ci1pos− k + 1)). Further-
more, ik − 1 is the right boundary of the k-th child interval and ik is the
left boundary of the (k + 1)-th child interval. Thus, if S[SA[ik − 1] + |ω|] = c
or S[SA[ik] + |ω|] = c, then we know one boundary of the interval we are
searching for and we can compute the other boundary as in Algorithm 6.9.
Otherwise, if S[SA[ik−1]+|ω|] < c, the binary search proceeds with the right
half of the current sequence of closing parenthesis, and if S[SA[ik]+|ω|] > c,
the binary search proceeds with the left half.

6.3 The balanced parentheses sequence of the LCP-array 275

6.3.4 Answering RMQs in constant time

Algorithm 6.10 shows that a range minimum query can also be answered
in constant time on the BPS. Its correctness is proved in Theorem 6.3.9.

Algorithm 6.10 Constant time calculation of RMQ(i, j) based on the BPS.
if i = j then

return i
ipos← select((i)
jpos← select((j)
cipos← findclose(ipos)
if jpos < cipos then

return i
else
pos← rr_enclose(ipos, jpos)
if pos = ⊥ then

return j
else

return rank((pos)

Theorem 6.3.9 Algorithm 6.10 computes RMQ(i, j) in constant time for any
two indices i and j with 1 ≤ i ≤ j ≤ n.

Proof We use a case differentiation. If i = j, then obviously RMQ(i, j) = i.
Otherwise i < j. In this case, let ipos = select((i) and jpos = select((j). If
jpos < findclose(ipos), then ipos < jpos < findclose(jpos) < findclose(ipos),
i.e., the parenthesis pair i(. . .)i encloses the pair j(. . .)j. By the con-
struction of the BPS, this means that LCP[i] ≤ LCP[k] for all k with
i < k ≤ j. Hence RMQ(i, j) = i. Otherwise, we have findclose(ipos) < jpos.
If rr_enclose(ipos, jpos) = ⊥, then there is no parenthesis pair with open-
ing parenthesis at a position greater than findclose(i) that encloses the
parenthesis pair j(. . .)j. It follows from the construction of the BPS that
LCP[j] < LCP[k] for all k with i ≤ k < j. Thus, RMQ(i, j) = j.

In the last case rr_enclose(ipos, jpos) = pos, where pos is the smallest
position of an opening parenthesis so that findclose(ipos) < pos < jpos and
findclose(jpos) < findclose(pos). So we have

ipos < findclose(ipos) < pos < jpos < findclose(jpos) < findclose(pos)

Let p = rank((pos). The inequality findclose(ipos) < pos implies that LCP[p] <
LCP[k] for all k with i ≤ k < p. Furthermore, because the parenthesis pair
p(. . .)p encloses the pair j(. . .)j, we conclude that LCP[p] ≤ LCP[k] for all k
with p < k ≤ j. All in all, RMQLCP(i, j) = p. �

276 6 Making the Components of Enhanced Suffix Arrays Smaller

Exercise 6.3.10 Given two lcp-intervals, show that their LCA in the lcp-
interval tree can be computed in constant time based on the BPS.

It should be stressed that Algorithm 6.10 does not rely on a specific
property of the LCP-array. Consequently, it can be used to answer range
minimum queries in constant time on the BPS of an arbitrary array A
(provided, of course, that the array elements stem from a totally ordered
set). A similar statement is true for the computation of NSV and PSV-values,
where the latter relies on the additional bitstring B. Thus, the enhanced
BPS of an array A—together with a data structure that supports the oper-
ations described in Section 6.1—occupies only 3n+o(n) bits and allows us
to compute RMQ(i, j), PSV[i], and NSV[i] on A in constant time; cf. [247]. This
practical solution is not far away from the theoretically optimal solution:
Fischer [106] has shown that 2.54n+ o(n) bits suffice for this task.

6.3.5 Computing suffix link intervals

As explained in Section 5.5.2, the suffix link interval [lb..rb] of an lcp-
interval [i..j] can be determined by the following pseudo-code (Algorithm
5.24 on page 187):

k ← RMQ(ψ[i] + 1, ψ[j])
[lb..rb]← [PSV[k]..NSV[k]− 1]

In the previous sections, we have seen that a value of PSV, NSV, and
RMQ can be computed in constant time on the enhanced BPS. With the
compressed suffix array discussed in Section 6.2.1, ψ-values can be com-
puted easily. In this book, however, we will use a different data structure:
a wavelet tree. We shall see in Section 7.4 that a ψ-value can be computed
in O(log σ) time on a wavelet tree (and we shall also learn that a wavelet
tree supports many more operations). Consequently, with a wavelet tree
and the enhanced BPS, a suffix link interval can be determined in O(log σ)
time, using the pseudo-code above.

6.3.6 Attaching additional information

In some applications, we had to attach additional information to lcp-
intervals. For example, in Section 4.3.3 an additional array VAL was
introduced that helped to compute string kernels efficiently; cf. Section
5.7.2. For an `-interval [i..j] with `-indices i1 < i2 < · · · < ik the same
information VAL[i1] was stored k times, namely at each `-index. Another
more prominent example is the LCP-array itself: the same value LCP[i1]
is stored at each `-index of the interval [i..j]. In this section, we show
how to avoid the redundant information at the indices i2, . . . , ik. We will

6.3 The balanced parentheses sequence of the LCP-array 277

2 3 2 1 2 1 0 -1
(() (() (())) (() (())) ())
1 2 2 3 4 4 5 6 6 5 3 7 8 8 9 10 10 9 7 11 11 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6.6: The row above the BPS shows the values of the LCP′-array cor-
responding to the LCP-array shown in Figure 6.3 (page 266).
Hence LCP′[1..8] = [2, 3, 2, 1, 2, 1, 0,−1]. The row below the BPS
is only for illustrative purposes: the opening parentheses are
numbered consecutively and a closing parenthesis has the
number of its matching opening parenthesis. The lower row of
numbers shows the positions of the parentheses in the BPS.

do this for the LCP-array, but the same technique applies to other arrays
like the VAL-array as well. Since the information is kept only once for
each lcp-interval, we use an array LCP′ of size n′, where n′ is the number
of (non-singleton) lcp-intervals (to put it differently, n′ is the number of
internal nodes in the suffix tree of S). Recall that n′ < n. Now we make
use of the fact that there is a bijection between the set of closing paren-
theses that are marked with a 1 in the enhanced BPS of S and the set
of first lcp-indices of all lcp-intervals. To be precise, we store the values
of first lcp-indices in the order in which they occur from left to right in
the BPS. For example, in Figure 6.5 (page 267) the left-to-right order of
closing parentheses that are marked with a 1 corresponds to the sequence
of indices 2, 4, 6, 3, 8, 10, 7, 1. The corresponding sequence of lcp-values (cf.
Figure 6.3 on page 266) LCP[2] = 2, LCP[4] = 3, LCP[6] = 2, LCP[3] = 1, LCP[8] =
2, LCP[10] = 1, LCP[7] = 0, LCP[1] = −1 is stored in an array LCP′; see Figure
6.6. So given the enhanced BPS and the LCP′-array, it remains to address
the following two problems:

1. Given an index i, how to retrieve the value LCP[i].

2. Given an lcp-interval [i..j], how to retrieve its lcp-value.

Algorithm 6.11 (originating from [126]) solves the first and Algorithm
6.12 solves the second problem.

Lemma 6.3.11 Given an index i, Algorithm 6.11 returns the value LCP[i] in
constant time, based on the enhanced BPS and the LCP′-array.

Proof Algorithm 6.11 determines the position cipos of the closing paren-
thesis matching the i-th opening parenthesis, and the corresponding po-
sition bcipos in the bit vector B. Furthermore, it calculates the number
k = rank1(B, bcipos) of ones up to position bcipos in the bit vector B. Now,

278 6 Making the Components of Enhanced Suffix Arrays Smaller

Algorithm 6.11 For an index i, calculate LCP[i] using BPS and LCP′.
ipos← select((i)
cipos← findclose(ipos)
bcipos← rank)(cipos)
k ← rank1(B, bcipos)
if B[bcipos] = 1 then

return LCP′[k]
else

return LCP′[k + 1]

Algorithm 6.12 For an lcp-interval [i..j], this procedure returns its lcp-
value based on the BPS and the LCP′-array.

if NSV[i] > j + 1 then /* LCP[i] ≤ LCP[j + 1] */
cpos← select((j + 1)− 1

else
cpos← findclose(select((i))− 1

bcpos← rank)(cpos)
k ← rank1(B, bcpos)
return LCP′[k]

if B[bcipos] = 1, then i is the first lcp-index in its lcp-interval and its LCP-
value can be found at index k in the array LCP′. Otherwise i is not the
first lcp-index in its lcp-interval, say [lb..rb], and there are more closing
parentheses immediately to the right of)i. Of those, the first marked with
a 1 is the first lcp-index of [lb..rb] and hence its LCP-value can be found at
index k + 1 in the array LCP′. �

In Algorithm 6.11, bcipos can be determined without rank)(cipos) because

rank)(cipos) = rank)(ipos)︸ ︷︷ ︸
=ipos−i

+ rank)(cipos)− rank)(ipos)︸ ︷︷ ︸
= cipos−ipos+1

2

=
ipos+ cipos+ 1

2
− i

This can be seen as follows. We know from ipos = select((i) that there are i
opening parentheses up to position ipos. Thus, rank)(ipos) = ipos− i. Fur-
thermore, since cipos is the position of the closing parenthesis matching
the i-th opening parenthesis, we infer that BPS[ipos..cipos] is a balanced
parentheses sequence. It follows as a consequence that the number of
closing parentheses in it is cipos−ipos+1

2
.

Lemma 6.3.12 Algorithm 6.12 takes an lcp-interval [i..j] as input and de-
termines its lcp-value in constant time.

6.3 The balanced parentheses sequence of the LCP-array 279

Proof The proof is similar to the proof of Lemma 6.3.7. Let i1 < i2 < · · · < im
be the `-indices of [i..j]. Algorithm 6.12 first tests whether or not LCP[i] ≤
LCP[j + 1]. By Lemma 6.3.2, we know that LCP[i] ≤ LCP[j + 1] if and only if
NSV[i] > j + 1.

If LCP[i] ≤ LCP[j + 1], then)im . . .)i2)i1 j+1(is a contiguous subsequence of
the BPS. That is, the closing parenthesis corresponding to the first `-index
i1 of [i..j] directly precedes the opening parenthesis corresponding to j+1,
and it can be found at position cpos = select((j + 1)− 1.

If LCP[i] > LCP[j+1], then)im . . .)i2)i1)i is a contiguous subsequence of the
BPS. That is, the closing parenthesis corresponding to the first `-index i1
of [i..j] directly precedes the closing parenthesis corresponding to i, and it
can be found at position cpos = findclose(select((i))− 1. �

Chapter 7
Compressed Full-Text Indexes

Until now, we have used the suffix array as an index data structure, and
exact string matching was done in forward direction. This chapter is dedi-
cated to index data structures and applications in which a forward search
is replaced with a backward search. It is organized as follows. First, we
review the Burrows-Wheeler transform [48]—a well-known technique em-
ployed in lossless data compression—on which backward search is based.
Second, we describe the search algorithm discovered by Ferragina and
Manzini [100]. Third, we introduce the wavelet tree invented by Grossi et
al. [134]. This data structure supports backward search and has many
other virtues. In subsequent sections, we shed new light on solutions to
problems faced in Chapter 5, such as developing new algorithms that ad-
dress space efficiency issues, as well as problems related to bidirectional
searches and approximate string matching.

7.1 The components of a compressed full-text index

Many variations of compressed suffix trees (CSTs) have been proposed in
the literature (see e.g. [273]), and these do not all have the same func-
tionality. Because we focus on backward search, which is normally not
supported by a CST, we prefer the term “compressed full-text index”.

Definition 7.1.1 A compressed full-text index of a string S is a space-
efficient data structure that supports (at least) the following operations:

1. backward search,

2. access to the suffix array of S,

3. access to the LCP-array of S,

4. navigation on the (virtual) suffix tree of S.

282 7 Compressed Full-Text Indexes

The compressed full-text index of the string S that is used throughout
this book consists of the following four components:

1. the wavelet tree of the Burrows-Wheeler transformed string of S,

2. the sparse suffix array of S from Section 6.2.1,

3. the compressed LCP-array as explained in Section 6.2.2,

4. the balanced parentheses sequence BPS of the LCP-array that was
introduced in Section 6.3.

We emphasize that each of the four components can be replaced with
another component that has the same functionality. For example, the
wavelet tree can be substituted by the compressed suffix array [135,270]
sketched in Section 6.2.1 because backward search can be done with
the ψ-function; see Exercise 7.3.3. Further alternatives are described
in [238]. However, the wavelet tree has many sophisticated properties
that make it most suitable for many applications. Alternative compressed
representations of the LCP-array are discussed in [126], among which is a
representation that is based on the array LCP′ from Section 6.3.6. There
are also alternatives to the BPS of the LCP-array, most notably the BPSpre

introduced in Section 6.1; cf. [231,273]. We refer to [124] for an in-depth
experimental study of the various incarnations of compressed full-text
indexes.

7.2 The Burrows-Wheeler transform

The Burrows-Wheeler transform was introduced in a technical report writ-
ten by David Wheeler and Michael Burrows [48]; see the historical notes
in Adjeroh et al. [6]. In practice, the Burrows-Wheeler transformed string
tends to be easier to compress than the original string; see e.g. [48, Sec-
tion 3] and [215] for reasons why the transformed string compresses well.

Here we assume that the string S of length n is terminated by the sen-
tinel character $. Although this is not necessary for the Burrows-Wheeler
transform to work correctly (cf. [48]), in virtually all practical cases the file
to be compressed is terminated by a special symbol, the EOF (end of file)
character. Moreover, it allows us to use a fast suffix sorting algorithm to
compute the transformed string.

7.2.1 Encoding

The Burrows-Wheeler transform transforms a string S in three steps:

1. Form a conceptual matrix M ′ whose rows are the cyclic shifts of the
string S.

7.2 The Burrows-Wheeler transform 283

ctatatat$
cyclic−−−→
shifts

ctatatat$
tatatat$c
atatat$ct
tatat$cta
atat$ctat
tat$ctata
at$ctatat
t$ctatata
$ctatatat

M ′

sort−−→

F L
$ ctatata t
a t$ctata t
a tat$cta t
a tatat$c t
c tatatat $
t $ctatat a
t at$ctat a
t atat$ct a
t atatat$ c

M

last−−−−→
column

tttt$aaac

Figure 7.1: The Burrows and Wheeler transform applied to the string S =
ctatatat$ yields the output L = tttt$aaac.

2. Compute the matrix M by sorting the rows of M ′ lexicographically.

3. Output the last column L of M .

An example can be found in Figure 7.1. We next show that computing
the Burrows-Wheeler transformed string of S boils down to sorting the
suffixes of S, or more precisely, the output L of the Burrows-Wheeler
transform can be derived in linear time from the suffix array SA. To this
end, we define a string BWT and show that it coincides with L.

Definition 7.2.1 For a string S of length n having the sentinel character
at the end (and nowhere else), the string BWT[1..n] is defined by BWT[i] = $
if SA[i] = 1 and BWT[i] = S[SA[i]− 1] if SA[i] 6= 1.

Obviously, the string BWT[1..n] can be derived in linear time from the
suffix array SA; see Algorithm 7.1.

Algorithm 7.1 Computing BWT from SA and the string S.
for i← 1 to n do

if SA[i] = 1 then BWT[i]← $
else BWT[i]← S[SA[i]− 1]

If we truncate each string in the matrix M after the sentinel $, then the
truncated strings are still lexicographically ordered; see Figure 7.2. Since
these truncated strings are exactly the suffixes of S, the string BWT coin-
cides with the string L (this crucially relies on the fact that S is terminated
by $; see Exercise 7.2.2).

284 7 Compressed Full-Text Indexes

F L
$ ctatata t
a t$ctata t
a tat$cta t
a tatat$c t
c tatatat $
t $ctatat a
t at$ctat a
t atat$ct a
t atatat$ c

truncate−−−−−→
after $

F L
$ t
a t$ t
a tat$ t
a tatat$ t
c tatatat$ $
t $ a
t at$ a
t atat$ a
t atatat$ c

observe−−−−→
L=BWT

BWT F L
t $ t
t at$ t
t atat$ t
t atatat$ t
$ ctatatat$ $
a t$ a
a tat$ a
a tatat$ a
c tatatat$ c

Figure 7.2: Truncate the strings (rows) after the sentinel character, and
observe that L = BWT.

i 1 2 3 4 5 6 7 8 9
L[i] t t t t $ a a a c
LF (i) 6 7 8 9 1 2 3 4 5
F [i] $ a a a c t t t t

Figure 7.3: LF maps the last column L to the first column F .

Exercise 7.2.2 For a string S of length n without the sentinel character at
the end, define BWT[i] = S[n] if SA[i] = 1 and BWT[i] = S[SA[i]−1] if SA[i] 6= 1.
Find a string S (without sentinel) for which BWT 6= L.

7.2.2 Decoding

It is not obvious how the string BWT can be retransformed into the orig-
inal string S. The key to this back-transformation is the so-called LF -
mapping.

Definition 7.2.3 Let F and L be the first and last column in the matrix
M ; cf. Figure 7.1. The function LF : {1, . . . , n} → {1, . . . , n} is defined as
follows: If L[i] = c is the k-th occurrence of character c in L, then LF (i) = j
is the index so that F [j] is the k-th occurrence of c in F .

The function LF is called last-to-first mapping because it maps the last
column L to the first column F ; see Figure 7.3 for an example. In the
following, when we regard the LF - mapping as an array, we will the use
the notation LF [i] instead of LF (i).

7.2 The Burrows-Wheeler transform 285

Algorithm 7.2 Computing LF from BWT and the C-array.
for all c ∈ Σ do
count[c]← C[c]

for i← 1 to n do
c← BWT[i]
count[c]← count[c] + 1
LF [i]← count[c]

Next, we develop a linear-time algorithm that computes LF . To achieve
this goal, we must be able to find the k-th occurrence of a character c ∈ Σ
in F . Employing the C-array (if we consider all characters in Σ that are
smaller than c, then C[c] is the overall number of their occurrences in S),
the index of the first occurrence of character c in the array F is C[c] + 1.
Therefore, the k-th occurrence of c in F can be found at index C[c] + k.

Algorithm 7.2 shows the pseudo-code for the computation of LF . It
scans the BWT from left to right and counts how often each character
appeared already. The algorithm uses an auxiliary array count of size σ.
Initially, count[c] = C[c]. Each time character c appears during the scan of
BWT, count[c] is incremented by one. As discussed above, if the algorithm
finds the k-th occurrence of character c at index i in BWT, then the k-th
occurrence of character c in F appears at index count[c] = C[c]+k. In other
words, the index LF [i] we are searching for is count[c].

It remains to compute the original string S from BWT and LF . Lemma
7.2.4 states the crucial property of the LF -mapping that makes this pos-
sible.

Lemma 7.2.4 The first row of the matrix M contains the suffix Sn = $. If
row i, 2 ≤ i ≤ n, of the matrix M contains the suffix Sj, then row LF (i) of M
contains the suffix Sj−1.

Proof Since $ is the smallest character in Σ, the first row of M contains
$, which is the n-th suffix of S. Let c 6= $ be a character in S, and let i1 <
i2 < · · · < im be all the indices with BWT[ik] = c, 1 ≤ k ≤ m. (So if we would
number the m occurrences of c in L = BWT as c1, c2, . . . , cm, then BWT[ik] =
ck.) Because the suffixes in M are ordered lexicographically, we have
SSA[i1] < SSA[i2] < · · · < SSA[im]. Obviously, this implies cSSA[i1] < cSSA[i2] < · · · <
cSSA[im]. (With the occurrence numbers as subscripts, c1SSA[i1] < c2SSA[i2] <
· · · < cmSSA[im].) By definition, LF (ik) is the index so that F [LF (ik)] is the
k-th occurrence of c in F . Since cSSA[ik] = SSA[ik]−1, it follows that row LF (ik)
of M contains the suffix SSA[ik]−1. �

Theorem 7.2.5 If L = BWT is the output of the Burrows-Wheeler transform
applied to the string S, and LF is the corresponding last-to-first mapping,
then Algorithm 7.3 computes S.

286 7 Compressed Full-Text Indexes

Algorithm 7.3 Computing the string S from BWT and LF .
S[n]← $
j ← 1
for i← n− 1 downto 1 do
S[i]← BWT[j]
j ← LF (j)

Proof Initially, the algorithm assigns $ to S[n]. This is correct because
$ is the last character of S. Since $ is the smallest character in Σ, row
j = 1 of the matrix M contains the suffix Sn = $. Now L[1] = BWT[1] =
S[n − 1] implies that the (n − 1)-th character of S is correctly decoded in
the first iteration of the for-loop. After the assignment j ← LF (j), row j
contains the suffix Sn−1. In the second iteration of the for-loop, the (n−2)-
th character of S is correctly decoded because L[j] = BWT[j] = S[n−2], and
so on. �

Exercise 7.2.6 Extend Algorithm 7.3 so that it also computes the suffix
array of the string S. Is it possible to overwrite the LF -array with the
suffix array? (This would save space if the LF -array is no longer needed.)

An alternative way to retransform the BWT into the original string S
uses the ψ-function instead of the LF -mapping. We are already familiar
with the ψ-function: For a string of length n (without the sentinel charac-
ter $ at the end), ψ(i) = ISA[SA[i] + 1] for all i with SA[i] < n; see Definition
5.5.4. Here, we assume that the string under consideration is terminated
by $. If S is a string of length n having the sentinel character at the
end (and nowhere else), then SA[1] = n because $ is the lexicographically
smallest suffix of S. So with the previous definition of the ψ-function, the
value ψ(1) is undefined. Definition 7.2.7 provides a value for ψ(1) so that
ψ becomes a permutation.

Definition 7.2.7 The function ψ : {1, . . . , n} → {1, . . . , n} is defined by
ψ(i) = ISA[SA[i] + 1] for all i with 2 ≤ i ≤ n and ψ(1) = ISA[1].

The next two lemmata reveal the close relationship between the func-
tions LF and ψ.

Lemma 7.2.8 We have LF (i) = ISA[SA[i] − 1] for all i with SA[i] 6= 1 and
LF (i) = 1 for the index i so that SA[i] = 1.

Proof If SA[i] = 1, then BWT[i] = $. Since $ occurs at index 1 in the array F ,
we have LF (i) = 1. Now suppose that SA[i] 6= 1. According to Lemma 7.2.4,
if SA[i] = j, then SA[LF (i)] = j − 1. So the equation SA[LF (i)] = SA[i] − 1
holds true. Thus, LF (i) = ISA[SA[i]− 1]. �

7.2 The Burrows-Wheeler transform 287

Burrows-Wheeler

Transform

(BWT)

Move-to-Front

Coding (MTF)

Hu�man

Compression
String S Code Sc

Figure 7.4: The main phases of the bzip2 compression program.

Lemma 7.2.9 The functions LF and ψ are inverse of each other.

Proof We will show LF (ψ(i)) = i for all i with 1 ≤ i ≤ n. (The equality
ψ(LF (i)) = i similarly follows.) If i = 1, then ψ(1) = ISA[1] is the index so
that SA[ISA[1]] = 1. Hence LF (ψ(1)) = 1 by Lemma 7.2.8. For i > 1, it follows
from Lemma 7.2.8 and Definition 7.2.7 that LF (ψ(i)) = ISA[SA[ψ(i)] − 1] =
ISA[SA[ISA︸ ︷︷ ︸

cancel

[SA[i] + 1]]− 1] = ISA[SA[i] + 1− 1] = i. �

Exercise 7.2.10 This exercise makes clear that LF can be replaced with
ψ in BWT-decoding.

• Modify Algorithm 7.2 so that it computes the ψ-array from BWT. You
may assume that the index index_of_$, at which the character $ occurs
in the string BWT, is known (it can easily be computed during the
Burrows-Wheeler transform).

• Modify Algorithm 7.3 so that it computes the string S from BWT,
index_of_$, and ψ.

• Show how to compute the suffix array SA from BWT, index_of_$, and
ψ. Is it possible to overwrite the ψ-array with the suffix array? (This
would save space if the ψ-array is no longer needed.)

7.2.3 Data compression

The Burrows-Wheeler transform is used in many lossless data compres-
sion programs, of which the best known is Julian Seward’s bzip2. Figure
7.4 shows bzip2’s main phases. (Its ancestor bzip used arithmetic cod-
ing [267] instead of Huffman coding [158]. The change was made because
of a software patent restriction.) It is possible to further use a run-length
encoder (RLE) in between move-to-front (MTF) and Huffman coding, or to
replace MTF with RLE. As a matter of fact, many more variations of the
coding scheme are possible. The reader is referred to Adjeroh et al. [6]
for a detailed introduction to the current state of knowledge about data
compression with the Burrows-Wheeler transform.

288 7 Compressed Full-Text Indexes

An application of the coding scheme from Figure 7.4 to the string S =
ctatatat$ yields the code Sc = 0111100010111. The intermediate steps are

S = ctatatat$
BWT

⇒⇒⇒ L = tttt$aaac
MTF

⇒⇒⇒ R = 300012003
Huffman

⇒⇒⇒ Sc = 011110000011101

We have already seen how the Burrows-Wheeler transform works, so we
now turn to the other two steps: move-to-front and Huffman coding.

Move-to-front coding

Bentley et al. [36] introduced the move-to-front transform in 1986 but the
method was already described in 1980 by Ryabko; see [269]. The MFT
is an encoding of a string designed to improve the performance of en-
tropy encoding techniques of compression like Huffman coding [158] and
arithmetic coding [267]. The idea is that each character in the string
is replaced by its rank in a list of recently used characters. After a re-
placement, the character is moved to the front of the list of characters.
Algorithm 7.4 makes this precise.

Algorithm 7.4 Move-to-front coding of a string L ∈ Σn.
Initialize a list containing the characters from Σ in increasing order.
for i← 1 to n do
R[i]← number of characters preceding character L[i] in list
move character L[i] to the front of list

Figure 7.5 shows the application of Algorithm 7.4 to the string L =
tttt$aaac; note that ′0′ occurs more often in the resulting string R than t
or a do in L. As you can see, every run (a run is a substring of identical
characters) is replaced by a sequence of zeros (except for the first rank).
Because a Burrows-Wheeler transformed string usually has many runs,
the proportion of zero ranks after MTF has been applied is relatively high.

Pseudo-code for the decoding of the rank vector R is shown in Algorithm
7.5, and Figure 7.6 illustrates the behavior of this algorithm applied to the
rank vector R = 300012003.

Algorithm 7.5 Move-to-front decoding of R.
Initialize a list containing the characters from Σ in increasing order.
for i← 1 to n do
L[i]← character at position R[i] + 1 in list (numbering elements from 1)
move character L[i] to the front of list

7.2 The Burrows-Wheeler transform 289

i list L[i] R[i]

1 $act t 3
2 t$ac t 0
3 t$ac t 0
4 t$ac t 0
5 t$ac $ 1
6 $tac a 2
7 a$tc a 0
8 a$tc a 0
9 a$tc c 3

Figure 7.5: Move-to-front coding of a string L = tttt$aaac.

i list R[i] L[i]

1 $act 3 t
2 t$ac 0 t
3 t$ac 0 t
4 t$ac 0 t
5 t$ac 1 $
6 $tac 2 a
7 a$tc 0 a
8 a$tc 0 a
9 a$tc 3 c

Figure 7.6: Move-to-front decoding of R = 300012003 with Σ = {$, a, c, t}.

290 7 Compressed Full-Text Indexes

character ′0′ ′1′ ′2′ ′3′

frequency 5/9 1/9 1/9 2/9
Huffman code 1 000 001 01
fixed-length code 00 01 10 11

Figure 7.7: Encoding R = 300012003 with a Huffman code takes 15 bits.
Encoding it with a fixed-length code would require 18 bits.

Huffman coding

Huffman coding is an encoding algorithm developed by David A. Huffman
[158], which is used for lossless data compression. The algorithm works
by creating the so-called Huffman tree and Huffman code in a bottom-up
fashion as follows:

1. Initially, there are only leaf nodes, one for each character appearing
in the string (file) to be encoded. Besides a character c, a leaf node
contains a weight, which equals the frequency of c in the string.

2. The algorithm repeatedly creates a new node whose left child has the
smallest weight, whose right child has the second smallest weight
(from that point on, these two nodes are no longer considered), and
whose weight is the sum of the weights of its children. This is done
until only one node remains, the root of the Huffman tree.

3. The codeword of a character c can be read off the path from the root
to the leaf that contains c: a 0 means “follow the left child” and a 1
means “follow the right child.”

In this way, a variable-length code—a Huffman code—for encoding char-
acters from the string is obtained. As an example, consider the string
R = 300012003 on the alphabet {′0′,′ 1′,′ 2′,′ 3′} and Figure 7.7. First, leaf ′1′

(with weight 1/9) becomes the left child and leaf ′2′ (with weight 1/9) be-
comes the right child of a new node v1, whose weight is 2/9. Second, the
node, v1 (with weight 2/9) becomes the left child and leaf ′3′ (with weight
2/9) becomes the right child of another new node, v2, whose weight is 4/9.
Third, the algorithm creates the root of the Huffman tree, whose left child
is v2 and whose right child is the leaf ′0′. Figure 7.8 shows the resulting
Huffman tree and Figure 7.7 shows the codewords.

Encoding a string is very simple: just replace each character in the
string by its codeword. For instance, R = 300012003 is encoded by Sc =
011110000011101. A Huffman code is a prefix-free code, that is, the code-
word representing some particular character is never a prefix of the code-
word representing any other character. (Instead of the more accurate

7.2 The Burrows-Wheeler transform 291

9/9

5/9

10

’0’
4/9

2/9

10

’3’
1/9

2/9

1/9

10

’2’’1’

Figure 7.8: Huffman tree and code of R = 300012003.

term “prefix-free code,” the term “prefix code” is standard in the litera-
ture.) This property makes decoding also simple: the character that is
represented by the initial codeword of the encoded string can be read off
the path from the root to a leaf in the Huffman tree, where 0 means “go
to the left child” and 1 means “go to the right child.” Then, the initial
codeword is removed from the encoded string and the decoding process is
repeated on the remainder of the encoded string.

For example, the decoding process for Sc = 011110000011101 starts at the
root of the Huffman tree, goes to the left (since Sc[1] = 0) and then to
the right (since Sc[2] = 1). Because the leaf ′3′ is encountered, ′3′ is the
character that is represented by the codeword 01. Then, the decoding
process continues with 1110000011101, the rest of Sc.

Huffman codes are so important because they are optimal in the sense
of Definition 7.2.11; see e.g. [61] for a proof of this fact.

Definition 7.2.11 A prefix-free binary code pc for an alphabet Σ and a
frequency function f : Σ → [0 . . . 1] with

∑
c∈Σ f(c) = 1 is optimal if its

expected codeword length ∑
c∈Σ

f(c) |pc(c)|

is minimum among all prefix-free binary codes for Σ and f .

7.2.4 Direct construction of the BWT

In the last few years, several algorithms have been proposed that con-
struct the BWT either directly or by first constructing the suffix array and
then deriving the BWT in linear time from it; see e.g. [173,206,254,293].
The latter approach has a major drawback: all known SACAs require at
least n log n + n log σ bits of main memory (n log n bits for the suffix array
and n log σ bits for the string S). If one has to deal with large datasets, it is

292 7 Compressed Full-Text Indexes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S i m i m m m i s i s m i s i s s i i p i $

type S L S L L L S L S L L S L S L L S S L L S

* * * * * * *

$ p

LMS 21 17 3 7 12 9 14

L-type suffixes 21 20 17 3 7 12 9 14 2 6 11 5 4 19 16 8 13 10 15

S-type suffixes 21 20 17 1 17

3

3

18

7

7

12

12

9

9

14

14

2 6 11 5 4 19 16 8 13 10 15

i m s

Figure 7.9: Phase II of the induced sorting algorithm.

therefore advantageous to construct the BWT more space efficiently.1 For
example, Okanohara and Sadakane [254] have shown that the induced
sorting algorithm devised by Nong et al. [244] (the SACA from Section
4.1.2) can be modified so that it directly constructs the BWT in linear
time.

In this section, we discuss (a variant of) the algorithm presented in
[254], which we call algorithm BWTbyIS (direct computation of the BWT
by induced sorting). Algorithm BWTbyIS shares the same structure with
the induced sorting algorithm: it is also divided in two phases. First, we
explain how phase II of algorithm BWTbyIS works. We briefly recall phase
II of the induced sorting algorithm because this will be the basis of our
explanation. The example of Figure 7.9 will serve as an illustration (this
is the same example as in Section 4.1.2).

Phase II of the induced sorting algorithm starts with the sequence of
sorted LMS-positions (i.e., the order corresponds to the increasing lexi-
cographic order of the suffixes starting at these LMS-positions). In the
example of Figure 7.9, this is the sequence 21, 17, 3, 7, 12, 9, 14.

In step 1 of phase II, the sequence of sorted LMS-positions is scanned
from right to left (hence in decreasing order) and the positions are moved
to their buckets in such a way that they appear in increasing order in the
S-type regions of the buckets; see Figure 7.9.

In step 2 of phase II, the array A is scanned from left to right. If, for an
element A[i], the position A[i]−1 is of type L (i.e., T [A[i]−1] = L), then A[i]−1
is moved to the current front of its bucket. In the example of Figure 7.9,
what happens when the LMS-position 21 is encountered? The position 20
is moved to the current front of the i-bucket because T [20] = L and S[20] =
i. When position 20 is reached during the scan, position 19 is moved to
the current front of the p-bucket because T [19] = L and S[19] = p. So step

1To deal with massive data, one has to resort to external-memory algorithms; see e.g.
[30,99].

7.2 The Burrows-Wheeler transform 293

2 handles the transitions from LMS-positions to L-positions (LMS→L) as
well as the transitions from L-positions to L-positions (L→L). Within a
bucket, L→L transitions are dealt with before LMS→L transitions because
in a left-to-right scan the L-type region appears before the S-type region.

In step 3 of phase II, the array A is scanned from right to left. If, for
an element A[i], the position A[i]− 1 is of type S (i.e., T [A[i]− 1] = S), then
A[i]− 1 is moved to the current end of its bucket. In the example of Figure
7.9, what happens when position 19 is encountered? Position 18 is moved
to the current end of the i-bucket because T [18] = S and S[18] = i. When
position 18 is reached during the scan, position 17 is moved to the current
end of the i-bucket because T [17] = S and S[17] = i. So step 3 handles the
transitions from L-positions to S-positions (L→S) as well as the transitions
from S-positions to S-positions (S→S). Within a bucket, S→S transitions
are dealt with before L→S transitions because in a right-to-left scan the
S-type region appears before the L-type region.

Algorithm BWTbyIS does not work with LMS-positions but with LMS-
substrings. It starts with the sequence of LMS-substrings ending at the
sorted LMS-positions. In our example, this is the sequence

iipi$, issi, $imi, immmi, ismi, isi, isi

The reader may wonder why the string $imi appears in this sequence, and
not the string imi. Strictly speaking, the string S[1..3] ending at the first
LMS-position 3 is not an LMS-string. For reasons that will become clear
below, we prepend $ to this string and say that the resulting string is the
LMS-string ending at the first LMS-position of S (i.e., we interpret S as a
cyclic string).

In step 1 of phase II, the sequence of sorted LMS-substrings is scanned
from right to left. In contrast to the induced sorting algorithm, algorithm
BWTbyIS uses queues instead of the buckets. To be precise, for each char-
acter c ∈ Σ, there is one queue LMS-queue[c] (which is initially empty).
When an LMS-substring uc is encountered during the right-to-left scan,
the string u is added to the queue LMS-queue[c]. In our example, we have
LMS-queue[$] = [iipi] and LMS-queue[i] = [iss, $im, immm, ism, is, is] (the
remaining three queues are empty).

Since positions are not available any more, transitions cannot be de-
tected by looking up the types of positions in the type array T , but they
can be inferred from the LMS-substrings. To exemplify the idea, let us
have a look on the string iipi. Because it is in LMS-queue[$], we know that
iipi$ is an LMS-string and that the position at which the character $ ap-
pears is an LMS-position. In what follows, we say that a character is of
type L (S, respectively) if the position at which it occurs is of type L (S,
respectively). So the character $ is of type S and the character preceding
it is of type L. Given a character c of type L, it is possible to infer the type

294 7 Compressed Full-Text Indexes

transition implementation
LMS→L remove from an LMS-queue, add to an L-queue

L→L remove from an L-queue, add to an L-queue
L→S remove from an L-stack, add to an S-queue
S→S remove from an S-queue, add to an S-queue

Figure 7.10: Implementation of the four types of transitions.

of the preceding character b: if b < c, then b is of type S; otherwise it is of
type L. In our example, this yields

i i p i $
S L L LMS

Once an L→S transition is observed, it is clear from the type structure of
an LMS-substring that the types of the remaining characters must be S.

To simulate the transitions in steps 2 and 3 of the induced sorting algo-
rithm, algorithm BWTbyIS employs the following data structures. For for
each character c ∈ Σ, there are two queues L-queue[c] and S-queue[c] as well
as a stack L-stack[c] (all of which are initially empty). An LMS→L (L→L,
respectively) transition in step 2 is implemented by dequeuing an element
from an LMS-queue (L-queue, respectively) and enqueuing an element to an
L-queue. When an L→S transition is detected in step 2, it must be post-
poned to step 3. Furthermore, since step 2 scans from left to right, but
step 3 scans from right to left, the order in which L→S transitions are
processed must be reversed. That is why L→S transitions are stored in
a stack, and not in a queue. In step 3, an L→S (S→S, respectively) tran-
sition is implemented by popping an element from an L-stack (dequeuing
an element from an S-queue, respectively) and enqueuing an element to an
S-queue. Figure 7.10 summarizes the implementation of the transitions.

Now we have all the ingredients to achieve the main goal, namely to
compute the BWT. In the algorithm BWTbyIS, the BWT is implemented as
an array with the bucket structure known from the induced sorting algo-
rithm. When a character c of type L is processed in step 2, its preceding
character b is moved to the current front of the c-bucket of the array BWT
(initially, the front of the c-bucket is the index C[c] + 1) and the current
front of the c-bucket is shifted by one position to the right. Analogously,
when a character c of type S is processed in step 3, its preceding character
b is moved to the current end of the c-bucket of the array BWT (initially,
the end of the c-bucket is the index C[c + 1]) and the current end of the
c-bucket is shifted by one position to the left. There is one caveat though:
when a last character of type S is reached (this is the leftmost charac-
ter of an initial LMS-substring), the preceding character is not available.
The solution to this problem relies on the fact that the position of such a

7.2 The Burrows-Wheeler transform 295

character is an LMS-position. Recall that phase II of the induced sorting
algorithm starts with sorted LMS-positions, and that the relative order
of these positions remains unchanged in step 3. In the example of Fig-
ure 7.9, the sequence of sorted LMS-positions is 21, 17, 3, 7, 12, 9, 14, and
the sequence of characters at the preceding positions 20, 16, 2, 6, 11, 8, 13 is
i,s,m,m,m,s,s. In the right-to-left scan of step 3, these characters must
be accessed in the reverse order, that is why they are stored on the stack
char-stack.

Algorithm 7.6 shows pseudo-code of phase II of algorithm BWTbyIS,
which runs in linear time. It needs n log σ bits for all LMS-substrings of
S, n log σ bits for the BWT, and some auxiliary data structures. The stack
char-stack can be emulated by using the S-type regions of the array BWT;
see Exercise 7.2.13. In step 2, the algorithm merely needs the front point-
ers, the LMS-queues, the L-queues, and the L-stacks. This is the amount of
extra memory (besides the 2n log σ bits) needed by the algorithm because
step 3 requires less memory.

Exercise 7.2.12 Apply Algorithm 7.6 to the example of Figure 7.9.

Exercise 7.2.13 Show how to emulate the stack char-stack in Algorithm
7.6 by using the S-type regions of the array BWT. This saves memory.
(Note that only the L-type regions of BWT are filled in step 2, and that the
S-type regions of BWT are filled from right to left in step 3.)

We now discuss phase I of algorithm BWTbyIS. As in the induced sorting
algorithm, the lexicographic names of LMS-substrings can be computed
by an application of (a modified version of) Algorithm 7.6 to unsorted
LMS-substrings; see Exercise 7.2.17. In contrast to the induced sort-
ing algorithm, however, it is not straightforward to obtain the string S (the
string that is obtained from S by replacing each LMS-substring with its
lexicographic name; recall that the induced sorting algorithm proceeds re-
cursively with S unless the LMS-substrings are pairwise distinct). This is
because the positions at which the LMS-substrings start are not available.
A possible solution would be to store the LMS-substrings in an array ILN
so that ILN[k] is the k-th lexicographically smallest LMS-substring. Then,
one determines the LMS-substrings of S from left to right. For each LMS-
substring ω encountered, a binary search (see Section 5.1.3) yields the
index k with ILN[k] = ω. This index is the lexicographic name of ω, and
it is appended to the growing string S. However, this possible solution
has a non-linear runtime. Using algorithm engineering techniques, it is
possible to implement a space-efficient linear-time algorithm, but we will
present a conceptually simpler approach.

296 7 Compressed Full-Text Indexes

Algorithm 7.6 Phase II of the induced sorting algorithm.
initialize an empty stack char-stack
for each c in Σ do

initialize empty queues LMS-queue[c], L-queue[c], and S-queue[c]
initialize an empty stack L-stack[c]
front[c]← C[c] + 1 /* front of the c-bucket */
end[c]← C[c+ 1] /* end of the c-bucket */

/* step 1: right-to-left scan */
Scan the sorted sequence of LMS-substrings ending at LMS-positions
from right to left. For each LMS-substring uc encountered in the scan,
enqueue the string u to the queue LMS-queue[c].
/* If S[i..j] = uc, then T [i− 1] = L, T [i..j − 1] = [S, . . . ,S,L, . . . ,L], T [j] = S */

/* step 2: left-to-right scan, L-type characters before S-type characters */
for each c in Σ do /* in increasing order */

while L-queue[c] is not empty do /* c is L-type */
ωb← dequeue(L-queue[c]) /* b is the last character of the string */
BWT[front[c]]← b
front[c]← front[c] + 1
if b < c then /* b is S-type */
push(L-stack[c], ωb) /* store L→S transition */

else /* b is L-type */
enqueue(L-queue[b], ω) /* L→L transition */

while LMS-queue[c] is not empty do /* c is S-type */
ωb← dequeue(LMS-queue[c]) /* b is L-type */
push(char-stack, b) /* store character left of LMS-position */
enqueue(L-queue[b], ω) /* LMS→L transition */

/* step 3: right-to-left scan, S-type characters before L-type characters */
for each c in Σ do /* in decreasing order */

while S-queue[c] is not empty do /* c is S-type */
v ← dequeue(S-queue[c])
if v = ε then /* v is the empty string */
b← pop(char-stack) /* b precedes c in S, b is L-type */

else
ωb← v /* decompose v, its last character b is S-type */
enqueue(S-queue[b], ω) /* S→S transition */

BWT[end[c]]← b
end[c]← end[c]− 1

while L-stack[c] is not empty do /* c is L-type */
ωb← pop(L-stack[c]) /* b is S-type */
enqueue(S-queue[b], ω) /* L→S transition */

7.2 The Burrows-Wheeler transform 297

Phase I:

1. In a left-to-right scan of the string S and the type array T , succes-
sively determine the LMS-substrings of S and incrementally build
the trie of all LMS-substrings (in which the outgoing edges of a node
are ordered alphabetically); see Figure 7.11. Mark nodes at which an
LMS-substring ends.2 As shown in Section 2.5, this takes O(n) time.
Furthermore, store the first LMS-position j1 and count how many
different LMS-substrings appear in S; let m denote this number. Ini-
tialize an array LMS-array[1..m] (in the end, this array will contain
the sequence of LMS-substrings with which phase II starts).

2a. If all the LMS-substrings are pairwise distinct (in this case m equals
the number of LMS-substrings), then proceed as follows: In a post-
order traversal of the trie, number the marked nodes from 1 to m in
the order of their appearance. In a left-to-right scan of the string S,
walk through the trie and compute LMS-substrings as follows: Start
with the root of the trie and follow the edge whose label is the first
character S[j1] of the first LMS-substring, then the edge whose label
is the second character S[j1+1] and so on, until a marked node in the
trie is reached. Let k1 be its number. Note that the concatenation of
the edge labels on the path from the root to node k1 spells out the first
LMS-substring S[j1 . . . j2] of S. Set LMS-array[k1] = $S[1 . . . j1].3 Then,
start again with the root of the trie and follow the path corresponding
to a prefix of S[j2 . . . n] until a marked node k2 in the trie is reached.
Clearly, the concatenation of the edge labels on the path from the
root to node k2 spells out the second LMS-substring S[j2 . . . j3] of S.
Set LMS-array[k2] = S[j1 . . . j2]. Again, start at the root of the trie and
follow the path corresponding to a prefix of S[j3 . . . n] until a marked
node k3 in the trie is reached, set LMS-array[k3] = S[j2 . . . j3], etc. Upon
termination of this process, the LMS-array contains the sequence of
LMS-substrings with which phase II starts.

2b. If not all LMS-substrings are pairwise distinct, then—as in phase I
of the induced sorting algorithm—the algorithm must be applied re-
cursively to the string S, which is obtained from S by replacing each
LMS-substring with its lexicographic name. This string S can be
computed as follows: Initialize an array ILN[1..m] (in the end, this will
be the inverse of the lexicographic naming, i.e., of the array LN). In
a postorder traversal of the trie, number the marked nodes from 1 to
m in the order of their appearance (see Figure 7.11) and simultane-
ously fill the array ILN: if the concatenation of the edge labels on the

2In fact, it suffices to mark the internal nodes at which an LMS-substring ends. For
ease of presentation, however, we also mark leaves.

3The first LMS-substring is a special case.

298 7 Compressed Full-Text Indexes

$ i

i

p
m s

im s
m

m

i$

i ii

2

1

3

4

5 6

Figure 7.11: The trie of the LMS-substrings $, iipi$, immmi, isi, ismi, and
issi with the lexicographic names.

current path from the root to node k spells out the LMS-substring
ω, then set ILN[k] = ω because the lexicographic name of ω is k. In
a left-to-right scan of the string S (starting at the first LMS-position
j1), walk through the trie and compute LMS-substrings as in step
(2a). Whenever a marked node is encountered during this process,
append its number to the string S (initially, S = ε). Then, recursively
compute the Burrows-Wheeler transform BWT of the string S. Using
BWT, fill the LMS-array: for i from 1 to n do

LMS-array[i] =
{

$S[1 . . . j1] if ILN[BWT[i]] = $

ILN[BWT[i]] otherwise

Exercise 7.2.14 Show that algorithm BWTbyIS runs in linear time.

Exercise 7.2.15 Apply phase I of algorithm BWTbyIS to the example from
Figure 7.9 (page 292).

Exercise 7.2.16 Explain why the marked nodes of the trie are numbered
in a postorder traversal (and not in a preorder traversal).
Hint: Use an example in which an LMS-substring is a proper prefix of
another LMS-substring.

Exercise 7.2.17 Modify Algorithm 7.6 in such a way that it computes the
lexicographic names of (initially unsorted) LMS-substrings.

7.3 Backward search 299

BWT t c a $ a t c a a a a

B$ 0 0 0 1 0 0 0 0 0 0 0
Ba 0 0 1 0 1 0 0 1 1 1 1
Bc 0 1 0 0 0 0 1 0 0 0 0
Bt 1 0 0 0 0 1 0 0 0 0 0

Figure 7.12: Indicator bit vectors of BWT = tca$atcaaaa.

7.3 Backward search

Ferragina and Manzini [100] showed that it is possible to search a pattern
P = P [1..m] backwards in the suffix array SA of string S, without storing
SA. A backward search means that we first search for the P [m]-interval,
then for the P [m−1..m]-interval, and so on, until the whole pattern P [1..m]
is found. In the computer science literature, any data structure that al-
lows to search a pattern P backwards in the (conceptual) suffix array of
a string S is called an FM-index of S. Before showing how a backward
search works, we introduce a simple FM-index consisting of the C-array
and certain indicator bit vectors. In Section 7.4 we will become acquainted
with another FM-index: the wavelet tree.

7.3.1 A simple FM-index

Definition 7.3.1 Given a string (text) T of length n on the alphabet Σ,

• rankc(T, i) returns the number of occurrences of character c ∈ Σ in
the prefix T [1..i],

• selectc(T, i) returns the position of the i-th occurrences of character
c ∈ Σ in T .

It what follows, we are interested in data structures that support these
kinds of queries efficiently. Since we are mainly interested in the Burrows-
Wheeler transform of a string S, we fix T = BWT. However, the techniques
developed below work for arbitrary strings T .

The easiest method to support rankc(BWT, i) and selectc(BWT, i) queries
is to use σ many indicator bit vectors of length n. For each character c ∈ Σ,
the bit vector Bc is defined by Bc[i] = 1 if and only if BWT[i] = c; see Figure
7.12. Clearly, rankc(BWT, i) = rank1(B

c, i) and selectc(BWT, i) = select1(B
c, i).

Therefore, the problem is reduced to the problem of answering rank and
select queries on bit vectors. This can be done in constant time with a
total of nσ + o(nσ) bits of space.

Given the ability to answer rankc(BWT, i) and selectc(BWT, i) queries in
constant time, it is possible to compute LF (i) and ψ(i) in constant time
as well. This can be seen as follows. According to Definition 7.2.3, if

300 7 Compressed Full-Text Indexes

F $ a a a a a a c c t t
BF 1 1 0 0 0 0 0 1 0 1 0

Figure 7.13: The bit vector BF for F = $aaaaaacctt.

BWT[i] = c is the k-th occurrence of character c in the BWT-array, then
LF (i) = j is the index so that F [j] is the k-th occurrence of c in the array
F . Furthermore, we have seen that the k-th occurrence of c in F can be
found at index C[c] + k. It follows as a consequence that

LF (i) = C[c] + rankc(BWT, i), where c = BWT[i] (7.1)

Note that in the computer science literature, Occ(c, i) is often used instead
of rankc(BWT, i).

Because the ψ-function is the inverse of the LF -mapping (Lemma 7.2.9),
it follows that if F [i] = c is the k-th occurrence of c in the array F , then
ψ(i) = j is the index so that BWT[j] = c is the k-th occurrence of character
c in the BWT-array. So once we know c and k, ψ(i) = j can be obtained by
j = selectc(BWT, k). In fact, it is sufficient to know c because k = i − C[c].
Clearly, c can be obtained from F because F [i] = c. However, storing F
would be a waste of memory because we can use the array C instead. By
doing a binary search on C, we can determine in O(log σ) time the char-
acter c with C[c] < i ≤ C[c + 1], i.e., c = max{a ∈ Σ | C[a] < i}. Alternatively,
c can be determined in constant time with a rank data structure on the
bit vector BF defined by BF [1] = 1 and, for all l with 2 ≤ l ≤ n, BF [l] = 1 if
and only if F [l − 1] 6= F [l]; see Figure 7.13 for an example. This is because
c = Σ[m], where m = rank1(BF , i). All in all, we have

ψ(i) = selectc(BWT, i− C[c]), where c = Σ[rank1(BF , i)] (7.2)

Note that the array C can be completely replaced with the bit vector BF

because C[c] = select1(BF ,m)− 1.
In summary, if we use the indicator bit vectors and the bit vector BF ,

then LF (i) and ψ(i) can be computed in constant time, using n(1 + σ) +
o(n(1+ σ)) bits of space. If we use the C-array instead of the bit vector BF ,
then LF (i) can also be computed in constant time, but the computation
of ψ(i) takes O(log σ) time. In this case, σ log n+nσ+ o(nσ) bits of space are
required.

Exercise 7.3.2 Give a linear-time algorithm that takes the string BWT as
input and returns the bit vector BF .

7.3.2 The search algorithm

Let us return to the issue of backward search. As already mentioned, a
backward search means that we first search for the P [m]-interval, then for

7.3 Backward search 301

i BWT SSA[i]

1 t $
→ 2 c aaacatat$

3 a aacatat$
4 $ acaaacatat$
5 a acatat$
6 t at$

→ 7 c atat$
8 a caaacatat$
9 a catat$
10 a t$
11 a tat$

i BWT SSA[i]

1 t $
→ 2 c aaacatat$
→ 3 a aacatat$

4 $ acaaacatat$
5 a acatat$
6 t at$
7 c atat$
8 a caaacatat$
9 a catat$
10 a t$
11 a tat$

Figure 7.14: Searching pattern aa backwards in S = acaaacatat$. Given the
a-interval [2..7], one backward search step determines the aa-
interval [i..j] by i = C[a] + ranka(BWT, 2− 1) + 1 = 1 + 0 + 1 = 2
and j = C[a] + ranka(BWT, 7) = 1 + 2 = 3.

the P [m−1..m]-interval, and so on, until the whole pattern P [1..m] is found.
For example, the a-interval in the suffix array of the string S = acaaacatat$
is [2..7]; see Figure 7.14. That is, SSA[2], SSA[3], . . . , SSA[7] are the only suf-
fixes in S that start with an a. Consequently, if we search for the suffixes
starting with aa, then SSA[2]−1, SSA[3]−1, . . . , SSA[7]−1 are the sole candidates be-
cause only these suffixes have an a at the second position. Note that these
candidates can be found in the suffix array at LF (2), LF (3), . . . , LF (7). Out
of these candidates only those that have an a at first position belong to
the aa-interval. Because S[SA[i] − 1] = a if and only if BWT[i] = a, the
suffix SSA[i]−1 at index LF (i) belongs to the aa-interval if and only if SSA[i]

belongs to the a-interval and BWT[i] = a. As a matter of fact, it suffices
to know the first index p and the last index q with 2 ≤ p ≤ q ≤ 7 and
BWT[p] = a = BWT[q]. (This is because the suffixes SSA[2], SSA[3], . . . , SSA[7] are
ordered lexicographically and if one prepends the same character to all
of them, then the resulting strings will occur in the same lexicographic
order.) In our example, we have p = 3 and q = 5. Hence the boundaries of
the aa-interval are LF (3) = 2 and LF (5) = 3. The crucial question is how to
find p and q efficiently. Observe that a linear scan of the BWT array would
result in a bad worst-case running time. In fact, we do not have to know
p and q, as we shall see below.

Suppose in general that we know the ω-interval [i..j] of some suffix ω
of P , say ω = P [b..m]. Next, we have to determine the cω-interval, where

302 7 Compressed Full-Text Indexes

Algorithm 7.7 Given an ω-interval [i..j] and a character c, this procedure
returns the cω-interval if it exists; otherwise, it returns ⊥.
backwardSearch(c, [i..j])

i← C[c] + rankc(BWT, i− 1) + 1
j ← C[c] + rankc(BWT, j)

if i ≤ j then
return interval [i..j]

else
return ⊥

c = P [b − 1]. Assume for a moment that the cω-interval is non-empty, i.e.,
cω is a substring of S. Let p and q be the smallest and largest index with
i ≤ p ≤ q ≤ j and BWT[p] = c = BWT[q]. As discussed above, the cω-interval
is the interval [LF (p)..LF (q)]. According to Equation 7.1 (page 300) we
have

LF (p) = C[c] + rankc(BWT, p)

= C[c] + rankc(BWT, p− 1) + 1

= C[c] + rankc(BWT, i− 1) + 1

where the last equality follows from the fact that p is the index of the first
occurrence of c in BWT[i..j]. Analogously,

LF (q) = C[c] + rankc(BWT, q)

= C[c] + rankc(BWT, j)

because q is the index of the last occurrence of c in BWT[i..j]. We conclude
that the cω-interval [C[c] + rankc(BWT, i − 1) + 1..C[c] + rankc(BWT, j)] can
be determined without knowing p and q. Pseudo-code for one backward
search step can be found in Algorithm 7.7. In the preceding discussion,
we assumed that the cω-interval is non-empty. What happens if it is
empty? Then, rankc(BWT, i − 1) = rankc(BWT, j). This implies that C[c] +
rankc(BWT, i− 1) + 1 > C[c] + rankc(BWT, j) and thus Algorithm 7.7 returns
the undefined value ⊥.

Pseudo-code for searching the whole pattern P is given in Algorithm 7.8.

Exercise 7.3.3 Show that backward search can be accomplished in
O(m log n) time, solely based on the ψ-array of S (cf. Definition 7.2.7).

7.4 Wavelet trees 303

Algorithm 7.8 Given a pattern P , this procedure returns the P -interval if
it exists; otherwise, it returns ⊥.
backwardSearch(P)
i← 1
j ← n
k ← m
while i ≤ j and k ≥ 1 do
c← P [k]
i← C[c] + rankc(BWT, i− 1) + 1
j ← C[c] + rankc(BWT, j)
k ← k − 1

if i ≤ j then
return interval [i..j]

else
return ⊥

7.4 Wavelet trees

The wavelet tree was introduced by Grossi et al. [134]. In a very general
sense, a wavelet tree is a binary tree4 that has exactly σ many leaves and
there is a bijection between the set of leaves and Σ (i.e., each of the leaves
corresponds to a distinct character from the alphabet Σ). Moreover, every
internal node v stores a bit vector Bv equipped with rank and select data
structures.

The conceptually easiest way to introduce wavelet trees goes as follows.
We say that an interval [l..r] is an alphabet interval if it is a subinterval
of [1..σ], where σ = |Σ|. For an alphabet interval [l..r], the string BWT[l..r]

is obtained from the Burrows-Wheeler transformed string BWT of S by
deleting all characters in BWT that do not belong to the subalphabet Σ[l..r]
of Σ[1..σ]. As an example, consider the string BWT = tca$atcaaaa and the
alphabet interval [1..2]. The string BWT[1..2] is obtained from tca$atcaaaa
by deleting the characters c and t. Thus, BWT[1..2] = a$aaaaa. Each node
v of the tree corresponds to a string BWT[l..r], where [l..r] is an alphabet
interval. The root of the tree corresponds to the string BWT = BWT[1..σ]. If
l = r, then v has no children. Otherwise, v has two children: its left child
vL corresponds to the string BWT[l..m] and its right child vR corresponds
to the string BWT[m+1..r], where m = b l+r

2
c. In this case, v stores a bit

vector, denoted by Bv or B[l..r], whose i-th entry is 0 if the i-th character
in BWT[l..r] belongs to the subalphabet Σ[l..m] and 1 if it belongs to the
subalphabet Σ[m + 1..r]. To put it differently, an entry in the bit vector
is 0 if the corresponding character belongs to the left subtree and 1 if it

4That is, every node in the tree is either a leaf or has exactly two children.

304 7 Compressed Full-Text Indexes

tca$atcaaaa

11000110000

a$aaaaa

1011111

$ a

tctc

1010

c t

1

2 3

4 5 6 7

Figure 7.15: Conceptual illustration of the wavelet tree of the string
BWT = tca$atcaaaa. Only the bit vectors are stored; the cor-
responding strings are shown for clarity.

belongs to the right subtree; see Figure 7.15. Each bit vector Bv in the
tree is preprocessed so that rank and select queries can be answered in
constant time. Because the wavelet tree has height dlog σe (the simple
proof of this fact is left to the reader), the wavelet tree essentially uses
ndlog σe + o(n log σ) bits of space. We shall see in Section 7.4.4 that two
additional bit vectors, each of size ≤ σ, are required.

To devise a simple construction algorithm for the wavelet tree is rather
straightforward and left to the reader. A more space efficient (but slower)
construction algorithm can be found e.g. in [311].

We would like to point out that the leaves of the wavelet tree described
above appear in alphabetic order. More precisely, the k-th leaf visited in a
depth-first traversal of the wavelet tree corresponds to the character Σ[k].
This is important in some applications (e.g. bidirectional search).

7.4.1 Answering rank and select queries

The queries rankc(BWT, i) and selectc(BWT, i) can be answered by a traver-
sal of the wavelet tree. We exemplify this by computing ranka(BWT, 7) and
selectt(BWT, 2) on the wavelet tree of BWT = tca$atcaaaa of Figure 7.15.

To compute ranka(BWT, 7), we start at the root (node 1 in Figure 7.15)
and move down the tree as detailed in Algorithm 7.9. Because a belongs
to the subinterval Σ[1..2] of the ordered alphabet Σ, the occurrences of a
correspond to zeros in the bit vector at the root, and they go to the left
child; this is node 2 in Figure 7.15. Now the number of a’s in BWT[1..4] =
tca$atcaaaa up to (and including) position 7 equals the number of a’s in
the string BWT[1..2] = a$aaaaa up to position rank0(B

[1..4], 7). So we compute
rank0(B

[1..4], 7) = 3. Because a belongs to the subinterval Σ[2..2] of Σ, the

7.4 Wavelet trees 305

Algorithm 7.9 For a character c, an index i, and an alphabet interval [l..r],
the procedure rankc(BWT, i, [l..r]) returns the number of occurrences of c
in the string BWT[l..r][1..i], unless l = r (in this case, it returns i).
rankc(BWT, i, [l..r])

if l = r then return i
else
m = b l+r

2
c

if c ≤ Σ[m] then
return rankc(BWT, rank0(B

[l..r], i), [l..m])
else

return rankc(BWT, rank1(B
[l..r], i), [m+ 1..r])

occurrences of a correspond to ones in the bit vector at node 2, and they
go to the right child; this is node 5 in Figure 7.15. The number of a’s in
the string BWT[1..2] = a$aaaaa up to position 3 equals the number of a’s in
BWT[2..2] = aaaaaa up to position rank1(B

[1..2], 3) = 2. Since BWT[2..2] consists
solely of a’s, the number of a’s in BWT[2..2] up to position 2 is 2. All in all,
ranka(BWT, 7) = 2.

To compute selectt(BWT, 2), we start at the leaf corresponding to t (node
7 in Figure 7.15) and move up the tree. Since this leaf is the right child
of its parent (node 3 in Figure 7.15), the second t in BWT[3..4] = tctc can be
found at position select1(B

[3..4], 2) = 3. The node 3 is the right child of its
parent node 1, so the position of the second t in BWT[1..4] = tca$atcaaaa is
select1(B

[1..4], 3) = 6. Since node 1 is the root, we conclude that the second
occurrence of t in BWT = tca$atcaaaa can be found at position 6.

In fact, the wavelet tree of the string BWT allows us to determine BWT[i]
without accessing BWT itself. (Thus, the string BWT need not be stored.)
The procedure is very similar to that of rankc(BWT, i). For example, to
determine the fourth character of the string BWT we must follow the path
from the root to the leaf corresponding to the character BWT[4]. Because
B[1..4][4] = 0, we move from the root to its left child (node 2 in Figure 7.15)
and now seek the character at position rank0(B

[1..4], 4) = 2 in the string
BWT[1..2] = a$aaaaa. Now B[1..2][2] = 0 tells us to move to the left child
and search for the character at position rank0(B

[1..2], 2) = 1 in the string
BWT[1..1] = $. Because this is a leaf, we report the character corresponding
to this leaf, which in our example is $.

It should be stressed that the procedures to compute rankc(BWT, i),
selectc(BWT, i), and BWT[i] solely use the bit vectors equipped with rank
and select data structures. Their worst-case time complexity is O(log σ)
because the height of the wavelet tree is O(log σ).

Exercise 7.4.1 We have seen in Section 7.3 that backward search can
be done with the C-array and rankc(BWT, i) queries. The wavelet tree of

306 7 Compressed Full-Text Indexes

the BWT supports the latter in O(log σ) time. Show that C[c] can also be
computed in O(log σ) time on the wavelet tree. This means that we do not
need the C-array when the wavelet tree is available. Argue that in practice
one would nevertheless use the C-array.

7.4.2 Retrieval of SA[i] and the string starting at SA[i]

If the suffix array SA is available, then SA[i] can be determined in constant
time. However, if we want to save space, we cannot afford to keep the
whole suffix array in main memory. Instead, we can use the sparse suffix
array SSA of S. Recall that Algorithm 6.2 (page 264) used the ψ-function
to retrieve SA[i] from the sparse suffix array SSA. It is not difficult to see,
however, that the retrieval of SA[i] can also be done with the LF -mapping
(this is left as an exercise for the reader). In practice, one should prefer LF
over ψ because the former is implemented with rank-queries, whereas the
latter uses select-queries, and rank-queries can be answered more quickly
than select-queries. According to Equation 7.1 (page 300), we have

LF (i) = C[c] + rankc(BWT, i), where c = BWT[i]

and the wavelet tree suffices to compute LF (i) in O(log σ) time because all
three values C[c], rankc(BWT, i), and BWT[i] can be computed on it within
that time bound. Therefore, it takes O(s log σ) time in the worst case to
retrieve SA[i] from the sparse suffix array SSA, where s is the sampling
parameter.

In some applications, it is necessary to output the length ` substring
of S starting at position SA[i], but only the index i is known. Clearly,
one can retrieve SA[i] from the sparse suffix array SSA and then output
S[SA[i]..SA[i] + ` − 1] by accessing S itself. However, this substring can
also be retrieved without S and without the (sparse) suffix array of S.
First of all, note that S[SA[i]] = F [i], S[SA[i] + 1] = F [ψ(i)], S[SA[i] + 2] =
F [ψ(ψ(i))], etc. In other words, S[SA[i]..SA[i] + ` − 1] coincides with the
string F [i] F [ψ(i)] . . . F [ψ`−1(i)]. If we use the bit vector BF of F as defined
in Section 7.3.1, then the character S[SA[i]] = F [i] can be calculated in
constant time by m = rank1(BF , i) and c = Σ[m]. Moreover, by Equation 7.2
(page 300)

ψ(i) = selectc(BWT, i− (select1(BF ,m)− 1))

and this value can be calculated in O(log σ) on the wavelet tree. So it takes
O(` log σ) time to compute S[SA[i]..SA[i] + `− 1] in that way. Of course, it is
possible to replace the bit vector BF with the C-array; see Exercise 7.4.2.

Exercise 7.4.2 Show that S[SA[i]..SA[i]+ `− 1] can be retrieved in O(` log σ)
time using the C-array and the wavelet tree of the BWT of S. Devise an
algorithm for the same task that solely uses the wavelet tree and analyze
its worst-case time complexity.

7.4 Wavelet trees 307

Algorithm 7.10 For character c and position i, procedure rankc(BWT, i)
returns the number of occurrences of c in BWT up to (and including) i.

let h = log σ be the height of the wavelet tree
let A[1..2h − 1] be the array of bit vectors
l← 1
r ← σ
j ← 1 /* j is root */
while j ≤ 2h − 1 do /* while j is not a leaf */
m← b l+r

2
c

if c ≤ Σ[m] then /* go to left child */
i← rank0(A[j], i)
j ← 2j
r ← m

else /* go to right child */
i← rank1(A[j], i)
j ← 2j + 1
l← m+ 1

return i

7.4.3 Implementation: If σ is a power of 2

If σ = 2h for some natural number h, then the wavelet tree can be imple-
mented by a perfect binary tree, which is defined as follows.

Definition 7.4.3 A perfect binary tree is a rooted tree in which every in-
ternal node has exactly two children and all leaves are at the same depth
(same level).

Clearly, a perfect binary tree of height h has 2h leaves and sI = 2h − 1
internal nodes. Hence its size is s = 2h+1 − 1. It is well known that such a
perfect binary tree can be represented by an array A[1..s]. The root of the
tree can be found at index 1 and, given the index j of a node, the index of
its

• left child is 2j,

• right child is 2j + 1,

• parent is b j
2
c.

In a wavelet tree, only the internal nodes carry information, namely the
bit vectors. Therefore, we use an array A[1..sI] of size sI = 2h − 1 to store
them. More precisely, we store the bit vector B[1..2h] at A[1], B[1..2h−1] at A[2],
B[2h−1+1..2h] at A[3], and so on. Algorithm 7.10 gives pseudo-code for the

308 7 Compressed Full-Text Indexes

Algorithm 7.11 For a position i, this procedure returns BWT[i].
let h = log σ be the height of the wavelet tree
let A[1..2h − 1] be the array of bit vectors
j ← 1 /* j is root */
while j ≤ 2h − 1 do /* while j is not a leaf */

if A[j][i] = 0 then /* go to left child */
i← rank0(A[j], i)
j ← 2j

else /* go to right child */
i← rank1(A[j], i)
j ← 2j + 1

return Σ[j − (2h − 1)]

computation of rankc(BWT, i). The algorithm starts at the root node with
the alphabet interval [1..σ]. If it reaches a node j ≤ 2h−1 with the alphabet
interval [l..r], then it tests whether c ≤ Σ[m], where m = b l+r

2
c. If so, it

must proceed with the left child 2j of j. Thus, it sets i to rank0(A[j], i)—
notice that A[j] = B[l..r]—and r to m. Otherwise, it must proceed with
the right child 2j + 1 of j, so it sets i to rank1(A[j], i) and l to m + 1. At
some point in time, it must reach a leaf, i.e., the current node j satisfies
2h ≤ j ≤ 2h+1 − 1. In this case l = r because the wavelet tree is a perfect
binary tree. Consequently, the algorithm returns the correct value i.

The wavelet tree of Figure 7.15 (page 304) is a perfect binary tree of
height h = 2. Its bit vectors are stored in the array A: A[1] = B[1..4], A[2] =
B[1..2], and A[3] = B[3..4]. Algorithm 7.10 computes ranka(BWT, 7) as follows:
In the first iteration of the while-loop, it computes m = b1+4

2
c = 2. Since

a ≤ Σ[2] = a, it then determines i = rank0(A[1], 7) = 3 and moves to the left
child of the root by setting j = 2 · 1. Furthermore, r is set to 2. In the
second iteration of the while-loop, m = b1+2

2
c = 1. Now a > Σ[1] = $, so the

algorithm computes i = rank1(A[2], 3) = 2 and moves to the right child by
setting j = 2 · 2 + 1. Since j = 5 is greater than 2h − 1 = 3, Algorithm 7.10
returns i = 2.

The computation of BWT[i] on the wavelet tree proceeds in a similar
fashion; see Algorithm 7.11. If it reaches a node j ≤ 2h − 1 with the
alphabet interval [l..r], then A[j] = B[l..r]. If B[l..r][i] = 0, then the character
we are searching for is in the left subtree of j; otherwise, it is in the
right subtree. When the algorithm reaches a leaf, the current node j
satisfies 2h ≤ j ≤ 2h+1 − 1. Since the characters of Σ occur in alphabetic
order at the leaves 2h, 2h + 1, . . . , 2h+1 − 1, the current node j corresponds
to the character Σ[j − (2h − 1)]. Again, we use the example from Figure
7.15 and compute BWT[4] by Algorithm 7.11. In the first iteration of the
while-loop, we have A[1][4] = 0. Therefore, the algorithm computes i =

7.4 Wavelet trees 309

Algorithm 7.12 For a character c and a natural number i, the procedure
selectc(BWT, i) returns the position of the i-th occurrence of c in BWT.

let h = log σ be the height of the wavelet tree
let c = Σ[k] be the k-th character in Σ
j ← 2h − 1 + k
while j > 1 do

if j is even then /* j is left child */
b← 0

else /* j is right child */
b← 1

j ← b j
2
c /* go to parent */

i← selectb(A[j], i)
return i

rank0(A[1], 4) = 2 and moves to the left child of the root by setting j = 2 · 1.
In the second iteration of the while-loop, we have A[2][2] = 0. So the
algorithm determines i = rank0(A[2], 2) = 1 and moves to the left child by
setting j = 2 · 2. Because j = 4 is greater than 2h − 1 = 3, Algorithm 7.11
returns Σ[j − (2h − 1)] = Σ[1] = $.

It remains for us to address the problem of computing selectc(BWT, i).
Algorithm 7.12 starts at the leaf j corresponding to the character c = Σ[k]
and walks upwards to the root of the tree. Because the wavelet tree is
a perfect binary tree, the characters of Σ occur in alphabetic order at
the leaves 2h, 2h + 1, . . . , 2h+1 − 1. Thus, the algorithm starts at the leaf
j = 2h − 1 + k. If j is even, then it is the left child of its parent node b j

2
c

and the algorithm sets b = 0 to remember this. Otherwise, j is the right
child of its parent node; so b = 1. Then, the algorithm moves to the parent
node and updates i appropriately. When it reaches the root node j = 1, it
returns i. To illustrate this, let us compute selectt(BWT, 2) in the example
from Figure 7.15. Algorithm 7.12 starts at the leaf j = 2h − 1 + 4 = 7
because t is the fourth character of the alphabet Σ. Since j = 7 is odd in
the first iteration of the while-loop, it is the right child of its parent and
the algorithm visits the parent node by the assignment j ← b7

2
c. Moreover,

i gets the new value select1(A[3], 2) = 3. In the second iteration of the while-
loop, j = 3 is odd again. Therefore, Algorithm 7.12 moves to the parent
node by the assignment j ← b3

2
c and i gets the new value select1(A[1], 3) = 6.

Then the while-loop terminates and the algorithm returns i = 6.

Exercise 7.4.4 Show that rankc(BWT, i) and BWT[i] can be computed si-
multaneously.

310 7 Compressed Full-Text Indexes

7.4.4 Implementation: If σ is not a power of 2

The following lemma implies that navigation in a wavelet tree for σ char-
acters, where σ is not a power of 2, can be based on the results of the
previous section.

Lemma 7.4.5 If S is a string having σ distinct characters, where 2h−1 < σ <
2h, then the wavelet tree for S is full up to (and including) level h− 1.

Proof We prove the lemma by induction on h. In the base case h = 2,
we have σ = 3 because 2 = 21 < σ < 22 = 4. It is readily verified that
the binary tree is full up to level 1. In the inductive step, we prove the
lemma for h > 2. If σ is even, then both the left and the right subtree of
the root represent a string with σ

2
distinct characters and 2h−2 < σ

2
< 2h−1.

According to the inductive hypothesis, these subtrees are full up to level
h − 2. So the whole tree is full up to level h − 1. If σ is odd, then the
left subtree of the root represents a string with σ+1

2
distinct characters,

whereas the right subtree represents a string with σ−1
2

distinct characters.
In case of the left subtree, we have 2h−2 < σ+1

2
≤ 2h−1. If σ+1

2
= 2h−1, then

the left subtree is full up to level h−1. Otherwise the inductive hypothesis
tells us that it is full up to level h− 2. In case of the right subtree, we have
2h−2 ≤ σ−1

2
< 2h−1 and again the tree is full up to level h − 2. As above, we

conclude that whole tree is full up to level h− 1. �

We have seen that the height of the wavelet tree of a string with σ distinct
characters is h = dlog σe. According to Lemma 7.4.5, the wavelet tree is
full up to (and including) level blog σc. If σ is a power of two, these two
values coincide because then the wavelet tree is a perfect binary tree. It
was already shown that perfect trees are easy to handle, so from now on
we assume that σ is not a power of two. Consequently, the wavelet tree
is full up to and including level h − 1, but it is not full at level h. So at
level h−2 there are solely internal nodes, but at level h−1 there is at least
one leaf. Figure 7.16 shows an example. If s denotes the size of the tree,
then sI = s − σ is the number of internal nodes. Again, the wavelet tree
is implemented as an array A[1..sI] of bit vectors, where each bit vector
A[j] is equipped with rank and select data structures. The bit vectors
corresponding to the internal nodes up to and including level h − 2 are
stored in the usual order in A[1..2h−1− 1] and those at level h− 1 are stored
in left-to-right order in A[2h−1..sI]. In our example from Figure 7.16, the
bit vectors at the nodes 1 through 7 are stored in A[1] through A[7]. The
bit vectors at nodes 8, 10, and 12 are stored in A[8], A[9], and A[10].

Algorithm 7.13 computes rankc(BWT, i). Since the wavelet tree is full up
to and including level h − 1, the algorithm navigates as in a perfect tree
until the current node j is on level h−1 of the tree. If the current alphabet
interval [l..r] is a singleton interval (i.e., l = r), then j is a leaf and the

7.4 Wavelet trees 311

mmmnmdmmnh $uuuuluulliue r

1111101110001111111110100001000

dh $ie

010011000000

d $

100000000

$

10111111

$

d

hie

010

he

10

e h

i

mmmnmmmnuuuuluullur

0000000011110110011

mmmnmmmnlll

00010001000

mmmmmmlll

111111000

l m

n

uuuuuuur

11111110

r u

1

2 3

4 5 6 7

8
9

10
11

12
13 14 15

16 17 18 19 20 21

Figure 7.16: Conceptual illustration of the wavelet tree of the BWT of the
string in_ulm_um_ulm_und_um_ulm_herum$. Only the bit
vectors are stored; the strings are shown for clarity only.

312 7 Compressed Full-Text Indexes

Algorithm 7.13 For a character c and a position i, the procedure
rankc(BWT, i) returns the number of occurrences of c in BWT up to (and
including) i.

let sI be the number of internal nodes in the wavelet tree
let A[1..sI] be the array of bit vectors
let h = dlog σe be the height of the wavelet tree
let Bh−1[1..2

h−1] keep the information about the nodes at level h− 1
sh−1 ← 2h−1 − 1
l← 1
r ← σ
j ← 1 /* j is root */
while j ≤ sh−1 do /* while j is not at level h− 1 */
m← b l+r

2
c

if c ≤ Σ[m] then /* go to left child */
i← rank0(A[j], i)
j ← 2j
r ← m

else /* go to right child */
i← rank1(A[j], i)
j ← 2j + 1
l← m+ 1

if l 6= r then /* in this case l + 1 = r */
q ← rank1(Bh−1, j − sh−1)
if c = Σ[l] then /* go to left child */
i← rank0(A[sh−1 + q], i)

else /* go to right child */
i← rank1(A[sh−1 + q], i)

return i

algorithm returns the current value of i. (Note that in this case there is no
difference to the implementation on a perfect binary tree.) Otherwise, if
l 6= r, then j is an internal node having two leaves as children. Clearly, if
c = Σ[l], then the algorithm must proceed with the left child of j; otherwise
c = Σ[r] and the algorithm must proceed with the right child of j. To
determine the correct value i, it must be able to find the bit vector of node
j in the subarray A[sh−1 + 1..sI], where sh−1 = 2h−1 − 1 is the size of the tree
up to level h − 2. To this end, the information about the nodes at level
h − 1 is kept in a bit vector Bh−1[1..2

h−1]. To be precise, Bh−1[j − sh−1] = 1
if and only if j is an internal node. Furthermore, the bit vector Bh−1 is
equipped with a rank data structure. Now, if Bh−1[j − sh−1] = 1, then the
bit vector corresponding to the internal node j can be found in constant
time at index sh−1+rank1(Bh−1, j−sh−1). Let us illustrate this with example

7.4 Wavelet trees 313

Algorithm 7.14 For a position i, this procedure returns BWT[i].
let sI be the number of internal nodes in the wavelet tree
let A[1..sI] be the array of bit vectors
let h = dlog σe be the height of the wavelet tree
let Bh−1[1..2

h−1] keep the information about the nodes at level h− 1
sh−1 ← 2h−1 − 1
j ← 1 /* j is root */
while j ≤ sh−1 do /* while j is not at level h− 1 */

if A[j][i] = 0 then /* go to left child */
i← rank0(A[j], i)
j ← 2j

else /* go to right child */
i← rank1(A[j], i)
j ← 2j + 1

k ← j − sh−1

q ← rank1(Bh−1, k)
if Bh−1[k] = 1 and A[sh−1 + q][i] = 0 then

return Σ[k + q − 1]
else

return Σ[k + q]

Figure 7.16. In this example, the bit vector Bh−1 is 10101000. Algorithm
7.13 computes ranke(BWT, 25) by following the path from the root to node
j = 10 as in Algorithm 7.10. At that node, the current values are l = 4,
r = 5, and i = 2. The algorithm further calculates q = rank1(Bh−1, j−sh−1) =
rank1(10101000, 10− 7) = 2 and returns i = rank0(A[7 + 2], 2) = 1.

In order to compute BWT[i], Algorithm 7.14 starts at the root and walks
down the tree until a node j at level h − 1 is reached. Let k = j − sh−1.
If Bh−1[k] = 0, then j is a leaf: it corresponds to the character Σ[k + q],
where q = rank1(Bh−1, k). This is because every leaf (every 0-bit in Bh−1)
corresponds to one character and every internal node at level h− 1 (every
1-bit in Bh−1) corresponds to two characters. Otherwise, if Bh−1[k] = 1, then
j is an internal node. Its left child corresponds to the character Σ[k+ q−1]
and its right child corresponds to the character Σ[k+q]. So if A[sh−1+q][i] =
0, then Algorithm 7.14 returns Σ[k + q − 1]; otherwise it returns Σ[k + q].
Again, we use the example of Figure 7.16 to illustrate this. Algorithm 7.14
computes BWT[20] by following the path to node j = 12. At that node, the
current values are l = 7, r = 8, and i = 8. The algorithm further calculates
k = j−sh−1 = 12−7 = 5 and q = rank1(Bh−1, k) = rank1(10101000, 5) = 3. Since
Bh−1[k] = Bh−1[5] = 1 and A[sh−1 + q][i] = A[7 + 3][8] = A[10][8] = 0, Algorithm
7.14 returns Σ[k + q − 1] = Σ[5 + 3− 1] = Σ[7] = l.

314 7 Compressed Full-Text Indexes

Algorithm 7.15 For a character c and a number i, the procedure
selectc(BWT, i) returns the position of the i-th occurrence of c in BWT.

let c be the k-th character in Σ
BΣ[1..σ] keeps information about the level at which characters occur
sh−1 ← 2h−1 − 1
q ← rank1(BΣ, k)
j ← sh−1 + k − b q

2
c

if BΣ[k] = 1 then
if q is odd then /* left child */
b← 0

else /* j is right child */
b← 1

i← selectb(A[sh−1 + d q2e], i)
while j > 1 do

if j is even then /* j is left child */
b← 0

else /* j is right child */
b← 1

j ← b j
2
c /* go to parent */

i← selectb(A[j], i)
return i

To implement the select operation on the wavelet tree, we must be able
to find the leaf corresponding to a character c = Σ[k]. For this reason,
we introduce a bit vector BΣ[1..σ] defined by BΣ[k] = 0 if the character
c = Σ[k] occurs at level h− 1, and BΣ[k] = 1 if it occurs at level h. Note that
BΣ can be obtained from Bh−1 by doubling every 1-bit in Bh−1. Algorithm
7.15 can determine the number q = rank1(BΣ, k) of 1-bits in BΣ up to and
including position k in constant time provided that the bit vector BΣ is
equipped with a rank data structure. Furthermore, the algorithm sets
j = sh−1 + k − b q

2
c. If BΣ[k] = 0, then character c = Σ[k] occurs at node j.

Otherwise, j is the parent node of the leaf c. More precisely, if q is odd,
then the leaf c is the left child of j and j represents the string BWT[k..k+1].
In this case, let b = 0, l = k, and r = k + 1. Otherwise, if q is even, then
the leaf c is the right child of j and j represents the string BWT[k−1..k]. In
this case, let b = 1, l = k − 1, and r = k. Now, i = selectb(A[sh−1 + d q2e], i)
is the position of the i-th occurrence of c in BWT[l..r]. From that point on,
the algorithm navigates as in the perfect binary tree. In the example of
Figure 7.16, the bit vector BΣ is 11011011000. Suppose we wish to compute
select_(BWT, 2), the position of the second occurrence of _ in BWT. Note
that _ is the second character of Σ; so k = 2. Algorithm 7.15 computes
q = rank1(BΣ, k) = rank1(11011011000, 2) = 2 and j = sh−1+k−b q2c = 7+2−1 =

7.5 Analyzing a string space efficiently 315

8. Because BΣ[k] = BΣ[2] = 1 and q = 2 is even, the algorithm further
calculates i = select1(A[sh−1 + d q2e], 2) = select1(A[8], 2) = 3. From that point
on, Algorithm 7.15 behaves exactly as Algorithm 7.12.

7.4.5 Other types of wavelet trees

We have barely scratched the surface of the potential of wavelet trees. The
reader can find more information about the subject in recent publications,
summarized e.g. in [237]. We confine ourselves to the following remarks.

In the previous section, we have seen that the wavelet tree essentially
uses n log σ+o(n log σ) bits to support the operations rank, select, and access
in O(log σ) time (access provides access to a character BWT[i]). Golynski et
al. [127] showed that within the same space bound the operations rank
and access can be supported in O(log log σ) time, and select in O(1) time.
Nevertheless, in subsequent analyses we will always use O(log σ) as an
upper bound because we stick to wavelet trees.

It is possible to use the Huffman tree of the BWT as the basis of the
wavelet tree. The resulting Huffman shaped wavelet tree is often the best
in practice; see [124]. However, it has two disadvantages. First, it is not
balanced, so its height is not bounded by O(log σ) but by O(σ). To solve
this problem, one can force the Huffman tree to be balanced after depth
(1+d) log σ, where d is some natural number; see [212]. Second, the leaves
generally do not occur in alphabetic order. In some applications (e.g.
bidirectional search), however, the alphabet order must be preserved. To
remedy this problem, one can use the prefix-free code of Hu and Tucker
[157] instead of the Huffman code.

Another variant is the weight-balanced wavelet tree devised by Hon et
al. [155], in which the number of 0’s is made almost equal to the number of
1’s in the bit vector of each internal node. The depth of a weight-balanced
wavelet tree can be log n, so the operations rank, select, and access take
O(log n) time in the worst-case.

7.5 Analyzing a string space efficiently

7.5.1 Construction of the LCP-array from the BWT

In this section, we introduce a LACA (LCP-array construction algorithm)
that constructs the LCP-array directly from the BWT [33]. As usual, we as-
sume that the string S (hence the BWT) contains every character from the
alphabet Σ. The algorithm relies on a generalization of backward search:
for an ω-interval [i..j], the procedure getIntervals([i..j]) presented in Algo-
rithm 7.16 returns the list of all cω-intervals, where c ∈ Σ \ {$}. More
precisely, it starts with the ω-interval [i..j] at the root and traverses the

316 7 Compressed Full-Text Indexes

Algorithm 7.16 For an ω-interval [i..j], getIntervals([i..j]) returns the list
of all cω-intervals, where c ∈ Σ \ {$}.
getIntervals([i..j])
list← []
getIntervals′([i..j], [1..σ], list)
return list

getIntervals′([i..j], [l..r], list)
if l = r then
c← Σ[l]
if c 6= $ then
add(list, [C[c] + i..C[c] + j])

else
(a0, b0)← (rank0(B

[l..r], i− 1), rank0(B
[l..r], j))

(a1, b1)← (i− 1− a0, j − b0)
m← b l+r

2
c

if b0 > a0 then
getIntervals′([a0 + 1..b0], [l..m], list)

if b1 > a1 then
getIntervals′([a1 + 1..b1], [m+ 1..r], list)

wavelet tree in a depth-first manner as follows: At the current node v, it
uses constant time rank queries to obtain the number b0 − a0 of zeros in
the bit vector of v within the current interval. If b0 > a0, then there are
characters in BWT[i..j] that belong to the left subtree of v, and the algo-
rithm proceeds recursively with the left child vL of v. Furthermore, if the
number of ones is positive (i.e., if b1 > a1), then it proceeds with the right
child vR in an analogous fashion. (In Algorithm 7.16, the left child vL of
v corresponds to the string BWT[l..m] and the right child vR corresponds to
the string BWT[m+1..r], where m = b l+r

2
c; cf. Section 7.4.) Clearly, if a leaf

corresponding to character c is reached with current interval [p..q], then
[C[c] + p .. C[c] + q] is the cω interval. In this way, Algorithm 7.16 computes
the list of all cω-intervals, where c ∈ Σ \ {$}. This takes O(k log σ) time for
a k-element list. Because the wavelet tree has less than 2σ nodes, O(σ) is
another upper bound for the wavelet tree traversal. Consequently, Algo-
rithm 7.16 has a worst-case time complexity of O(min{σ, k log σ}), where k
is the number of elements in the output list.

For example, if we apply Algorithm 7.16 to the i-interval [2..5] in Figure
7.18, then it returns a list containing the mi-interval [6..6], the pi-interval
[7..7], and the si-interval [9..10]. This works as follows. The procedure call
getIntervals([2..5]) results in the procedure call getIntervals′([2..5], [1..5], []).
That is, the traversal of the wavelet tree in Figure 7.17 starts at the root

7.5 Analyzing a string space efficiently 317

BWT
[1..5]

= ipssm$pissii

B
[1..5]

= 011100101100

BWT
[1..3]

= im$iii

B
[1..3]

= 010000

BWT
[1..2]

= i$iii

B
[1..2]

= 10111

$ i

m

BWT
[4..5]

= psspss

B
[4..5]

= 011011

p s

Figure 7.17: The wavelet tree of the BWT of the string mississippi$.

and

(a0, b0) = (rank0(B
[1..5], 2− 1), rank0(B

[1..5], 5)) = (1, 2)

(a1, b1) = (2− 1− a0, 5− b0) = (0, 3)

is calculated. Because b0 = 2 > 1 = a0, the algorithm proceeds recursively
with the left child vL of the root; i.e., getIntervals′([2..2], [1..3], []) is invoked
and

(aL0 , b
L
0) = (rank0(B

[1..3], 2− 1), rank0(B
[1..3], 2)) = (1, 1)

(aL1 , b
L
1) = (2− 1− aL0 , 2− bL0) = (0, 1)

is computed. Since bL0 = 1 = aL0 , the algorithm does not proceed with the
the left child of vL. However, it proceeds recursively with the right child of
vL because bL1 = 1 > 0 = aL1 . When getIntervals′([1..1], [3..3], []) is executed,
the interval [C[m] + 1..C[m] + 1] = [6..6] is added to list = [] because l = 3 = r
and Σ[3] = m. Then, the computation continues with the right child vR of
the root since b1 = 3 > 0 = a1; i.e., getIntervals′([1..3], [4..5], [[6..6]]) is invoked
and

(aR0 , b
R
0) = (rank0(B

[4..5], 1− 1), rank0(B
[1..3], 3)) = (0, 1)

(aR1 , b
R
1) = (1− 1− aR0 , 3− bR0) = (0, 2)

is calculated. Because bR0 = 1 > 0 = aR0 and bR1 = 2 > 0 = aR1 , the algorithm
proceeds recursively with both children of vR. During the execution of
getIntervals′([1..1], [4..4], [[6..6]]), the interval [C[p]+1..C[p]+1] = [7..7] is added
to the list as l = 4 = r and Σ[4] = p. Then, getIntervals′([1..2], [5..5], [[6..6], [7..7]])

318 7 Compressed Full-Text Indexes

i LCP BWT SSA[i]

1 −1 i $
2 0 //⊥ p i$
3 ⊥ s ippi$
4 ⊥ s issippi$
5 ⊥ m ississippi$
6 0 //⊥ $ mississippi$
7 0 //⊥ p pi$
8 ⊥ i ppi$
9 0 //⊥ s sippi$
10 ⊥ s sissippi$
11 ⊥ i ssippi$
12 ⊥ i ssissippi$
13 −1

Figure 7.18: BWT of S = mississippi$ and its partially filled LCP-array.

is executed and the interval [C[s] + 1..C[s] + 2] = [9..10] is added to the list
because l = 5 = r and Σ[5] = s. Consequently, getIntervals([2..5]) returns
the list [[6..6], [7..7], [9..10]].

Algorithm 7.17 shows how the LCP-array of a string S can be obtained
solely based on the wavelet tree of the BWT of S. At the very beginning,
LCP[1] and LCP[n + 1] are set to −1. The algorithm maintains a queue Q,
which initially contains the c-interval for each c ∈ Σ (including c = $).
Moreover, the variable ` stores the current lcp-value (initially, ` = 0) and
size memorizes how many elements there are in Q that correspond to the
current lcp-value (initially, size = σ). Algorithm 7.17 computes lcp-values
in increasing order (first the 0 entries, then the 1 entries, and so on) as
follows: Whenever it dequeues an element from Q, say the ωa-interval
[lb..rb] where |ω| = ` and a ∈ Σ, it tests whether LCP[rb + 1] = ⊥. If so, it
assigns ` to LCP[rb + 1], generates all non-empty cωa-intervals and adds
them to (the back of) Q. Otherwise, it does nothing.

Let us illustrate the algorithm by computing all 0 entries in the LCP-
array of our example in Figure 7.18. Initially, ` = 0 and the queue Q
contains the $-interval [1..1], the i-interval [2..5], the m-interval [6..6], the
p-interval [7..8] and the s-interval [9..12]. At that point, the size of Q is
5; so five intervals correspond to the lcp-value ` = 0. The first interval
that is pulled from the queue is the $-interval [1..1] and size is decreased
by one. Since LCP[1 + 1] = ⊥, case 1 in Algorithm 7.17 applies. Thus,
LCP[2] is set to ` = 0 and the i$-interval [2..2], which is the only interval
in the list returned by getIntervals([1..1]), is added to the queue. Next, the

7.5 Analyzing a string space efficiently 319

Algorithm 7.17 Computation of the LCP-array.
initialize the array LCP[1..n+ 1] /* i.e., LCP[i] = ⊥ for all i */
LCP[1]← −1
LCP[n+ 1]← −1
`← 0
initialize an empty queue Q
for each c in Σ do /* including c = $ */
enqueue(Q, [C[c] + 1..C[c+ 1]]) /* the c-interval */

size← σ /* initial size of Q */
while Q is not empty do

if size = 0 then
`← `+ 1
size← |Q| /* current size of Q */

[lb..rb]← dequeue(Q)
size← size− 1
if LCP[rb+ 1] = ⊥ then /* case 1 */

LCP[rb+ 1]← `
list← getIntervals([lb..rb])
for each [i..j] in list do
enqueue(Q, [i..j])

else nothing to do /* case 2 */

i-interval [2..5] is dequeued (and size is decreased by one). Again, case 1
applies because LCP[5 + 1] = ⊥. So LCP[6] is set to ` = 0, getIntervals([2..5])
returns the list [[6..6], [7..7], [9..10]], and the intervals in the list are added
to the queue Q. When the m-interval [6..6] is dequeued, size is decreased
by one, LCP[7] is set to ` = 0, but no new interval is added to the queue
(observe that getIntervals does not generate the $m-interval because $m is
not a substring of S). Then the p-interval is dequeued, size is decreased
by one, LCP[9] is set to 0, and the intervals [3..3] and [8..8] (the ip- and the
pp-interval) are enqueued. Finally, the s-interval [9..12] is pulled from the
queue. Again, size is decreased by one; it now has the value 0. Because
LCP[12 + 1] = −1, case 2 in Algorithm 7.17 applies. In the next iteration
of the while-loop, ` is increased by one and size is set to the current size
6 of Q. At that point in time the six elements in Q are intervals that
corresponds to the lcp-value ` = 1 are

[2..2]i$, [6..6]mi, [7..7]pi, [9..10]si, [3..3]ip, [8..8]pp

where the notation [lb..rb]ω indicates that the interval [lb..rb] is the ω-interval.
The reader is invited to compute all 1 entries in the LCP-array by executing
the algorithm by hand.

Theorem 7.5.1 Algorithm 7.17 correctly computes the LCP-array.

320 7 Compressed Full-Text Indexes

Proof We proceed by induction on `. In the base case, we have ` = 0.
Initially, the queue Q contains the c-interval [lb..rb] for every character
c = Σ[k], where lb = C[c] + 1 and rb = C[d] with d = Σ[k + 1]. The algorithm
sets LCP[rb + 1] = 0 unless rb = n. This is certainly correct because the
suffix SSA[rb] starts with the character c and the suffix SSA[rb+1] starts with
the character d. Clearly, the LCP-array contains all entries with value 0.
Let ` > 0. By the inductive hypothesis, we may assume that Algorithm
7.17 has correctly computed all lcp-values < ` and the queue Q solely
contains intervals that corresponds to the lcp-value `. Let the ωa-interval
[lb..rb] be in Q, where |ω| = ` and a ∈ Σ. If LCP[rb + 1] = ⊥, then we know
from the induction hypothesis that LCP[rb + 1] ≥ `, i.e., ω is a common
prefix of the suffixes SSA[rb] and SSA[rb+1]. On the other hand, ωa is a prefix
of SSA[rb] but not of SSA[rb+1]. Consequently, ω is the longest common prefix
of SSA[rb] and SSA[rb+1]. Hence Algorithm 7.17 assigns the correct value ` to
LCP[rb+ 1].

We still have to prove that all entries of the LCP-array with value ` are
really set. So let k, 0 ≤ k < n, be an index with LCP[k + 1] = `. Since
` > 0, the longest common prefix of SSA[k] and SSA[k+1] can be written as
cω, where c ∈ Σ, ω ∈ Σ∗, and |ω| = ` − 1. Let cωa be the length ` + 1
prefix of SSA[k] and cωd be the length ` + 1 prefix of SSA[k+1], where a 6= d.
Because ωa is a prefix of SSA[k]+1 and ωd is a prefix of SSA[k+1]+1, it follows
that ω is the longest common prefix of SSA[k]+1 and SSA[k+1]+1. Let [i..j] be
the ω-interval, p be the index with SA[p] = SA[k] + 1, and q be the index
with SA[q] = SA[k + 1] + 1. Clearly, i ≤ p < q ≤ j. Let t, p < t ≤ q, be
the smallest index at which the corresponding suffix does not start with
ωa; see Figure 7.19. Consequently, LCP[t] = |ω| = ` − 1. According to
the inductive hypothesis, Algorithm 7.17 assigns the value `− 1 to LCP[t].
Therefore, getIntervals is called with the ωa-interval [s..t− 1]. Since ωa is a
prefix of SSA[p] and BWT[p] = c, it follows that the cωa-interval, say [lb..rb],
is not empty. Moreover, rb = k because BWT[r] 6= c for all p < r < q. Thus,
[lb..k] is in the list returned by getIntervals([s..t − 1]). Hence it is added to
the queue Q. At some point in time, [lb..k] will be removed from Q and
LCP[k + 1] will be set to `. �

Theorem 7.5.2 Algorithm 7.17 has a worst-case time complexity of
O(n log σ).

Proof We use an amortized analysis to prove that each of the cases 1 and
2 can occur at most n times. Case 1 occurs as often as an entry of the
LCP-array is filled, and this happens exactly n− 1 times. It remains for us
to analyze how often case 2 can occur. We claim that for a fixed position
j, 1 ≤ j ≤ n, there is at most one substring ω = S[i..j] ending at j for
which the ω-interval [lb..rb] belongs to case 2. If i is the largest position
with ω = S[i..j] so that the ω-interval [lb..rb] belongs to case 2, then none

7.5 Analyzing a string space efficiently 321

i LCP[i] BWT[i] SSA[i]

...
...

...
...

p c ωa. . .
... ωa. . .
t ℓ− 1 ωb. . .
...
q c ωd. . .
...

...
...

...
k cωa. . .

k + 1 ℓ cωd. . .
...

...
...

...

Figure 7.19: Correctness of Algorithm 7.17.

of the left-extensions of ω is generated. More precisely, none of the ω′-
intervals, where ω′ = S[i′..j] with 1 ≤ i′ < i, will be enqueued. This proves
the claim. As there are only n possibilities for j, it follows that case 2
also occurs at most n times. In summary, the procedure getIntervals can
create at most 2n intervals because every interval belongs to exactly one
case. Each interval can be generated in O(log σ) time, so the runtime of
Algorithm 7.17 is O(n log σ). �

Algorithm 7.17 can be implemented space efficiently by writing LCP-
entries to disk; see [33].

7.5.2 Bottom-up traversal of the lcp-interval tree

As we have seen in previous chapters, several sequence analysis problems
can be solved by a bottom-up traversal of the lcp-interval tree. Now we
have the tools to implement such a traversal space efficiently:

• construct the BWT directly (e.g. by the algorithm from Section 7.2.4),

• construct the LCP-array with Algorithm 7.17 (page 319), and

• apply Algorithm 4.6 (page 94).

Because Algorithm 4.6 accesses the LCP-array sequentially, the LCP-array
can be streamed from disk. It follows as a consequence that the algo-
rithms based on a bottom-up traversal of the lcp-interval tree can be im-
plemented space efficiently.

322 7 Compressed Full-Text Indexes

7.5.3 Shortest unique substrings

Recall that a substring of S is unique if it occurs exactly once in S, and
that the shortest unique substring problem is to find all shortest unique
substrings of S. In Section 5.6.5 an algorithm was given that solves this
problem. Here, we provide an alternative algorithm.

In the current context, S is terminated by the special symbol $. It follows
that every suffix of S is unique. Since we are not interested in these, we
exclude them. In the following, we assume that—apart from $—S contains
at least two different characters (if S = an−1$, then an−1 is the shortest
unique substring because every other substring that is not a suffix of S
occurs repeatedly).

In Section 5.6.5, it was shown that the length `+1 prefix of SSA[i], where
` = max{LCP[i], LCP[i+1]}, is the shortest unique substring of S that starts
at position SA[i]. Using this observation, we can modify Algorithm 7.17
so that it computes a shortest unique substring of S. The resulting Algo-
rithm 7.18 can easily be changed so that it computes all shortest unique
substrings or even all unique substrings of S. We make use of the fact
that Algorithm 7.17 computes lcp-values in ascending order. So when Al-
gorithm 7.17 executes the statement LCP[rb + 1] ← ` and LCP[rb] has been
previously set, then max{LCP[rb], LCP[rb+1]} = ` and S[SA[rb]..SA[rb]+`] is the
shortest unique substring of S that starts at position SA[rb]. Analogously,
if LCP[rb + 2] has been previously set, then max{LCP[rb + 1], LCP[rb + 2]} = `
and S[SA[rb + 1]..SA[rb + 1] + `] is the shortest unique substring of S that
starts at position SA[rb + 1]. Because the current value of ` is always
available, all we have to know is whether or not LCP[rb] (LCP[rb + 2], re-
spectively) has been previously computed. Consequently, we can replace
the LCP-array with a bit vector BLCP of length n, and BLCP[i] is set to one
instead of assigning a value to LCP[i]. As mentioned earlier, we have to
exclude suffixes of S in the above process. This can be done by keeping
track of the suffix of length ` + 1, where ` is the current length. To be
precise, initially ` = 0 and the suffix of length 1 is the character $, which
appears at index idx = 1. Every time ` is incremented, we obtain the index
of the suffix of length ` + 1 by the assignment idx ← LF (idx) (recall that
the wavelet allows us to compute LF (i) in O(log σ) time). Consequently, a
unique substring at index rb is output only if rb 6= idx.

Exercise 7.5.3 Analyze the worst-case time complexity of Algorithm 7.18.

Exercise 7.5.4 Let S be a string that is terminated by the sentinel $ and
let the alphabet Σ consist of the characters appearing in S. A string ω ∈
(Σ \ {$})+ is called an absent word if it is not a substring of S. Devise an
algorithm that takes S as input and computes all shortest absent words
using the technique developed above.

7.5 Analyzing a string space efficiently 323

Algorithm 7.18 Computation of a shortest unique substring.
initialize a bit array BLCP[1..n+ 1] /* i.e., BLCP[i] = 0 for all i */
BLCP[1]← 1
BLCP[n+ 1]← 1
`← 0
idx← 1
initialize an empty queue Q
for each c in Σ do /* including c = $ */
enqueue(Q, [C[c] + 1..C[c+ 1]]) /* the c-interval */

size← σ /* initial size of Q */
while Q is not empty do

if size = 0 then
`← `+ 1
size← |Q| /* current size of Q */
idx← LF (idx)

[lb..rb]← dequeue(Q)
size← size− 1
if BLCP[rb+ 1] = 0 then
BLCP[rb+ 1]← 1
list← getIntervals([lb..rb])
for each [i..j] in list do
enqueue(Q, [i..j])

if BLCP[rb] = 1 and rb 6= idx then
return S[SA[rb]..SA[rb] + `] /* output as in Section 7.4.2 */

if BLCP[rb+ 2] = 1 and rb+ 1 6= idx then
return S[SA[rb+ 1]..SA[rb+ 1] + `] /* output as in Section 7.4.2 */

7.5.4 Top-down traversal of the lcp-interval tree

It is possible to modify Algorithm 7.17 in such a way that all lcp-intervals
are enumerated in increasing order of lcp-values [32]: Algorithm 7.19 first
finds 0-[1..n] (the sole lcp-interval of lcp-value 0), then all lcp-intervals of
lcp-value 1, etc. In the example depicted in Figure 7.20, it computes lcp-
intervals in the order 0-[1..12], 1-[2..5], 1-[7..8], 1-[9..12], 2-[9..10], 3-[11..12],
4-[4..5]. So Algorithm 7.19 traverses the lcp-interval tree in a top-down
fashion. Note, however, that the traversal is neither a depth-first nor a
breadth-first traversal.

The queue Q in Algorithm 7.17 is replaced with several queues in Al-
gorithm 7.19: for each c ∈ Σ there is a queue Qc. This will ensure that
all intervals corresponding to a certain value ` can be accessed in as-
cending order; see Exercise 7.5.5. Each queue Qc initially contains the
c-interval. To be able to place a cω-interval into the correct queue Qc, we

324 7 Compressed Full-Text Indexes

Algorithm 7.19 Top-down enumeration of lcp-intervals.
initialize the array LCP[1..n+ 1] /* i.e., LCP[i] = ⊥ for all i */
LCP[1]← −1
LCP[n+ 1]← −1
for each c in Σ do

initialize an empty queue Qc

enqueue(Qc, [C[c] + 1..C[c+ 1]]) /* the c-interval */
`← 0
lastlb ← ⊥
lastidx ← ⊥
while there is a non-empty queue do

for each c in Σ do
size[c]← |Qc| /* current size of the queue Qc */

for each c in Σ do /* in increasing order */
while size[c] > 0 do
[lb..rb]← dequeue(Qc)
size[c]← size[c]− 1
if LCP[rb+ 1] = ⊥ then /* case 1: rb+ 1 is an `-index */

LCP[rb+ 1]← `
if lastlb = ⊥ then
lastlb ← lb

lastidx ← rb+ 1
list← getIntervals([lb..rb])
for each (c, [i..j]) in list do
enqueue(Qc, [i..j])

else if lastidx = lb then /* case 2: lastidx is last `-index */
/* the lcp-interval `-[lastlb..rb] has not been considered before */
process(〈`, lastlb, rb〉)
lastlb ← ⊥
lastidx ← ⊥
list← getIntervals([lb..rb])
for each (c, [i..j]) in list do
enqueue(Qc, [i..j])

else nothing to do /* case 3 */
`← `+ 1 /* last statement of the outer while-loop */

7.5 Analyzing a string space efficiently 325

i LCP BWT SSA[i] lcp-intervals
1 −1 i $

0

2 0 p i$

1
3 1 s ippi$
4 1 s issippi$

4
5 4 m ississippi$
6 0 $ mississippi$
7 0 p pi$

1
8 1 i ppi$
9 0 s sippi$

1
2

10 2 s sissippi$
11 1 i ssippi$

3
12 3 i ssissippi$

Figure 7.20: LCP-array, BWT, and lcp-intervals of S = mississippi$.

slightly modify the procedure getIntervals from Algorithm 7.16 (page 316):
the statement add(list, [C[c] + i..C[c] + j]) is replaced with the statement
add(list, (c, [C[c] + i..C[c] + j])). In other words, an element of the list now
contains the information to whichever queue the interval belongs. Fur-
thermore, instead of the variable size in Algorithm 7.17, we now need an
array size of length σ to keep track of the sizes of the queues Qc. Algorithm
7.19 further maintains the following three variables:

• ` stores the current lcp-value,

• lastlb memorizes the left boundary of the current lcp-interval,

• lastidx contains the current `-index.

Initially ` is set to 0 and the two variables lastlb and lastidx are set to the
undefined value ⊥.

For a fixed value of `, Algorithm 7.19 computes the indices i1, . . . , iq with
LCP[ik] = ` in ascending order i1 < · · · < iq; see Exercise 7.5.5. When
i1, the first of these indices, is detected, the variable lastlb memorizes the
left boundary of the `-interval under consideration. If there are further
`-indices in this `-interval, say i2, . . . , ip, then these are identified one after
the other (by case 1) until the last `-index is found (by case 2). Recall
that LCP[rb + 1] 6= ⊥ means that the index rb + 1 has an LCP-value that is
strictly smaller than `; so rb is the right boundary of the lcp-interval that
started at lastlb. Thus, the lcp-interval `-[lastlb..rb] is detected (and can be
processed). It should be pointed out that all lcp-intervals of lcp-value `
are found in this way (if ip 6= iq, then ip+1 is the first `-index of the next

326 7 Compressed Full-Text Indexes

` Q$ Qi Qm Qp Qs

0 [1..1]$
:::::

[2..5]i
:::::

[6..6]m
::::::

[7..8]p
:::::

[9..12]s

1 [2..2]i$
::::::

, [3..3]ip
::::::

, [4..5]is [6..6]mi [7..7]pi
::::::

, [8..8]pp [9..10]si
:::::::

, [11..12]ss

2 [3..3]ipp, [4..5]iss [6..6]mis [7..7]pi$, [8..8]ppi [9..9]sip
:::::::

, [10..10]sis, [11..12]ssi

3 [11..11]ssip
::::::::::

, [12..12]ssis

4 [4..4]issip
::::::::

, [5..5]issis

5 [6..6]missis [10..10]sissip

Figure 7.21: Contents of the queues for increasing values of ` when Algo-
rithm 7.19 is applied to the example of Figure 7.20. Intervals
belonging to case 1 are

:::::::
wavy

::::::::::::::
underlined, intervals belonging

to case 2 are underlined, and intervals belonging to case 3
are not underlined.

lcp-interval of lcp-value `, etc.). Since the algorithm proceeds in this way
for increasing values of `, it enumerates all lcp-intervals.

Let us illustrate Algorithm 7.19 with the example of Figure 7.20. After
the initialization phase, Q$ contains the $-interval [1..1], Qi contains the
i-interval [2..5], and so on; see row ` = 0 in Figure 7.21. In the outer while-
loop of Algorithm 7.19, size[c] is set to the current size of queue Qc for each
c ∈ Σ; in the first iteration, we have size[c] = 1 for each c ∈ Σ. Then, the
algorithm accesses the queues in increasing order. In our example, it first
removes the interval [lb..rb] = [1..1] from Q$. Since LCP[rb + 1] = LCP[2] = ⊥
(case 1), the algorithm has detected the first index i1 = 2 with LCP[i1] = ` =
0; hence the assignment LCP[2] ← 0. Furthermore, it sets lastlb = lb = 1
and lastidx = rb + 1 = 2. The procedure call getInterval([1..1]) returns a list
that contains just the i$-interval [2..2], which is added to the queue Qi; see
Figure 7.21. The intervals [2..5], [6..6], and [7..8] are processed similarly (in
this order), and the algorithm sets LCP[ik] = ` = 0 for the indices i2 = 6,
i3 = 7, and i4 = 9. Afterwards lastidx = 9 holds. Finally, when the interval
[lb..rb] = [9..12] is processed, we have LCP[12+1] = −1 (recall that LCP[n+1] =
−1) and lastidx = lb. So case 2 applies, and the algorithm has found an
lcp-interval, namely the interval [lastlb..rb] = [1..12] of lcp-value ` = 0. This
is because LCP[1] = −1 < 0, LCP[2] = LCP[6] = LCP[7] = LCP[9] = 0, and
LCP[13] = −1. Note that for k ∈ {3, 4, 5, 8, 10, 11, 12} the inequality LCP[k] > 0
must hold because LCP[k] = ⊥. The generic procedure process “processes”
the lcp-interval, the variables lastlb and lastidx are reset to ⊥, and—as in
case 1—new intervals are generated and added to the queues. In the last
statement of the outer while-loop, ` is incremented by one. The contents
of the queues at this point in time is depicted in row ` = 1 of Figure 7.21.

7.5 Analyzing a string space efficiently 327

The reader is invited to compute the first lcp-interval [2..5] of lcp-value 1
by executing the algorithm with the intervals in the queue Qi.

It may happen, however, that the procedure getIntervals generates in-
tervals that do not lead to a new value in the LCP-array. In our example,
the mi-interval [6..6] is such an interval; see row ` = 1 of Figure 7.21. Im-
mediately before Algorithm 7.19 processes this interval, the lcp-interval
[2..5] of lcp-value 1 was detected, and lastlb and lastidx were reset to ⊥.
For the mi-interval [lb..rb] = [6..6], we have LCP[rb + 1] = LCP[7] = 0 and
lastidx = ⊥ 6= lb, so none of the cases 1 or 2 applies. Hence case 3 applies,
and the algorithm does nothing.

Exercise 7.5.5 By a similar argument as in the proof of Theorem 7.5.1,
show that Algorithm 7.19 correctly fills the LCP-array with increasing val-
ues of `, but this time all indices i1, . . . , iq with LCP[ik] = ` are found in
ascending order i1 < · · · < iq.
Hint: Prove that Algorithm 7.19 maintains the following invariant for each
`: the intervals corresponding to ` appear in ascending order in the lex-
icographically ordered queues. (If the intervals [lb..rb] and [lb′..rb′] belong
to different queues Qc and Qc′, then rb < lb′ if and only if c < c′. Thus, it
must be shown that if [lb..rb] and [lb′..rb′] are in the same queue and [lb..rb]
occurs before [lb′..rb′], then rb < lb′).

Theorem 7.5.6 Algorithm 7.19 enumerates all lcp-intervals.

Proof We show by induction on ` that all lcp-intervals of lcp-value ` are
found (and processed) in ascending order. In the base case ` = 0, each
queue Qc initially contains the c-interval. When the $-interval [1..1] is
pulled from Q$, we have lastlb = ⊥ and lastidx = ⊥. Thus, the algorithm
sets LCP[2] = 0 (i.e., index i1 = 2 is the first index that satisfies LCP[i1] = 0),
lastlb = 1, and lastidx = 2. Then, it computes the other indices i2, . . . , ip
with LCP[ik] = 0 in ascending order because the queues are accessed in
alphabetical order. Let z be the largest character in the alphabet Σ. When
the z-interval [lb..n] is considered, case 2 applies because LCP[n + 1] = −1
and lastidx = ip = lb. Consequently, process is invoked with the lcp-interval
0-[1..n], and lastlb as well as lastidx are reset to ⊥.

Let ` > 0. By the inductive hypothesis, we may assume that Algo-
rithm 7.19 has correctly computed all lcp-intervals of lcp-value ` − 1. Let
[lb1..rb1], . . . , [lbq..rbq] be the lcp-intervals of lcp-value ` in ascending order.
We use finite induction on k (1 ≤ k ≤ q) to show that the lcp-interval
[lbk..rbk] will be detected. Because lastlb and lastidx are reset whenever
an lcp-interval is found, we have lastlb = ⊥ and lastidx = ⊥. The algo-
rithm computes the `-indices i1, . . . , ip of [lbk..rbk] in ascending order. Let
cωa1, . . . , cωap, where |ω| = ` − 1, be the substrings of S so that the cωaj-
interval leads to the assignment LCP[ij] ← `. Immediately after the as-
signment LCP[i1] ← `, lastlb is set to the left boundary of the cωa1-interval,

328 7 Compressed Full-Text Indexes

which equals lbk. Moreover, after the assignment LCP[ip] ← `, lastidx is set
to ip. Let cωap+1 be the length ` + 1 prefix of the suffix SSA[ip]. Observe
that the left boundary of the cωap+1-interval is equal to ip and its right
boundary must be equal to rbk. So the `-interval [lbk..rbk] will be detected
provided that the cωap+1-interval is in the queue Qc. We will show that this
is indeed the case. Clearly, the ω-interval is an lcp-interval of lcp-value
`−1. According to the inductive hypothesis, Algorithm 7.19 has computed
it and its (` − 1)-indices. We further distinguish two cases: first, whether
there is a character b so that ωb is a substring of S and ap+1 < b, and
second, whether there is no such character. If there is such a character
b, then the ωap+1-interval [lb..rb] must have been considered in case 1 of
Algorithm 7.19 and LCP[rb+ 1] was set to `− 1. If there is no such charac-
ter, then the ωap+1-interval [lb..rb] must have been considered in case 2 of
Algorithm 7.19 because lb was the last (` − 1)-index of the ω-interval. In
both cases, getIntervals must have been applied to [lb..rb]. In other words,
the cωap+1-interval entered the queue Qc. �

Theorem 7.5.7 Algorithm 7.19 has a worst-case time complexity of
O(n log σ).

Proof We use an amortized analysis similar to that of Theorem 7.5.2. We
prove that each of the cases 1, 2, and 3 can occur at most n times. Case 1
is verbatim the same as in Theorem 7.5.2: it occurs as often as an entry of
the LCP-array is filled, and this happens exactly n− 1 times. By contrast,
case 2 has no analogon in Algorithm 7.17. Whenever case 2 occurs, the
algorithm processes a different lcp-interval. As there are at most n − 1
lcp-intervals, this happens at most n − 1 times. Case 3 in Algorithm 7.19
corresponds to case 2 in Algorithm 7.17, and it was shown in the proof
of Theorem 7.5.2 that this case can occur at most n times. In summary,
the procedure getIntervals can create at most 3n intervals because every
interval belongs to exactly one case. Each interval can be generated in
O(log σ) time, so the runtime of Algorithm 7.19 is O(n log σ). �

In some applications, it suffices to traverse the (virtual) lcp-interval tree
and there is no explicit need for the LCP-array (see, for instance, Section
7.5.5). In this case one can save space by replacing the LCP-array with a
bit array BLCP of length n + 1 (initially all entries of BLCP are set to zero).
Then during the computation, BLCP[i] is set to one if and only if a value is
(or can be) assigned to LCP[i]; cf. Section 7.5.3.

7.5.5 Finding repeats

In this section, we will use the approach of Section 7.5.4 to find all max-
imal and supermaximal repeats in a string S. As a matter of fact, this is

7.5 Analyzing a string space efficiently 329

quite easy in the case of maximal repeats: we just need to implement the
procedure process in Algorithm 7.19 appropriately.

Recall from Lemma 5.3.15 that a substring ω of S is a maximal repeat
if and only if the ω-interval [i..j] is an lcp-interval of lcp-value ` = |ω|,
and the characters BWT[i],BWT[i + 1], . . . ,BWT[j] are not all the same.
Because Algorithm 7.19 enumerates all lcp-intervals, it can be used to
search for all maximal repeats: whenever the procedure process is called
with an lcp-interval `-[i..j], then it must be tested whether the charac-
ters in BWT[i..j] are not all the same. Using an idea of [191], this test
can be done in constant time with a bit vector BBWT[1..n], which initially
contains a series of zeros. In a linear scan of the BWT, set BBWT[i] = 1
if BWT[i] 6= BWT[i − 1]. Then, the bit vector is preprocessed so that rank
queries can be answered in constant time. A rank query rankb(BBWT, i)
returns the number of occurrences of bit b in BBWT[1..i]. It is not difficult
to verify that the characters in BWT[i..j] are not all the same if and only if
rank1(BBWT, j)− rank1(BBWT, i) > 0.

The computation of all supermaximal repeats is a bit trickier. According
to Lemma 5.3.11, an lcp-interval `-[i..j] induces a supermaximal repeat if
and only if

(a) LCP[k] = ` for all i+ 1 ≤ k ≤ j (i.e., [i..j] is a local maximum), and

(b) the characters BWT[i],BWT[i+ 1], . . . ,BWT[j] are pairwise distinct.

To cope with (a), we modify Algorithm 7.19 a little bit. Because the al-
gorithm successively considers the intervals [i..i1 − 1], [i1..i2 − 1], . . . , [ip..j],
where i1, i2, . . . , ip are the `-indices of [i..j], the interval [i..j] is a local max-
imum if and only if each of these intervals is a singleton interval. Algo-
rithm 7.20 incorporates the tests for singleton intervals: the statements
that deal with the Boolean variable locMax make sure that when the pro-
cedure process is called with the parameters `, i, j and the Boolean param-
eter locMax, we have locMax = true if and only if the lcp-interval `-[i..j] is a
local maximum. Note that the LCP-array is replaced with a bit array BLCP,
and BLCP[i] = 1 in Algorithm 7.20 if and only if LCP[i] 6= ⊥ in Algorithm
7.19.

The procedure superMax detailed in Algorithm 7.21 solves problem (b).
It is very similar to Algorithm 5.14 (page 147). The algorithm uses a
global bit array B of size σ (which initially contains a series of zeros) and
a local Boolean variable pd (which initially is set to true; pd stands for
“pairwise distinct”). For each character c encountered in a left-to-right
scan of BWT[i..j]:

• if B[c] = 0 (c has not been seen before), the algorithm sets B[c] to 1;

• if B[c] = 1 (c has been seen before), it assigns false to pd and stops the
scan.

330 7 Compressed Full-Text Indexes

Algorithm 7.20 Space efficient computation of supermaximal repeats.
initialize a bit vector BLCP[1..n+ 1] /* i.e., BLCP[i] = 0 for all i */
BLCP[1]← 1
BLCP[n+ 1]← 1
for each c in Σ do

initialize an empty queue Qc

enqueue(Qc, [C[c] + 1..C[c+ 1]]) /* the c-interval */
`← 0
lastlb ← ⊥
lastidx ← ⊥
locMax← true
while there is a non-empty queue do

for each c in Σ do
size[c]← |Qc| /* current size of the queue Qc */

for each c in Σ do /* in increasing order */
while size[c] > 0 do
[lb..rb]← dequeue(Qc)
size[c]← size[c]− 1
if BLCP[rb+ 1] = 0 then /* case 1: rb+ 1 is an `-index */
BLCP[rb+ 1]← 1
if lb 6= rb then
locMax← false

if lastlb = ⊥ then
lastlb ← lb

lastidx ← rb+ 1
list← getIntervals([lb..rb])
for each (c, [i..j]) in list do
enqueue(Qc, [i..j])

else if lastidx = lb then /* case 2: lastidx is last `-index */
/* the lcp-interval `-[lastlb..rb] has not been considered before */
if lb 6= rb then
locMax← false

process(〈`, lastlb, rb, locMax〉)
lastlb ← ⊥
lastidx ← ⊥
locMax← true
list← getIntervals([lb..rb])
for each (c, [i..j]) in list do
enqueue(Qc, [i..j])

else nothing to do /* case 3 */
`← `+ 1

7.5 Analyzing a string space efficiently 331

Algorithm 7.21 Procedure superMax(〈`, i, j〉) tests whether the lcp-interval
`-[i..j] induces a supermaximal repeat. It uses a global bit array B of size
σ initially containing a series of zeros.
pd← true
k ← i
while k ≤ j and pd = true do
c← BWT[k]
if B[c] = 0 then
B[c]← 1
k ← k + 1

else
pd← false

repeat /* reset the bits to zero */
k ← k − 1
c← BWT[k]
B[c]← 0

until k = i
if pd = true then

report that `-[i..j] induces a supermaximal repeat

After that, the algorithm rescans the portion of BWT[i..j] that has been
scanned and resets the 1-bits to zero (Section 5.3.2 explains why this is
done). Finally, if pd = true, it reports that `-[i..j] induces a supermaximal
repeat.

Exercise 7.5.8 asks you to give an alternative solution to problem (b).

Exercise 7.5.8 Modify the procedure getIntervals([i..j]) from Algorithm
7.16 (page 316) so that it tests in O(log σ) time whether or not the charac-
ters in BWT[i..j] are pairwise distinct.

It is possible to compute maximal and supermaximal repeats simulta-
neously by the combination of Algorithms 7.20 and 7.22. Before we go
into the details, let us briefly consider constraints on the output. It is
always useful to restrict the output to repeats that have a certain mini-
mum length ml (which usually can be defined by the user) because short
repeats are somewhat meaningless. If desired, one can also restrict the
output to repeats that occur at least min times and at most max times
in the string S. Algorithm 7.22 first tests whether the lcp-interval `-[i..j]
induces repeats that exceed the minimum length ml (this is the case if
` ≥ ml). If desired, the condition min ≤ j − i + 1 ≤ max can be added. If
` ≥ ml, the algorithm checks whether [i..j] induces a maximal repeat (this
is the case if rank1(BBWT, j) − rank1(BBWT, i) > 0). If this is also the case, it
further tests whether the induced maximal repeat is even a supermaximal

332 7 Compressed Full-Text Indexes

Algorithm 7.22 process(〈`, i, j, locMax〉) tests whether the lcp-interval `-
[i..j] induces a supermaximal or a maximal repeat of length at least ml.

if ` ≥ ml and rank1(BBWT, j)− rank1(BBWT, i) > 0 then
if locMax = true and superMax([i..j]) then /* short-circuit evaluation */

report that `-[i..j] induces a supermaximal repeat
else

report that `-[i..j] induces a maximal repeat

repeat. Depending on the outcome of this test, it reports a supermaximal
or a maximal repeat.

Exercise 7.5.9 Prove that the simultaneous computation of maximal and
supermaximal repeats by the combination of Algorithms 7.20 and 7.22
runs in O(n log σ) time.

Exercise 7.5.10 Show that an lcp-interval `-[i..j] induces a supermaximal
repeat only if rank1(BBWT, j)− rank1(BBWT, i) = j − i. (This condition can be
used to avoid unnecessary calls to the procedure superMax in Algorithm
7.22.)

7.5.6 Lempel-Ziv factorization

The LZ-factorization of a string S was treated in Section 5.2. There, the
factorization was based on the LPS-array, i.e., the length of a longest previ-
ous substring was computed for every position in S, regardless of whether
an LZ-factor actually begins there or not. A quote from Chen et al. [56]:

Ideally we would like the output to contain only information
about the positions where factors start; the difficulty is that it
is hard to tell in advance where the factors will begin.

In this section, we resume the discussion on LZ-factorization under this
aspect. Another aspect is the space-efficiency of the algorithms.

Let us start with the LZ-factorization algorithm CPS2 of Chen et al. [56].
To explain its idea, suppose that we have already computed the first k − 1
factors of a string S, say S[1..j] = ω1 · · ·ωk−1 and we want to compute the
next factor ωk, which is a prefix of Sj+1. To this end, we determine the
S[j + 1]-interval [lb1..rb1] in SA and use a range minimum query to find the
index i1 = RMQSA(lb1, rb1) so that SA[i1] is the minimum value in SA[lb1..rb1].
Clearly, S[j +1] has no previous occurrence in S if and only if SA[i1] = j +1
(this is because j+1 is an element of SA[lb1..rb1]). If SA[i1] < j+1, then SA[i1]
is a previous occurrence and we further proceed as follows: We determine
the S[j +1..j +2]-interval [lb2..rb2], where lb1 ≤ lb2 ≤ rb2 ≤ rb1. Now there are
two possibilities:

7.5 Analyzing a string space efficiently 333

i SA[i] ISA[i] SSA[i] PSV[i] NSV[i]

0 0 ε
1 3 3 aaacatat 0 3
2 4 7 aacatat 1 3
3 1 1 acaaacatat 0 11
4 5 2 acatat 3 7
5 9 4 at 4 6
6 7 8 atat 4 7
7 2 6 caaacatat 3 11
8 6 10 catat 7 11
9 10 5 t 8 10
10 8 9 tat 8 11
11 0 ε

Figure 7.22: The suffix array of the string S = acaaacatat and the PSV- and
NSV-arrays.

(a) If i1 also belongs to the interval [lb2..rb2] (i.e., lb2 ≤ i1 ≤ rb2), then we
infer that i1 = RMQSA(lb2, rb2) and thus SA[i1] < j + 1.

(b) If i1 lies outside the interval [lb2..rb2] another range minimum query
yields the index i2 = RMQSA(lb2, rb2) so that SA[i2] is the minimum value
in SA[lb2..rb2].

In case (b), we check whether SA[i2] < j + 1. If the test is negative, we
output ωk = S[j + 1] and SA[i1] as a previous occurrence. Otherwise, we
iterate the process described above. This is also done in case (a).

Let us illustrate the algorithm by the example of Figure 7.22. Suppose
that we have already computed the first two factors ω1 = a and ω2 = c of the
LZ-factorization of the string S = acaaacatat, and we want to compute the
next factor ω3, a prefix of S3 = aaacatat. We determine the a-interval [1..6]
in SA and calculate i1 = RMQSA(1, 6) = 3. Since SA[3] = 1 < 3, the aa-interval
in SA is computed. Clearly, i1 = 3 does not lie inside the aa-interval [1..2].
So we compute i2 = RMQSA(1, 2) = 1 and check whether SA[1] < 3. Because
this is not the case, the next factor ω3 = a and the starting position 1 of a
previous occurrence of a in S is output.

A variant of the preceding algorithm uses PSVSA- and NSVSA-values of the
suffix array (see Definition 5.2.4) instead of range minimum queries on
the suffix array. As in Section 5.2, we often write PSV and NSV instead of
PSVSA and NSVSA. The algorithm works as follows. To find the next factor
ωk of S, which must be a prefix of Sj+1, we determine the S[j + 1]-interval
[lb1..rb1] in SA and the rank i = ISA[j+1] of suffix Sj+1. Obviously, S[j+1] has
a previous occurrence in S if and only if PSV[i] or NSV[i] (or both) lie inside

334 7 Compressed Full-Text Indexes

the S[j + 1]-interval [lb1..rb1]. If this is the case, SA[PSV[i]] or SA[NSV[i]] is a
previous occurrence of S[j+1]. Then we iterate this process: we determine
the S[j + 1..j + 2]-interval [lb2..rb2] and check whether PSV[i] or NSV[i] lie in
[lb2..rb2], and so on. The maximum ` for which the S[j + 1..j + `]-interval
[lb`..rb`] contains PSV[i] or NSV[i] is the length of ωk. Moreover, if PSV[i] (NSV[i],
respectively) lies in [lb`..rb`], then SA[PSV[i]] (SA[NSV[i]], respectively) is the
start position of a previous occurrence of S[j + 1..j + `].

Let us use the same example as above to exemplify the algorithm. The
fourth factor ω4 of S = acaaacatat must be a prefix of S4 = aacatat. We deter-
mine the a-interval [1..6] in SA and the rank 2 = ISA[4] of suffix S4. Charac-
ter a has previous occurrences at positions SA[PSV[2]] = 3 and SA[NSV[2]] = 1
in S because both PSV[2] = 1 and NSV[2] = 3 lie inside the a-interval [1..6].
Therefore, the aa-interval [1..2] is computed. Again, PSV[2] = 1 is within the
interval, so we turn to the aac-interval [2..2]. Since neither PSV[2] = 1 nor
NSV[2] = 3 lie inside this interval, it follows that ω4 = aa and a previous
occurrence of aa starts at position SA[PSV[2]] = 3 in S.

Both algorithms must repeatedly find intervals of LZ-factors. For a fac-
tor ωk, this can be done space efficiently in O(|ωk| log σ) time by the tech-
nique described in Section 6.3.3 or, without using any extra space, in
O(|ωk| log n) time by binary search; see Section 5.1.3. The first algorithm
further relies on RMQSA, while the second relies on PSVSA and NSVSA. If one
uses the balanced parentheses sequence BPSSA of the suffix array, then
RMQSA, PSVSA, and NSVSA can be found in constant time using only a little
extra space. Although the BPS was introduced in Section 6.3 w.r.t. the
LCP-array, the same concept can of course be applied to the suffix array.
As a matter of fact, the computation of BPSSA, RMQSA, PSVSA, and NSVSA be-
comes even simpler because a suffix array does not have equal entries (so
one can get rid of the additional bit vector B).

In contrast to the first algorithm, which solely uses the suffix array,
the second algorithm also requires the inverse suffix array. A method
that avoids the inverse suffix array uses backward search on the string
T = Srev$, where Srev is the reverse of S and $ is the sentinel character.
However, since we work with T = Srev$ instead of S, we have to replace pre-
vious/next smaller values PSV and NSV with previous/next greater values
PGV and NGV. In the remainder of this section, SA denotes the suffix array of
T . Furthermore, to deal with boundary cases, we set SA[0] =∞ = SA[n+1].

Definition 7.5.11 For any index 1 ≤ i ≤ n, we define

PGV(i) = max{j : 0 ≤ j < i and SA[j] > SA[i]}
NGV(i) = min{j : i < j ≤ n+ 1 and SA[j] > SA[i]}

The values PGV(i) and NGV(i) can be computed in constant time on the
balanced parentheses sequence BPS′

SA, which can be constructed by Al-
gorithm 7.23 (pay attention to the condition SA[i] > SA[top()] in its while-
loop), as follows:

7.5 Analyzing a string space efficiently 335

Algorithm 7.23 Construction of the balanced parentheses sequence
BPS′

SA.
push(0) /* SA[0] =∞ */
write ’(’
for i← 1 to n+ 1 do

while SA[i] > SA[top()] do
pop() and write ’)’

push(i) and write ’(’
write ’))’ /* for SA[0] =∞ and SA[n+ 1] =∞ */

• PGV(i) = rank((enclose(select((i)))); Lemma 6.3.3 applies with a grain of
salt because a suffix array does not have equal entries.

• NGV(i) = rank((findclose(select((i))) + 1; see Lemma 6.3.1.

The balanced parentheses sequence BPS′
SA requires only 2n bits, and we

have seen in Section 6.1 that o(n) additional bits suffice to support the
operations rank, select, findclose, and enclose in constant time. All in all,
PGV(i) and NGV(i) can be computed in constant time, using only 2n + o(n)
bits.

Now we have all the ingredients for the space-efficient LZ-factorization
algorithm 7.24, which runs in O(n log σ) time. Each execution of its outer
while-loop computes the next factor of the right-to-left LZ-factorization of
Srev (starting at position i′), which coincides with the next factor of the
left-to-right LZ-factorization of S (starting at n+1− i′). Note that we do not
need the inverse suffix array because the rank of the current suffix can
be determined with the help of the LF -mapping. We still need the (sparse)
suffix array to determine the previous occurrence but only once for each
factor.

Exercise 7.5.12 Give pseudo-code of an LZ-factorization algorithm that
uses backward search and range maximum queries.

We would like to point out that the idea of replacing the binary search in
the algorithm of [56] with the backward search in the reverse string [250]
was also used by Kreft and Navarro [188] for an alternative Lempel-Ziv
parsing (called LZ-End). Furthermore, there is another LZ-factorization
algorithm that uses succinct data structures: the online algorithm de-
veloped by Okanohara and Sadakane [253]. With the aid of rank/select
operations and range minimum queries, it dynamically maintains suc-
cinct representations of the suffix array, the LCP-array, and the BWT. Its
worst-case time complexity is O(n log3 n).

336 7 Compressed Full-Text Indexes

Algorithm 7.24 LZ-factorization of S using backward search on T = Srev$.
i← n /* |Srev| = n */
j ← 1 /* $ appears at index 1 in SA */
while i > 1 do
i′ ← i
[sp..ep]← backwardSearch(T [i], [1..n+ 1])
while NGV[LF (j)] ≤ ep or PGV[LF (j)] ≥ sp do
j ← LF (j)
[lb..rb]← [sp..ep]
i← i− 1
[sp..ep]← backwardSearch(T [i], [sp..ep])

LPS← i′ − i
if LPS = 0 then

PrevOcc← T [i]
i← i− 1

else if NGV[j] ≤ rb then
PrevOcc← n+ 1− SA[NGV[j]]− (LPS− 1)

else /* PGV[j] ≥ lb */
PrevOcc← n+ 1− SA[PGV[j]]− (LPS− 1)

output (PrevOcc, LPS)

7.6 Space-efficient comparison of two strings

In this section, we revisit two major problems in string comparisons: com-
puting matching statistics and maximal exact matches [251]. Further-
more, we address the problem of merging BWTs.

7.6.1 Matching statistics

In the following, let S1 and S2 be strings of length n1 and n2, where S1 but
not S2 has the sentinel character at the end. Let us recall the definition of
matching statistics from Definition 5.5.10.

The matching statistics of S2 w.r.t. S1 is an array ms so that for every
entry ms[p2] = (q, [lb..rb]), 1 ≤ p2 ≤ n2, the following holds:

1. S2[p2..p2 + q − 1] is the longest prefix of S2
p2

that is a substring of S1.

2. [lb..rb] is the S2[p2..p2 + q − 1]-interval in the suffix array of S1.

In Section 5.5.4, we computed the matching statistics of S2 w.r.t. S1 by
matching S2 in a forward direction against the suffix tree or the ESA of S1.
This takes O(n2 log σ) time if suffix links are used as shortcuts; cf. Sections
5.5.4, 6.3.3, and 6.3.5. By contrast, here we match S2 in a backward

7.6 Space-efficient comparison of two strings 337

Algorithm 7.25 Computing matching statistics by backward search.
p2 ← n2

(q, [i..j])← (0, [1..n1])
while p2 ≥ 1 do
[lb..rb]← backwardSearch(S2[p2], [i..j])
if [lb..rb] 6= ⊥ then
q ← q + 1
ms[p2]← (q, [lb..rb])
[i..j]← [lb..rb]
p2 ← p2 − 1

else if [i..j] = [1..n1] then
ms[p2]← (0, [1..n1])
p2 ← p2 − 1

else
q-[i..j]← parent([i..j])

direction against a compressed full text index of S1. The algorithm does
not rely on suffix links but on the ability to determine parent intervals of
lcp-intervals. Using only 3n+ o(n) bits, a parent interval can be identified
in constant time with the enhanced balanced parentheses sequence BPS;
cf. Section 6.3.1. Alternatively, one could use e.g. Sadakane’s [273] or
Fischer et al.’s [110] method.

Algorithm 7.25 shows pseudo-code for the computation of matching
statistics. It matches S2 backwards against a compressed full-text in-
dex of S1. Let ω be the current matching substring of length q (initially,
ω = ε), [i..j] be the ω-interval, p2 be the current position (initially, p2 = n2),
and c = S2[p2]. The algorithm determines the cω-interval [lb..rb]. If lb ≤ rb,
then cω matches a substring of S1. Therefore, the algorithm increments
q by one, decrements p2 by one, and sets ms[p2] ← (q, [lb..rb]). Otherwise,
cω is not a substring of S1. In that case, the algorithm determines the
longest proper prefix of ω that is a substring of S1. Because this is the
string represented by the parent interval of [i..j], the algorithm continues
with this parent interval.

To exemplify Algorithm 7.25, we match the string S2 = caaca backwards
against the compressed full-text index of S1 = acaaacatat$; see Figure
7.23. Starting with the last character of S2 and the ε-interval [1..n1],
backward search returns the a-interval [2..7], and Algorithm 7.25 sets
ms[5] = (1, [2..7]). Similarly, it determines ms[4] = (2, [8..9]), ms[3] = (3, [4..5]),
and ms[2] = (4, [3..3]). The procedure call backwardSearch(c, [3..3]) returns
⊥, indicating that S2[1..5] = caaca is not a substring of S1. In this case—
if a mismatch occurs—the algorithm determines the parent interval of
the current interval, which in our example is the aa-interval 2-[2..3]. The

338 7 Compressed Full-Text Indexes

i SA LCP BWT SSA[i] lcp-intervals
1 11 −1 t $

0

2 3 0 c aaacatat$

1

2
3 4 2 a aacatat$
4 1 1 $ acaaacatat$

3
5 5 3 a acatat$
6 9 1 t at$

2
7 7 2 c atat$
8 2 0 a caaacatat$

2
9 6 2 a catat$
10 10 0 a t$

1
11 8 1 a tat$

Figure 7.23: The BWT of the string S = acaaacatat$.

subsequent procedure call backwardSearch(c, [2..3]) returns the caa-interval
[8..8], and ms[1] is set to (3, [8..8]).

Lemma 7.6.1 Algorithm 7.25 correctly computes the matching statistics of
S2 w.r.t. S1.

Proof We prove the correctness of Algorithm 7.25 by finite induction on
the length n2 − p2 + 1 of the suffix S2

p2
of S2. If the length equals 1 (i.e.,

p2 = n2), then there are two possibilities. The character c = S2[n2] either
(a) occurs in S1 or (b) it does not. In case (a), Algorithm 7.25 sets ms[n2] =
(1, [lb..rb]), where [lb..rb] is the c-interval. This is certainly correct. In case
(b), Algorithm 7.25 sets ms[n2] = (0, [1..n1]), where [1..n1] is the ε-interval.
This is also correct. We assume, as induction hypothesis, that for some
fixed position p2 + 1 with 1 ≤ p2 < n2, Algorithm 7.25 correctly computed
the matching statistic ms[p2 + 1] = (q, [i..j]), i.e.,

1. ω = S2[p2 + 1..p2 + q] is the longest prefix of S2
p2+1 that occurs as a

substring of S1.

2. [i..j] is the ω-interval in the suffix array of S1.

In the inductive step, we must show that Algorithm 7.25 correctly com-
putes ms[p2]. Let c = S2[p2]. Then backwardSearch(c, [i..j]) yields the cω-
interval [lb..rb] in the suffix array of S1 provided that cω is a substring of
S1. It is readily verified that cω = S2[p2..p2 + q] is the longest prefix of S2

p2

that occurs as a substring of S1. Consequently, ms[p2] = (q+1, [lb..rb]). Oth-
erwise, if cω is not a substring of S1, then backwardSearch(c, [i..j]) returns
⊥. We consider the two subcases (a) [i..j] = [1..n1] and (b) [i..j] 6= [1..n1].

7.6 Space-efficient comparison of two strings 339

(a) If [i..j] = [1..n1], i.e., ω = ε, then the character c does not occur in S1.
This means that the longest prefix of S2

p2
that occurs as a substring of S1

is the empty string ε and ms[p2] = (0, [1..n1]).
(b) If [i..j] 6= [1..n1], then ω 6= ε. Because cω is not a substring of S1, we must
search for the longest prefix u′ of ω so that cu′ is a substring of S1. Let [i′..j′]
be the parent lcp-interval of [i..j]. The lcp-interval [i′..j′] is the u-interval of
a proper prefix u of ω. Suppose that b is the character immediately follow-
ing u in ω, i.e., ω = ubv for some string v. Because the u-interval [i′..j′] is
the parent lcp-interval of the ω-interval [i..j], every substring ω′ of S1 that
has ub as a prefix must also have ω as a prefix. We claim that the string
cub cannot occur in S1. To prove the claim, suppose to the contrary that
cub is a substring of S1. Because every substring ω′ of S1 that has ub as a
prefix must also have ω as a prefix, it follows that cω must be a substring
of S1. This contradicts the fact that cω is not a substring of S1 and thus
proves the claim that the string cub cannot occur in S1. Consequently, u
is the longest prefix of ω so that cu is a possible substring of S1. Observe
that the algorithm checks in the next iteration of the while-loop whether
or not cu is indeed a substring of S1. If so, then u is the longest prefix of
ω so that cu is a substring of S1. If not, the algorithm continues with the
parent interval of the u-interval [i′..j′], and so on, until either backward
search succeeds or the interval [1..n1] is found. In both cases ms[p2] is
correctly assigned. �

Lemma 7.6.2 Given the wavelet tree of the BWT of S1 and the enhanced
BPS, Algorithm 7.25 runs in O(n2 log σ) time.

Proof We use an amortized analysis to derive the worst-case time com-
plexity of Algorithm 7.25. Each statement in the while-loop takes only
constant time, except for the backward search step, which takes O(log σ)
time on the wavelet tree of the BWT of S1. We claim that the number of
iterations of the while-loop over the entire algorithm is bounded by 2n2. In
each iteration of the while-loop, either the position p2 in S2 is decreased by
one or the search interval [i..j] is replaced with its parent interval. Clearly,
p2 is decreased n2 times and we claim that at most n2 many search inter-
vals can be replaced with its parent interval. To see this, let the search
interval [i..j] be the ω-interval and let [i′..j′] denote its parent interval. The
lcp-interval [i′..j′] is the u-interval of a proper prefix u of ω. Consequently,
each time a search interval is replaced with its parent interval, the length
of the search string ω is shortened by at least one. Since the overall length
increase of all search strings is bounded by n2, the claim follows. Thus,
under the assumption that the wavelet tree and the enhanced BPS have
already been constructed, Algorithm 7.25 has a worst-case time complex-
ity of O(n2 log σ). �

340 7 Compressed Full-Text Indexes

7.6.2 Maximal exact matches

The starting point for any comparison of large genomes (e.g. mammalian
or plant genomes) is the computation of exact matches between their DNA
sequences S1 and S2, and maximal exact matches (cf. Definition 5.4.5)
can be used for this task. In genome comparisons, one is merely inter-
ested in MEMs (q, p1, p2) that exceed a user-defined length threshold `, i.e.,
q ≥ `. In the software-tools MUMmer 3.0 [196] and CoCoNUT [3], maxi-
mal exact matches between S1 and S2 are computed by matching S2 in a
forward direction against the suffix tree or the enhanced suffix array of
S1. The bottleneck in large-scale applications like genome comparisons is
often the space requirement of the software-tool. If the index structure
(e.g. an enhanced suffix array) does not fit into main memory, then it is
worthwhile to use a compressed index structure instead. Algorithm 7.26
computes maximal exact matches by matching S2 in a backward direction
against a compressed full-text index of S1.

Algorithm 7.26 is similar to Algorithm 7.25: for each position p2 in S2,
it computes the longest match of S2

p2
with a substring of S1, say of length

q, and the S2[p2..q − 1]-interval [lb..rb]. This time, however, it keeps track of
the longest matching path. To be precise, each matching statistic ms[p2] =
(q, [lb..rb]) satisfying q ≥ ` is stored as a triple (q, [lb..rb], p2) in a list called
path until a mismatch occurs (i.e., the until backward search returns ⊥).
Then, the algorithm computes MEMs from the triples in the list path (in
its outer for-loop). If all elements of the list path have been processed, it
computes the next longest matching path, and so on.

By construction (or more precisely, by the correctness of Algorithm
7.25), if the triple (q, [lb..rb], p2) occurs in some matching path, then ms[p2] =
(q, [lb..rb]) and q ≥ `. (Note that for each position p2 in S2 at most one triple
(q, [lb..rb], p2) appears in the matching paths.) Clearly, this implies that
each (q, SA[k], p2) is a longest right maximal exact match at position p2
in S2, where lb ≤ k ≤ rb. Now Algorithm 7.26 tests left maximality by
BWT[k] 6= S2[p2 − 1]. If (q, SA[k], p2) is left maximal, then it is a maximal
exact match between S1 and S2 with q ≥ `, and the algorithm outputs
it. After that, it considers the parent lcp-interval of [lb..rb]. Let us de-
note this parent interval by q′-[lb′..rb′]. For each k with lb′ ≤ k < lb or
rb < k ≤ rb′, the triple (q′, SA[k], p2) is a right maximal exact match because
S1[SA[k]..SA[k] + q′ − 1] = S2[p2..p2 + q′ − 1] and S1[SA[k] + q′] 6= S2[p2 + q′]. So
if q′ ≥ ` and BWT[k] 6= S2[p2 − 1], the algorithm outputs (q′, SA[k], p2). Then
it considers the parent lcp-interval of [lb′..rb′] and so on. To sum up, Algo-
rithm 7.26 checks every right maximal exact match exceeding the length
threshold ` for left maximality. It follows as a consequence that it detects
every maximal exact match of length ≥ `.

7.6 Space-efficient comparison of two strings 341

Algorithm 7.26 Computing MEMs of length ≥ ` by backward search.
p2 ← n2

(q, [i..j])← (0, [1..n1])
while p2 ≥ 1 do
path← []
[lb..rb]← backwardSearch(S2[p2], [i..j])
while [lb..rb] 6= ⊥ and p2 ≥ 1 do
q ← q + 1
if q ≥ ` then
add(path, (q, [lb..rb], p2))

[i..j]← [lb..rb]
p2 ← p2 − 1
[lb..rb]← backwardSearch(S2[p2], [i..j])

for each (q′, [lb′..rb′], p′2) in path do
[lb..rb]← ⊥
while q′ ≥ ` do

for each k ∈ [lb′..rb′] \ [lb..rb] do
if p′2 = 1 or BWT[k] 6= S2[p′2 − 1] then

output (q′, SA[k], p′2)
[lb..rb]← [lb′..rb′]
q′-[lb′..rb′]← parent([lb′..rb′])

if [i..j] = [1..n1] then
p2 ← p2 − 1

else
q-[i..j]← parent([i..j])

We exemplify the algorithm by matching the string S2 = caaca backwards
against the compressed full-text index of S1 = acaaacatat$. For the length
threshold ` = 2, the first matching path is (2, [8..9], 4), (3, [4..5], 3), (4, [3..3], 2).
The triple (2, [8..9], 4) yields no output, but for the triple (3, [4..5], 3), the al-
gorithm outputs the MEM (3, 1, 3). (Note that the parent intervals of [8..9]
and [4..5] are not considered because their lcp-value is smaller than ` = 2.)
The triple (4, [3..3], 2) yields the output (4, 4, 2), and when its parent inter-
val 2-[2..3] is considered, the algorithm does not output the right maximal
exact match (2, 3, 2) because it is not left maximal. Now all triples in the
matching path have been considered, and the algorithm computes the
next longest matching path starting at position p2 = 1 and the parent in-
terval 2-[2..3] of [i..j] = [3..3]. This new path consists of the triple (3, [8..8], 1)
resulting in the output (3, 2, 1) and (2, 6, 1).

Let us analyze the worst-case time complexity of Algorithm 7.26. If the
outer for-loop was not there, it would run in O(n2 log σ) time; see the run-
time analysis of Algorithm 7.25. In each execution of the while-loop within

342 7 Compressed Full-Text Indexes

the outer for-loop, Algorithm 7.26 tests a right maximal exact match of
length ≥ ` for left maximality by BWT[k] 6= S2[p′2 − 1]. This test requires
only constant time if BWT is kept in main memory. However, the test
can be performed solely based on the wavelet tree. This is because the
wavelet tree allows determining BWT[k] in O(log σ) time; see Section 7.4.
Alternatively, the test BWT[k] 6= c in Algorithm 7.26 can be replaced with
the test LF (k) 6∈ [i..j], where [i..j] is the c-interval, because BWT[k] 6= c if
and only if LF (k) 6∈ [i..j]. So, under the assumption that the wavelet tree
of S1 and the enhanced BPS have already been constructed, the algorithm
runs in O(n2 log σ + z log σ + occ · s) time, where occ (z, respectively) is the
number of maximal (right maximal, respectively) exact matches of length
≥ ` between the strings S1 and S2, and s is the sampling parameter of the
sparse suffix array.

7.6.3 Merging Burrows-Wheeler transformed strings

In Section 5.5.5, we saw that the common suffix array of two strings S1

and S2 can be obtained by merging their suffix arrays SA1 and SA2 in
linear time. Thus, given the Burrows-Wheeler transformed strings BWT1

and BWT2 of S1 (terminated by the character #) and S2 (terminated by the
character $), the Burrows-Wheeler transformed string BWT of the con-
catenated string S = S1S2 can be obtained as follows:

• Derive SA1 from BWT1 and SA2 from BWT2; see Exercise 7.2.6.

• Merge SA1 and SA2 into the common suffix array SA.

• Derive BWT from SA.

However, it is crystal-clear that this method is not space efficient. Sirén
[293] and Ferragina et al. [99] proposed methods to directly merge BWTs.
Here is the technique:

1. Construct a data structure that supports rankc(BWT1, i) queries (e.g.
the wavelet tree of BWT1).

2. Construct a data structure that supports access to LF2(i) (e.g. the
wavelet tree of BWT2).

3. Use Algorithm 7.27 to compute a bit vector B with B[k] = 1 if and
only if the k-th lexicographically smallest suffix of S belongs to S2.

4. Merge BWT1 and BWT2 with the help of the bit vector B.

We exemplify Algorithm 7.27 by the toy example of Figure 7.24. In the
first iteration of the repeat-loop, BWT2[1] = t is the next-to-last character
of S2 and LF2(1) = 4. Thus, the suffix t$ is the fourth lexicographically

7.6 Space-efficient comparison of two strings 343

Algorithm 7.27 Given the wavelet trees of BWT1 and BWT2, this procedure
computes the bit vector B[1..n1 + n2].

initialize a bit vector B, i.e., B[1..n1 + n2]← [0, . . . , 0]
B[2]← 1 /* # < $ and both are smaller than all other characters */
i← 1
j ← 1
repeat
c← BWT2[j]
j ← LF2(j) /* or equivalently j ← C2[c] + rankc(BWT2, j) */
i← C1[c] + rankc(BWT1, i)
B[i+ j]← 1

until c = $
return B[1..n1 + n2]

i BWT1 S1
SA1[i]

1 t #
2 t at#
3 # atat#
4 a t#
5 a tat#

i LF2 BWT2 S2
SA2[i]

1 4 t $
2 1 $ aat$
3 2 a at$
4 3 a t$

i B BWT SSA[i]

1 0 t #
2 1 t $
3 1 $ aat$
4 0 t at#
5 1 a at$
6 0 # atat#
7 0 a t#
8 1 a t$
9 0 a tat#

Figure 7.24: Algorithm 7.27 applied to the strings S1 = atat# and S2 = aat$
yields the bit vector B.

smallest suffix of S2 (in fact, it is the lexicographically largest suffix of S2).
Since C1[t] + rankt(BWT1, 1) = 3 + 1 = 4, it follows that four suffixes of S1

are lexicographically smaller than t$. Consequently, t$ appears at index
4 + 4 = 8 in the common suffix array of S1 and S2. Hence B[8] = 1. In
the second iteration of the repeat-loop, BWT2[4] = a and LF2(4) = 3 imply
that at$ is the third lexicographically smallest suffix of S2. Furthermore,
we derive from C1[a] + ranka(BWT1, 4) = 1 + 1 = 2 that two suffixes of S1 are
lexicographically smaller than at$. So at$ appears at index 3+ 2 = 5 in the
common suffix array of S1 and S2 and we set B[5] = 1. Similarly, we have
B[3] = 1 because aat$ occurs at index 2 + 1 = 3 in the common suffix array
of S1 and S2.

344 7 Compressed Full-Text Indexes

Algorithm 7.28 Given BWT1, BWT2, and the bit vector B, this procedure
computes the Burrows-Wheeler transformed string BWT of S1S2.

initialize an array BWT[1..n1 + n2]
i← 1
j ← 1
for k ← 1 to n1 + n2 do

if B[k] = 0 then
BWT[k]← BWT1[i]
i← i+ 1

else
BWT[k]← BWT2[j]
j ← j + 1

return BWT[1..n1 + n2]

Lemma 7.6.3 Algorithm 7.27 maintains the following invariant: S1
SA1[i]

is
the lexicographically largest suffix of S1 that is smaller than S2

SA2[j]
.

Proof Initially, i = 1 and j = 1. Recall that SA1[1] = n1 and S1[n1] = #,
as well as SA2[1] = n2 and S2[n2] = $. Since # and $ are the smallest
characters in Σ and # < $, the invariant holds before the repeat-loop is
entered for the first time. Suppose that after k iterations of the repeat-
loop, S1

SA1[i]
is the lexicographically largest suffix of S1 that is smaller than

S2
SA2[j]

. Hence S1
SA1[i]

< S2
SA2[j]

< S1
SA1[i+1]. Note that S2

SA2[j]
= S2

n2−k because in
each iteration, j is updated by j ← LF2(j). In iteration k + 1, the assign-
ments c ← BWT2[j] and j ← LF2(j) imply that now S2

SA2[j]
= S2

n2−k−1 = cS2
n2−k

is the j-th lexicographically smallest suffix of S2.
Let i1 < i2 < · · · < im be all the indices with BWT1[iq] = c, 1 ≤ q ≤ m.

Because the suffixes in SA1 are ordered lexicographically, we have S1
SA1[i1]

<

S1
SA1[i2]

< · · · < S1
SA1[im]. Clearly, this implies cS1

SA1[i1]
< cS1

SA1[i2]
< · · · < cS1

SA1[im].
Let iq be the largest index among i1, . . . , im with iq ≤ i. Thus, S1

SA1[iq]
≤

S1
SA1[i]

< S1
SA1[iq+1]

. This altogether yields

S1
SA1[iq]

≤ S1
SA1[i]

< S2
n2−k < S1

SA1[i+1] ≤ S1
SA1[iq+1]

and has
cS1

SA1[iq]
< cS2

n2−k < cS1
SA1[iq+1]

as a consequence. Because the q-th occurrence of c can be found at index
iq in BWT1, the suffix cS1

SA1[iq]
can be found at index C1[c] + rankc(BWT1, i) in

SA1. �

Once the bit vector B is known, it is easy to compute the Burrows-
Wheeler transformed string BWT of S = S1S2; see Algorithm 7.28. There is

7.7 Space-efficient comparison of multiple strings 345

one subtle difference, however, that should not go unnoticed. In BWT1 the
character # occurs at the index of the suffix S1 and in BWT2 the character
$ occurs at the index of the suffix S2. In BWT, however, $ occurs at the
index of the suffix S1S2 and # occurs at the index of the suffix S2. So the
roles of # and $ are exchanged (i.e., $ separates S1 and S2, and # is the
last character of S).

Given the wavelet trees of BWT1 and BWT2, Algorithm 7.27 has a time
complexity of O(n2 log σ), while Algorithm 7.28 takes O(n1 + n2) time.

7.7 Space-efficient comparison of multiple strings

In this section, we review the most important algorithms that compare
multiple strings from a different perspective. Recall that we solved several
problems by means of the generalized suffix array of m strings S1, S2, . . . , Sm.
This was constructed in linear time by sorting the suffixes of the concate-
nated string S1#1S

2#2 . . . S
m#m, where #1,#2, . . . ,#m are pairwise distinct

separator symbols that do not occur in any of the strings. In some appli-
cations, the use of these m separator symbols is acceptable, but in others
it is disadvantageous because it “blows up” the alphabet. In this section,
we avoid different separator symbols: we use just one separator symbol
in addition to the sentinel $, which marks the end of the string. For
reasons that will become clear in Section 7.7.3, we prepend the symbol
to each of the m strings S1, S2, . . . , Sm and work with their concatena-
tion S = #S1#S2 . . .#Sm$. By definition, the # symbol left to Sj belongs
to string j, and the sentinel $ belongs to string 0. In the following, we
assume that $ < #.

7.7.1 Document array, LCP-array, and correction terms

The first problem that should be addressed is the construction of the
the D-array, the document array. If the suffix array of the string S =
#S1#S2 . . .#Sm$ is available on disk, then the D-array can be computed
space efficiently by Algorithm 7.29. It uses a bit vector BD[1..n] defined by
BD[i] = 1 if and only if S[i] = #, which is prepared for constant time rank1
queries (the idea stems from Sadakane [274]). As an example, we use the
string S = #gaaa#aac#aag#ga#aaa$ and its suffix array SA depicted in
Figure 7.25. The corresponding bit vector is BD = 100001000100010010000.
With that bit vector, one can determine in constant time that the suffix
at index i belongs to the string rank1(BD, SA[i]). It should be stressed that
both arrays, the suffix array and the D-array are accessed sequentially in
Algorithm 7.29. So the suffix array can be streamed from disk and the
D-array can be written to disk.

346 7 Compressed Full-Text Indexes

i SA LF BWT SSA[i] D

1 21 7 a $ 0
2 17 8 a #aaa$ 5
3 6 9 a #aac#aag#ga#aaa$ 2
4 10 18 c #aag#ga#aaa$ 3
5 14 19 g #ga#aaa$ 4
6 1 1 $ #gaaa#aac#aag#ga#aaa$ 1
7 20 10 a a$ 5
8 16 20 g a#aaa$ 4
9 5 11 a a#aac#aag#ga#aaa$ 1
10 19 12 a aa$ 5
11 4 13 a aa#aac#aag#ga#aaa$ 1
12 18 2 # aaa$ 5
13 3 21 g aaa#aac#aag#ga#aaa$ 1
14 7 3 # aac#aag#ga#aaa$ 2
15 11 4 # aag#ga#aaa$ 3
16 8 14 a ac#aag#ga#aaa$ 2
17 12 15 a ag#ga#aaa$ 3
18 9 16 a c#aag#ga#aaa$ 2
19 13 17 a g#ga#aaa$ 3
20 15 5 # ga#aaa$ 4
21 2 6 # gaaa#aac#aag#ga#aaa$ 1

Figure 7.25: The BWT of the string S = #gaaa#aac#aag#ga#aaa$.

7.7 Space-efficient comparison of multiple strings 347

Algorithm 7.29 Space-efficient computation of the D-array with SA.
D[1]← 0 /* suffix $ */
for i← 2 to n do
D[i]← rank1(BD, SA[i])

Algorithm 7.30 Computation of the D-array with LF .
D[1]← 0 /* suffix $ */
i← LF (1)
for j ← m downto 1 do

for k ← 1 to nj + 1 do
D[i]← j
i← LF (i)

If the wavelet tree of the BWT of the string S = #S1#S2 . . .#Sm$ is avail-
able, then the D-array can be obtained in almost the same fashion as the
string S was obtained from BWT and LF ; cf. Algorithm 7.3 (page 286).
Using the lengths n1, n2, . . . , nm of S1, S2, . . . , Sm (so #Sj has length nj + 1),
Algorithm 7.30 computes the D-array solely based on LF . Note, however,
that the D-array is accessed non-sequentially.

Exercise 7.7.1 Suppose that the lexicographic order of the strings
S1, S2, . . . , Sm is known. Explain how the first m + 1 entries of the D-array
can be derived from this knowledge. Conclude that the D-array can be
computed in parallel.

The use of just one separator symbol # rises a new problem: the longest
common prefix of two suffixes of S may contain # so that the LCP-array
of S is not the intended one (i.e., it does not coincide with that of the
generalized suffix array of S1, S2, . . . , Sm). For example, LCP[9] = 4 in Figure
7.25, but it should be 1. However, this problem can easily be fixed by a
slight modification of Algorithm 7.17 (page 319).5 Recall that its queue
Q initially contains the c-interval for each character of Σ. Instead of the
#-interval [2..m + 1], m singleton intervals [2..2], [3..3], . . . , [m + 1..m + 1] are
added to Q in the modified algorithm. In other words, the m occurrences
of # are treated as if they were pairwise distinct. This modification of
Algorithm 7.17 computes the intended LCP-array.

We have seen that several applications can benefit from the correction
terms. These are calculated as described in Section 5.6.3, but the algo-
rithm that computes the CT ′-array (Algorithm 5.32 on page 220) is im-
plemented with the balanced parentheses sequence BPS of the LCP-array.

5The procedure getIntervals from Algorithm 7.16 must also be changed so that it does
not generate #ω-intervals.

348 7 Compressed Full-Text Indexes

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CT ′[i] 0 1 1 1 0 2 1 0 0 3 1 0 1 0
CT ′′[i] 0 1 2 3 3 5 6 6 6 9 10 10 11 11

Figure 7.26: The arrays CT ′ and CT ′′.

For this purpose, the BPS is preprocessed so that range minimum queries
on the LCP-array can be answered in constant time; see Algorithm 6.10
(page 275). Furthermore, it is advantageous to use a succinct representa-
tion of the CT ′′-array. This representation (suggested by Sadakane [274])
is a bit vector BCT ′′, which we construct as follows: BCT ′′ is initially empty
and, for i = 1, 2, . . . , n, we successively append CT ′[i] many zero bits fol-
lowed by a one bit to BCT ′′. We use the example of Figure 7.26 to illustrate
this. The bit vector corresponding to the CT ′′-array is

BCT ′′ = 1 01 01 01 1 001 01 1 1 0001 01 1 01 1

Since Algorithm 5.32 (page 220) increments entries of the CT ′-array at
most n times, the bit vector BCT ′′ occupies at most 2n bits (at most n
zero bits and exactly n one bits). It is an immediate consequence of the
definition CT ′′[q] =

∑q
i=1CT

′[i] that CT ′′[q] coincides with the number of
zeros in BCT ′′ [1..k], where k is the position of the q-th one in the bit vec-
tor. Thus, we preprocess BCT ′′ so that select1 queries can be answered in
constant time. The value CT ′′[q] can then be determined in constant time
by select1(BCT ′′ , q) − q, using only 2n + o(n) bits. Continuing our example,
select1(BCT ′′ , 6)− 6 = 11− 6 = 5 yields the value of CT ′′[6]; cf. Figure 7.26.

Although the final implementation of the CT ′′-array (the bit vector BCT ′′)
requires only 2n + o(n) bits, its computation uses the CT ′-array, which
requires n log n bits. It is possible to avoid this “memory peak” at the ex-
pense of slower preprocessing time. The CT ′′-array can be implemented
by a dynamic succinct data structure for searchable partial sums [111];
see e.g. [239] for such a data structure that supports the needed opera-
tions like insert in O(log n) time. Another possibility is to keep only parts
of the CT ′-array in main memory.

7.7.2 Document retrieval with wavelet trees

In this section, we shed some light on the usefulness of the wavelet tree
of the D-array in document retrieval. For instance, Figure 7.27 shows the
wavelet tree of the D-array of Figure 7.25. And so for the first time we will
use the wavelet tree for a different purpose than string matching.

Let us revisit the document listing problem introduced in Section 5.6.4:
given a database (or library) D of strings (or documents) S1, . . . , Sm on the

7.7 Space-efficient comparison of multiple strings 349

052341541515123232341

010110110101001010110

0211112221

0100001110

011111

011111

0 1

2

53454553334

10010110000

3443334

0110001

3 4

5

Figure 7.27: The wavelet tree of the document array D of Figure 7.25.

alphabet Σ, we wish to compute the set dl(φ) of documents in D that con-
tain the string φ. Algorithm 7.31 solves this problem with the help of the
wavelet tree of the D-array. For a string φ, it computes the φ-interval
[p..q] by a backward search and then applies Algorithm 7.32 to the inter-
val [p..q]. This algorithm returns a list [〈d1, occ1〉, . . . , 〈dk, occk〉] satisfying (i)
dl(φ) = {d1, . . . , dk} and (ii) for all i the string φ occurs occi times in doc-
ument Sdi. Observe that Algorithm 7.32 is almost verbatim the same as
Algorithm 7.16 (page 316); the sole differences are the statements after the
conditional statement “if l = r then” and that they use different wavelet
trees. For this reason, an analysis of Algorithm 7.32 is left to the reader.
We remark, however, that Algorithm 7.32 takes O(min(m, k logm)) time to
return a k-element list.

Algorithm 7.31 does not only compute the set dl(φ) = {d1, . . . , dk} of all
documents that contain φ but for each document number di it also returns
the number occi = occφ(S

di) of occurrences of φ in Sdi. Because df(φ) =
|dl(φ)|, it enables us to compute the TF-IDF score

occφ(S
j) log

m

df(φ)

of the string φ with respect to each document Sj (note that the score is
zero when j 6∈ dl(φ)); cf. Section 5.7.5.

As a matter of fact, with an approach similar to Algorithm 7.31, we can
solve more general problems like multi-pattern document listing, docu-
ment listing with forbidden patterns, or combinations thereof.

Definition 7.7.2 The two-patterns document listing problem is to prepro-
cess a database D of string documents S1, . . . , Sm of total length n so that

350 7 Compressed Full-Text Indexes

Algorithm 7.31 Solving the document listing problem with the wavelet
tree of the BWT and the wavelet tree of the D-array.
Let D be a database of string documents S1, . . . , Sm of total length n.

1. Preprocessing phase:

(a) Construct the wavelet tree of the Burrows-Wheeler transformed
string of S = #S1#S2 . . .#Sm$ in O(n log σ) time.

(b) Construct the wavelet tree of the D-array in O(n logm) time.

2. Computation of dl(φ) for a string φ:

(a) Determine the φ-interval [p..q] by a backward search in O(|φ| log σ)
time.

(b) Use Algorithm 7.32 to obtain a list [〈d1, occ1〉, . . . , 〈dk, occk〉] of pairs
so that dl(φ) = {d1, . . . , dk} and φ occurs occi times in document
Sdi for all i with 1 ≤ i ≤ k.

the following queries can be answered quickly: “Which documents contain
both string patterns φ1 and φ2?”

In the document listing problem with a forbidden pattern, the query-type
is: “Which documents contain the pattern φ1 but not the (forbidden) pat-
tern φ2?”

The solutions to these two problems use exactly the same preprocess-
ing phase as Algorithm 7.31. In phase 2a, they determine the φ1 and φ2

intervals [p1..q1] and [p2..q2] by a backward search. In phase 2b, the algo-
rithms compute dl(φ1) and for each d ∈ dl(φ1) they test in O(logm) time if
rankd(D, q2)− rankd(D, p2 − 1) > 0. Clearly, φ2 occurs in document Sd if and
only if this difference is strictly positive. Consequently, the “two-patterns”
algorithm outputs d if this is the case, whereas the “forbidden-pattern”
algorithm outputs d if this is not the case. Both algorithms need the
wavelet trees of the BWT and the D-array. The preprocessing phase re-
quires O(n(log σ+logm)) time, phase 2a takes O((|φ1|+ |φ2|) log σ) time, and
phase 2b runs in O(df(φ1) logm) time.

Let us illustrate the algorithms. If we are interested in all documents
that contain both patterns ga and aa in the example of Figure 7.25 (page
346), then the “two-patterns” algorithm computes the ga-interval [20..21]
and the aa-interval [10..15] by backward search (using the wavelet tree of
the BWT) and then dl(ga) = {4, 1} by the procedure call getDocs([20..21])
(using the wavelet tree of the document array D; see Figure 7.27). After
that, it computes rank4(D, 15) − rank4(D, 9) = 2 − 2 = 0 and rank1(D, 15) −
rank5(D, 9) = 4−2 = 2 and outputs 1. If we were interested in all documents

7.7 Space-efficient comparison of multiple strings 351

Algorithm 7.32 For the φ-interval [p..q], the function call getDocs([p..q])
returns a list [〈d1, occ1〉, . . . , 〈dk, occk〉] so that dl(φ) = {d1, . . . , dk} and φ occurs
occi times in document Sdi for all i with 1 ≤ i ≤ k.
getDocs([p..q])
list← []
getDocs′([p..q], [1..m], list)
return list

getDocs′([p..q], [l..r], list)
if l = r then

if p ≤ q then
add(list, 〈l, q − p+ 1〉)

else
(a0, b0)← (rank0(B

[l..r], p− 1), rank0(B
[l..r], q)))

(a1, b1)← (p− 1− a0, q − b0)
mid = b l+r

2
c

if b0 > a0 then
getDocs′([a0 + 1..b0], [l..mid], list)

if b1 > a1 then
getDocs′([a1 + 1..b1], [mid+ 1..r], list)

that contain ga but not aa, then the “forbidden-pattern” algorithm would
perform the same computations, but it would output 4.

The factor df(φ1) in the worst-case time complexity of phase 2b of the
“two-patterns” algorithm can be improved to min(df(φ1), df(φ2)) as follows:
Compute df(φ1) = |dl(φ1)| and df(φ2) = |dl(φ2)| in constant time with the
aid of the correction terms as explained in Section 7.7.1 (keep in mind
that this requires either more space or more time in the preprocessing
phase). If df(φ1) ≤ df(φ2), then proceed as above; otherwise swap φ1 and φ2

in phase 2b.

Exercise 7.7.3 The multi-pattern document listing problem with forbidden
patterns is to preprocess a database D of string documents S1, . . . , Sm of to-
tal length n so that queries of the following form can be answered quickly:
“Which documents contain at least i of the r string patterns φ1, . . . , φr and
at most j of the s forbidden string patterns ω1, . . . , ωs?” Give an algorithm
that solves this problem and analyze its worst-case time and space com-
plexities.

Let us briefly comment on the history of the document listing problem.
As we have seen in Section 5.6.4, Muthukrishnan [233] first showed that
this problem can be solved in O(|φ| + k) time, where k is the number of
distinct documents in which the string φ occurs. Given the φ-interval, his

352 7 Compressed Full-Text Indexes

Algorithm 7.33 Matching Sk backwards against the suffix array of S,
where S = #S1#S2 . . .#Sm$.

initialize an empty queue Q
lb← 1
rb← n /* n = |S| */
p← nk /* nk = |Sk| */
while p ≥ 1 do /* Sk is a substring of S, so we always have lb ≤ rb */
c← Sk[p]
lb← C[c] + rankc(BWT, lb− 1) + 1
rb← C[c] + rankc(BWT, rb)
i← rank#(BWT, lb− 1) + 1
j ← rank#(BWT, rb)
if i ≤ j then
enqueue(Q, (nk − p+ 1, [i..j]))

p← p− 1
return Q

technique used range minimum queries on the Prev-array to return all k
documents that contain φ in optimal O(k) time. Välimäki and Mäkinen
[317] gave a more space efficient solution based on the wavelet tree of the
D-array and an RMQ data structure on the Prev-array, but their solution
uses O(k logm) time. Gagie et al. [118] observed that the wavelet tree of
the D-array alone is sufficient to solve the problem in the same O(k logm)
time bound, and Culpepper et al. [73] improved on it.

7.7.3 All-pairs suffix-prefix matching

From Section 5.6.7, we recall the all-pairs suffix-prefix matching problem:
Given m strings S1, S2, . . . , Sm find, for all k 6= l with 1 ≤ k ≤ m and 1 ≤ l ≤
m, the longest suffix of Sk that is a prefix of Sl.

Simpson and Durbin [291] showed how an assembly string graph can
be efficiently constructed using a backward search. Here, we solve the
all-pairs suffix-prefix matching problem with the help of their search al-
gorithm. It is convenient to work with the string S = #S1#S2 . . .#Sm$
because one of the strings S1, S2, . . . , Sm is a prefix of the suffix SSA[k]

at index k if and only if BWT[k] = #. To find out which one this is,
we will use the array A[1..m], which reflects the lexicographic order of
S1, S2, . . . , Sm. More precisely, with the definition A[1..m] = D[2..m + 1], we
have SA[1] ≤ SA[2] ≤ · · · ≤ SA[m]. Now, if BWT[k] = # is the d-th occurrence
of # in the string BWT, then SA[d] is a prefix of the suffix SSA[k] at index k.

Algorithm 7.33 shows pseudo-code of Simpson and Durbin’s [291] al-
gorithm for finding overlaps between suffixes of string Sk and prefixes

7.7 Space-efficient comparison of multiple strings 353

i BWT SSA[i]

1 a $
2 a #aaa$
3 a #aac#aag#ga#aaa$
4 c #aag#ga#aaa$
5 g #ga#aaa$
6 $ #gaaa#aac#aag#ga#aaa$
7 a a$
8 g a#aaa$
9 a a#aac#aag#ga#aaa$
10 a aa$
11 a aa#aac#aag#ga#aaa$
12 # aaa$
13 g aaa#aac#aag#ga#aaa$
14 # aac#aag#ga#aaa$
15 # aag#ga#aaa$
16 a ac#aag#ga#aaa$
17 a ag#ga#aaa$
18 a c#aag#ga#aaa$
19 a g#ga#aaa$
20 # ga#aaa$
21 # gaaa#aac#aag#ga#aaa$

Figure 7.28: BWT of S = #gaaa#aac#aag#ga#aaa$, where A = [5, 2, 3, 4, 1].

of the other strings. The algorithm uses backward search to determine
the ω-interval [lb..rb] of a suffix ω of Sk (it considers suffixes of Sk in in-
creasing order of length). Then, it determines the interval [i..j] by i =
rank#(BWT, lb − 1) + 1 and j = rank#(BWT, rb). As explained above, ω is a
prefix of all strings in A[i..j] (in particular, if [i..j] is empty, then ω is not
a prefix of any of the strings S1, S2, . . . , Sm). The algorithm stores the pair
(|ω|, [i..j]) in a queue Q provided that i ≤ j.

To illustrate how Algorithm 7.33 works, we apply it to the example from
Figure 7.28, i.e., we match S1 = gaaa backwards against the suffix array
of the concatenated string S. In the first iteration of the while-loop, the
algorithm determines the a-interval [7..17] because a is the last character
of S1. In this iteration, it computes i = 1 and j = 3, and adds the pair
(1, [1..3]) to the initially empty queue Q. This means that the strings S5, S2,
and S3 have the length 1 suffix of S1 as a prefix because A[1..3] = [5, 2, 3].
In the second iteration of the while-loop, the algorithm searches for the

354 7 Compressed Full-Text Indexes

aa-interval and finds [10..15]. Afterwards, it computes i = 1 and j = 3,
and adds the pair (2, [1..3]) to Q. In the third iteration, it determines the
aaa-interval [12..13], computes i = 1 and j = 1, and adds (3, [1..1]) to Q.
Finally, it computes the gaaa-interval [21..21], adds the pair (4, [5..5]) to Q,
and returns the queue

Q = [(1, [1..3]), (2, [1..3]), (3, [1..1]), (4, [5..5])]

In general, Algorithm 7.33 delivers a queue of pairs

[(`1, [i1..j1]), (`2, [i2..j2]), . . . , (`q, [iq..jq])]

of all matchings of suffixes of Sk with prefixes of S1, S2, . . . , Sm (in increas-
ing order of their first component).

It remains to solve the problem of finding all longest suffix-prefix match-
ings. For any k, we would like to find all longest overlaps of suffixes of Sk

with prefixes of the other strings. Given the queue Q returned by Algo-
rithm 7.33, we can find the length of the longest suffix-prefix match of Sk

with SA[l] as follows: determine the largest subscript p (1 ≤ p ≤ q) so that l
is contained in the interval [ip..jp] and output `p. Exercise 7.7.4 allows us
to restate this task into a problem that can be solved with a line-sweep
algorithm (this type of algorithm is a central concept in computational
geometry).

Exercise 7.7.4 Let (`r, [ir..jr]) and (`s, [is..js]) be two elements in the queue
Q with `r < `s. Show that either

• [is..js] is a subinterval of [ir..jr], i.e., ir ≤ is ≤ js ≤ jr, or

• [ir..jr] and [is..js] are disjoint, i.e., jr < is or js < ir.

The idea behind line-sweep algorithms is to imagine that a line (often a
vertical line) is swept or moved across the plane, stopping at some points.
Here, we have a one-dimensional problem: our algorithm moves a vertical
line along a horizontal line (the x-axis) and stops whenever it finds the
left- or right boundary of an interval of the queue Q. To ease the detection
of these points, we slightly modify Algorithm 7.33. Instead of using one
queue, we use m queues Q1, . . . , Qm, which are initially empty. Further-
more, instead of storing a pair (`, [i..j]) in the queue Q, we store the pair
(`, j) in the queue Qi. The key feature of this approach is that now the
intervals are sorted by their left boundary and the contents of a queue Qi

is sorted by the first component.
Algorithm 7.34 implements the line-sweep algorithm. It maintains a

stack, which is initially empty. Elements on the stack are triples 〈`, lb, rb〉,
where ` is the number of matching characters, lb is the left boundary of the
interval, and rb is its right boundary. In its for-loop, the algorithm scans

7.7 Space-efficient comparison of multiple strings 355

Algorithm 7.34 Computing all longest suffix-prefix matches between Sk

and S1, . . . , Sm.
initialize an empty stack
for i← 1 to m do

while Qi is not empty do
(`, j)← dequeue(Qi)
push(〈`, i, j〉)

if stack is not empty then
output longest suffix-prefix match of Sk and SA[i] has length top().`

while top().rb = i do
pop()

the region 1, . . . ,m from left to right. For each value of the loop variable i,
it proceeds as follows: First, if the queue Qi is not empty, it dequeues the
front element (`, j) from Qi and pushes the triple 〈`, i, j〉 onto the stack.6

This process is repeated until Qi is empty. Second, if the stack is not
empty, then the algorithm reports that the longest suffix-prefix match of
Sk and SA[i] has length `, where ` is the first component of the topmost
element of the stack. Third, as long as top().rb = i, it pops the topmost
element from the stack.

To illustrate how the algorithm works, we continue the example of Fig-
ure 7.28. The modified version of Algorithm 7.33 applied to S1 returns
the queues Q1 = [(1, 3), (2, 3), (3, 1)] and Q5 = [(4, 5)] (the other queues are
empty). Now we apply Algorithm 7.34. For i = 1, it first pushes 〈1, 1, 3〉,
then 〈2, 1, 3〉, and eventually 〈3, 1, 1〉 onto the stack. After that, it reports
that the longest suffix-prefix match of S1 and SA[1] = S5 has length 3.
Since i = 1 = top().rb, it pops 〈3, 1, 1〉 from the stack. For i = 2, the al-
gorithm merely outputs 2 as the length of the longest suffix-prefix match
of S1 and SA[2] = S2 because Q2 is empty and top().rb = 3. For i = 3, the
algorithm also outputs 2 as the length of the longest suffix-prefix match
of S1 and SA[3] = S3. Furthermore, it pops two elements from the stack
because top().rb = 3 holds twice; the stack is now empty. For i = 4, there
is nothing to do, but for i = 5 the queue Q5 = [(4, 5)] is not empty. There-
fore, the algorithm pushes 〈4, 5, 5〉 onto the stack, reports that the longest
suffix-prefix match of S1 and SA[5] = S1 has length 4, and pops 〈4, 5, 5〉 from
the stack.

Theorem 7.7.5 Algorithms 7.33 and 7.34 correctly solve the problem of
finding all longest suffix-prefix overlaps.

Proof Algorithm 7.33 successively computes pairs (`, [i..j]), for ` increas-
ing from 1 to nk, so that the length ` suffix ω of Sk is a prefix of Sd if

6In fact, i need not to be stored, but this makes the correctness proof easier.

356 7 Compressed Full-Text Indexes

and only if d ∈ A[i..j]. As discussed above, the modified version of this
algorithm stores a pair (`, [i..j]) by adding (`, j) to the queue Qi. The al-
gorithm returns queues Q1, . . . , Qm (some of which may be empty). The
contents of a non-empty queue Qi is sorted by the first component, i.e., if
Qi = [(`′1, j

′
1), . . . , (`

′
qi
, j′qi)], then `′1 < · · · < `′qi. According to Exercise 7.7.4, if

`′r < `′s, then [i..j′s] is a subinterval of [i..j′r] (i.e., j′s ≤ j′r). We conclude that
j′qi ≤ · · · ≤ j′1.

We show that Algorithm 7.34 outputs the lengths of all longest suffix-
prefix overlaps of Sk and S1, . . . , Sm. Moreover, we prove that the algorithm
maintains the following invariant: before iteration i, if the stack contains
the triples 〈`1, i1, j1〉, . . . , 〈`t, it, jt〉 (from bottom to top), then

• 1 ≤ `1 < · · · < `t,

• 1 ≤ i1 ≤ · · · ≤ it < i,

• i ≤ jt ≤ · · · ≤ j1.

Clearly, the invariant holds before the first iteration of the for-loop. For
an inductive proof, suppose the invariant holds before the i-th iteration. If
the queue Qi is not empty, say Qi = [(`′1, j

′
1), . . . , (`

′
qi
, j′qi)], then the algorithm

dequeues the front element (`′1, j
′
1) from Qi and pushes 〈`′1, i, j′1〉 onto the

stack. We show that `t < `′1 and j′1 ≤ jt, where 〈`t, it, jt〉 is the topmost
element of the stack. For an indirect proof, suppose that `′1 < `t (note
that `t = `′1 is impossible). According to Exercise 7.7.4, [it..jt] must be
a subinterval of [i..j′1] (clearly, the intervals cannot be disjoint). That is,
i ≤ it ≤ jt ≤ j′1. This, however, contradicts it < i. Thus, `t < `′1. It follows
from Exercise 7.7.4 that [i..j′1] is a subinterval of [it..jt]. Hence j′1 ≤ jt.

After all elements have been removed from Qi and pushed onto the
stack, we have

• 1 ≤ `1 < · · · < `t < `′1 < · · · < `′qi,

• 1 ≤ i1 ≤ · · · ≤ it < i ≤ · · · ≤ i,

• i ≤ j′qi ≤ · · · ≤ j′1 ≤ jt ≤ · · · ≤ j1.

At that point in time, the contents of the stack represents all pairs
〈`′, [i′..j′]〉 with i′ ≤ i ≤ j′ and the topmost element contains the length
of the longest suffix-prefix match of Sk and SA[i] unless the stack is empty.
Therefore, the output of Algorithm 7.34 is correct.

Furthermore, the invariant holds before iteration i + 1 because at the
end of the i-th iteration the algorithm pops elements from the stack while
top().rb = i. �

Let us analyze the time complexity of this solution to the longest suffix-
prefix matching problem. It is readily verified that Algorithm 7.33 has a

7.8 Bidirectional search 357

time complexity of O(nk log σ) if the wavelet tree of the BWT of S is used to
support backward search. In Algorithm 7.34, at most nk elements enter
and leave the stack because there are at most nk elements in the queues
Q1, . . . , Qm. Moreover, exactly m suffix-prefix matches are output. Thus,
Algorithm 7.34 takes O(nk + m) time. It follows as a consequence that
the overall time complexity to compute all longest suffix-prefix matches is
O(n log σ +m2), where n = |S| = m+

∑m
k=1 nk.

Exercise 7.7.6 Modify Algorithm 7.34 so that it does not report the
longest suffix-prefix match of Sk and itself.

7.8 Bidirectional search

As explained in Chapter 1, RNA molecules play an active role in gene
expression, but they also catalyze biological reactions and communicate
responses to cellular signals. Most biologically active RNAs, including
mRNA, tRNA, and rRNA contain self-complementary sequences that al-
low parts of the RNA to fold and pair with itself; see Figure 7.29. In RNA
molecules, Watson-Crick base pairs (G–C and A–U) and non-Watson-Crick
interactions (e.g. G–U) allow RNAs to fold into a vast range of specific
structures. RNAs are highly conserved in the course of evolutionary time,
not on the sequence level, but as secondary structures. Thus, the task
of finding the genes coding for a certain RNA in a genome is to find all
regions in the genomic DNA sequence that match its structural pattern.
Because the structural pattern often consists of a hairpin loop and a stem
(which may also have bulges), the most efficient algorithms first search for
candidate regions matching the loop and then try to extend both ends by
searching for complementary base pairs A–U, G–C, or G–U that form the
stem. For example, in Figure 7.29 the loop is the sequence UCGCCGU,
so one must search for all occurrences of the pattern TCGCCGT in the
genomic DNA sequence. The loop is then extended by one of the four nu-
cleotides to the left or to the right, say by A to the left. Consequently, all
regions in the DNA sequence matching ATCGCCGT are searched for. That
is, given the TCGCCGT-interval, one determines the ATCGCCGT-interval
by a backward search. If the A to the left of TCGCCGT is part of the stem,
then it must pair with T (one must search for the pairs A–T, G–C, or G–T in
the DNA sequence because T is replaced with U in the transcription from
DNA to RNA). In other words, in the next step one searches for all regions
in the DNA sequence matching ATCGCCGTT. More precisely, given the
ATCGCCGT-interval, one determines the ATCGCCGTT-interval by a for-
ward search. Such a search strategy can be pursued only if bidirectional
search is possible; see [217,302].

In Section 7.8.4, we will present a data structure that supports bidi-
rectional searching [284]. It consists of the wavelet tree of the Burrows-

358 7 Compressed Full-Text Indexes

Figure 7.29: A hairpin loop.

Wheeler transformed string of S (supporting backward search) and the
wavelet tree of the Burrows-Wheeler transformed string BWTrev of Srev

(supporting forward search).
The Burrows-Wheeler transform BWT of a string S can be computed by

sorting all suffixes of S (hence the suffix array of S is known). Of course,
the Burrows-Wheeler transform BWTrev of the reverse string Srev can be
obtained in the same fashion. However, because of the strong relationship
between a string and its reverse, it is quite natural to ask whether BWTrev

can be directly derived from BWT without sorting the suffixes of Srev. In
Section 7.8.1, we prove that this is indeed the case. More precisely, we
give an algorithm for this task that has O(n log σ) worst-case time com-
plexity. The same algorithm computes the arrays SArev and LCPrev, but
only partially. In Sections 7.8.2 and 7.8.3, we show how these arrays can
be completed. Furthermore, in Section 7.8.3 it is shown that LCPrev is a
permutation of LCP. These results originate from [246].

7.8.1 Burrows-Wheeler transform of the reverse string

If we reverse the order of the characters in a string, we obtain its reverse
string. For technical reasons, however, we assume that the sentinel sym-
bol $ occurs at the end of each string under consideration. For this rea-
son, the reverse string Srev of a string S that is terminated by $ is obtained
by deleting $ from S, reversing the order of the characters, and appending
$. For example, the reverse string of S = ctaataatg$ is Srev = gtaataatc$
(and not $gtaataatc).

Algorithm 7.35 recursively computes the Burrows-Wheeler transformed
string BWTrev of Srev by the procedure call bwtrev(1, [1..n], 0). We stress that
the procedure getIntervals, on which Algorithm 7.35 relies, must also gen-
erate $ω-intervals; this can be easily achieved by omitting the condition “if
c 6= $ then” in Algorithm 7.16 (page 316). The string BWTrev is computed
in a left-to-right fashion: first BWTrev[1], then BWTrev[2], etc. Suppose that
the algorithm has already calculated the first k − 1 characters of BWTrev.
When it tries to determine BWTrev[k], it is known that [k..k + rb − lb] is the

7.8 Bidirectional search 359

Algorithm 7.35 Procedure bwtrev(k, [i..j], `) uses the wavelet tree of the
BWT, the suffix array SA, and S. The call bwtrev(1, [1..n], 0) computes
BWTrev.
bwtrev(k, [i..j], `)
list← getIntervals([i..j]) /* intervals in increasing lexicographic order */
while list not empty do
[lb..rb]← head(list)
if lb = rb or S[SA[lb] + `+ 1] = S[SA[rb] + `+ 1] then
pos← SA[lb] + `+ 1
if lb = rb then

if pos > n then
pos← pos− n

SArev[k]← n− pos+ 1 /* this will be explained in Section 7.8.2 */
c← S[pos]
for q ← k to k + rb− lb do
BWTrev[q]← c
count[c]← count[c] + 1 /* this will be explained in Section 7.8.2 */
LF rev[q]← count[c] /* this will be explained in Section 7.8.2 */

else
bwtrev(k, [lb..rb], `+ 1)

k ← k + rb− lb+ 1
if list not empty then

LCPrev[k]← ` /* this will be explained in Section 7.8.3 */

ωrevc-interval in SArev because the cω-interval [lb..rb] in SA has been identi-
fied by a backward search (with the help of the wavelet tree of BWT). At
that point, the algorithm proceeds by case analysis (below, ` + 1 is the
length of cω):

• If each occurrence of cω in S is followed by the same character a (in
particular, this is true whenever lb = rb), then each occurrence of
ωrevc is preceded by a in Srev. Thus, BWTrev[q] = a for every q with
k ≤ q ≤ k + rb− lb.

• If not all the characters in BWTrev[k..k + rb − lb] are the same, then
the algorithm recursively determines the lexicographic order of the
suffixes in the ωrevc-interval [k..k + rb− lb] as far as it is needed.

We exemplify Algorithm 7.35 by applying it to S = ctaataatg$. The pro-
cedure call getIntervals([1..10]) returns the list [[1..1], [2..5], [6..6], [7..7], [8..10]],
where [1..1] is the $-interval, [2..5] is the a-interval, and so on; cf. Figure
7.30. Then, the first interval [lb..rb] = [1..1] is taken from the list (note
that head(list) removes the first element of list and returns it). Because
lb = rb, the algorithm computes pos = SA[1]+0+1 = 11. Furthermore, since

360 7 Compressed Full-Text Indexes

i SA BWT SSA[i]

1 10 g $
2 3 t aataatg$
3 6 t aatg$
4 4 a ataatg$
5 7 a atg$
6 1 $ ctaataatg$
7 9 t g$
8 2 c taataatg$
9 5 a taatg$
10 8 a tg$

i SA BWT SrevSA[i] LCP LF

1 10 c $ −1 6
2 3 t aataatc$ 0 8
3 6 t aatc$ 3 9
4 4 a ataatc$ 1 2
5 7 a atc$ 2 3
6 9 t c$ 0 10
7 1 $ gtaataatc$ 0 1
8 2 g taataatc$ 0 7
9 5 a taatc$ 4 4
10 8 a tc$ 1 5

Figure 7.30: Left-hand side: Suffix array SA and BWT of the string S =
ctaataatg$ (the input). Right-hand side: Burrows-Wheeler
transform of Srev = gtaataatc$ (the output). The computation
of the suffix array and the lcp-array of Srev will be explained
in Section 7.8.2 and Section 7.8.3, respectively.

pos > n = 10, it assigns the character S[11 − 10] = S[1] = c to BWTrev[1] and
increments k (so the new value of k is 2). Now the interval [lb..rb] = [2..5]
is taken from the list. Because S[SA[lb] + ` + 1] = S[SA[2] + 0 + 1] = S[4] =
a 6= t = S[8] = S[SA[5] + 0 + 1] = S[SA[rb] + ` + 1], Algorithm 7.35 recursively
calls bwtrev(2, [2..5], 1). The procedure call getIntervals([2..5]) returns the
list [[2..3], [8..9]], where [2..3] is the aa-interval and [8..9] is the ta-interval.
Then, the first interval [lb..rb] = [2..3] is taken from the list. In this case,
S[SA[lb] + ` + 1] = S[SA[2] + 1 + 1] = S[5] = t = t = S[8] = S[SA[3] + 1 + 1] =
S[SA[rb] + ` + 1]. Thus, t is assigned to both BWTrev[2] and BWTrev[3]. Now
the algorithm continues with the new value k = 2 + 3 − 2 + 1 = 4. Figure
7.31 shows the recursion tree of Algorithm 7.35.

In essence, the correctness of Algorithm 7.35 is a consequence of the
following lemma.

Lemma 7.8.1 Let [i..j] be the ω-interval for some substring ω of S, and let
k be the left boundary of the ωrev-interval in SArev. If [lb1..rb1], . . . , [lbm..rbm]
are the intervals in list = getIntervals([i..j]) corresponding to the strings
c1ω, . . . , cmω, where c1 < · · · < cm, then the intervals [s1..e1], . . . , [sm..em] in SArev

corresponding to the strings ωrevc1, . . . , ωrevcm satisfy sq = k+
∑q−1

p=1(rbp−lbp+1)
and eq = sq + (rbq − lbq), where 1 ≤ q ≤ m.

Proof We prove the lemma by finite induction on q. In the base case q = 1.
Because c1 is the smallest character in Σ for which the c1ω-interval is non-
empty, the suffixes of Srev that have ωrevc1 as a prefix are lexicographically

7.8 Bidirectional search 361

ǫ

$

cBWT
rev

=

a

aa

tt

ta

aa

c

t

g

$

t

at

aat

taat

ataat

g

ctaat

a

ct

a

Figure 7.31: The recursion tree of Algorithm 7.35 applied to the BWT of
S = ctaataatg$: for each internal node there is a recursive
call. For example, the recursive call with the aat-interval as
a parameter determines the characters of BWTrev in the taa-
interval of SArev.

smaller than those suffixes of Srev that have ωrevcp, 2 ≤ p ≤ m, as a prefix.
Hence s1 = k. Moreover, if follows from the fact that the ωrevc1-interval
has size rb1− lb1 + 1 that the ωrevc1-interval is the interval [k..k+ (rb1− lb1)].
For the inductive step suppose that the ωrevcq−1-interval [sq−1..eq−1] satisfies
sq−1 = k+

∑q−2
p=1(rbp− lbp+1) and eq−1 = sq−1+(rbq−1− lbq−1). Because cq is the

q-th smallest character in Σ for which the cqω-interval is non-empty, the
suffixes of Srev that have ωrevcq as a prefix are lexicographically larger than
the suffixes of Srev that have ωrevcp as a prefix, where 1 ≤ p ≤ q − 1. Since
the suffixes of Srev that have ωrevcq as a prefix are lexicographically smaller
than the suffixes of Srev that have ωrevcp as a prefix, where q+1 ≤ p ≤ m, it
follows that the ωrevcq-interval [sq..eq] satisfies sq = eq−1 + 1 = k +

∑q−1
p=1(rbp −

lbp + 1) and eq = sq + (rbq − lbq). �

Theorem 7.8.2 Algorithm 7.35 correctly computes BWTrev.

Proof We prove the theorem by induction on k. Suppose Algorithm 7.35
is applied to the ω-interval [i..j] for some `-length substring ω of S, and let
the cω-interval [lb..rb] be the interval dealt with in the current execution of
the while-loop. According to the inductive hypothesis, BWTrev[1..k − 1] has

362 7 Compressed Full-Text Indexes

been computed correctly. Moreover, by Lemma 7.8.1, [k..k + rb− lb] is the
ωrevc-interval in SArev. We proceed by case analysis.

• If lb = rb, then cω occurs exactly once in S and is the length ` + 1
prefix of suffix SSA[lb]. In this case, the suffix of Srev that has ωrevc
as a prefix is the k-th lexicographically smallest suffix of Srev. The
character BWTrev[k] is S[SA[lb] + ` + 1] because this is the character
that immediately follows the prefix S[SA[lb]..SA[lb] + `] = cω of suffix
SSA[lb].

• If lb 6= rb and S[SA[lb] + ` + 1] = S[SA[rb] + ` + 1], then each occurrence
of cω in S is followed by the same character a = S[SA[lb] + `+1]. Thus,
each suffix of Srev in the ωrevc-interval [k..k + rb− lb] is preceded by a.
Consequently, BWTrev[q] = a for every q with k ≤ q ≤ k + rb − lb. So in
this case, it is not necessary to know the exact lexicographic order of
the suffixes in the ωrevc-interval.

• If lb 6= rb and S[SA[lb] + ` + 1] 6= S[SA[rb] + ` + 1], then not all the
characters in BWTrev[k..k+rb−lb] are the same and thus the recursive
call bwtrev(k, [lb..rb], ` + 1) determines the lexicographic order of the
suffixes in the ωrevc-interval [k..k + rb− lb] as far as it is needed.

�

Next, we analyze the worst-case time complexity of Algorithm 7.35.

Lemma 7.8.3 The procedure bwtrev is executed with the parameters
(k, [i..j], `), where [i..j] is the ω-interval for some substring ω of S, if and
only if ω is an internal node in the suffix tree ST of S.

Proof We use induction on `. There is just one procedure call with ` = 0,
namely bwtrev(1, [1..n], 0). The interval [1..n] is the ε-interval, where ε de-
notes the empty string. Clearly, the node ε is the root node of the suffix
tree ST, and the root is an internal node. According to the inductive hy-
pothesis, the procedure bwtrev is executed with the parameters (k, [i..j], `),
where [i..j] is the ω-interval for some substring ω of S, if and only if ω is
an internal node in the suffix tree ST of S. For the inductive step, as-
sume that [lb..rb] is one of the intervals returned by the procedure call
getIntervals([i..j]), say the cω-interval. We prove that there is a recursive
procedure call bwtrev(k′, [lb..rb], `+1) if and only if cω is an internal node of
ST. It is clear that cω is an internal node of ST if and only if the cω-interval
contains two different suffixes of S, one having cωa as a prefix and one
having cωb as a prefix, where a and b are different characters from Σ.
Again, we proceed by case analysis:

• If lb = rb, then cω occurs exactly once in S. Hence cω is not an internal
node of ST. Note that Algorithm 7.35 does not invoke bwtrev.

7.8 Bidirectional search 363

10

$

3

aatg$

6

g$

4

aatg$

7

g$

1

c..$

9

g$

2

aatg$

5

g$

8

g$

a
t

aatat t

Figure 7.32: The suffix tree for S = ctaataatg$. Suffix links are depicted by
dotted arrows.

• If S[SA[lb] + `+ 1] = S[SA[rb] + `+ 1], then each occurrence of cω in S is
followed by the same character. Again, cω is not an internal node of
ST and Algorithm 7.35 does not invoke bwtrev.

• If a = S[SA[lb] + `+1] 6= S[SA[rb] + `+1] = b, then cω is an internal node
of ST and Algorithm 7.35 invokes bwtrev(k′, [lb..rb], `+ 1).

�

Lemma 7.8.3 implies that the recursion tree of Algorithm 7.35 coincides
with the suffix link tree SLT of S, defined as follows.

Definition 7.8.4 The suffix link tree SLT of a suffix tree ST has a node ω
for each internal node ω of ST. For each suffix link slink(cω) from cω to ω
in ST, there is an edge ω → cω in SLT.

SLT is indeed a tree: this follows from the fact that each internal node in
ST has exactly one suffix link; cf. [93,123]. Figure 7.32 shows the suffix
tree of the string S = ctaataatg$ and Figure 7.33 shows the corresponding
suffix link tree.

That the recursion tree of Algorithm 7.35 coincides with the suffix link
tree SLT of S can be seen as follows. If the execution of bwtrev(k, [i..j], `)
invokes the recursive call bwtrev(k′, [lb..rb], `+1), where [i..j] is the ω-interval
and [lb..rb] is the cω-interval, then there is a suffix link from node cω to
node ω because both are internal nodes in the suffix tree of S.

Theorem 7.8.5 Algorithm 7.35 has a worst-case time complexity of
O(n log σ).

364 7 Compressed Full-Text Indexes

ǫ

a t

at

aat

taat

Figure 7.33: The suffix link tree for S = ctaataatg$.

Proof According to Lemma 7.8.3, there are as many recursive calls to the
procedure bwtrev as there are internal nodes in the suffix tree ST of S.
Because ST has n leaves and each internal node in ST is branching, the
number of internal nodes is at most n − 1. We use an amortized analysis
to show that the overall number of intervals returned by calls to the pro-
cedure getIntervals is bounded by 2n − 1. Let L denote the concatenation
of all lists returned by procedure calls to getIntervals. For each element
[lb..rb] of L, either

• at least one entry of BWTrev is filled in, or

• there is a recursive call to the procedure bwtrev.

It follows that L has at most 2n− 1 elements because BWTrev has n entries
and there are at most n − 1 recursive calls to the procedure bwtrev. It is
a consequence of this amortized analysis that the overall time taken by
all procedure calls to getIntervals is O(n log σ) because a procedure call to
getIntervals that returns a k-element list takes O(k log σ) time. Clearly, the
theorem follows from this fact. �

Exercise 7.8.6 Given the Burrows-Wheeler transform of a DNA se-
quence, sketch an algorithm that calculates the Burrows-Wheeler trans-
form of the reverse complement of the DNA sequence.

7.8.2 The suffix array of the reverse string

Algorithm 7.35 recursively computes the whole Burrows-Wheeler trans-
formed string BWTrev of Srev, but it cannot be used to calculate the whole
suffix array SArev. This is because an Srev-value can be assigned in only
one of the two base cases of the recursion.

• In the base case lb = rb, the character c = S[pos] is assigned to
BWTrev[k]; see Algorithm 7.35. If c 6= $, then this occurrence of c

7.8 Bidirectional search 365

Algorithm 7.36 Given a partial suffix array, these procedures compute
the whole suffix array SA.
for i← 1 to n do

if SA[i] 6= ⊥ then
j ← SA[i]
k ← LF [i]
while SA[k] = ⊥ do
j ← j − 1
SA[k]← j
k ← LF [k]

initialize an empty stack
for i← 1 to n do
k ← i
while SA[k] = ⊥ do
push(k)
k ← LF [k]

j ← SA[k]
while stack is not empty do
j ← j + 1
SA[pop()]← j

appears at position n − pos in Srev. Thus, SArev[k] = n − pos + 1. If
c = $, then pos = n and $ also appears at position n in Srev. Again,
SArev[k] = n− pos+ 1.

• If lb 6= rb and S[SA[lb] + ` + 1] = S[SA[rb] + ` + 1], then all the charac-
ters in BWTrev[k..k + rb− lb] are the same and the algorithm does not
determine the lexicographic order of the suffixes. In this case, the
values in SArev[k..k + rb− lb] remain unknown.

It follows as a consequence that Algorithm 7.35 fills the suffix array
SArev only partially; in Figure 7.30 (page 360) the computed entries are
underlined. Nevertheless, partial information is better than no informa-
tion.

Completing a partially filled suffix array

Next, we explain how a partially filled suffix array SA of a string7 can be
completed. It should be clear from Section 7.2.2 that the LF -mapping can
not only be used to recover the original string from the BWT, but also its
suffix array; see Exercise 7.2.6. In essence, this is a consequence of the
equation

SA[i] = SA[LF [i]] + 1

(The equation was proven in Lemma 7.2.8.) The LF -mapping, in turn, can
be obtained by Algorithm 7.35 provided that the count array is initialized
by count[c]← C[c] for each c ∈ Σ.

Algorithm 7.36 shows two alternative ways of completing a partially
filled suffix array SA. In a left-to-right scan of the SA array, the pseudo-
code on the left-hand side initiates a new computation whenever it detects
a defined SA-entry (an entry that has already been computed); it follows

7In our context, the string under consideration is Srev.

366 7 Compressed Full-Text Indexes

LF -pointers and fills in SA-entries that have not been computed yet until
another defined SA-entry is reached. The pseudo-code on the right-hand
side also scans the SA array from left to right, but this time it ignores
defined entries. Instead, whenever it finds an undefined entry SA[i], it fol-
lows LF -pointers until an index k is reached with SA[k] 6= ⊥, and it stores
the sequence i, LF (i), . . . , LF q(i) on a stack, where k = LF q+1(i). Clearly,
if SA[k] = j, then the SA-value at index LF q(i)—the topmost element of
the stack—is SA[LF q(i)] = j + 1. After LF q(i) has been popped from the
stack, the subsequent values SA[LF q−1(i)], . . . , SA[LF (i)], SA[i] are similarly
obtained.

7.8.3 The lcp-array of the reverse string

In fact, Algorithm 7.35 can also be used to compute LCPrev. This can
be seen as follows. Suppose Algorithm 7.35 is applied to the ω-interval
[i..j] for some `-length substring ω of S, and let k be the left boundary
of the ωrev-interval in SArev. It is a consequence of Lemma 7.8.1 that the
procedure call bwtrev(k, [i..j], `) correctly computes the boundaries [sq..eq]
of the ωrevcq-intervals in SArev, where c1, . . . , cm are the characters for which
cqω is a substring of S (1 ≤ q ≤ m). By the conditional statement “if list
not empty then LCPrev[k]← ` ”, Algorithm 7.35 assigns the value ` at each
index s2, . . . , sm (but not at index s1). This is correct, i.e., LCPrev[sq] = ` for
2 ≤ q ≤ m, because ωrevcq−1 is a prefix of the suffix at index eq−1 and ωrevcq
is a prefix of the suffix at index sq = eq−1 + 1.

Thus, whenever Algorithm 7.35 fills an entry in the lcp-array LCPrev, it
assigns the correct value. However, the algorithm does not fill LCPrev com-
pletely; in Figure 7.30 (page 360), the computed entries are underlined.
This is because whenever Algorithm 7.35 detects a cω-interval [lb..rb] in
the list returned by getIntervals([i..j]) with lb 6= rb and S[SA[lb] + ` + 1] =
S[SA[rb] + ` + 1], then it does not determine the lexicographic order of
the suffixes in the ωrevc-interval [s..e]. Instead, it fills BWTrev[s..e] with
a’s because each occurrence of cω in S is followed by the same charac-
ter a = S[SA[lb] + ` + 1]. Consequently, if an entry LCPrev[p] is not filled by
Algorithm 7.35, then BWTrev[p− 1] = BWTrev[p].

Completing a partially filled LCP-array

Now we explain how a partially filled LCP-array of a string8 can be com-
pleted. By “partially filled” we mean that the array contains all entries
LCP[i] with BWT[i] 6= BWT[i− 1].

Definition 7.8.7 Suppose 2 ≤ i ≤ n. The value LCP[i] is called reducible if
BWT[i] = BWT[i− 1]; otherwise it is irreducible.

8In our context, the string under consideration is Srev.

7.8 Bidirectional search 367

idx LCP BWT SSA[idx]

i− 1 c SSA[i−1]

i ` c SSA[i]

LF (i− 1) cSSA[i−1]

LF (i) `+ 1 cSSA[i]

Figure 7.34: If BWT[i] = c = BWT[i− 1], then LF (i) = LF (i− 1)+1. It follows
as a consequence that LCP[LF (i)] = LCP[i] + 1 = `+ 1.

So given an array that contains all irreducible LCP-values (and possibly
some reducible values), we wish to compute the whole LCP-array. The
solution is based on the following lemma.

Lemma 7.8.8 A reducible value LCP[i] can be computed by the equation

LCP[i] = LCP[LF (i)]− 1

Proof By definition, LCP[i] = |lcp(SSA[i−1], SSA[i])|. Moreover, BWT[i − 1] =
BWT[i] because LCP[i] is reducible. This implies that the suffixes cSSA[i−1]

and cSSA[i], where c = BWT[i], must occur consecutively in the suffix array,
namely at the indices LF (i− 1) and LF (i); see Figure 7.34. Hence LF (i) =
LF (i− 1) + 1. Consequently,

LCP[LF (i)] = |lcp(SSA[LF (i)−1], SSA[LF (i)])|
= |lcp(SSA[LF (i−1)], SSA[LF (i)])|
= 1 + |lcp(SSA[i−1], SSA[i])|
= 1 + LCP[i]

This proves the lemma. �

Algorithm 7.37 shows pseudo-code for the completion of a partially filled
LCP-array. Because it is very similar to the pseudo-code on the right-hand
side of Algorithm 7.36, we need not explain it in detail.

Exercise 7.8.9 Algorithm 7.36 contains two alternative ways of complet-
ing a partially filled suffix array SA. Is it possible to give an alternative to
Algorithm 7.37 in a similar fashion? If not, provide a counterexample.

Exercise 7.8.10 Is it possible to complete the partial suffix array and the
partial lcp-array (delivered by Algorithm 7.35) simultaneously, starting
only from undefined lcp-values (as in Algorithm 7.37)?

368 7 Compressed Full-Text Indexes

Algorithm 7.37 Given a partial LCP-array that contains all irreducible
LCP-values, this procedure computes the whole LCP-array.

initialize an empty stack
for i← 1 to n do
k ← i
while LCP[k] = ⊥ do
push(k)
k ← LF [k]

`← LCP[k]
while stack is not empty do
`← `− 1
LCP[pop()]← `

LCPrev is a permutation of LCP

In the remainder of this section, we prove the following strong relationship
between LCP and LCPrev.

Lemma 7.8.11 The longest common prefix array LCPrev of Srev is a permu-
tation of the longest common prefix array LCP of S.

Proof We show that each lcp-value occurs as often in LCP as in LCPrev.
Since LCP[n+ 1] = −1 = LCPrev[n+ 1], the boundary value −1 at index n+ 1
can be neglected. Let ` ∈ {1, . . . , n} and define the set M` by M` = {ω | ω is
an `-length substring but not a suffix of S}. We count how many entries in
the array LCP are smaller than `. There are ` proper suffixes of S having a
length ≤ `. For each such suffix SSA[k] we have LCP[k] < `. Any other suffix
has a length greater than ` and hence its `-length prefix belongs to M`.
Let ω ∈ M` and let [i..j] be the ω-interval. Clearly, for all k with i < k ≤ j,
we have LCP[k] ≥ ` because the suffixes SSA[k−1] and SSA[k] share the prefix
ω. By contrast, LCP[i] < ` because ω is not a prefix of SSA[i−1]. Thus, there
are |M`| many entries in the array LCP satisfying LCP[k] < ` and |SSA[k]| > `.
In total, the array LCP has |M`| + ` many entries that are smaller than `.
Analogously, there are |M`+1|+ `+1 many entries in the array LCP that are
smaller than ` + 1, where ` ∈ {1, . . . , n − 1}. Consequently, the lcp-value `
occurs (|M`+1|+`+1)−(|M`|+`) = |M`+1|−|M`|+1 times in the LCP-array. By
the same argument, the lcp-value ` occurs |M rev

`+1| − |M rev
` | + 1 many times

in the array LCPrev, where M rev
` = {ω | ω is an `-length substring but not

a suffix of Srev}. Now the lemma follows from the equality |M`| = |M rev
` |,

which is true because ω ∈M` if and only if ωrev ∈M rev
` . �

Figure 7.35 illustrates the proof of Lemma 7.8.11. The proper suf-
fixes of S with length ≤ 2 occur at the indices 1 and 4 in the (concep-
tual) suffix array, so LCP[1] and LCP[4] are smaller than 2. Furthermore,

7.8 Bidirectional search 369

i LCP SSA[i]

1 −1 $
2 0 atc$
3 2 atgcatc$
4 0 c$
5 1 catc$
6 3 catgcatc$
7 0 gcatc$
8 4 gcatgcatc$
9 0 tc$
10 1 tgcatc$

i LCPrev SrevSA[i]

1 −1 $
2 0 acg$
3 3 acgtacg$
4 0 cg$
5 2 cgtacg$
6 1 ctacgtacg$
7 0 g$
8 1 gtacg$
9 0 tacg$
10 4 tacgtacg$

Figure 7.35: The lcp-arrays of S = gcatgcatc$ and Srev = ctacgtacg$.

we have M2 = {at, ca, gc, tc, tg} and the corresponding entries in the LCP-
array at the indices 2, 5, 7, 9, and 10 are also smaller than 2. So there
are |M2| + 2 = 7 entries of the LCP-array that are smaller than 2. Since
M3 = {atc, atg, cat, gca, tgc}, there are |M3| + 3 = 8 entries of the LCP-array
that are smaller than 3. We conclude that the value 2 occurs 8 − 7 = 1
times in the LCP-array. By the same argument, it occurs only once in
LCPrev. Note that M rev

2 = {ac, cg, ct, gt, ta} and M rev
3 = {acg, cgt, cta, gta, tac}.

7.8.4 The bidirectional search algorithm

This section presents a data structure that supports bidirectional search.

Definition 7.8.12 The bidirectional wavelet index of a string S consists
of

• the backward index, supporting backward search based on the
wavelet tree of the Burrows-Wheeler transformed string BWT of S,
and

• the forward index, supporting backward search on the reverse string
Srev of S (hence forward search on S) based on the wavelet tree of the
Burrows-Wheeler transformed string BWTrev of Srev.

The difficult part is to synchronize the search on both indexes. To see
this, suppose we know the ω-interval [i..j] in the backward index as well as
the ωrev-interval [irev..jrev] in the forward index, where ω is some substring
of S. Given [i..j] and a character c, backwardSearch(c, [i..j]) returns the cω-
interval in the backward index (cf. Algorithm 7.7 on page 302), but it is
unclear how the corresponding interval, the interval of the string (cω)rev =
ωrevc, can be found in the forward index. Conversely, given [irev..jrev] and

370 7 Compressed Full-Text Indexes

i SSA[i]

1 n $

2 l _anele_lepanelen$

3 e _lepanelen$

4 _ anele_lepanelen$

5 p anelen$

6 l e _lepanelen$

7 $ e l_anele_lepanelen$

8 n e le_lepanelen$

9 n e len$

10 l e n$

11 l e panelen$

12 e l_anele_lepanelen$

13 e le _lepanelen$

14 e le n$

15 _ le panelen$

16 e n$

17 a nele_lepanelen$

18 a nelen$

19 e panelen$

i S
rev

SArev [i]

1 e $

2 l _elena_le$

3 a _le$

4 n a_le$

5 n apel_elena_le$

6 l e $

7 p e l _elena_le$

8 _ e l ena_le$

9 n e l enapel_elena_le$

10 l e n a_le$

11 l e n apel_elena_le$

12 e l_elena_le$

13 _ le$

14 e lena_le$

15 e lenapel_elena_le$

16 e na_le$

17 e napel_elena_le$

18 $ nelenapel_elena_le$

19 a pel_elena_le$

Figure 7.36: Bidirectional wavelet index of S = el_anele_lepanelen$,
consisting of the backward index (left) and the forward index
(right).

a character c, backward search returns the cωrev-interval in the forward
index, but it is unclear how the corresponding ωc-interval can be found
in the backward index. Because both cases are symmetric, we will only
deal with the first case. So given the ωrev-interval, we have to find the
ωrevc-interval in the forward index.

As an example, consider the bidirectional wavelet index of the string S =
el_anele_lepanelen$ in Figure 7.36, and the substring ω = e = ωrev.
The e-interval in both indexes is [6..11]. The le-interval in the backward
index is determined by backwardSearch(l, [6..11]) = [13..15] and the task is
to identify the el-interval in the forward index.

All we know is that the suffixes of Srev are lexicographically ordered
in the forward index. In other words, the ωrevc-interval [lbrev..rbrev] is a
subinterval of [irev..jrev] so that (note that |ωrev| = |ω|)

• Srev[SArev[k] + |ω|] < c for all k with irev ≤ k < lbrev,

• Srev[SArev[k] + |ω|] = c for all k with lbrev ≤ k ≤ rbrev,

• Srev[SArev[k] + |ω|] > c for all k with rbrev < k ≤ jrev.

In the example of Figure 7.36,

• Srev[SArev[k] + 1] = $ < l for k = 6,

7.8 Bidirectional search 371

Algorithm 7.38 Given a BWT-interval [i..j] and c ∈ Σ, getBounds([i..j], c)
returns the triple (i′, j′, smaller), where [C[c] + i′..C[c] + j′] is the new BWT-
interval after a backward search step for c, and smaller is the number of
occurrences of characters in BWT[i..j] that are strictly smaller than c.
getBounds([i..j], c)

return getBounds′([i..j], c, [1..σ], 0)

getBounds′([i..j], c, [l..r], smaller)
if l = r then return (i, j, smaller)
else
(a0, b0)← (rank0(B

[l..r], i− 1), rank0(B
[l..r], j))

(a1, b1)← (i− 1− a0, j − b0)
m = b l+r

2
c

if c ≤ Σ[m] then
return getBounds′([a0 + 1..b0], c, [l..m], smaller)

else
return getBounds′([a1 + 1..b1], c, [m+ 1..r], smaller + b0 − a0)

• Srev[SArev[k] + 1] = l for all k with 7 ≤ k ≤ 9,

• Srev[SArev[k] + 1] = n > l for all k with 9 < k ≤ 11.

Unfortunately, we do not know these characters, but if we would know the
number smaller of all occurrences of characters at these positions that
precede c in the alphabet, together with the size of the new cω-interval
[lb..rb] in the backward index, then we could identify the unknown ωrevc-
interval [lbrev..rbrev] by lbrev = irev + smaller and rbrev = lbrev + (rb − lb). In
our example, the knowledge of smaller = 1 and [lb..rb] = [13..15] would yield
the el-interval [6 + 1..(6 + 1) + (15 − 13)] = [7..9]. The key observation is
that the multiset of characters {Srev[SArev[k]+ |ω|] : irev ≤ k ≤ jrev} coincides
with the multiset {BWT[k] : i ≤ k ≤ j}. In the example of Figure 7.36,
{Srev[SArev[k] + 1] : 6 ≤ k ≤ 11} = { $, l, l, l, n, n} = {BWT[k] : 6 ≤ k ≤
11}. In other words, it suffices to determine the number smaller of all
occurrences of characters in the string BWT[i..j] that precede character c
in the alphabet Σ, and the new interval [lb..rb] in the backward index.

Given an ω-interval [i..j] and a character c, Algorithm 7.38 traverses the
wavelet tree of BWT in a top-down fashion and computes the three values
i′ = rankc(i−1)+1, j′ = rankc(j), and smaller. Note that the cω-interval in the
backward index can directly be determined by [lb..rb] = [C[c] + i′..C[c] + j′].
As discussed above, the ωrevc-interval [lbrev..rbrev] in the forward index can
then be computed by lbrev = irev + smaller and rbrev = lbrev + (rb− lb).

We compute the values of i′ = rankl(5) + 1, j′ = rankl(11) and smaller for
the interval [6..11] and the character l by invoking getBounds([6..11], l). This

372 7 Compressed Full-Text Indexes

nle_pl$nnlleee_eaae

1100110111100000000

e_$eee_eaae

10011101111

$

101

$ _

eeeeeaae

11111001

a e

nlplnnll

00100000

nllnnll

1001100

l n

p

getBounds([6..11], [1..7], l)

getBounds([4..8], [5..7], l)

getBounds([3..7], [5..6], l)

Figure 7.37: getBounds([6..11], l) returns the triple (2, 4, 1).

example is illustrated in Figure 7.37. Because l belongs to the second
half Σ[5..7] of the ordered alphabet Σ, the occurrences of l correspond to
ones in the bit vector at the root of the wavelet tree, and they go to the
right child, say node v1, of the root. In order to compute the number of
occurrences of characters in the interval [6..11] that belong to Σ[1..4] and
hence are smaller than l, we compute

(a0, b0) = (rank0(B
[1..7], 6− 1), rank0(B

[1..7], 11)) = (2, 3)

and the number we are searching for is b0 − a0 = 3 − 2 = 1, so we add it
to a variable smaller, which was initialized to 0 at the beginning. Then
we descend to the right child v1 and have to compute the boundaries of
the search interval in the bit vector B[5..7] that corresponds to the search
interval [6..11] in the bit vector B[1..7]. These boundaries are a1 + 1 and b1,
where

(a1, b1) = (rank1(B
[1..7], 6− 1), rank1(B

[1..7], 11)) = (3, 8)

Proceeding recursively, we find that l belongs to the third quarter Σ[5..6]
of Σ, so the occurrences of l correspond to zeros in the bit vector at v1,
and they go to the left child, say node v2, of v1. Again, we compute

(a′0, b
′
0) = (rank0(B

[5..7], 4− 1), rank0(B
[5..7], 8) = (2, 7)

(a′1, b
′
1) = (rank1(B

[5..7], 4− 1)), rank1(B
[5..7], 8) = (1, 1)

The number of occurrences of characters in the string BWT[5..7][4..8] that
belong to Σ[7] = p is b′1 − a′1 = 1 − 1 = 0 and the new search interval in the
bit vector B[5..6] is [a′0 + 1..b′0] = [3..7]. In the third step, we compute

(a′′0, b
′′
0) = (rank0(B

[5..6], 3− 1), rank0(B
[5..6], 7)) = (1, 4)

(a′′1, b
′′
1) = (rank1(B

[5..6], 3− 1), rank1(B
[5..6], 7)) = (1, 3)

7.8 Bidirectional search 373

Algorithm 7.39 Given the ω-interval [i..j] in the backward index and
the ωrev-interval [irev..jrev] in the forward index, the procedure call
backwardSearch(c, [i..j], [irev..jrev]) returns the pair ([lb..rb], [lbrev..rbrev]), where
[lb..rb] is the cω-interval in the backward index and [lbrev..rbrev] is the ωrevc-
interval in the forward index (if cω does not occur in S, it returns ⊥).
backwardSearch(c, [i..j], [irev..jrev])

(i′, j′, smaller)← getBounds([i..j], c)
if i′ ≤ j′ then
lb← C[c] + i′

rb← C[c] + j′

lbrev ← irev + smaller
rbrev ← lbrev + (rb− lb)
return ([lb..rb], [lbrev..rbrev])

else
return ⊥

and find that there are b′′1 − a′′1 = 2 occurrences of the character n and
b′′0 − a′′0 = 3 occurrences of the character l. In the last step, the search
interval in the bit vector B[5..5] is [a′′0 + 1..b′′0] = [2..4]. We have reached a
leaf of the wavelet tree, and BWT[5..5] = llll. So obviously, a′′0 + 1 = 2 is
exactly the value of rankl(5) + 1, and b′′0 = 4 is the value of rankl(11). The
variable smaller = 1 contains the sum of all occurrences of characters in
BWT[6..11] that are smaller than l. All in all, Algorithm 7.38 applied to
the interval [6..11] and the character l returns the triple (2, 4, 1). Algorithm
7.39 uses this triple to compute the le-interval in the backward index by
[lb..rb] = [C[l] + 2..C[l] + 4] = [11 + 2..11 + 4] = [13..15] and the el-interval
[lbrev..rbrev] in the forward index by lbrev = irev + smaller = 6 + 1 = 7 and
rbrev = lbrev + (rb− lb) = 7 + (9− 7) = 9.

The bidirectional search algorithm presented in this section appeared
in [284]. Independently and contemporaneously, [197] presented a sim-
ilar data structure, which they call bi-directional BWT. Their main moti-
vation was short read alignment, so they use bidirectional search to find
approximate matches of relatively short DNA sequences within a whole
genome; see Section 7.9.2. It turns out that the two approaches use the
same basic idea, but a closer look reveals that none is superior to the
other. On the one hand, one search step with the bidirectional wavelet
index takes O(log σ) time while it takes O(σ) time with the bi-directional
BWT. On the other hand, the bi-directional BWT uses less space than the
bidirectional wavelet index.

We should not sweep under the rug the fact that bidirectional search
has a longer history. To the best of our knowledge, research on data
structures supporting bidirectional search in a string started in 1995 with

374 7 Compressed Full-Text Indexes

Stoye’s diploma thesis on affix trees (the English translation appeared
in [300]), and Maaß [208] showed that affix trees can be constructed on-
line in linear time. Basically, the affix tree of a string S comprises both the
suffix tree of S (supporting forward search) and the suffix tree of the re-
verse string Srev (supporting backward search). Strothmann [302] showed
that affix arrays have the same functionality as affix trees, but they re-
quire less than half the space. An affix array combines the suffix arrays
of S and Srev, but it is a complex data structure because the interplay
between the two suffix arrays is rather difficult to implement. A reimple-
mentation of affix arrays is described in [221].

7.9 Approximate string matching

Approximate string matching is the technique of finding substrings of a
long string S (or a collection of strings) that match a pattern P approx-
imately (rather than exactly). Approximate search algorithms are abun-
dant and there is a vast literature on the topic. We shall not discuss
this field in detail, but instead refer to the overview article [236]. Here,
we consider solely the case in which S is fixed and many on-line queries
of the form “Where are all approximate matches of P in S?” must be
answered efficiently. A prime example in bioinformatics is short read
mapping. High-throughput sequencing (or next-generation sequencing)
technologies produce billions of bases in a single run. In their short read
mapping primer [312], Trapnell and Salzberg write:

One of the challenges presented by the new sequencing tech-
nology is the so-called ‘read mapping’ problem. Sequencing
machines made by Illumina of San Diego, Applied Biosystems
(ABI) of Carlsbad, California, and Helicos of Cambridge, Mas-
sachusetts, produce short sequences of 25–100 base pairs (bp),
called ‘reads’, which are sequence fragments read from a longer
DNA molecule present in the sample that is fed into the ma-
chine. In contrast to whole-genome assembly, in which these
reads are assembled together to reconstruct a previously un-
known genome, many of the next-generation sequencing projects
begin with a known, or so-called ‘reference’, genome. In this
case, to make sense of the reads, their positions within the ref-
erence sequence must be determined. This process is known as
aligning or ‘mapping’ the read to the reference.

Short-read mappers are, among others, Bowtie [198], BWA [202], SOAP2
[203], and 2BWT [197]; see e.g. [113,312] for overview articles. In the fol-
lowing, we discuss the basic algorithms used in BWA, Bowtie, and 2BWT.

7.9 Approximate string matching 375

The short read mapping problem is exacerbated by sequencing errors
and variations between the sequenced chromosomes and the reference
genome.9 First, we consider the scenario in which only mismatches are
allowed (Hamming distance) and subsequently address the problem of
also allowing insertions and deletions (edit distance).

7.9.1 Using backward search

Definition 7.9.1 The Hamming distance between two strings S1 and S2

of equal length is the number of positions at which the corresponding
characters are different:

hdist(S1, S2) = |{i | S1[i] 6= S2[i]}|

To put it another way, the Hamming distance measures the minimum
number of substitutions required to change S1 into S2 (or vice versa).

Definition 7.9.2 Let P and S be strings with m = |P | < |S| = n, and let k
be a natural number with k < m. An m-length substring S[i..i +m − 1] is
called a k-mismatch of P in S if hdist(P, S[i..i+m− 1]) ≤ k. The k-mismatch
problem is to find all positions in S at which a k-mismatch of P in S starts.

When k and Σ are small, one can solve the k-mismatch problem by
the following approach. First, generate the so-called Hamming sphere P
of radius k at center P (defined below). Second, use the Aho-Corasick
algorithm from Section 2.5 to find all positions in S at which a pattern
from P starts. The Hamming sphere of radius k at center P is the set

P = {P ′ | hdist(P, P ′) ≤ k}

The number of strings in the Hamming sphere P is

k∑
i=0

(
m

i

)
(|Σ| − 1)i ∈ O(mk|Σ|k)

As an example, consider the pattern P = tact on the alphabet Σ = {a, c, g, t}.
The Hamming sphere of radius k = 1 at center P is the set

{tact, aact, cact, gact, tcct, tgct, ttct, taat, tagt, tatt, taca, tacc, tacg}

Li and Durbin [202] suggested a different solution to the problem. Their
algorithm uses an FM-index to simultaneously find different occurrences
of subpatterns, and it prunes the search space using a lower bound on
the distance.

9Li and Durbin [202] suggest the following number k of differences (mismatches or gaps)
that should be tolerated: for 15-37 bp reads, k equals 2; for 38-63 bp, k = 3; for 64-92
bp, k = 4; for 93-123 bp, k = 5; and for 124-156 bp reads, k = 6.

376 7 Compressed Full-Text Indexes

Algorithm 7.40 The procedure k-mismatch.
procedure k-mismatch(P, j, d, [lb..rb])

if d < 0 then
return ∅

if j = 0 then /* k-mismatches detected */
return {[lb..rb]}
I ← ∅
list← getIntervals([lb..rb])
for each (c, [lb..rb]) in list do

if P [j] = c then
I ← I ∪ k-mismatch(P, j − 1, d, [lb..rb])

else /* substitution of P [j] with c */
I ← I ∪ k-mismatch(P, j − 1, d− 1, [lb..rb])

return I

Algorithm 7.40 implements the approach, but it does not prune the
search space. The procedure call k-mismatch(P,m, k, [1..n]) returns all k-
mismatches of P in S. Let us illustrate the algorithm for k = 1. For each
position j in P , it uses backward search to find the P [j + 1..m]-interval,
generates all bP [j+1..m]-intervals (where b can be any character except $),
and for each such interval it continues the backward search to find the
P [1..j−1]bP [j+1..m]-interval. As an example, consider the pattern P = tact
and the full-text index of the string S = ctaataatg$ shown on the left-hand
side of Figure 7.38. For the position j = 4, the algorithm generates the b-
interval of every character b ∈ {a, c, g, t}, and with each interval it continues
the backward search to find the tacb-interval. In other words, it searches
for taca, tacc, tacg, and tact. Only the recursive search for tact still allows
for one mismatch; in the other cases the algorithm searches for the exact
phrases taca, tacc, and tacg (in all three cases, the backward search stops
after one step because neither ca nor cc nor cg are substrings of S). In
case j = 3, the algorithm generates the at-interval [4..5] and the ct-interval
[6..6]. The latter results in the recursive call k-mismatch(tact, 2, 1, [6..6]);
since getIntervals([6..6]) returns an empty list, the search stops here. The
former results in the recursive call k-mismatch(tact, 2, 0, [4..5]), which leads
to the output I = {[8..9]}. This means that there are two 1-mismatches of
P in S, namely starting at the positions SA[8] = 2 and SA[9] = 5.

Algorithm 7.40 can be extended in such a way that it can deal with
insertions and deletions. To be precise, the modified algorithm solves the
k-differences problem, which we formally define below.

7.9 Approximate string matching 377

i SA BWT SSA[i]

1 10 g $
2 3 t aataatg$
3 6 t aatg$
4 4 a ataatg$
5 7 a atg$
6 1 $ ctaataatg$
7 9 t g$
8 2 c taataatg$
9 5 a taatg$
10 8 a tg$

i BWTrev SrevSArev [i]

1 c $
2 t aataatc$
3 t aatc$
4 a ataatc$
5 a atc$
6 t c$
7 $ gtaataatc$
8 g taataatc$
9 a taatc$
10 a tc$

Figure 7.38: Left-hand side: suffix array SA and BWT of the string S =
ctaataatg$ (the backward index). Right-hand side: Burrows-
Wheeler transform BWTrev of Srev = gtaataatc$ (the forward
index).

Definition 7.9.3 Given S1, S2 ∈ Σ∗, we write S1 → S2 if

• S2 can be obtained from S1 by replacing one occurrence of x ∈ Σ by
y ∈ Σ, i.e., S1 = uxv and S2 = uyv (substitution),

• S2 can be obtained from S1 by inserting one occurrence of y ∈ Σ, i.e.,
S1 = uv and S2 = uyv (insertion),

• S2 can be obtained from S1 by deleting one occurrence of x ∈ Σ, i.e.,
S1 = uxv and S2 = uv (deletion).

In what follows, the term indel is used to mean an insertion or a dele-
tion; substitutions and indels are collectively referred to as edit operations.

Furthermore, we write S1 →k S2 if S1 can be transformed into S2 by a
sequence of k ∈ N edit operations.

Definition 7.9.4 The edit distance (or Levenshtein distance) between two
strings S1 and S2 is the minimum number of edit operations needed to
transform S1 into S2. Formally,

edist(S1, S2) = min{k | S1 →k S2}

Definition 7.9.5 Let P and S be strings with m = |P | < |S| = n, and
let k be a natural number with k < m. A substring S[i..j] is called an

378 7 Compressed Full-Text Indexes

Algorithm 7.41 The procedure call k-differences(P,m, k, [1..n]) finds all ap-
proximate occurrencees of P in S, using the array Mlr.
procedure k-differences(P, j, d, [lb..rb])

if d < Mlr[j] then /* Mlr[j] is a lower bound on the remaining differences */
return ∅

if j = 0 then /* approximate occurrencees of P in S detected */
return {[lb..rb]}
I ← ∅
I ← I ∪ k-differences(P, j − 1, d− 1, [lb..rb]) /* deletion of P [j] */
list← getIntervals([lb..rb])
for each (c, [lb..rb]) in list do
I ← I ∪ k-differences(P, j, d− 1, [lb..rb]) /* insertion of c */
if P [j] = c then
I ← I ∪ k-differences(P, j − 1, d, [lb..rb])

else /* substitution of P [j] with c */
I ← I ∪ k-differences(P, j − 1, d− 1, [lb..rb])

return I

approximate occurrence of P in S if edist(P, S[i..j]) ≤ k. The k-differences
problem is to find all positions in S at which an approximate occurrence
of P in S starts.

Algorithm 7.41 solves the k-differences problem. In the first if-then
statement, it uses a lower bound on the edit distance that can be used to
prune the search space. To derive the lower bound, we use the following
definition, which is motivated by Ehrenfeucht and Haussler’s [84] notion
of compatible markings. As a side remark: Ukkonen [314] as well as Chang
and Lawler [54] used this technique in fast approximate string matching
algorithms.

Definition 7.9.6 For a string S of length n and a pattern P of length m,
there is a unique left-to-right partition P = w1c1w2c2 . . . wkckwk+1 of P w.r.t. S
so that each wi is a substring of S but wici is not. The characters c1, . . . , ck
are the marked characters and the left-to-right marking

Mlr(P, S) = {pi | pi =
i∑

j=1

|ωjcj|}

is the set of positions at which the marked characters appear in P .

As an example, consider the pattern P = ttaatt and the string S =
ctaataatg$; see Figure 7.38 (page 377). The left-to-right partition consists
of w1 = t, c1 = t, w2 = aat, c2 = t, and w3 = ε. Therefore, Mlr(P, S) = {2, 6}.

7.9 Approximate string matching 379

Lemma 7.9.7 If |Mlr(P, S)| = k, then no substring of S matches P with less
than k differences.

Proof Let P = w1c1w2c2 . . . wkckwk+1 be the left-to-right partition of P w.r.t.
S. We show by finite induction on d, 1 ≤ d ≤ k, that no substring of S
matches the prefix w1c1 . . . wdcd of P with less than d differences. In the
base case d = 1, we know that the longest substring of S that matches a
prefix of P is w1. Thus, no substring of S exactly matches the prefix w1c1
of P . In the inductive step, consider d with 2 ≤ d ≤ k. According to the
inductive hypothesis, no substring of S matches the prefix w1c1 . . . wd−1cd−1

of P with less than d − 1 differences. The longest substring of S that
matches a prefix of wdcd . . . wkckwk+1 has length |wd|. Therefore, a substring
of S may match w1c1 . . . wd−1cd−1wd with d− 1 differences, but no substring
of S can match w1c1 . . . wd−1cd−1wdcd with d − 1 differences (an exact match
of a substring of S with a suffix of P that starts at or before position pd−1

must end before position pd in P). This proves the lemma. �
Definition 7.9.8 Given S and P , let the array Mlr of size m be defined by

Mlr[j] = |{pi ≤ j | pi ∈Mlr(P, S)}|

for all j with 1 ≤ j ≤ m.

Continuing our example from above, we have Mlr = [0, 1, 1, 1, 1, 2].

Corollary 7.9.9 If Mlr[j] = d, then no substring of S matches P [1..j] with
less than d differences.

Proof Since Mlr[j] = d, the left-to-right partition P = w1c1 . . . wkckwk+1 of P
w.r.t. S restricted to the first j characters is P [1..j] = w1c1 . . . wdcdw, where
w is a prefix of wd+1. It is readily verified that the left-to-right partition of
P [1..j] w.r.t. S coincides with w1c1 . . . wdcdw. Thus, the corollary immedi-
ately follows from Lemma 7.9.7. �

According to the preceding corollary, the backward search in Algorithm
7.41 can be stopped when Mlr[j] is larger than the number of tolerated
mismatches. This criterion effectively prunes the search space without
sacrificing the correctness of the algorithm. Of course, we still have to
find a way to compute Mlr efficiently. Li and Durbin [202] used the for-
ward index for this purpose; see Exercise 7.9.10. An alternative is to
use matching statistics, which can be computed space efficiently with the
balanced parentheses sequence of the LCP-array; see Exercise 7.9.11.

Exercise 7.9.10 Give pseudo-code of an algorithm that computes the
Mlr-array based on BWTrev, the Burrows-Wheeler transform of Srev. Ana-
lyze the run-time of the algorithm.

Exercise 7.9.11 Prove that Algorithm 7.42 correctly calculates the array
Mlr and analyze its worst-case time complexity.

380 7 Compressed Full-Text Indexes

Algorithm 7.42 The procedure calcMlr(P) computes the Mlr-array based
on the BWT of S.

compute the matching statistics ms of P w.r.t. S by Alg. 7.25 (page 337)
m← |P |
k ← 0
j ← 1
flag ← true
while j ≤ m do

if flag = true then
for i = j to j +ms[j]− 1 do
Mlr[i]← k

j ← j +ms[j]
flag ← false

else
k ← k + 1
Mlr[j]← k
j ← j + 1
flag ← true

7.9.2 Using bidirectional search

During the development of the tool Bowtie, Langmead et al. [198] observed
that a similar approach as in Algorithm 7.40 suffered from excessive back-
tracking. They write:

Backtracking scenarios play out within the context of a stack
structure that grows when a new substitution is introduced and
shrinks when the aligner rejects all candidate alignments for the
substitutions currently on the stack.

At first glance, there is no stack in Algorithm 7.40, but it is implicitly
there: when the procedure is called, the program’s runtime environment
keeps track of the various instances of the procedure using a call stack.
Bowtie mitigates excessive backtracking using two indexes that support
backward and forward search (but without synchronization). We use the
1-mismatch problem to convey the flavor of the method. The mismatch
(if there is one at all) either occurs (a) in the first half or (b) in the second
half of the pattern. Let s = bm

2
c.

(a) In this case, the second half P [s + 1..m] of the pattern must match
exactly, and the procedure call backwardSearch(P [s+1..m]) returns the
P [s+1..m]-interval [lb..rb] (if it exists). It then tries to extend this exact
match to the left, allowing for one mismatch. This is exactly what the
procedure k-mismatch(P, s, 1, [lb..rb]) does.

7.9 Approximate string matching 381

(b) In this case, the first half P [1..s] of the pattern must match exactly,
and the P [1..s]-interval is computed by a forward search. This time,
it tries to extend the exact match to the right, allowing for one mis-
match.

Let us compare the approach with Algorithm 7.40. In case k = 1, Al-
gorithm 7.40 proceeds as follows: For each position j in P , it uses a
backward search to find the P [j + 1..m]-interval, generates all bP [j + 1..m]-
intervals (where b can be any character except $), and for each such in-
terval it continues the backward search to find the P [1..j − 1]bP [j + 1..m]-
interval. If there is no 1-mismatch of P in S, all searches eventually end
up with a dead end. Of course, the same is true for the method described
above but starting with a rather long exact match often speeds up the
search. This is because the P [s + 1..m]-interval (P [1..s]-interval, respec-
tively) is usually small (or even empty), and there is a fair chance that the
search will stop after a few more steps.

However, a generalization of the method to more than one mismatch
requires the ability to search bidirectionally for a pattern. Let us consider
the case k = 2 to see why this is so. We split the pattern into three
parts of (almost) equal size. There are six different ways to distribute two
mismatches:

(a) 200 (b) 110 (c) 020 (d) 011 (e) 002 (f) 101

Cases (a)–(c) can be handled by a backward search, where at least the last
part of the pattern must match exactly, and cases (d)–(e) can be handled
by a forward search, where at least the first part of the pattern must
match exactly. By contrast, if one starts with the middle of the pattern in
case (f), then one must be able to search bidirectionally as explained in
Section 7.8.4. And this is exactly what the software tool 2BWT [197] does.

In the explanation below, the pattern P is divided into the three parts
P [1..s1], P [s1 + 1..s2], and P [s2 + 1..m], where s1 = bm3 c and s2 = m− s1.

(a)−(c) The algorithm first determines the P [s2 + 1..m]-interval [lb..rb] by
backward search. Then, the procedure call k-mismatch(P, s2, 2, [lb..rb])
delivers the set I of all intervals [p..q] with the property: for every r
with p ≤ r ≤ q, a 2-mismatch P of P in S starts at position SA[r], and
P [s2 + 1..m] = P [s2 + 1..m].

(d) First, the algorithm determines the P [1..s1]-interval by a forward search.
Second, it tries to extend this exact match to the middle of the pat-
tern, allowing for one mismatch. Third, for every 1-mismatch P of
P [1..s2] in S obtained in this way, it tries to extend the match to the
last part, again allowing for one mismatch.

382 7 Compressed Full-Text Indexes

(e) The algorithm determines the P [1..s2]-interval [lb..rb] by a forward
search and tries to extend this exact match to the last part of P ,
allowing for two mismatches.

(f) The algorithm determines the P [s1+1..s2]-interval by a forward search.
Continuing the forward search, it tries to extend this exact match to
the last part of P , allowing for one mismatch. At that point in time,
for every 1-mismatch P of P [s1 + 1..m] in S obtained in this way, the
forward search delivers the P

rev
-interval [lbrev..rbrev] in the forward

index and the P -interval [lb..rb] in the backward index. Then, the
procedure call k-mismatch(P, s1, 1, [lb..rb]) completes the job.

As an example, we solve the 2-mismatch problem for the pattern P =
ttaatt and the string S = ctaataatg$; see Figure 7.38 (page 377). The pattern
is divided into the three parts tt, aa, and tt. The algorithm starts with the
last part and searches backwards for tt. Because there is no exact match
of tt with a substring of S, there is no 2-mismatch of the types (a)–(c).
Then, the algorithm searches for the first part of P in forward direction.
Again, this search fails and we conclude that there is no 2-mismatch of
the types (d)–(e). When the algorithm searches for the middle part aa of
P , it finds the aa-interval [2..3] (both in the forward and backward index).
Continuing the forward search, it detects the 1-mismatches aata and aatg
of aatt in S. Backward search with the aata-interval [2..2] yields the 2-
mismatch ctaata of P in S, which starts at position SA[6] = 1. Similarly,
starting with the aatg-interval [3..3], it finds the 2-mismatch ataatg, which
begins at position SA[4] = 4 in S.

Pseudo-code of the algorithm described above can be found in Algorithm
7.43. Apart from the procedure backwardSearch (Algorithm 7.8 on page
303), it uses the following procedures:

• forwardSearch(c, [lb..rb], [lbrev..rbrev]): cf. Algorithm 7.39 (page 373).
Input: character c, the ω-interval [lb..rb] in the backward index, and
the ωrev-interval [lbrev..rbrev] in the forward index.
Output: the ωc-interval in the backward index and the cωrev-interval
in the forward index.

• forwardSearch(P [i..j], [lb..rb], [lbrev..rbrev])
Input: string P [i..j], the ω-interval [lb..rb] in the backward index, and
the ωrev-interval [lbrev..rbrev] in the forward index.
Output: the ωP [i..j]-interval in the backward index as well as the
P [i..j]revωrev-interval in the forward index.

• k-mismatch(P, j, d, [lb..rb]): cf. Algorithm 7.40 (page 376).
Input: pattern P , a position j in P , number d of allowed mismatches,
and the ω-interval [lb..rb].
Output: the set I of all intervals [p..q] so that S[SA[r]..SA[r] + j− 1] is a

7.9 Approximate string matching 383

Algorithm 7.43 This procedure finds all 2-mismatches of P in S.
procedure 2-mismatch(P)
s1 ← bm3 c
s2 ← m− s1
I ← ∅
/* Cases (a)–(c) */
[lb..rb]← backwardSearch(P [s2 + 1..m])
if [lb..rb] 6= ⊥ then
I ← k-mismatch(P, s2, 2, [lb..rb])

/* Case (d) */
([lb..rb], [lbrev..rbrev])← forwardSearch(P [1..s1], [1..n], [1..n])
if ([lb..rb], [lbrev..rbrev]) 6= ⊥ then
F ← k-mismatchF (P, s1 + 1, s2, 1, [lb..rb], [lb

rev..rbrev])
for each ([lb..rb], [lbrev..rbrev]) ∈ F do
I ← I ∪ k-mismatchF (P, s2 + 1,m, 1, [lb..rb], [lbrev..rbrev])

/* Case (e), note that [lb..rb] is still the P [1..s1]-interval */
([lb..rb], [lbrev..rbrev])← forwardSearch(P [s1 + 1..s2], [lb..rb], [lb

rev..rbrev])
if ([lb..rb], [lbrev..rbrev]) 6= ⊥ then
I ← I ∪ k-mismatchF (P, s2 + 1,m, 2, [lb..rb], [lbrev..rbrev])

/* Case (f) */
([lb..rb], [lbrev..rbrev])← forwardSearch(P [s1 + 1..s2], [1..n], [1..n])
if ([lb..rb], [lbrev..rbrev]) 6= ⊥ then
F ← k-mismatchF (P, s2 + 1,m, 1, [lb..rb], [lbrev..rbrev])
for each ([lb..rb], [lbrev..rbrev]) ∈ F do
I ← I ∪ k-mismatch(P, s1, 1, [lb..rb])

return I

d-mismatch of P [1..j] and S[SA[r] + j..SA[r] + j + |ω| − 1] = ω for every r
with p ≤ r ≤ q.

• k-mismatchF (P, i, j, d, [lb..rb], [lbrev..rbrev]): cf. Algorithm 7.44.
Input: pattern P , positions i and j in P with i ≤ j, number d of
allowed mismatches, the ω-interval [lb..rb] in the backward index, and
the ωrev-interval [lbrev..rbrev] in the forward index.
Output: the set I of all pairs ([p..q], [prev..qrev]) of intervals so that
S[SA[r]..SA[r] + |ω| − 1] = ω and S[SA[r] + |ω|..SA[r] + |ω| + (j − i)] is a
d-mismatch of P [i..j] for every r with p ≤ r ≤ q; the interval [prev..qrev]
has an analogous property.

Exercise 7.9.12 For each c ∈ Σ \ {$}, the for-loop in Algorithm 7.44 per-
forms a forward search step. Give pseudo-code of a procedure that carries
out these steps simultaneously by one top-down traversal of the wavelet
tree; cf. procedure getIntervals presented in Algorithm 7.16 (page 316).

384 7 Compressed Full-Text Indexes

Algorithm 7.44 The procedure k-mismatchF .
procedure k-mismatchF (P, i, j, d, [lb..rb], [lbrev..rbrev])

if d < 0 then
return ∅

if i = j + 1 then
return {[lb..rb]}
I ← ∅
for each c ∈ Σ \ {$} do
([lb..rb], [lbrev..rbrev])← forwardSearch(c, [lb..rb], [lbrev..rbrev])
if ([lb..rb], [lbrev..rbrev]) 6= ⊥ then /* lb ≤ rb */

if c = P [i] then
I ← I ∪ k-mismatchF (P, i+ 1, j, d, [lb..rb], [lbrev..rbrev])

else
I ← I ∪ k-mismatchF (P, i+ 1, j, d− 1, [lb..rb], [lbrev..rbrev])

return I

The above methodology can be generalized to handle three or more mis-
matches as well as indels; see [197].

The preceding algorithm can be viewed as an instance of the seed-and-
extend paradigm. A seed-and-extend algorithm reduces an approximate
matching problem (like the k-mismatches problem, the k-differences prob-
lem, or the problem of finding degenerate repeats [195]) to an exact match-
ing problem. It involves two steps:

• identifying exact matches (or repeats) of a certain minimum length—
these are the seeds;

• finding inexact matches (or repeats) by extending these seeds.

In the k-differences problem, for example, one can partition the pattern P
into consecutive regions of length⌊ m

k + 1

⌋
and use these regions as seeds; see [23,139].

Chapter 8
Sequence Alignment

In this chapter, we discuss methods to measure how similar biological
sequences are. In modern molecular biology, this is important because
of the, as Dan Gusfield [139] calls it, “first fact of biological sequence
analysis:”

In biomolecular sequences (DNA, RNA, or amino acid sequences),
high sequence similarity usually implies significant functional
or structural similarity.

To understand why this is so, we need to know the basic principles of evo-
lution. Evolution is broadly described as the theory that all life on earth
is descended from a single common ancestor. Genes in two species are
homologous if the same gene was present in their last common ancestor.
The term homolog may apply to the relationship between genes separated
(a) by the event of speciation or (b) by the event of duplication. In case
(a), the genes are orthologs. Normally, orthologs retain the same function
in the course of evolution. The identification of orthologs is critical for a
reliable prediction of gene function in newly sequenced genomes. In case
(b), the genes are paralogs. Paralogs evolve new functions, usually related
to the original one. This is possible because after duplication there are
two copies of the same gene, and mutations altering the product of one
copy are not harmful to the organism as long as the other copy functions
properly (this paradigm of protein evolution is often called “duplication
with modification”).

Sequence alignment allows us to measure sequence similarity. David
Mount [227] introduces it as follows:

Sequence alignment is the procedure of comparing two (pair-
wise alignment) or more (multiple alignment) sequences by
searching for a series of individual characters or character pat-
terns that are in the same order in the sequences. Two se-
quences are aligned by writing them across a page in rows.

386 8 Sequence Alignment

Identical or similar characters are placed in the same column,
and nonidentical characters can either be placed in the same
column as a mismatch or opposite a gap in the other sequence.
In an optimal alignment, nonidentical characters and gaps are
placed to bring as many identical or similar characters as possi-
ble into vertical register. Sequences that can readily be aligned
in this manner are said to be similar.

Sequence alignment is central in bioinformatics. As mentioned above,
one distinguishes between pairwise and multiple alignment. The former
will be discussed in Section 8.1 and the latter is dealt with in Section 8.2.
Moreover. there are two types of sequence alignment: global and local.
Global alignments form the basis of phylogenetic inference (see Chap-
ter 10) and comparative genomics, whereas similarity detected in a local
alignment is generally interpreted as structural/functional closeness. In
this book, we will focus on global alignment methods.

8.1 Pairwise alignment

In the following, let S1 and S2 be strings on the alphabet Σ of length n1 and
n2, respectively. The formal definition of an alignment between S1 and S2

reads as follows.

Definition 8.1.1 A global alignment between S1 and S2 is a (2× n) matrix
A so that:

1. A(i, j) ∈ Σ ∪ {−}, where − is a special gap symbol not occurring in Σ.

2. After removal of all gap symbols the first row of A equals S1 and the
second row of A equals S2.

3. No column of A consists solely of gap symbols.

Note that condition (2) implies that n ≥ max{n1, n2}, while condition (3)
has n ≤ n1 + n2 as a consequence. In fact, for n1 ≥ n2 a shortest possible
alignment between S1 and S2 is the alignment(

S1[1] S1[2] . . . S1[n2] S
1[n2 + 1] . . . S1[n1]

S2[1] S2[2] . . . S2[n2] - . . . -

)
of length n = n1 = max{n1, n2}, while a longest possible alignment between
S1 and S2 is the following alignment of length n = n1 + n2:(

S1[1] S1[2] . . . S1[n1] - - . . . -
- - . . . - S2[1] S2[2] . . . S2[n2]

)

8.1 Pairwise alignment 387

(
a g g c t g a
a g g g g a a

) (
a g g c t g a -
a g g - g g a a

)

Figure 8.1: Two alignments of the strings S1 = aggctga and S2 = aggggaa.

In what follows, we will denote the upper row of an alignment A of length
n by x1, x2, . . . , xn and the lower row by y1, y2, . . . , yn. That is,

A =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
The j-th column of A is called a

• match (identity) if xj, yj ∈ Σ with xj = yj,

• substitution (replacement) if xj, yj ∈ Σ with xj 6= yj,

• insertion if xj = - and yj ∈ Σ,

• deletion if xj ∈ Σ and yj = -.

We will use the term indels as shorthand for insertions and deletions.
As an example, consider the two alignments of the strings S1 = aggctga

and S2 = aggggaa in Figure 8.1. Which one is better? To answer this
question, we need a measurement that allows us to assess the quality of
an alignment. Usually, one of the following two methods is used for this
purpose:

1. Minimum distance method: given a cost (distance) function δ, find
an alignment of minimum cost (distance).

2. Maximum similarity method: given a similarity function σ, find an
alignment of maximum similarity score.

Of course, the functions have to satisfy certain properties. We shall see
later that there is a duality between the two methods (for global align-
ments, but not for local alignments).

8.1.1 Distance methods

We start our considerations with functions that assign the same cost r to
each substitution and assign the same cost d to each indel. This makes
sense for DNA sequences but hardly for amino acid sequences.

388 8 Sequence Alignment

Definition 8.1.2 An operation-weighted cost function

δ : (Σ ∪ {−})× (Σ ∪ {−}) \ {(-,-)} → R≥0

assigns to each pair (x, y) the following value:

• δ(x, y) = 0 if x = y (match),

• δ(x, y) = r > 0 if x, y ∈ Σ with x 6= y (substitution),

• δ(x, y) = d > 0 if x = - and y ∈ Σ or x ∈ Σ and y = - (indel).

We will also use the notation δ(match) = 0, δ(sub) = r, and δ(indel) = d.

Definition 8.1.3 The cost of an alignment

A =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
of two strings S1 and S2 for the cost function δ is

δ(A) =
n∑
i=1

δ(xi, yi)

An alignment Aopt of S1 and S2 is optimal for the cost function δ if

δ(Aopt) = min{δ(A) | A is an alignment of S1 and S2}

We remark that a cost function δ as defined in Definition 8.1.2 satisfies
the following metric axioms:

• δ(x, y) = 0 if and only if x = y (identity of indiscernibles)

• δ(x, y) = δ(y, x) (symmetry)

Therefore, δ would be a distance function if it would satisfy the triangle
inequality δ(x, y) ≤ δ(x, z) + δ(z, y). However, in general, this need not be
the case. For instance, if 2d < r, then for x, y ∈ Σ with x 6= y, we have

δ(x, y) = r > 2d = δ(x,-) + δ(-, y)

In other words, in an alignment the deletion of x followed by the insertion
of y is cheaper than the substitution of x by y; thus, no optimal alignment
can have a substitution. To avoid such cases, we will tacitly assume that δ
is a distance function, i.e., it also satisfies the triangle inequality. Exercise
8.1.4 asks you to prove that this is the case if and only if r ≤ 2d.

Exercise 8.1.4 Let δ be a cost function with δ(match) = 0, δ(sub) = r > 0,
and δ(indel) = d > 0. Show that δ is a distance function if and only if r ≤ 2d.

8.1 Pairwise alignment 389

For example, the function δ that assigns the same cost 1 to each substi-
tution and indel (so δ(match) = 0, δ(sub) = 1, and δ(indel) = 1) is a distance
function. It will henceforth be called Levenshtein costs.

Both alignments in Figure 8.1 have cost 3 for Levenshtein costs.
The next lemma states that a part of an optimal alignment between two

strings S1 and S2 is itself an optimal alignment of certain substrings of S1

and S2.

Lemma 8.1.5 Let Aopt be an optimal alignment between the two strings S1

and S2. Let Ā be a part of Aopt that aligns a substring S1[i..j] of S1 with a
substring S2[k..l] of S2. Then Ā is an optimal alignment of S1[i..j] and S2[k..l].

Proof For a proof by contradiction, suppose that Ā is not an optimal
alignment of S1[i..j] and S2[k..l]. This means that δ(Ā) > δ(Āopt), where
Āopt is an optimal alignment of S1[i..j] and S2[k..l]. However, Āopt can be
substituted for Ā in Aopt, decreasing the cost of Aopt. Thus, Aopt is not an
optimal alignment of S1 and S2, a contradiction. �

We shall see that an optimal alignment between S1 and S2 can be ob-
tained by successively computing the minimum costs of aligning prefixes
of S1 and S2, respectively.

Definition 8.1.6 Given a cost function δ and two strings S1 and S2 of
length n1 and n2, respectively, we define for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2:

D(i, j) = min{δ(A) | A is an alignment of S1[1..i] and S2[1..j]}

In the special case i = 0, the alignment of S1[1..i] = ε and S2[1..j] consists
of j insertions. Hence D(0, j) = j · d. Analogously, we obtain D(i, 0) = i · d.
Theorem 8.1.7 states how D(i, j) can be calculated for i 6= 0 and j 6= 0.

Theorem 8.1.7 For a cost function δ with δ(match) = 0, δ(sub) = r > 0, and
δ(indel) = d > 0, we have

D(0, 0) = 0

D(i, 0) = i · d
D(0, j) = j · d

D(i, j) = min

D(i− 1, j) + d
D(i, j − 1) + d
D(i− 1, j − 1) + δ(S1[i], S2[j])

for each 1 < i ≤ n1 and 1 < j ≤ n2, where δ(S1[i], S2[j]) = r if S1[i] 6= S2[j] and
δ(S1[i], S2[j]) = 0 if S1[i] = S2[j].

390 8 Sequence Alignment

Proof The cases i = 0 or j = 0 (or both) are obvious. So suppose that
1 < i ≤ n1 and 1 < j ≤ n2. Let

Aopt =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
be an optimal alignment between the two strings S1[1..i] and S2[1..j]. By
Definition 8.1.6, D(i, j) = δ(Aopt). Let

A =

(
x1 x2 x3 . . . xn−1

y1 y2 y3 . . . yn−1

)
• If Aopt ends with an insertion, i.e., xn = - and yn = S2[j], then A is an

optimal alignment between the two strings S1[1..i] and S2[1..j − 1] by
Lemma 8.1.5. That is, D(i, j − 1) = δ(A). Therefore, D(i, j) = δ(Aopt) =
δ(A) + d = D(i, j − 1) + d.

• If Aopt ends with a deletion, i.e., xn = S1[i] and yn = -, then A is an
optimal alignment between the strings S1[1..i − 1] and S2[1..j]. Thus,
D(i, j) = δ(Aopt) = δ(A) + d = D(i− 1, j) + d.

• If Aopt ends with a match or a substitution, i.e., xn = S1[i] and yn =
S2[j], then A is an optimal alignment between the two strings S1[1..i−
1] and S2[1..j−1]. Consequently, D(i, j) = δ(Aopt) = δ(A)+δ(S1[i], S2[j]) =
D(i− 1, j − 1) + δ(S1[i], S2[j]).

Of course we do not know an optimal alignment, but such an alignment
must end either with an insertion or a deletion or a substitution, and we
know the cost in each of these cases. Because an optimal alignment has
the least cost of these three possibilities, the theorem is proven. �

The recurrence relation of Theorem 8.1.7 can be solved by a dynamic
programming algorithm that tabulates the values D(i, j) in a matrix D.
The algorithm starts with solutions to the simplest subproblems i = 0 or
j = 0 (the first row and the first column of D). Then, it fills the matrix
row by row (or column by column). Figure 8.2 depicts an example. In
the bioinformatics community, the dynamic programming algorithm is
usually referred to as “the Needleman and Wunsch” algorithm because
Needleman and Wunsch [240] were the first to devise such an algorithm
(although their algorithm has some limitations). In the computer science
community this algorithm is often attributed to Wagner and Fisher [323].
For more details on dynamic programming algorithms in computational
biology and their history, the reader is referred to [326]. An algebraic style
of dynamic programming over sequence data is described in [122,281].

In general, dynamic programming is a method of solving complex prob-
lems (often optimization problems) by breaking them down into simpler
steps. It is applicable to problems that exhibit the properties of optimal
substructure and overlapping subproblems. A problem has

8.1 Pairwise alignment 391

c g a c a c

D 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

g 1 1 1 1 2 3 4 5

t 2 2 2 2 2 3 4 5

a 3 3 3 3 2 3 3 4

t 4 4 4 4 3 3 4 4

c 5 5 4 5 4 3 4 4

Figure 8.2: The D-matrix of the strings S1 = gtatc and S2 = cgacac for Lev-
enshtein costs.

• optimal substructure (or satisfies Richard Bellman’s Principle of Opti-
mality [34]) if an optimal solution can be constructed efficiently from
optimal solutions to its subproblems,

• overlapping subproblems if the problem can be broken down into
subproblems that are reused several times.

The minimum cost of aligning S1 and S2 can be found at entry D(n1, n2)
in the D-matrix. For example, an optimal global alignment between the
strings S1 = gtatc and S2 = cgacac has cost 4; see Figure 8.2. Given the ma-
trix D, an optimal alignment can be obtained by a traceback from the en-
try D(n1, n2) to the entry D(0, 0). It is instructive to use a graph-theoretical
formulation of the problem.

Definition 8.1.8 The alignment graph G = (V,E) of two strings S1 and S2

is an edge labeled directed graph with V = {(i, j) | 0 ≤ i ≤ n1, 0 ≤ j ≤ n2}
and E consists of the following edges:

• For every i and j with 1 ≤ i ≤ n1, 0 ≤ j ≤ n2, there is a deletion edge

(i− 1, j)
(S1[i],-)

(i, j)

The deletion edge is optimal if D(i, j) = D(i− 1, j) + d.

• For every i and j with 0 ≤ i ≤ n1, 1 ≤ j ≤ n2, there is an insertion edge

(i, j − 1)
(-,S2[j])

(i, j)

The insertion edge is optimal if D(i, j) = D(i, j − 1) + d.

392 8 Sequence Alignment

(i,j−1) (i,j)

(i−1,j−1) (i−1,j)

(S1[i],S2[j])

(-,S2[j])

(-,S2[j])

(S1[i],-)(S1[i],-)

Figure 8.3: Alignment graph (cut-out).

g

t

a

t

c

c g a c a c
0 1 2 3 4 5 6

1 1 1 2 3 4 5

2 2 2 2 3 4 5

3 3 3 2 3 3 4

4 4 4 3 3 4 4

5 4 5 4 3 4 4

Figure 8.4: Optimal edges in the alignment graph of S1 = gtatc and S2 =
cgacac. Following thick edges from node (0, 0) to node (n1, n2)
yields an optimal path.

• For every i and j with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, there is a substitution
edge

(i− 1, j − 1)
(S1[i],S2[j])

(i, j)

The substitution edge is optimal if D(i, j) = D(i−1, j−1)+δ(S1[i], S2[j]).

An optimal path in the alignment graph is a path from node (0, 0) to node
(n1, n2) that solely consists of optimal edges.

Definition 8.1.8 is illustrated in Figures 8.3 and 8.4.
Each path in the alignment graph from node (0, 0) to node (n1, n2) corre-

sponds to an alignment of S1 and S2. To be precise, the concatenation of
the edge labels along the path yields the alignment. It is not difficult to see
that an optimal path in the alignment graph corresponds to an optimal
alignment of S1 and S2, and vice versa. For example, the optimal paths in
the alignment graph of Figure 8.4 correspond to the optimal alignments
of Figure 8.5.

8.1 Pairwise alignment 393

- g t a t - c g t a t - c - g t - a t c - g - t a t c - g t a- t c g t a- t c - g t a t c
c g - a c a c c g a c a c c g a c a- c c g a c a- c c g - a c a c c g a c a c c g a c a c

Figure 8.5: Optimal alignments between S1 = gtatc and S2 = cgacac.

Finding an optimal path amounts to tracing back along optimal edges
from node (n1, n2) to node (0, 0). If the D-matrix is available, then we
can decide at node (i, j) which of its incoming edges are optimal by sim-
ply testing whether D(i, j) = D(i − 1, j) + d, D(i, j) = D(i, j − 1) + d, and
D(i, j) = D(i − 1, j − 1) + δ(S1[i], S2[j]). Each test that returns true corre-
sponds to an optimal edge that is part of an optimal path. However, this
approach requires the storage of the entire D-matrix. We observe that the
computation of the value D(n1, n2) can be done in O(n2) space (O(n1) space,
respectively) because the computation of one row (column, respectively) of
D is essentially based on the previous row (column, respectively). To still
be able to find an optimal path we use three bits at each node (i, j) to
mark incoming edges (these bits are set during the computation of the
value D(n1, n2)):

• The first bit is set if and only if D(i, j) = D(i− 1, j) + d.

• The second bit is set if and only if D(i, j) = D(i, j − 1) + d.

• The third bit is set if and only if D(i, j) = D(i− 1, j − 1) + δ(S1[i], S2[j]).

Then, at node (i, j) an optimal path can be continued backwards with

• the incoming deletion edge if the first bit of (i, j) is set,

• the incoming insertion edge if the second bit of (i, j) is set,

• the incoming substitution edge if the third bit of (i, j) is set.

Exercise 8.1.9 Give pseudo-code for the algorithms described above, and
analyze their time and space complexities.

8.1.2 Computing an optimal alignment in linear space

In this section, we shall see that an optimal alignment between two strings
can be computed in linear space [152]. For ease of presentation, we as-
sume throughout the section that n1 (the length of S1) is a power of 2.
To illustrate the idea, suppose for a moment that we know an optimal
alignment A between the strings S1 and S2. Then we can split A into two
subalignments A1 and A2 so that A1 contains the first half of S1 and A2

394 8 Sequence Alignment

0 1 2 3 4 5 6 7 8 9
0 x
1 x
2 x
3 x
4 x x

5 x
6 x
7 x
8 x

Figure 8.6: An optimal path is split into two subpaths by row n1/2 = 4.

contains the second half. More precisely, A1 is the alignment between
S1[1..n1/2] and some prefix S2[1..k] of S2 and A2 is the alignment between
S1[n1/2 + 1..n1] and S2[k + 1..n2]. Both alignments A1 and A2 are optimal
by Lemma 8.1.5. Proceeding recursively, we can split the emerging align-
ments into two “halves” until a base case is reached. Conversely, if we
wish to compute an optimal alignment between S1 and S2 and we have
an oracle that tells us what k is, then we can use the divide-and-conquer
approach to actually compute an optimal alignment:

• Compute an optimal alignment A1 between the strings S1[1..n1/2] and
S2[1..k].

• Compute an optimal alignment A2 between the strings S1[n1/2+1..n2]
and S2[k + 1..n2].

• The concatenation A of the alignments A1 and A2 is an optimal align-
ment between S1 and S2.

This is a fairly simple idea, but of course we do not have such an oracle to
assist us, so we must find an algorithmic way to determine k. To put the
problem differently, we have to find a column k at which an optimal path
in the (unknown) alignment graph of S1 and S2 “leaves” the row n1/2. In
the example of Figure 8.6, we have k = 5.

In order to identify node (n1/2, k), we try all combinations of a forward
path from node (0, 0) to node (n1/2, j), 1 ≤ j ≤ n2, with a backward path
from node (n1, n2) to this node (n1/2, j), and add up the costs of these two
paths. Then, (n1/2, k) can be found by comparing these costs, as we shall
see.

Definition 8.1.10 Let Srev denote the reverse of the string S. Given a cost
function δ and two strings S1 and S2 of length n1 and n2, respectively, we

8.1 Pairwise alignment 395

define for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2:

Drev(i, j) = min{δ(A) | A is an alignment of S1
rev[1..i] and S2

rev[1..j]}.

Exercise 8.1.11 asks you to show that Drev(i, j) is the cost of an optimal
alignment of the last i characters of S1 and the last j characters of S2.

Exercise 8.1.11 Prove that

Drev(i, j) = min{δ(A) | A is alignment of S1[n1− i+1..n1] and S2[n2− j+1..n2]}

Lemma 8.1.12 The following equality holds:

D(n1, n2) = min
0≤j≤n2

{D(n1/2, j) +Drev(n1/2, n2 − j)}

Proof We show (a) D(n1, n2) ≥ min0≤j≤n2{D(n1/2, j) + Drev(n1/2, n2 − j)} and
(b) D(n1, n2) ≤ min0≤j≤n2{D(n1/2, j) +Drev(n1/2, n2 − j)}.

(a) Let Aopt be an optimal alignment of S1 and S2, i.e., δ(Aopt) = D(n1, n2).
Split Aopt immediately after the column that contains the character S1[n1/2]
into two subalignments A1 and A2. By Lemma 8.1.5, A1 is an optimal
alignment of S1[1..n1/2] and S2[1..k], where k is the rightmost position in
S2 that is aligned in Aopt with a character at or before position n1/2 in S1.
Analogously, A2 is an optimal alignment of S1[n1/2+ 1..n1] and S2[k+1..n2].
Clearly, δ(Aopt) = δ(A1)+ δ(A2) and δ(A1) = D(n1/2, k). Furthermore, δ(A2) =
Drev(n1/2, n2 − k) according to Exercise 8.1.11. To sum up, we have

D(n1, n2) = D(n1/2, k)+D
rev(n1/2, n2−k) ≥ min

0≤j≤n2

{D(n1/2, j)+D
rev(n1/2, n2−j)}

(b) Suppose k ∈ argmin0≤j≤n2{D(n1/2, j) +Drev(n1/2, n2 − j)}. Let A1 be an
optimal alignment of S1[1..n1/2] and S2[1..k], i.e., δ(A1) = D(n1/2, k). Fur-
thermore, let A2 be an optimal alignment of S1[n1/2+1..n1] and S2[k+1..n2],
i.e., δ(A2) = Drev(n1/2, n2 − k) by Exercise 8.1.11. Obviously, the con-
catenation of A1 and A2 yields an alignment of S1 and S2 with cost
D(n1/2, k) +Drev(n1/2, n2 − k). Therefore,

min
0≤j≤n2

{D(n1/2, j)+D
rev(n1/2, n2−j)} = D(n1/2, k)+D

rev(n1/2, n2−k) ≥ D(n1, n2)

�

So the number k we are searching for is a position j in S2 that minimizes
D(n1/2, j) +Drev(n1/2, n2 − j). To determine this number, the dynamic pro-
gramming matrices D and Drev are calculated up to row n1/2; see Figure
8.7. In the example of Figure 8.7, there are three position that minimize
this value: 3, 4, and 5.

Pseudo-code of Hirschberg’s divide and conquer algorithm is given in
Algorithm 8.1. The computation of an optimal alignment of S1 and S2

396 8 Sequence Alignment

D a t a a a a t g g
0 1 2 3 4 5 6 7 8 9

a 1 0 1 2 3 4 5 6 7 8
g 2 1 1 2 3 4 5 6 6 7
t 3 2 1 2 3 4 5 5 6 7
a 4 3 2 1 2 3 4 5 6 7∑

9 7 5 3 3 3 5 7 9 11

5 4 3 2 1 0 1 2 3 4 a
6 5 4 3 2 1 0 1 2 3 t
7 6 5 4 3 2 1 0 1 2 g
8 7 6 5 4 3 2 1 0 1 g
9 8 7 6 5 4 3 2 1 0
a t a a a a t g g Drev

Figure 8.7: The dynamic programming matrices D and Drev are computed
up to row n1/2, using Levenshtein costs. In the figure, the
calculation of D starts at the top row and proceeds from left to
right, whereas the calculation of Drev starts at the bottom row
and proceeds from right to left. For each j with 0 ≤ j ≤ n2, we
have

∑
[j] = D(n1/2, j) +Drev(n1/2, n2 − j), where

∑
is the array

depicted in the middle of the figure.

starts with the procedure call Hb(1, n1, 1, n2). In the first base case, the
algorithm outputs an optimal alignment of S1[l1..r1] and ε, which consists
of r1−l1+1 deletions. In the second base case l1 = r1, the algorithm outputs
an optimal alignment of S1[l1] and S2[l2..r2]. If the character c = S1[l1]
occurs in S2[l2..r2], then the optimal alignment—for an operation-weighted
distance function—consists of a match and r2 − l2 insertions. Otherwise,
the optimal alignment consists of a mismatch and r2 − l2 insertions.

We claim that Hirschberg’s algorithm requires only O(n2) space. Row
n1/2 of the dynamic programming matrix D can be calculated in O(n2)
space. Of course, the same is true for Drev. Therefore, the number k can
be computed in O(n2) space. Once k is known, the remaining two rows
of the dynamic programming matrices are obsolete. The recursive calls
Hb(l1,m, l2, k) and Hb(m+1, r1, k+1, r2) use O(k) space and O(n2− k) space,
respectively. So O(n2) space is used in the recursion. Hence the claim
follows.

Let Tmin(n1, n2) denote the overall number of minimum calculations when
Hirschberg’s algorithm is applied to two strings of lengths n1 and n2. We
will show that Tmin(n1, n2) is in O(n1n2). It is not difficult to see that the
total running time is proportional to Tmin(n1, n2), so it is also in O(n1n2).
In the computation of row n1/2 in the dynamic programming matrix D,
we have to calculate n1n2/2 times the minimum of three numbers. The

8.1 Pairwise alignment 397

Algorithm 8.1 Hirschberg’s algorithm
Hb(l1, r1, l2, r2)

if l2 > r2 then /* base case */
output an optimal alignment of S1[l1..r1] and ε

else if l1 = r1 then /* base case */
output an optimal alignment of S1[l1] and S2[l2..r2]

else
m← b r1−l1

2
c

m′ ← d r1−l1
2
e

compute the m-th row of the DP-matrix D of S1[l1..r1] and S2[l2..r2]
compute the m′-th row of the DP-matrix Drev of S1

rev[l1..r1] and S2
rev[l2..r2]

rlen← r2 − l2 + 1 /* current row length */
determine k ∈ argmin0≤j≤rlen{D(m, j) +Drev(m′, rlen− j)}
Hb(l1,m, l2, k)
Hb(m+ 1, r1, k + 1, r2)

same is true for the computation of row n1/2 in the dynamic programming
matrix Drev. To determine k we must take n2 times the minimum of two
numbers. This gives the following recurrence:

Tmin(n1, n2) = n1n2 + n2 + Tmin(
n1

2
, k) + Tmin(

n1

2
, n2 − k)

Lemma 8.1.13
Tmin(n1, n2) ≤ 2n1n2 + n2 log2 n1

Proof By induction on n1. In the base case n1 = 1, the lemma holds. For
n1 > 1, we have

Tmin(n1, n2) = n1n2 + n2 + Tmin(
n1

2
, k) + Tmin(

n1

2
, n2 − k)

I.H.

≤ n1n2 + n2 + 2
n1

2
k + k log2

n1

2
+ 2

n1

2
(n2 − k) + (n2 − k) log2

n1

2

= n1n2 + n2 + n1(k + n2 − k) + (k + n2 − k) log2
n1

2
= 2n1n2 + n2 + n2(log2 n1 − log2 2)

= 2n1n2 + n2 + n2(log2 n1 − 1)

= 2n1n2 + n2 log2 n1

�

Theorem 8.1.14 An optimal alignment of two strings of lengths n1 and n2

can be computed in O(n1n2) time and O(min{n1, n2}) space.

Proof This is the bottom line of the considerations in this section. �

398 8 Sequence Alignment

8.1.3 Edit distance

Next, we show that the edit distance between two strings S1 and S2 coin-
cides with the Levenshtein costs of an optimal alignment between S1 and
S2. Although this fact is almost obvious, it requires a proof.

We recall from Definition 7.9.4 that the edit distance between two strings
S1 and S2 is the minimum number of edit operations (substitutions, in-
sertions, and deletions) needed to transform S1 into S2. Formally,

edist(S1, S2) = min{k | S1 →k S2}

where S1 →k S2 means that S1 can be transformed into S2 by a sequence
of k ∈ N edit operations.

Theorem 8.1.15 We have

edist(S1, S2) = δ(Aopt)

where Aopt is an optimal alignment of the two strings S1 and S2 for the
Levenshtein cost function δ.

Proof We show (a) edist(S1, S2) ≤ δ(Aopt) and (b) edist(S1, S2) ≥ δ(Aopt).
(a) In an optimal alignment

Aopt =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
let i1 < i2 < · · · < im be the indices of all columns so that(

xij
yij

)
is not a match. Obviously, these columns can be viewed as a sequence of
edit operations transforming S1 into S2:

• If xij , yij ∈ Σ, then the j-th edit operation is a substitution.

• If xij = - and yij ∈ Σ, then the j-th edit operation is an insertion.

• If xij ∈ Σ and yij = -, then the j-th edit operation is a deletion.

So there is a sequence of m edit operations that transforms S1 into S2.
Since edist(S1, S2) is the minimum number of edit operations needed to
transform S1 into S2, it follows that edist(S1, S2) ≤ m = δ(Aopt).

(b) We show by induction on k that for every sequence of k edit opera-
tions transforming S1 into S2 there is an alignment A of S1 and S2 with
cost δ(A) ≤ k. The base case k = 0 obviously holds (because in this case
S1 = S2). Under the inductive hypothesis that the claim is true for k, it

8.1 Pairwise alignment 399

must be proven for k+1. We show the inductive step for the case in which
the last edit operation in the sequence is a substitution. The other two
cases can be proven analogously. Let S1 →k S → S2 for some string S ∈ Σ∗

so that S2 is obtained from S by replacing one occurrence of character
a ∈ Σ by character b ∈ Σ, where a 6= b. We must show that there is an
alignment A of S1 and S2 with cost δ(A) ≤ k + 1. By induction hypothesis,
there is an alignment

A′ =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
of S1 and S so that δ(A′) ≤ k. In that alignment, suppose that the character
a, which is replaced by b in the last edit operation, occurs in the j-th
column, i.e., (

xj
yj

)
=

(
xj
a

)
Let A be the alignment obtained from A′ by replacing the j-th column with(

xj
b

)
Clearly, A is an alignment of S1 and S2. If xj = a, then δ(A) = δ(A′) + 1 ≤
k + 1. If xj 6= a, then δ(A) ≤ δ(A′) ≤ k. In both cases, δ(A) ≤ k + 1. �

8.1.4 Similarity methods

The basic definitions needed for similarity methods are analogous to those
for distance methods.

Definition 8.1.16 An operation-weighted similarity function σ assigns
similarity scores to each pair (x, y) ∈ (Σ ∪ {−}) × (Σ ∪ {−}) \ {(-,-)} as
follows:

• σ(x, y) = α if x = y (match),

• σ(x, y) = −β if x, y ∈ Σ with x 6= y (substitution),

• σ(x, y) = −γ if x = - and y ∈ Σ or x ∈ Σ and y = - (indel),

where α, β, and γ are positive constants.

Consequently, a similarity function σ rewards matches and penalizes
mismatches and indels. For nucleotide sequences, the similarity function
with α = 1, β = 1, and γ = 2 is used very often.

400 8 Sequence Alignment

(
g g g a a t t - - -
- - - a a t t c c c

) (
g g g a a t t
a a t t c c c

)

Figure 8.8: Two alignments of the strings S1 = gggaatt and S2 = aattccc.

Definition 8.1.17 The similarity score of an alignment

A =

(
x1 x2 x3 . . . xn−1 xn
y1 y2 y3 . . . yn−1 yn

)
of two strings S1 and S2 for a similarity function σ is

σ(A) =
n∑
i=1

σ(xi, yi)

An alignment Aopt of S1 and S2 is optimal for a similarity function σ if

σ(Aopt) = max{σ(A) | A is an alignment of S1 and S2}

For example, the similarity score of the first alignment in Figure 8.8 for
the similarity function defined by σ(match) = 1, σ(sub) = −1, and σ(indel) =
−2 is −8, while the similarity score of the second alignment is −7.

Definition 8.1.18 Given a similarity function σ and two strings S1 and S2

of length n1 and n2, respectively, we define for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2:

D(i, j) = max{σ(A) | A is an alignment of S1[1..i] and S2[1..j]}

Theorem 8.1.19 For a similarity function σ with σ(match) = α, σ(sub) = −β,
and σ(indel) = −γ, we have

D(0, 0) = 0

D(i, 0) = −i · γ
D(0, j) = −j · γ

D(i, j) = max

D(i− 1, j)− γ)
D(i, j − 1)− γ)
D(i− 1, j − 1) + σ(S1[i], S2[j])

for each 1 < i ≤ n1 and 1 < j ≤ n2, where σ(S1[i], S2[j]) = α if S1[i] = S2[j] and
σ(S1[i], S2[j]) = −β if S1[i] 6= S2[j].

Proof The proof is verbatim the same as that of Theorem 8.1.7. �

It is quite natural to ask whether an alignment that is optimal for the
similarity function defined by σ(match) = 1, σ(sub) = −1, and σ(indel) = −2
is also optimal for Levenshtein costs (and vice versa). The example in
Figure 8.8 refutes this; see Exercise 8.1.20.

8.1 Pairwise alignment 401

Exercise 8.1.20 Let δ be the Levenshtein cost function and let the simi-
larity function σ be defined by σ(match) = 1, σ(sub) = −1, and σ(indel) = −2.
Show that the first alignment in Figure 8.8 is optimal for δ but not for σ,
and that the second alignment in Figure 8.8 is optimal for σ but not for δ.

8.1.5 Distance vs. similarity

The result in this section goes back to the work of Smith et al. [294]; see
also [289]. It holds for global alignments (but not for local alignments).

Lemma 8.1.21 Suppose that the alignment A of S1 and S2 consists of m
matches, r substitutions, and d indels. Then

n1 + n2 = 2m+ 2r + d

Furthermore, the cost of A for an operation-weighted cost function δ is

δ(A) = r · δ(sub) + d · δ(indel)

and the score of A for an operation-weighted similarity function σ is

σ(A) = m · σ(match) + r · σ(sub) + d · σ(indel)

Proof Straightforward. �

Definition 8.1.22 Let δ be an operation-weighted cost function. A corre-
sponding similarity function σ satisfies

σ(match) = α
σ(sub) = α− k · δ(sub)
σ(indel) = α

2
− k · δ(indel)

where α > 0 and k > α
δ(sub)

are constants.

As an example, let δ be the Levenshtein cost function, i.e., δ(match) = 0,
δ(sub) = 1, and δ(indel) = 1. For α = 1 and k = 2, the corresponding
similarity function is defined by σ(match) = 1, σ(sub) = −1, and σ(indel) =
−1.5.

Theorem 8.1.23 Let δ be a cost function and σ be a corresponding simi-
larity function. An alignment has minimum cost for δ if and only if it has
maximum score for σ.

Proof For any alignment A, we have

σ(A) = m · σ(match) + r · σ(sub) + d · σ(indel)
= m · α+ r · (α− k · δ(sub)) + d · (α

2
− k · δ(indel))

= (m+ r + d
2
) · α− k · (r · δ(sub) + d · δ(indel))

= n1+n2

2
· α− k · δ(A)

402 8 Sequence Alignment

σ A C G T
A 1 -1 -0.5 -1
C -1 1 -1 -0.5
G -0.5 -1 1 -1
T -1 -0.5 -1 1

Figure 8.9: Transversion/transition similarity function.

For two alignments A and A′ of the same strings, it then follows

σ(A) ≥ σ(A′) ⇔ n1+n2

2
· α− k · δ(A) ≥ n1+n2

2
· α− k · δ(A′)

⇔ −k · δ(A) ≥ −k · δ(A′)
⇔ δ(A) ≤ δ(A′)

because −k < 0. In other words, an alignment A has maximum score for
σ if and only if it has minimum cost for δ. �

Exercise 8.1.24 Let σ be a similarity function with σ(match) = α > 0,
σ(sub) = −β < 0, and σ(indel) = −γ < 0. Define a corresponding cost
function δ by δ(match) = 0, δ(sub) = c(α+ β), and δ(indel) = c(1

2
α+ γ), where

c > 0. (For example, let α = 1, β = 1, and γ = 2. For c = 1
2

the corresponding
cost function δ is defined by δ(match) = 0, δ(sub) = 1, and δ(indel) = 1.25.)
Show that an alignment has maximum score for σ if and only if it has
minimum cost for δ.

8.1.6 General similarity functions and gap penalties

Up to now, a similarity function scored each substitution equally, i.e.,
σ(x, y) = −β for each x, y ∈ Σ and x 6= y. For DNA sequences, this means
that aligning A (adenine) with G (guanine) is just as bad as aligning A with
T (thymine). However, adenine and guanine are purines, whereas cytosine
and thymine are pyrimidines, and studies of mutations in homologous
genes indicate that transition mutations (i.e., purine/purine or pyrimi-
dine/pyrimidine substitutions) occur approximately twice as frequently
as transversions (purine/pyrimidine substitutions). In the comparison of
genes, this fact can be taken into account by a similarity function that
penalizes transitions less than transversions; see Figure 8.9.

In sequences of amino acid residues (the primary structure of proteins),
a substitution is more likely to occur between amino acids with similar
biochemical properties, and a reasonable similarity function should re-
flect this. For example, the replacement of the hydrophobic amino acid
isoleucine (I) with the hydrophobic amino acid valine (V) should get a pos-
itive score, while its replacement with the hydrophilic amino acid cystine
(C) should get a negative score. Thus, a similarity function is based on

8.1 Pairwise alignment 403

A R N D C Q E G H I L K M F P S T W Y V
A 2
R -2 6
N 0 0 2
D 0 -1 2 4
C -2 -4 -4 -5 12
Q 0 1 1 2 -5 4
E 0 -1 1 3 -5 2 4
G 1 -3 0 1 -3 -1 0 5
H -1 2 2 1 -3 3 1 -2 6
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6
F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
P 1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -5 6
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Figure 8.10: PAM250 matrix.

an estimation of how well two residues of given types would match if they
were aligned in a sequence alignment. Even identities (matches) in an
alignment of amino acid sequences should be scored differently. For ex-
ample, the amino acid tryptophan (W)—a relatively rare amino acid—has
bulky side groups and cannot be inserted easily into any site in a peptide.
Thus, a replacement of tryptophan with another amino acid is relatively
rare, and a similarity function should assign a high positive score to a
tryptophan identity. By contrast, an amino acid like alanine (A) can often
be replaced with another biochemically similar amino acid, so an alanine
identity should get a low positive score.

There have been extensive studies examining the frequencies in which
amino acids substituted for each other during evolution. The studies in-
volved carefully aligning all of the proteins in several families of proteins
and then constructing phylogenetic trees for each family. Each phylo-
genetic tree can then be examined for the substitutions found on each
branch. This can be used to produce tables (substitution matrices, also
called scoring matrices) of the relative frequencies with which amino acids
replace each other over a short evolutionary period. Thus a substitution
matrix describes the likelihood that two residue types would mutate to
each other in evolutionary time. Prime examples are the PAM matrices
(PAM is an acronym of Point Accepted Mutations) devised by Dayhoff et
al. [75] (Figure 8.10 shows the PAM250 matrix) and the BLOSUM matrices
(BLOSUM stands for BLOcks SUbstitution Matrix) developed by Henikoff
and Henikoff [149] (Figure 8.11 shows the BLOSUM62 matrix).

A second issue relates to the scoring of gaps. A gap is a maximal con-
secutive run of spaces in a single row of a given alignment. It corresponds
to an atomic insertion or deletion of a substring. Up to now, we have
scored a gap of length k as

g(k) = −kγ

404 8 Sequence Alignment

A R N D C Q E G H I L K M F P S T W Y V
A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Figure 8.11: BLOSUM62 matrix.

where γ is a positive constant. It follows as a consequence that a gap
of length k in an alignment causes the same penalty as k interspersed
indels. However, in many biological applications, it does not make sense
to penalize gaps in this manner. To cope with this problem, one can use
more general gap penalty functions than the linear function above.

Definition 8.1.25 A function g : N→ R with g(0) = 0 and g(k) ≥ 0 is called
gap penalty function if it is subadditive, i.e., for all k, l ∈ N

g(k + l) ≤ g(k) + g(l)

Theorem 8.1.26 An optimal alignment between the two strings S1 and S2

for a similarity function σ and a gap penalty function g can be obtained by
the recurrences

D(0, 0) = 0

D(i, 0) = −g(i)
D(0, j) = −g(j)

D(i, j) = max

max1≤k≤i{D(i− k, j)− g(k)}
max1≤k≤j{D(i, j − k)− g(k)}
D(i− 1, j − 1) + σ(S1[i], S2[j])

and traceback.

Proof See Waterman et al. [327]. �

The previous dynamic programming algorithms had a time complexity
of O(n1n2), i.e., the run time is quadratic if n1 = n2. In sharp contrast,
the algorithm incorporating arbitrary gap penalties has a worst-case time
complexity of O(n1n2(n1 + n2)), i.e., the run time is cubic if n1 = n2. For the
important class of affine gap penalties, however, an O(n1n2) time algorithm
exists, as we shall see next.

8.1 Pairwise alignment 405

Definition 8.1.27 An affine gap penalty function g satisfies g(0) = 0 and

g(k) = a+ b(k − 1)

for k > 0, where a and b are constants with 0 ≤ b ≤ a. These constants a
and b are called gap-open penalty and gap-extension penalty, respectively.

Note that an affine gap penalty is indeed subadditive:

g(k + l) = a+ b(k + l − 1) = g(k) + bl = g(k) + b+ b(l − 1) ≤ g(k) + g(l)

because b ≤ a.
Exercise 8.1.28 provides an alternative way to define affine gap penalty

functions, one that is used by many authors.

Exercise 8.1.28 Show that the definition g′(0) = 0 and g′(k) = a′ + b′k for
k > 0 and constants 0 ≤ b′ ≤ a′ yields an affine gap penalty function g′.

Corollary 8.1.29 The dynamic programming recurrences to compute an
optimal alignment for a similarity function σ and an affine gap penalty func-
tion g read as follows:

D(0, 0) = 0

D(0, j) = −a− b(j − 1) for j ≥ 1

D(i, 0) = −a− b(i− 1) for i ≥ 1

D(i, j) = max

max1≤k≤i{D(i− k, j)− (a+ b(k − 1)}
max1≤k≤j{D(i, j − k)− (a+ b(k − 1)}
D(i− 1, j − 1) + σ(S1[i], S2[j])

Proof Immediate consequence of Theorem 8.1.26. �

The main idea of Gotoh’s [130] O(n1n2) time dynamic programming al-
gorithm is to use three matrices instead of a single one.

Theorem 8.1.30 Let the matrix D be defined as in Corollary 8.1.29. Then,
for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, we have

D(i, j) = max{E(i, j), F (i, j), D(i− 1, j − 1) + σ(S1[i], S2[j])}

where

E(0, j) = −∞
E(i, j) = max{D(i− 1, j)− a,E(i− 1, j)− b}

and

F (i, 0) = −∞
F (i, j) = max{D(i, j − 1)− a, F (i, j − 1)− b}

406 8 Sequence Alignment

Proof Define
E(i, j) = max

1≤k≤i
{D(i− k, j)− (a+ b(k − 1)}

and
F (i, j) = max

1≤k≤j
{D(i, j − k)− (a+ b(k − 1))}

According to Corollary 8.1.29, it suffices to show that

E(i, j) = max{D(i− 1, j)− a,E(i− 1, j)− b}

and
F (i, j) = max{D(i, j − 1)− a, F (i, j − 1)− b}

We prove the second equality by finite induction on j. The first equality
can be proven analogously by finite induction on i. The base case j = 1
yields

F (i, 1) = max
1≤k≤1

{D(i, 1− k)− (a+ b(k − 1))}

= max{D(i, 0)− a}
= max{D(i, 0)− a,−∞}
= max{D(i, 0)− a, F (i, 0)− b}

For j ≥ 2, we have

F (i, j) = max
1≤k≤j

{D(i, j − k)− (a+ b(k − 1))}

= max{D(i, j − 1)− a, max
2≤k≤j

{D(i, j − k)− (a+ b(k − 1))}}

= max{D(i, j − 1)− a, max
1≤k≤j−1

{D(i, j − k − 1)− (a+ bk))}}

= max{D(i, j − 1)− a, max
1≤k≤j−1

{D(i, j − k − 1)− (a+ b(k − 1))} − b}

= max{D(i, j − 1)− a, F (i, j − 1)− b}

where the last equality is a consequence of the inductive hypothesis. �

Because an entry in the D matrix (E or F matrix, respectively) is the
maximum of three (two, respectively) numbers that have already been
computed, each entry can be computed in constant time. Thus, Gotoh’s
dynamic programming algorithm has a time complexity of only O(n1n2).

8.2 Multiple alignment

A multiple sequence alignment (MSA) is a sequence alignment of three
or more biological sequences (amino acid-, DNA-, or RNA-sequences). In
many cases, the sequences under consideration are assumed to have an

8.2 Multiple alignment 407

Sequence Species Common name Acronym
S1 = AGTAATGG Solea vulgaris Common sole SoV
S2 = TTTAATGA Solea lascaris Sand sole SoL
S3 = AAGAAATGG Monochirus hispidus Whiskered sole MoH
S4 = ATAAAATGG Microchirus ocellatus Foureyed sole MiO

Table 8.1: Subsequences from a mtDNA gene (coding for 16S rRNA) of four
Mediterranean sole species.

evolutionary relationship by which they share a lineage and are descended
from a common ancestor. From the resulting multiple sequence align-
ment, sequence homology can be inferred and phylogenetic analysis can
be conducted to assess the sequences’ shared evolutionary origins.

Again, we focus on global alignments.

Definition 8.2.1 A global multiple alignment of m strings S1, . . . , Sm (on
the alphabet Σ) is an (m×N) matrix A so that:

1. A(i, j) ∈ Σ ∪ {−}, where − is a special gap symbol not occurring in Σ.

2. After removal of all gap symbols the k-th row of A equals Sk.

3. No column of A consists solely of gap symbols.

This definition imposes restrictions on the length N of A. Condition (2)
implies that max1≤k≤m{nk} ≤ N , while condition (3) has N ≤

∑m
k=1 nk as a

consequence.

As an example, we consider the following small part of a multiple align-
ment of the DNA sequences of the 16S rRNA genes of the mitochondrial
genomes of four Mediterranean sole species; see Table 8.1 and Tinti et
al. [310] for more details.

Asole =

A − G T A A T G G
T T − T A A T G A
A A G A A A T G G
A T A A A A T G G

To assess the quality of a multiple alignment, we need to score the align-

ment. This score is usually based on pairwise alignment scoring schemes
like Levenshtein costs (a dissimilarity scoring scheme used e.g. for DNA
sequences) or PAM and BLOSUM substitution matrices (a similarity scor-
ing scheme for amino acid sequences). Here we confine ourselves to the
so-called sum-of-pairs score. In what follows, let πi,j(A) be the projection
to the i-th and j-th row of the alignment A. For example,

π1,2(A
sole) =

(
A − G T A A T G G
T T − T A A T G A

)

408 8 Sequence Alignment

Definition 8.2.2 Let A be a multiple alignment of the strings S1, . . . , Sm.
Given a pairwise alignment scoring scheme score, the sum-of-pairs score
of A is defined by

scoreSP (A) =
∑

1≤i<j≤m

score(πi,j(A))

where score(−,−) = 0.

In our example, we use the Levenshtein cost function δ as a pairwise
alignment scoring scheme and obtain δ(π1,2(A

sole)) = 4, δ(π1,3(Asole)) = 2,
δ(π1,4(A

sole)) = 3, δ(π2,3(Asole)) = 5, δ(π2,4(Asole)) = 4, and δ(π3,4(A
sole)) = 2.

Thus, the sum-of-pairs score of Asole is 20.

Exercise 8.2.3 Compute the sum-of-pairs score of the following multiple
alignment of the amino acid sequences S1 = NFLS, S2 = NFS, S3 = NKYLS,
and S4 = NYLS. Use the PAM250 matrix and score each indel with −8.

Aprot =

N - F L S
N - F - S
N K Y L S
N - Y L S

Definition 8.2.4 Given strings S1, . . . , Sm and a cost function δ (similarity
function σ, respectively), the global multiple alignment problem is to com-
pute a global multiple alignment of S1, . . . , Sm that has minimum (maxi-
mum, respectively) sum-of-pairs score for δ (σ, respectively).

In what follows, we only use cost functions as scoring schemes, and the
notation δSP and δ (instead of scoreSP and score) will emphasize this.

It is possible to generalize the dynamic programming recurrences for
pairwise alignments to multiple alignments. For m = 3 sequences and
i1 6= 0, i2 6= 0, i3 6= 0, they have the following form:

D(i1, i2, i3) = min

D(i1 − 1, i2 − 1, i3 − 1) + δSP (S
1[i1], S

2[i2], S
3[i3])

D(i1 − 1, i2 − 1, i3) + δSP (S
1[i1], S

2[i2],−)
D(i1, i2 − 1, i3 − 1) + δSP (−, S2[i2], S

3[i3])
D(i1 − 1, i2, i3 − 1) + δSP (S

1[i1],−, S3[i3])

D(i1 − 1, i2, i3) + δSP (S
1[i1],−,−)

D(i1, i2 − 1, i3) + δSP (−, S2[i2],−)
D(i1, i2, i3 − 1) + δSP (−,−, S3[i3])

It is possible to simplify the notation by introducing ∆k, which is 0 or 1,
and defining

∆k ◦ c =
{
c if ∆k = 1
− if ∆k = 0

8.2 Multiple alignment 409

Then, D(i1, i2, i3) can be computed by

min
∆1+∆2+∆3>0

D(i1 −∆1, i2 −∆2, i3 −∆3) + δSP (∆1 ◦ S1[i1],∆2 ◦ S2[i2],∆3 ◦ S3[i3])

For an arbitrary number m of strings, the recurrence relation is

D(i1, . . . , im) = min
∆1+···+∆m>0

D(i1−∆1, . . . , im−∆m)+δSP (∆1◦S1[i1], . . . ,∆m◦Sm[im])

Although the multiple alignment problem can be solved exactly via dy-
namic programming and traceback, this solution is not practical. This can
be seen by the following complexity analysis. The algorithm must compute
an n1×n2×· · ·×nm matrix, so the space complexity is O(n1n2 · · ·nm), which
is O(nm) if n denotes the maximum sequence length. Each of the O(nm)
entries in the matrix is computed by taking a maximum of 2m − 1 values.
Moreover, the computation of each of the 2m−1 values requires O(m2) time
(one has to compute the sum-of-pairs score of an m-dimensional vector).
So the overall time complexity is O(m2 · 2m · nm).

Even worse, the multiple alignment problem has been proven to be NP-
complete [171,325]. There are three possible ways out of this trap:

1. Try to find methods that prune the search space without sacrificing
an optimal solution. In this way, larger instances of the problem can
be exactly solved in reasonable time.

2. Try to devise an efficient approximation algorithm that computes an
approximate solution that is optimal up to a small constant factor.

3. Try to develop heuristics that find reasonably good solutions reason-
ably fast, without guaranteeing optimality.

In Sections 8.2.1, 8.2.2, and 8.2.3 we describe a representative of each
of these methods. It will be convenient to use the following notation:

distδ(S
1, S2) = min{δ(A) | A is an alignment of S1 and S2}

That is, given a cost function δ, distδ(S1, S2) denotes the cost of an optimal
alignment between S1 and S2 (the “distance” between S1 and S2 w.r.t. δ).

8.2.1 Pruning the search space

In the following, let Aopt be an optimal alignment of the strings S1, . . . , Sm,
and let Aheur be an alignment obtained by a fast heuristic algorithm (for
example by one of the alignment methods given in subsequent sections).

410 8 Sequence Alignment

We have

δ(Aheur) ≥ δ(Aopt)

=
∑
k<l

δ(πk,l(A
opt))

= δ(πp,q(A
opt)) +

∑
k<l,(k,l) 6=(p,q)

δ(πk,l(A
opt))

≥ δ(πp,q(A
opt)) +

∑
k<l,(k,l) 6=(p,q)

distδ(S
k, Sl)

for every pair (p, q), 1 ≤ p < q ≤ m.
Consequently,

Up,q = δ(Aheur)−
∑

k<l,(k,l)6=(p,q)

distδ(S
k, Sl)

is an upper bound for δ(πp,q(Aopt)), i.e., δ(πp,q(Aopt)) ≤ Up,q.
For every pair (p, q), define for 1 ≤ i ≤ np and 1 ≤ j ≤ nq

Bp,q(i, j) = distδ(S
p[1..i], Sq[1..j]) + distδ(S

p[i+ 1..np], S
q[j + 1..nq])

Thus, Bp,q(i, j) is the minimum cost of all paths in the alignment graph
of Sp and Sq that pass through the node (i, j). Note that Bp,q(i, j) can be
computed in O(npnq) time for all 1 ≤ i ≤ np and 1 ≤ j ≤ nq by computing
the dynamic programming matrix Dp,q, which computes the distance of Sp

and Sq in the standard “forward” direction, and the dynamic programming
matrix Drev

p,q , which computes the distance of Sp and Sq in the “backward”
direction; see Section 8.1.2.

The method of Carillo and Lipman [51] uses the notions defined above
to restrict the search space as follows: The m-dimensional dynamic pro-
gramming algorithm computes values only for those nodes (i1, i2, . . . , im) in
the m-dimensional alignment graph of S1, . . . , Sm that satisfy Bp,q(ip, iq) ≤
Up,q for all pairs (p, q); the corresponding entries in the m-dimensional dy-
namic programming matrix are marked in Figure 8.12.

Why can the other nodes safely be skipped? To understand this, sup-
pose that the path in the alignment graph that corresponds to a mul-
tiple alignment A of S1, . . . , Sm passes through a node (i1, i2, . . . , im) for
which there is a pair (k, l) so that Bk,l(ik, il) > Uk,l. It then follows from
δ(πk,l(A)) ≥ Bk,l(ik, il) that δ(πk,l(A)) > Uk,l. According to the preceding dis-
cussion, this means that the alignment A cannot be optimal.

One still has to find a path of minimum cost from node (0, . . . , 0) to node
(n1, . . . , nm) in the reduced m-dimensional alignment graph. This can e.g.
be done by using Dijkstra’s algorithm [61, 80] (a standard shortest path
algorithm) or the so-called A∗-algorithm [200].

8.2 Multiple alignment 411

x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x

Figure 8.12: A 2-dimensional projection of the restricted m-dimensional
dynamic programming matrix.

Carillo and Lipman’s method is implemented in the program MSA. Ac-
cording to [205], MSA “is able to align in reasonable time as many as eight
sequences the length of an average protein.” Another implementation by
Gupta et al. [137] uses a heuristic to further reduce the search space.
They added an additional parameter εp,q to the program, and a node in the
alignment graph is considered irrelevant when Bp,q(ip, iq) ≤ Up,q − εp,q. Note
that this heuristic does not guarantee an optimal alignment.

8.2.2 A 2-approximation algorithm

If the cost function δ is a distance (i.e., it satisfies the metric axioms), then
the so-called center star method [138,139] yields a simple 2-approximation
algorithm for the multiple alignment problem as we shall now see. Given
strings S1, . . . , Sm, a center string Sc is one of the strings S1, . . . , Sm that
minimizes

m∑
i=1

distδ(S
c, Si)

That is to say, Sc is a string whose distance to all the rest is minimum;
see Figure 8.13. Then, the center star alignment Ac is constructed as a
combination of the pairwise optimal alignments of the center string with
the other strings.

To determine the center string Sc in our sole example, we compute all
pairwise edit distances (i.e., we use Levenshtein costs).

distδ S1 S2 S3 S4
∑

S1 0 3 2 3 8
S2 3 0 5 4 12
S3 2 5 0 2 9
S4 3 4 2 0 9

412 8 Sequence Alignment

S4

3

S1

2

S

S

Figure 8.13: S1 is the center string of S1, . . . , S4.

Taking the minimum of the sums of each row, we infer that Sc = S1

is the center string. Optimal pairwise alignments of S1 with the other
sequences are:

A1,2 =

(
A G T A A T G G
T T T A A T G A

)

A1,3 =

(
− A G T A A T G G
A A G A A A T G G

)

A1,4 =

(
A − G T A A T G G
A T A A A A T G G

)
Then, the center star alignment Ac is constructed as a combination of the
pairwise optimal alignments of the center string with the other strings.
First, by combining A1,2 and A1,3, we obtain the multiple alignment

A1,2,3 =

− A G T A A T G G
− T T T A A T G A
A A G A A A T G G

Second, the combination of the multiple alignment A1,2,3 with the pair-

wise alignment A1,4 yields the center star alignment Ac. Note that entire
columns must be shifted to incorporate the gap of the alignment A1,4.

Ac =

− A − G T A A T G G
− T − T T A A T G A
A A − G A A A T G G
− A T A A A A T G G

8.2 Multiple alignment 413

The sum-of-pairs score of the center star alignment is δ(Ac) = 21. This
is not optimal because the sum-of-pairs score of the alignment Asole is
δ(Asole) = 20.

This example shows that the center star method does—in general—not
yield an optimal alignment. However, Gusfield [138,139] showed that

δSP (A
c) ≤ 2(m− 1)

m
δSP (A

opt)

That is, the center star method is a (2 − 2
m
)-approximation algorithm for

the multiple sequence alignment problem. In particular, even for large m,
the sum-of-pairs score of the center star alignment Ac is at most twice the
sum-of-pairs score of an optimal alignment.

In order to derive this guaranteed error bound, we use the next lemma;
cf. [299].

Lemma 8.2.5 Let Sc be a center string and Aopt be an optimal alignment of
the strings S1, . . . , Sm. Then

m

2

m∑
i=1

distδ(S
i, Sc) ≤ δSP (A

opt)

Proof

m

2

m∑
i=1

distδ(S
i, Sc) =

1

2

(
m∑
i=1

distδ(S
i, Sc) + · · ·+

m∑
i=1

distδ(S
i, Sc)

)
︸ ︷︷ ︸

m−times

≤ 1

2

(
m∑
i=1

distδ(S
i, S1) + · · ·+

m∑
i=1

distδ(S
i, Sm)

)

=
1

2

m∑
j=1

m∑
i=1

distδ(S
i, Sj)

=
1

2

m∑
i=1

m∑
j=1

distδ(S
i, Sj)

≤ 1

2

m∑
i=1

∑
j 6=i

δ(πi,j(A
opt))

=
∑

1≤i<j≤m

δ(πi,j(A
opt))

= δSP (A
opt)

�

Now we are in a position to prove the error bound of the center star
method.

414 8 Sequence Alignment

Theorem 8.2.6 Let Aopt be an optimal alignment of S1, . . . , Sm. Further-
more, let Sc be a center string and Ac the corresponding alignment. Then

δSP (A
c) ≤ 2(m− 1)

m
δSP (A

opt)

Proof

δSP (A
c) =

∑
1≤i<j≤m

δ(πi,j(A
c))

=
1

2

m∑
i=1

∑
j 6=i

δ(πi,j(A
c))

≤ 1

2

m∑
i=1

∑
j 6=i

(δ(πi,c(A
c)) + δ(πc,j(A

c))) (triangle inequality)

=
1

2

m∑
i=1

∑
j 6=i

(δ(πi,c(A
c)) + δ(πj,c(A

c))) (symmetry)

=
1

2

m∑
i=1

∑
j 6=i

δ(πi,c(A
c)) +

1

2

m∑
i=1

∑
j 6=i

δ(πj,c(A
c))

=
1

2

m∑
i=1

∑
j 6=i

δ(πi,c(A
c)) +

1

2

m∑
j=1

∑
i 6=j

δ(πj,c(A
c))

=
1

2
(m− 1)

m∑
i=1

δ(πi,c(A
c)) +

1

2
(m− 1)

m∑
j=1

δ(πj,c(A
c))

= (m− 1)
m∑
i=1

δ(πi,c(A
c))

= (m− 1)
m∑
i=1

distδ(S
i, Sc) (center star align.)

≤ 2(m− 1)

m
δSP (A

opt) (Lemma 8.2.5)

�

In the complexity analysis, we assume for ease of presentation that the
sequences are roughly of the same length n. The computation of all

(
m
2

)
pairwise distances takes O(m2n2) time and O(m2 + n) space (provided all
O(m2) pairwise distances are stored). Once the center string Sc is iden-
tified, the m − 1 pairwise alignments of Sc with the other strings can be
computed in O(mn2) time and O(mn) space by Hirschberg’s algorithm (cf.
Section 8.1.2) from the m−1 pairwise distances of Sc with the other strings.
The combination of these pairwise alignments into a multiple alignment
can be done in time proportional to the size of the multiple alignment,

8.2 Multiple alignment 415

which is O(mn). To sum up, the overall time complexity is O(m2n2), while
the overall space complexity is O(mn).

8.2.3 Progressive alignment

A progressive alignment method builds up a final multiple sequence align-
ment by combining pairwise alignments beginning with the most similar
pair and progressing to the most distantly related. All progressive align-
ment methods require three stages:

1. For each pair of sequences Si and Sj, 1 ≤ i < j ≤ m, compute an
“approximate” evolutionary distance.

2. Based on these pairwise distances, compute an “approximate” phy-
logenetic tree (guide tree).

3. Successively align the sequences in the order induced by the guide
tree.

Feng and Doolittle were the first who coupled progressive alignment
with the rule: “once a gap, always a gap.” In their seminal paper [98],
they wrote:

It seems to us folly that a gap should be discarded in an align-
ment of two closely related sequences merely because an align-
ment with some distantly related sequence might be improved.

The three phases of progressive alignment can, for example, be imple-
mented as follows:

(1) For DNA sequences, one can use dissimilarity measures like a “nor-
malized” edit distance or more sophisticated measures like the Jukes-
Cantor distance [170] or Kimura’s two-parameter distance [181]; see
e.g. [242].

For amino acid sequences, however, one usually uses a similarity
measure. Feng and Doolittle [98] proposed the following conversion
method: For each pair of sequences i and j, 1 ≤ i < j ≤ m, compute

di,j = − log
Spair − Srand
Saver − Srand

where Spair is the similarity score of the two sequences Si and Sj,
and Saver is the average of the similarity scores obtained by aligning
Si with itself and Sj with itself. Furthermore, Srand is the expected
similarity score of two random sequences of the same length and
residue composition (Srand can be obtained by a simulation or by an
approximate calculation).

416 8 Sequence Alignment

(2) Based on these pairwise distances di,j, Feng and Doolittle’s method
[98] computes a guide tree with the clustering algorithm of Fitch
and Margoliash [112]. However, nowadays one would probably use
the neighbor-joining method of Saitou and Nei [276] as a standard
distance-based method for reconstructing phylogenetic trees; see
Section 10.5.2. An application of Saitou and Nei’s neighbor-joining
algorithm to our sole example yields a tree in which SoV and SoL
(sequences S1 and S2) as well as MoH and MiO (sequences S3 and S4)
are neighbors; cf. [310].

(3) In the third phase, one successively aligns the sequences in the order
induced by the guide tree. In our example, we must first align S1

with S2 yielding the alignment A1,2 from Section 8.2.2, and S3 with S4

yielding the alignment

A3,4 =

(
A A G A A A T G G
A T A A A A T G G

)

Then these two alignments must be combined into the final multiple
alignment. Thus, it is a prerequisite of the third phase to have a
method for aligning groups of sequences (alignment of alignments).
According to Durbin et al. [83], this can be done as follows:

Sequence-sequence alignments are done with the usual pair-
wise dynamic programming algorithm. A sequence is added
to an existing group by aligning it pairwise to each sequence
in the group in turn. The best scoring pairwise alignment
determines how the sequence will be aligned to the group.
For aligning a group to a group, all sequence pairs between
the two groups are tried; the best pairwise sequence align-
ment determines the alignment of the two groups.

To continue our example, the lowest distance between members of
the two groups is distδ(S1, S3) = 2 and an optimal alignment of S1 and
S3 is e.g.

A1,3 =

(
− A G T A A T G G
A A G A A A T G G

)

The combined alignment of A1,2 and A3,4 by way of A1,3 is

8.3 Whole genome alignment 417

− A G T A A T G G
− T T T A A T G A
A A G A A A T G G
A T A A A A T G G

Its sum-of-pairs score is 20.

One of the most prominent progressive multiple alignment programs
is CLUSTALW [309]. It uses so-called profiles to represent intermediate
alignments. More on profile alignment and the heuristics of CLUSTALW
can be found e.g. in [83].

8.3 Whole genome alignment

Nowadays, it is quite common for a project to sequence the genome of an
organism that is very closely related to another completed genome. For
example, over 60 complete genomic sequences of Escherichia and Shigella
species are available today. Most strains of these bacteria are harmless,
but some are pathogenic. A global alignment of the (circular) chromo-
somes may help, for example, in understanding why a strain is pathogenic
or resistant to antibiotics while another is not. In general, such a whole
chromosome alignment makes sense only if the organisms under consid-
eration are closely related, i.e., if no or only a few genome rearrangements
have occurred; see Chapter 9. For diverged genomic sequences, however,
a global alignment strategy is likely predestined to failure for having to
align non-colinear and unrelated regions.

Several comparative sequence approaches are based on software-tools
for aligning two or multiple genomic DNA sequences; see e.g. [223]. We
will focus on comparing two genomes, but the method described in this
section can be extended to the comparison of multiple genomes. To cope
with the sheer volume of data, most of the software-tools use an anchor-
based method that is composed of three phases:

1. computation of fragments (segments in the genomes that are simi-
lar),

2. computation of a highest-scoring global chain of colinear non-over-
lapping fragments: the anchors that form the basis of the alignment,

3. alignment of the regions between the anchors.

See e.g. [53,313] for reviews about tools using this strategy.
Here, we discuss algorithms for solving the combinatorial chaining prob-

lem of the second phase: finding a highest-scoring global chain of colinear
non-overlapping fragments. Roughly speaking, two fragments are colinear

418 8 Sequence Alignment

(b)(a)

t

o

6

5

4

3

632

1 754
2S

S

2S

1
S

732

1

1

2

7

Figure 8.14: Given a set of fragments (upper left figure), an optimal global
chain of colinear non-overlapping fragments (lower left fig-
ure) can be computed e.g. by computing an optimal path in
the graph in (b) (in which not all edges are shown).

if the order of their respective segments is the same in both genomes. In
the pictorial representation of Figure 8.14(a), two fragments are colinear
if the lines connecting their segments are non-crossing (in Figure 8.14,
for example, the fragments 2 and 3 are colinear, while 1 and 6 are not).
Two fragments overlap if their segments overlap in one of the genomes (in
Figure 8.14, for example, the fragments 1 and 2 are overlapping, while 2
and 3 are non-overlapping).

This section is organized as follows. Basic definitions and concepts are
given in Section 8.3.1. In Section 8.3.2, we explain a global chaining
algorithm that neglects gap costs, i.e., gaps between the fragments are
not penalized. A special case is the algorithm presented in Section 8.3.4
that solves the heaviest increasing subsequence problem. The material
presented here originates from [5], and we refer to [245] for

• incorporating gap costs into the algorithm,

• higher-dimensional chaining algorithms,

• variations of the algorithm (including local chaining), and

• a discussion of related work.

8.3.1 Basic definitions and concepts

In the following, S1 and S2 are two genomic sequences of lengths n1 and n2.
A fragment f consists of two pairs beg(f)= (l1, l2) and end(f)= (h1, h2) so that

8.3 Whole genome alignment 419

the segments (substrings) S1[l1 . . . h1] and S2[l2 . . . h2] are “similar.” If the
segments are exact matches, i.e., S1[l1 . . . h1] = S2[l2 . . . h2], then we speak
of exact fragments. Examples of exact fragments are maximal unique
matches as used in MUMmer [77, 78], maximal exact matches as used
in MGA [153], AVID [42], and CoCoNUT [3], rare maximal exact matches
[252], or exact k-mers as used in GLASS [29]. In general, however, one
may also allow substitutions (yielding fragments as in DIALIGN [225] and
LAGAN [43]) or even insertions and deletions (as the BLASTZ-hits [287]
that are used in PipMaker [288]). Each fragment f has a positive weight
(denoted by f.weight) that can, for example, be the length of the fragment
(in case of exact fragments) or its similarity score.

A fragment f can be represented by a rectangle in R2 with the lower left
corner beg(f) and the upper right corner end(f), where each coordinate of
the corner points is a non-negative integer. To fix notation, we recall the
following concepts: For any point p ∈ R2, let p.x1 and p.x2 denote its coor-
dinates. A rectangle, whose sides are parallel to the axes, is the Cartesian
product of two intervals [l1 . . . h1] and [l2 . . . h2] on distinct coordinate axes,
where li < hi for 1 ≤ i ≤ 2. A rectangle [l1 . . . h1] × [l2 . . . h2] will also be de-
noted by R(p, q), where p = (l1, l2) and q = (h1, h2) are the lower left and the
upper right corner, respectively.

In what follows, we will often identify the point beg(f) or end(f) with
the fragment f . This is possible because we assume that all fragments
are known from the first phase of the anchor-based approach described
earlier (so that every point can be annotated with a tag that identifies
the fragment it stems from). For example, if we speak about the score
of a point beg(f) or end(f), we mean the score of the fragment f . For
ease of presentation, we consider the origin 0 = (0, 0) and the terminus
t = (n1 + 1, n2 + 1) as fragments with weight 0. For these fragments, we
define beg(0) = ⊥, end(0) = 0, beg(t) = t, and end(t) = ⊥, where ⊥ stands for
an undefined value.

Definition 8.3.1 We define a binary relation� on the set of fragments by
f � f ′ if and only if end(f).xi < beg(f ′).xi for all i with 1 ≤ i ≤ 2. If f � f ′,
then we say that f precedes f ′.

Note that 0� f � t for every fragment f with f 6= 0 and f 6= t.

Definition 8.3.2 A chain of colinear non-overlapping fragments (“chain”
for short) is a sequence of fragments f1, f2, . . . , f` so that fi � fi+1 for all i
with 1 ≤ i < `. The score of C is score(C) =

∑`
i=1 fi.weight −

∑`−1
i=1 g(fi+1, fi),

where g(fi+1, fi) is the cost (penalty) of connecting fragment fi to fi+1 in the
chain. We will call this cost gap cost.

Definition 8.3.3 Given m weighted fragments and a gap cost function,
the global fragment-chaining problem is to determine a chain of highest

420 8 Sequence Alignment

score (called optimal global chain in the following) starting at the origin 0
and ending at terminus t.

The global fragment-chaining problem was previously called the frag-
ment alignment problem [90, 331]. A direct solution to this problem is
to construct a weighted directed acyclic graph G = (V,E), where the set
V of vertices consists of all fragments (including 0 and t) and the set of
edges E is characterized as follows: there is an edge f → f ′ with weight
f ′.weight − g(f ′, f) if f � f ′; see Figure 8.14(b). An optimal global chain
of fragments corresponds to a path of maximum score from vertex 0 to
vertex t in the graph. Because the graph is acyclic, such a path can be
computed as follows: Let f ′.score be defined as the maximum score of all
chains starting at 0 and ending at f ′. f ′.score can be expressed by the
recurrence: 0.score = 0 and

f ′.score = f ′.weight+max{f.score− g(f ′, f) : f � f ′} (8.1)

A dynamic programming algorithm based on this recurrence takes O(|V |+
|E|) time provided that gap costs can be computed in constant time. Be-
cause |V |+|E| ∈ O(m2), computing an optimal global chain takes quadratic
time and linear space; see [61,199]. This graph-based solution works for
any number of genomes and for any kind of gap cost. It has been proposed
as a practical approach for aligning biological sequences, first for two se-
quences by Wilbur and Lipman [331] and for multiple sequences by Sobel
and Martinez [297]. However, the O(m2) time bound can be improved by
considering the geometric nature of the problem.

8.3.2 A global chaining algorithm

Because our algorithm is based on orthogonal range-searching for a max-
imum, we have to recall this notion: Given a set S of points in R2 with
associated score, a range maximum query RMaxQ(p, q) asks for a point of
maximum score in R(p, q).

Lemma 8.3.4 If the gap cost function is the constant function 0 and
RMaxQ(0, beg(f ′)−~1) (where ~1 denotes the vector (1, 1)) returns the end point
of fragment f , then we have f ′.score = f ′.weight+ f.score.

Proof This follows immediately from recurrence (8.1). �

We will further use the line-sweep paradigm to construct an optimal
chain. Suppose that the start and end points of the fragments are sorted
according to their x1 coordinate. Then, processing the points in the as-
cending order of their x1 coordinate simulates a vertical line that sweeps
the plane from left to right. If a point has already been scanned by the

8.3 Whole genome alignment 421

Algorithm 8.2 2-dimensional chaining of m fragments
Sort all start and end points of the m fragments in ascending order w.r.t.
their x1 coordinate and store them in the array points; because we include
the end point of the origin and the start point of the terminus, there are
2m+ 2 points. Store all end points of the fragments (ignoring their x1
coordinate) as inactive (in the 1-dimensional) data structure D.
for i← 1 to 2m+ 2

if points[i] is the start point of fragment f ′ then
q ← RMaxQ(0, points[i].x2 − 1)
determine the fragment f with end(f) = q
f ′.prec← f
f ′.score← f ′.weight+ f.score

else /? points[i] is end point of a fragment f ′ ?/
activate points[i].x2 in D /? activate with score f ′.score ?/

sweeping line, it is said to be active; otherwise it is said to be inactive.
During the sweeping process, the x1 coordinates of the active points are
smaller than the x1 coordinate of the currently scanned point s. Accord-
ing to Lemma 8.3.4, if s is the start point of fragment f ′, then an optimal
chain ending at f ′ can be found by RMaxQ over the set of active end points
of fragments. Since p.x1 < s.x1 for every active end point p (without loss
of generality, start points are handled before end points; hence the case
p.x1 = s.x1 cannot occur), the RMaxQ need not take the first coordinate into
account. In other words, the RMaxQ is confined to the range R(0, s.x2−1), so
that the dimension of the problem is reduced by one. To manipulate the
point set during the sweeping process, we need a data structure D that
stores the end points of fragments and efficiently supports the following
two operations: (1) activation and (2) RMaxQ over the set of active points.
Algorithm 8.2 is based on such a data structure D, which will be defined
later. In the algorithm, f ′.prec denotes the preceding fragment of f ′ in a
chain. It is an immediate consequence of Lemma 8.3.4 that Algorithm 8.2
finds an optimal chain. One can output this chain by tracing back the prec
pointers from the terminus to the origin. The complexity of the algorithm
depends, of course, on how the data structure D is implemented.

The data structure D can be implemented by McCreight’s [219] priority
search tree; cf. [76]. Let S be a set of m one dimensional points. For ease of
presentation, assume that no two points have the same coordinate ([219]
shows how to proceed if this is not the case). The priority search tree of
S is a minimum-height binary search tree T with m leaves, whose i-th
leftmost leaf stores the point in S with the i-th smallest coordinate. Let
v.L and v.R denote the left and right child, respectively, of an internal
node v. To each internal node v of T , we associate a canonical subset

422 8 Sequence Alignment

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

- - -- -

RMQ(0,19)
87

P12

31292725241

27

P12 P16

29

P14P13

3

2925

P15

- -

P1

P1

15

8

1412974

P4

P10

3

P9

P7

P5

P2

P9

17

P10

P11

20

P9

P4

P11

P7

8 8

P8

8 8

P8

2220

20

17 224

15

12

9 141

247

P3 P5

8

P10

8 30 21 9 8425 79 56

P11

P6

coordinate

score

Figure 8.15: Priority search tree: The points with score −∞ are inactive;
the others are active. The value hv.L in every internal node v
is the coordinate that separates the points in its left subtree
v.L from those occurring in its right subtree v.R. The pv value
of v is depicted as a “child” between v.L and v.R. If it is
missing, then pv is undefined. The colored nodes are visited
in answering RMaxQ(0, 19). The hatched boxes contain the
modified pv values when point p12 is activated with score 87.

Cv ⊆ S containing the points stored at the leaves of the subtree rooted
at v. Furthermore, v stores the values hv and pv, where hv denotes the
largest coordinate of any point in Cv, and pv denotes the point of highest
score (priority) in Cv that has not been stored at a shallower depth in T . If
such a point does not exist, pv is undefined; see Figure 8.15.

In Algorithm 8.2, storing all end points of the fragments as inactive boils
down to constructing the priority search tree of the end points, where each
point stored at a leaf has score −∞ and pv is undefined for each internal
node v. It is straightforward to derive a recursive algorithm for building
the priority search tree in O(m logm) time and O(m) space.

In a priority search tree T , a point q can be activated with priority score
in O(logm) time as follows: First, update the value of q.score by q.score ←
score. Second, update the pv values by a traversal of T that starts at
the root. Suppose node v is visited in the traversal. If v is a leaf, there
is nothing to do. If v is an internal node with pv.score ≤ q.score, then
swap q and pv (more precisely, exchange the values of the variables q
and pv); otherwise retain q and pv unchanged. Then determine where the
procedure is to be continued. If q ≤ hv.L, proceed recursively with the left
child v.L of v. Otherwise, proceed recursively with the right child v.R of v.

A range maximum query RMaxQ(0, q) can be answered in O(logm) time
as follows: We traverse the priority search tree starting at the root. Dur-

8.3 Whole genome alignment 423

Algorithm 8.3 Implementation of the operation activate in the data struc-
ture D

if (q.score > predecessor(q).score) then
insert(q)
while (q.score > successor(q).score)
delete(successor(q))

ing the traversal, we maintain a variable max_point that stores the point
of highest score in the range R(0, q) seen so far (initially, max_point is un-
defined). Suppose node v is visited in the traversal. If v is a leaf stor-
ing the point pv, we proceed as in case (1) below. If v is an internal
node, we distinguish the cases (1) pv ≤ q and (2) pv 6≤ q. In case (1), if
pv.score ≥ max_point.score, we update max_point by max_point← pv. In case
(2), if q ≤ hv.L, we recursively proceed with the left child v.L of v; otherwise,
we recursively proceed with both children of v.

If Algorithm 8.2 is implemented with a priority search tree, then it has
a worst-case time complexity of O(m logm) because both activating a point
and RMaxQ over the set of active points take O(logm) time.

8.3.3 Alternative data structures

The priority search tree is a semi-dynamic data structure, in the sense
that points are not really inserted. The advantage of using such a data
structure in Algorithm 8.2 is that the approach can be naturally extended
to the higher-dimensional case. Here, however, we can also use any other
one dimensional dynamic data structure D that supports the following
operations:1

• insert(q): if q is not in D, then put q into D; otherwise update its
satellite information, i.e., the fragment corresponding to q

• delete(q): remove q from D

• predecessor(q): gives the largest element ≤ q in D

• successor(q): gives the smallest element > q in D

To answer RMaxQ(0, q) boils down to computing predecessor(q) in D, and Al-
gorithm 8.3 shows how to activate a point q in D. Note that the operations
predecessor(q) and successor(q) are always well-defined if we initialize the
data structure D with the origin and the terminus point.

Many data structures supporting the aforementioned operations are
known. For example, the priority queues devised by van Emde Boas

1In the dynamic case, the first sentence of Algorithm 8.2 must be deleted.

424 8 Sequence Alignment

[318, 319] and Johnson’s improvement [168] support the operations in
time O(log logN) and space O(N), provided that every q satisfies 1 ≤ q ≤ N .
The space requirement can be reduced to O(n), where n denotes the num-
ber of elements stored in the priority queue; see [220]. Recall that a frag-
ment corresponds to segments of the strings S1 and S2 that are similar.
Without loss of generality, we may assume that n1 = |S1| ≤ |S2| = n2 (oth-
erwise, we swap the sequences). In Algorithm 8.2, using counting sort
(see e.g. [61]) to sort all start and end points of the m fragments in as-
cending order w.r.t. their x1 coordinate takes O(n1) time. Since Algorithm
8.2 employs at most O(m) priority queue operations, each of which takes
time O(log log n1), the overall time complexity of this implementation is
O(n1 +m log log n1). If the fragments are already ordered as in the heaviest
increasing subsequence problem (see below), the worst-case time com-
plexity reduces to O(m log log n1). Using Johnson’s data structure [168],
Eppstein et al. [90] showed that their sparse dynamic programming al-
gorithm solves the problem in O(n1 + n2 + m log logmin(m,n1n2/m)) time.
However, as noted by Chao and Miller [55], the data structure employed
to obtain this theoretical efficiency is unusable in practice. With a practi-
cal data structure, the complexity becomes O(m logm); see also [139,169].
Moreover, in most applications m is relatively small compared to n1, so
that it is advantageous to sort the start and end points of the m fragments
in O(m logm) time. Then the usage of AVL trees (see e.g. [10]), red-black
trees (see e.g. [61]), or any other practical data structure that supports
the above-mentioned operations in O(logm) time, gives an O(m logm) time
and O(m) space implementation of Algorithm 8.2.

8.3.4 Longest/heaviest increasing subsequence

It will be shown below that the problems of finding longest or heaviest
increasing subsequences are special cases of the 2-dimensional fragment-
chaining problem.

Definition 8.3.5 Given a sequence A = a1, a2, . . . , am of positive integers,2

the longest increasing subsequence (LIS) problem is to find a longest sub-
sequence of A that is strictly increasing.

If every element ai of A has a weight, then the heaviest increasing subse-
quence (HIS) problem is to find a strictly increasing subsequence of A so
that the sum of the weights of its elements is maximum (among all strictly
increasing subsequences).

In the LIS problem, one searches for a longest subsequence ai1 , ai2 , . . . , aik
(where 1 ≤ i1 < i2 < · · · < ik ≤ m) with ai1 < ai2 < · · · < aik. Note that this

2One can use any other totally ordered set instead of the positive integers.

8.3 Whole genome alignment 425

Algorithm 8.4 This procedure computes a heaviest increasing subse-
quence of the sequence A = a1, . . . , am.

Initialize D with the origin and the terminus point, i.e., add 0 and ∞
with 0.idx = 0, 0.score = 0, ∞.idx =∞, and ∞.score =∞ to D.
Initialize an array Prec[1..m].
for i← 1 to m
q ← predecessor(ai − 1)
Prec[i]← q.idx
ai.idx← i
ai.score← ai.weight+ q.score
if (ai.score > predecessor(ai).score) then
insert(ai)
while (ai.score > successor(ai).score) do
delete(successor(ai))

q ← predecessor(∞)
idx← q.idx
while idx 6= 0 do

output aidx
idx← Prec[idx]

subsequence is not necessarily contiguous or unique. As an example,
consider the sequence

4, 1, 6, 2, 5, 3

The increasing subsequences with at least two elements are 4, 6 and 1, 2, 3
and 1, 2, 5. Obviously, the last two are longest increasing subsequences. If
all elements have their integral values as weights, then 4, 6 is the heaviest
increasing subsequence.

Clearly, the LIS problem is a special case of the HIS problem in which
each element ai of the sequence A has weight 1. There is an abundance of
papers on the LIS problem and the closely related longest common sub-
sequence (LCS) problem; we refer the interested reader to [139] for refer-
ences. For the HIS problem, Jacobson and Vo [164] devised an O(m logm)
time algorithm.

If we write the sequence A in the form (1, a1), (2, a2), . . . , (m, am) and view
the pair (i, ai) as the i-th fragment, then it becomes apparent that the HIS
problem is a special case of the 2-dimensional fragment-chaining problem
in which the fragments are just points (i.e., the start point of a fragment
coincides with its end point). Algorithm 8.4, a variant of Algorithm 8.2,
solves the HIS problem. In the algorithm, an element q of the sequence A
carries the following data:

• q.idx is the index so that q = aidx, and

426 8 Sequence Alignment

4 1 6 2 5 3
(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(4, 1, 1) (1, 2, 1) (1, 2, 1) (1, 2, 1) (1, 2, 1) (1, 2, 1)

(∞,∞,∞) (4, 1, 1) (4, 1, 1) (2, 4, 2) (2, 4, 2) (2, 4, 2)
(∞,∞,∞) (6, 3, 2) (6, 3, 2) (5, 5, 3) (3, 6, 3)

(∞,∞,∞) (∞,∞,∞) (∞,∞,∞) (5, 5, 3)
(∞,∞,∞)

Figure 8.16: Progression of the data structure D as elements of the se-
quence are processed. In each triple, the first component is
the element q in D, the second component is q.idx, and the
third component is q.score.

i 1 2 3 4 5 6
Prec[i] 0 0 1 2 4 4

Figure 8.17: The Prec-array.

• q.score is the score of the heaviest increasing subsequence ending at
(and including) q.

As mentioned in Section 8.3.3, the data structure D is initialized with the
origin and the terminus to ensure that the operations predecessor(q) and
successor(q) are always well-defined. Since the elements of A are positive
integers, we can use 0 as the origin (with 0.idx = 0 and 0.score = 0). If
we choose ∞ as terminus (with ∞.idx = ∞ and ∞.score = ∞), then we
obtain an on-line algorithm that processes the input sequence A incre-
mentally from left to right, and at each stage it has a heaviest increas-
ing subsequence for the part of A that has so far been seen. The first
four statements of the for-loop of Algorithm 8.4 correspond to the pro-
cessing of start points, while the if-then-statement processes (activates)
end points. Note that the Algorithm 8.4 maintains the following invari-
ant: If q1 < q2 < · · · < q` are the entries in the data structure D, then
q1.score ≤ q2.score ≤ · · · ≤ q`.score. A heaviest increasing subsequence is
output in reverse order in the last while-loop of the algorithm.

We exemplify Algorithm 8.4 by computing a longest increasing subse-
quence of the sequence A = a1, a2, a3, a4, a5, a6 = 4, 1, 6, 2, 5, 3. (So we com-
pute a heaviest increasing subsequence of A under the assumption that
each element ai of A has weight 1.) Figure 8.16 shows the contents of
the data structure D during the execution of Algorithm 8.4, while Figure
8.17 shows the contents of the Prec-array. When all elements of the se-
quence A have been processed in the for-loop of Algorithm 8.4, a longest

8.3 Whole genome alignment 427

increasing subsequence is output as follows. According to the invariant,
q = predecessor(∞) has maximum score (apart from ∞). It follows as a
consequence that a longest increasing subsequence ends at q. Such a
subsequence can be reconstructed with the help of the Prec-array. In
our example, the algorithm first outputs 5. Then it sets idx = Prec[5] = 4
and outputs aidx = a4 = 2. Finally, it sets idx = Prec[4] = 2 and outputs
aidx = a2 = 1. The reversed sequence 1, 2, 5 is a longest increasing subse-
quence of A.

Exercise 8.3.6 Use Algorithm 8.4 to compute a heaviest increasing sub-
sequence of the sequence A = 4, 1, 6, 2, 5, 3 in which all elements have their
integral values as weights.

Exercise 8.3.7 Modify Algorithm 8.4 in such a way that it also deter-
mines whether or not the heaviest increasing subsequence is unique. An-
alyze the worst-case time complexity of the algorithm.

Chapter 9
Sorting by Reversals

9.1 Introduction

During evolution, genomes are subject to both small-scale and large-scale
mutations. Small-scale mutations (point mutations) consist of the substi-
tution, insertion or deletion of single nucleotides, while large-scale muta-
tions (genome rearrangements) alter the order and orientation (stranded-
ness) of genes on the chromosomes. In the single chromosome case (e.g.
bacterial or mitochondrial DNA), the most common rearrangements are
inversions (where a section of the genome is excised, reversed in orienta-
tion, and reinserted) and transpositions (where a section of the genome is
excised and reinserted at a new position in the genome; this may or may
not also involve an inversion). As is usually done in bioinformatics, we
will use the term “reversal” as synonym for “inversion.” Further large-
scale mutations are duplications, deletions (gene loss), and insertions
(horizontal gene transfer). In genomes with multiple chromosomes, im-
portant genome rearrangements are reciprocal translocations (where two
non-homologous chromosomes break and exchange fragments), but also
fusions (where two chromosomes fuse) and fissions (where a chromosome
breaks into two parts) occur. Genome rearrangements are rare compared
to point mutations, and they can give us valuable information about an-
cient events in the evolutionary history of organisms. For this reason, one
is interested in the most plausible genome rearrangement scenario be-
tween species. Work on genome rearrangements dates back to the 1930’s,
when Dobzhansky and Sturtevant studied the geographical and temporal
variation of chromosomal arrangements in Drosophila pseudoobscura and
its relatives; see e.g. [81]. The comparison of genomes based on their gene
arrangements was pioneered by Sankoff; see e.g. [278].

As an example, we consider mitochondrial DNA (mtDNA). A eukaryotic
cell contains several thousand mitochondria. Mitochondria descended
from free-living bacteria that became symbiotic with eukaryotic cells. In

430 9 Sorting by Reversals

Gene Gene product
COI, COII, COIII Cytochrome c oxidase subunits I, II, and III
Cytb Cytochrome b apoenzyme
ND1-6, 4L NADH dehydrogenase subunits 1 to 6 and 4L
ATP6, ATP8 ATP synthase subunits 6 and 8
srRNA small ribosomal subunit RNA (12S rRNA)
lrRNA large ribosomal subunit RNA (16S rRNA)
L1 and L2 two leucine tRNAs
S1 and S2 two serine tRNAs
tRNAs 18 amino acid-specific transfer RNAs

Figure 9.1: Mitochondrial DNA contains 37 genes: 13 code for proteins,
two for rRNA, and 22 code for tRNA (identified by the one-letter
amino acid code; cf. Figure 1.6 on page 6). The following syn-
onyms are often used: cox1, cox2, cox3 for COI, COII, COIII;
cob for Cytb; nad1-6 and nad4L for ND1-6 and ND4L; rns for
srRNA and rnl for lrRNA.

1 2 3 4 5 6 7 8 9 10
COI -S2 D COII K ATP8 ATP6 COIII G ND3
11 12 13 14 15 16 17 18 19 20
R ND4L ND4 H S1 L1 ND5 -ND6 -E Cytb
21 22 23 24 25 26 27 28 29 30
T -P F srRNA V lrRNA L2 ND1 I -Q
31 32 33 34 35 36 37
M ND2 W -A -N -C -Y

Figure 9.2: Mitochondrial gene arrangement of Homo sapiens; see [14,40].
A minus sign (-) indicates that the gene lies on the light strand
of the mtDNA.

other words, the mtDNA is derived from the circular genomes of the bac-
teria that were engulfed by the early ancestors of today’s eukaryotic cells.
The circular chromosome of mtDNA is quite small: the human mtDNA,
for example, contains about 16568 bp. The mitochondrial DNA molecule
contains 37 genes; see Figure 9.1. In humans, one strand (called the
heavy strand because it is heavier than the other strand) carries 28 genes
and the other (the light strand) carries only 9 genes; see Figure 9.2.

Let us consider the gene arrangement in the circular mitochondrial
chromosome of two different species: the fruit fly Drosophila melanogaster
and the mosquito Anopheles quadrimaculatus; see Figures 9.3 and 9.4.
The mitochondrial gene arrangements are the same except for three tRNA
differences: R and A have switched positions and S1 was inverted. It is

9.1 Introduction 431

1 2 3 4 5 6 7 8 9 10
COI L2 COII K D ATP8 ATP6 COIII G ND3
11 12 13 14 15 16 17 18 19 20
A R N S1 E -F -ND5 -H -ND4 -ND4L
21 22 23 24 25 26 27 28 29 30
T -P ND6 Cytb S2 -ND1 -L1 -lrRNA -V -srRNA
31 32 33 34 35 36 37
I -Q M ND2 W -C -Y

Figure 9.3: Mitochondrial gene arrangement of the fruit fly Drosophila
melanogaster; see [119] and e.g. [290, Additional file 5].

1 2 3 4 5 6 7 8 9 10
COI L2 COII K D ATP8 ATP6 COIII G ND3
11 12 13 14 15 16 17 18 19 20
R A N -S1 E -F -ND5 -H -ND4 -ND4L
21 22 23 24 25 26 27 28 29 30
T -P ND6 Cytb S2 -ND1 -L1 -lrRNA -V -srRNA
31 32 33 34 35 36 37
I -Q M ND2 W -C -Y

Figure 9.4: Mitochondrial gene arrangement of the mosquito Anopheles
quadrimaculatus; see [224].

rather plausible that one of the genes A or R was translocated, i.e., one
reversal and one transposition have occurred during evolution.

From an evolutionary perspective, it would be interesting to know which
of the two genome rearrangements appeared on which evolutionary path
in Figure 9.5. For instance, the inversion could have happened in the fruit
fly lineage and the transposition in the mosquito lineage or vice versa. It
is also possible that both of them occurred in the same lineage. However,
to answer such a question requires more than two genomes and is diffi-
cult to ascertain. In fact, the problem is NP-hard; see [21, 50, 257]. So
given two genomes, one wants to find a most parsimonious1 sequence of
genome rearrangements that transforms one into the other. (The number
of rearrangements gives a kind of “evolutionary distance” between the two
species.)

Here, we confine ourselves to the problem of finding a shortest sequence
of reversals that transforms one chromosome into another. (the interested
reader can find many related problems in the book by Fertin et al. [101]).
For example, we wish to solve the problem for the mtDNAs of Drosophila
melanogaster and Homo sapiens. To tackle the problem systematically,
we number the 37 genes in the human mtDNAs consecutively (gene 37 is

1In general, parsimony is the principle that the simplest explanation that can explain
the data is to be preferred.

432 9 Sorting by Reversals

mosquitofruit fly

LCA

Figure 9.5: Evolutionary tree: LCA denotes the last common ancestor
of the fruit fly Drosophila melanogaster and the mosquito
Anopheles quadrimaculatus.

followed by gene 1 because the chromosome is circular). If gene k occurs
on the heavy strand, we say that it has positive orientation and denote
this by

−→
k . Otherwise, if gene k has negative orientation, it is denoted by

←−
k . This gives the first circular sequence:

−→
1 ,
←−
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
−→
17,
←−
18,
←−
19,
−→
20,
−→
21,
←−
22,
−→
23,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
←−
30,
−→
31,
−→
32,
−→
33,
←−
34,
←−
35,
←−
36,
←−
37

Using the numbers of the genes, we similarly obtain the following second
circular sequence (corresponding to the fruit fly):

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
−→
3 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
34,
−→
11,
−→
35,
−→
15,
−→
19,
←−
23,
←−
17,
←−
14,
←−
13,
←−
12,
−→
21,
←−
22,
−→
18,
−→
20,
−→
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
←−
30,
−→
31,
−→
32,
−→
33,
←−
36,
←−
37

Now the task is to find a shortest sequence of reversals that transforms
one sequence into the other. It is possible to “standardize” the problem
as follows: if gene k has negative orientation in the first sequence, then
flip its orientation in both sequences. For example,

←−
2 is flipped to

−→
2 in

the first sequence and
−→
2 is flipped to

←−
2 in the second sequence. Anal-

ogously,
←−
22 is flipped to

−→
22 in the first sequence and

←−
22 is flipped to

−→
22

in the second sequence. This gives the two sequences shown in Figure
9.6. After “standardization” the first sequence is the identity permutation
id = (

−→
1 ,
−→
2 , . . . ,−→n) (here n = 37) and the problem is to find a shortest se-

quence of reversals that transforms the second sequence into the identity
permutation. That is why the problem is known under the name sort-
ing by reversals. For our example, Figure 9.7 shows a solution to this
problem.

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
−→
3 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
←−
35,
−→
15,
←−
19,
←−
23,
←−
17,
←−
14,
←−
13,
←−
12,
−→
21,
−→
22,
←−
18,
−→
20,
←−
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
−→
17,
−→
18,
−→
19,
−→
20,
−→
21,
−→
22,
−→
23,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
34,
−→
35,
−→
36,
−→
37

Figure 9.6: The standardized problem: The upper sequence (fruit fly) must
be transformed into the lower (human) sequence by reversals.

9.1 Introduction 433

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
−→
3 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
←−
35,
−→
15,
←−
19,
←−
23,
←−
17,
←−
14,
←−
13,
←−
12,
−→
21,
−→
22,
←−
18,
−→
20,
←−
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
←−
20,
−→
18,
←−
22,
←−
21,
−→
12,
−→
13,
−→
14,
−→
17,
−→
23,
−→
19,
←−
15,
−→
35,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
3 ,
←−
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
←−
20,
−→
18,
←−
22,
←−
21,
←−
35,
−→
15,
←−
19,
←−
23,
←−
17,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
3 ,
←−
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
27,
−→
4 ,
−→
5 ,
←−
20,
−→
18,
←−
22,
←−
21,
←−
35,
−→
17,
−→
23,
−→
19,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
3 ,
←−
2 ,
←−
28,
←−
16,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
−→
28,
−→
2 ,
−→
3 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
←−
19,
←−
23,
←−
17,
−→
35,
−→
21,
−→
22,
←−
18,
−→
20,
←−
5 ,
←−
4 ,
←−
27,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
−→
4 ,
−→
5 ,
←−
20,
−→
18,
←−
22,
←−
21,
←−
35,
−→
17,
−→
23,
−→
19,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
3 ,
←−
2 ,
←−
28,
←−
27,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
←−
19,
←−
23,
←−
17,
−→
35,
−→
21,
−→
22,
←−
18,
−→
20,
←−
3 ,
←−
2 ,
←−
28,
←−
27,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
18,
←−
22,
←−
21,
←−
35,
−→
17,
−→
23,
−→
19,
−→
20,
←−
3 ,
←−
2 ,
←−
28,
←−
27,
←−
26,
←−
25,
←−
24,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
18,
←−
22,
←−
21,
←−
35,
−→
17,
−→
23,
−→
19,
−→
20,
←−
3 ,
←−
2 ,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
←−
20,
←−
19,
←−
23,
←−
17,
−→
35,
−→
21,
−→
22,
←−
18,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
5 ,
←−
4 ,
←−
3 ,
←−
2 ,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
16,
←−
20,
←−
19,
←−
23,
←−
22,
←−
21,
←−
35,
−→
17,
←−
18,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
←−
10,
←−
9 ,
←−
8 ,
←−
7 ,
←−
6 ,
←−
5 ,
←−
4 ,
←−
3 ,
←−
2 ,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
←−
34,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
18,
←−
17,
−→
35,
−→
21,
−→
22,
−→
23,
−→
19,
−→
20,
←−
16,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
17,
←−
18,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
−→
35,
−→
21,
−→
22,
−→
23,
−→
19,
−→
20,
←−
16,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
17,
−→
18,
←−
15,
←−
14,
←−
13,
←−
12,
←−
11,
−→
34,
−→
35,
−→
21,
−→
22,
−→
23,
−→
19,
−→
20,
←−
16,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
←−
18,
←−
17,
−→
34,
−→
35,
−→
21,
−→
22,
−→
23,
−→
19,
−→
20,
←−
16,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
←−
20,
←−
19,
←−
23,
←−
22,
←−
21,
←−
35,
←−
34,
−→
17,
−→
18,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
←−
20,
←−
19,
←−
18,
←−
17,
−→
34,
−→
35,
−→
21,
−→
22,
−→
23,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
←−
35,
←−
34,
−→
17,
−→
18,
−→
19,
−→
20,
−→
21,
−→
22,
−→
23,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
←−
33,
←−
32,
←−
31,
←−
30,
←−
29,
←−
28,
←−
27,
←−
26,
←−
25,
←−
24,
←−
23,
←−
22,
←−
21,
←−
20,
←−
19,
←−
18,
←−
17,
−→
34,
−→
35,
−→
36,
−→
37

−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11,
−→
12,
−→
13,
−→
14,
−→
15,
−→
16,
−→
17,
−→
18,
−→
19,
−→
20,
−→
21,
−→
22,
−→
23,
−→
24,
−→
25,
−→
26,
−→
27,
−→
28,
−→
29,
−→
30,
−→
31,
−→
32,
−→
33,
−→
34,
−→
35,
−→
36,
−→
37

Figure 9.7: Sorting by reversals: The upper permutation (fruit fly) is trans-
formed into the lower (human) permutation by 19 reversals. In
each step, the underlined segment is inverted.

434 9 Sorting by Reversals

In this chapter, we show how one linear chromosome can be sorted by
reversals (the solution for a circular chromosome is very similar). The
seminal paper on the topic is that by Hannenhalli and Pevzner [145],
who showed that the problem of sorting by reversals can be solved in
polynomial time; see also [258]. The overall presentation in this chapter
follows the work of Setubal and Meidanis [289], which in turn is based
on [24,145,178]. However, they presented an O(n5) time algorithm, while
we devolop a quadratic time algorithm. An alternative algorithm can be
found in [38]. We stress that the problem can in fact be solved in O(n

3
2)

time; see [143,305].
Before we tackle the sorting by reversals problem, let us give some more

background on the problem. First of all, the reader should be aware of
the limitations of the model:

1. only reversals are taken into account,

2. both genomes consist of a single chromosome,

3. the order and orientation of the genes in both genomes is known,

4. both genomes contain a single copy of each gene,

5. both genomes share the same set of genes.

A few comments on these restrictions might be helpful.
(1) The problem of sorting by reversals and transpositions has also been

extensively studied. Articles on that topic include [22, 91, 136, 147, 204,
324]. However, only approximation algorithms are known. This is not sur-
prising because Bulteau et al. [46] have recently solved a long-standing
open problem: sorting by transpositions is NP-hard. That is why one can-
not hope for a polynomial time algorithm that solves the problem exactly.
Bafna and Pevzner [25] proposed the first 1.5-approximation algorithm
for the sorting by transpositions problem, and the algorithm with the cur-
rently best approximation ratio 1.375 is that of [86].

(2) Hannenhalli and Pevzner [144] have shown that their theory can
be extended to multi-chromosomal genomes, where the rearrangement
operations are reversals, reciprocal translocations, fusions, and fission;
see also [256,308].

(3-5) These issues are problematic. Genome sequencing is routine but
gene prediction still remains a challenge. Moreover, there can be several
copies of a gene in a genome and the assumption that both genomes share
the same set of genes is in many cases an oversimplification.

To overcome the obstacles (3-5), researches started to use so-called syn-
teny blocks instead of genes. This notion is closely related to the notion
of conserved segments, which was introduced in a seminal paper [234] by
Nadeau and Taylor. Conserved segments are segments of chromosomes

9.1 Introduction 435

in two species in which both gene content and gene order are preserved.
Nadeau and Taylor [234] estimated that there are roughly 180 conserved
segments in human and mouse. A human-mouse comparative map with
the locations of conserved segments in the genomes can be found e.g.
in [161, Figure 46]. A citation from this article:

The largest apparently contiguous conserved segment in the hu-
man genome is on chromosome 4, including roughly 90.5 Mb of
human DNA that is orthologous to mouse chromosome 5.

Pevzner and Tesler [259] argued that synteny blocks are more suitable
than conserved segments for reconstructing genome rearrangements:

However, these estimates suffer from low resolution of compara-
tive maps in certain genomic areas. Current genomic sequences
provide evidence that the human and mouse genomes are sig-
nificantly more rearranged than previously thought. Moreover,
they indicate that a large proportion of previously identified con-
served segments are not really conserved since there is evidence
of multiple micro-rearrangements in many of them (...). These
micro-rearrangements were not visible in the comparative ge-
netic maps that were used for defining 180 conserved segments
in the past. We study synteny blocks instead of conserved seg-
ments. Intuitively, the synteny blocks are segments that can be
converted into conserved segments by micro-rearrangements;
see the GRIMM-Synteny algorithm below for a formal definition.

It is beyond the scope of this book to discuss methods for finding syn-
teny blocks. The GRIMM-Synteny algorithm is described in [259] and
alternative methods exist; see e.g. [4]. We would like to point out the rela-
tionship between these methods and the anchor-based method for whole
genome alignment discussed in Section 8.3; see [3].

Pevzner and Tesler [259] identified 281 synteny blocks in a compari-
son of the genomes of the house mouse Mus musculus and Homo sapi-
ens.2 With the algorithm of [144], a most parsimonious human-mouse
rearrangement scenario was obtained, consisting of 149 reversals, 93 re-
ciprocal translocations, and 3 fissions. As part of the comparison, they
identified 11 synteny blocks between the mouse and human X chromo-
somes. In a similar comparison, the CoCoNUT system [3] identified 12
synteny blocks; see Figure 9.8. To be consistent with [259], we consider
only 11 synteny blocks. The arrangement of these blocks in the human X

2The mouse nuclear genome is contained in 20 chromosome pairs, whereas 23 chro-
mosome pairs are normally present in humans, including the pair XX (females) or XY
(males) which determines the sex. The last common ancestor of mice and humans is
estimated to have lived approximately 75 million years ago; see e.g. [57].

436 9 Sorting by Reversals

 0

 2
e+

07

 4
e+

07

 6
e+

07

 8
e+

07

 1
e+

08

 1
.2

e+
08

 1
.4

e+
08

 1
.6

e+
08

 0
 2

e+
07

 4
e+

07
 6

e+
07

 8
e+

07
 1

e+
08

 1
.2

e+
08

 1
.4

e+
08

 1
.6

e+
08

Figure 9.8: Synteny blocks obtained with the CoCoNUT system [3]: the
human X chromosome (more than 153 million base pairs) is
plotted on the x-axis and the mouse X chromosome is plotted
on the y-axis. The leftmost block (near the tick mark 6e+07
on the y-axis) is deleted by the GRIMM-Synteny algorithm.

9.2 Basic definitions 437

chromosome corresponds to the identity permutation (because we num-
ber them consecutively and each of them occurs on the same strand),
while the arrangement in the mouse X chromosome is

←−
4 ,
←−
5 ,
−→
3 ,
−→
11,
←−
2 ,
−→
8 ,
←−
9 ,
−→
10,
←−
6 ,
−→
7 ,
←−
1 (9.1)

To see this, consider for example the anti-diagonal in the left upper corner
of Figure 9.8. It corresponds to a synteny block that is first in the human
X chromosome (so it is the element

−→
1 in the human permutation) and last

in the mouse X chromosome. Its orientation in the mouse X chromosome
is different from its orientation in the human X chromosome because anti-
diagonals indicate different orientations (by contrast, diagonals indicate
the same orientations). Consequently,

←−
1 is the last element in the mouse

permutation.
A shortest sequence of reversals that transforms the permutation (9.1)

into the identity permutation has length eight, so one might be tempted to
conclude that a most parsimonious sequence that transforms the mouse
X chromosome into the human X chromosome consists of eight reversals.
However, there is one subtlety: the synteny blocks were obtained by a
comparison of the forward strands of the X chromosomes. Recall that the
two strands of a DNA molecule carry the same information by comple-
mentary base pairing (A-T, G-C). Thus, genome projects usually provide
only one strand of a chromosome, which is designated the forward strand
and the other the reverse strand. (Sometimes the terms “plus strand” and
“minus strand” are used instead.) This designation is arbitrary. Conse-
quently, it might be the case that the transformation of the reverse strand
of the mouse X chromosome into the forward strand of the human X chro-
mosome requires less than eight reversals. Therefore, we must also find
a shortest sequence of reversals that transforms the “reflection”

−→
1 ,
←−
7 ,
−→
6 ,
←−
10,
−→
9 ,
←−
8 ,
−→
2 ,
←−
11,
←−
3 ,
−→
5 ,
−→
4

of the permutation (9.1) into the identity permutation. Such a sequence
is depicted in Figure 9.9: it contains only seven reversals. Thus, it is a
most parsimonious sequence of reversals that transforms the mouse X
chromosome into the human X chromosome.

9.2 Basic definitions

Definition 9.2.1 An oriented permutation π = (π1, . . . , πn) is a permutation
of the set {1, . . . , n}, in which each element (synteny block) has an orienta-
tion.3 If a synteny block k ∈ {1, . . . , n} is on the forward strand of the DNA

3An oriented permutation is also termed signed permutation in the literature.

438 9 Sorting by Reversals

(
−→
1 ,
←−
7 ,
−→
6 ,
←−
10,
−→
9 ,
←−
8 ,
−→
2 ,
←−
11,
←−
3 ,
−→
5 ,
−→
4)

(
−→
1 ,
←−
7 ,
−→
6 ,
←−
10,
−→
9 ,
←−
8 ,
−→
2 ,
←−
4 ,
←−
5 ,
−→
3 ,
−→
11)

(
−→
1 ,
←−
7 ,
−→
4 ,
←−
2 ,
−→
8 ,
←−
9 ,
−→
10,
←−
6 ,
←−
5 ,
−→
3 ,
−→
11)

(
−→
1 ,
←−
7 ,
−→
4 ,
−→
5 ,
−→
6 ,
←−
10,
−→
9 ,
←−
8 ,
−→
2 ,
−→
3 ,
−→
11)

(
−→
1 ,
←−
7 ,
−→
4 ,
−→
5 ,
−→
6 ,
←−
3 ,
←−
2 ,
−→
8 ,
←−
9 ,
−→
10,
−→
11)

(
−→
1 ,
←−
7 ,
←−
6 ,
←−
5 ,
←−
4 ,
←−
3 ,
←−
2 ,
−→
8 ,
←−
9 ,
−→
10,
−→
11)

(
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
←−
9 ,
−→
10,
−→
11)

(
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7 ,
−→
8 ,
−→
9 ,
−→
10,
−→
11)

Figure 9.9: Sorting the permutation obtained from synteny blocks be-
tween the reverse strand of the mouse X chromosome and
the forward strand of the human X chromosome; see [259]. In
each step, the underlined segment is inverted.

double-strand, then it has positive orientation, denoted by
−→
k . If k is on

the reverse strand, then it has negative orientation, denoted by
←−
k .

In the following, we will use the term permutation as short hand for
oriented permutation. Moreover, we will tacitly assume that each permu-
tation consists of n pairwise distinct synteny blocks (numbered from 1 to
n), unless stated otherwise.

Definition 9.2.2 A segment πi, . . . , πj (where 1 ≤ i ≤ j ≤ n) of a permu-
tation π = (π1, . . . , πn) is a consecutive sequence of elements in π, with πi
being the first element and πj being the last element.

A reversal ρ(i, j) is an operation that inverts the order of the elements of
the segment πi, . . . , πj in the permutation π = (π1, . . . , πn). Additionally, the
orientation of each element in the segment is flipped.

We use postfix notation πρ(i, j) to denote the application of ρ(i, j) to π.
For example, if π = (

←−
2 ,
←−
1 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4), then πρ(2, 3) = (

←−
2 ,
←−
3 ,
−→
1 ,
←−
5 ,
←−
6 ,
−→
4).

It should be stressed that in the biological literature reversal are called
inversions.

Definition 9.2.3 The reversal distance d(π, π′) between two permutations
π and π′ is the minimum number of reversals required to transform π into
π′. Given a permutation π, the reversal distance problem is to find the

9.2 Basic definitions 439

πρ(1, 2)ρ(5, 6)ρ(4, 5) = (
−→
0 ,
←−
2 ,
←−
1 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4 ,
−→
7)ρ(1, 2)ρ(5, 6)ρ(4, 5)

= (
−→
0 ,
−→
1 ,
−→
2 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4 ,
−→
7)ρ(5, 6)ρ(4, 5)

= (
−→
0 ,
−→
1 ,
−→
2 ,
−→
3 ,
←−
5 ,
←−
4 ,
−→
6 ,
−→
7)ρ(4, 5)

= (
−→
0 ,
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
7)

Figure 9.10: A sorting sequence of reversals.

minimum number dπ = d(π, id) of reversals required to transform π into
the identity permutation id = (

−→
1 ,
−→
2 , . . . ,−→n). In the sorting by reversals

problem, one additionally asks for a sequence ρ1, ρ2, . . . , ρdπ that actually
sorts π, i.e., πρ1ρ2 . . . ρdπ = id.

Exercise 9.2.4 Show that the reversal distance on the set of permuta-
tions satisfies the metric axioms.

Because we deal with linear permutations (and not cyclic permutations),
we augment every permutation with boundary elements

−→
0 and

−−−→
n+ 1 at the

beginning and at the end. More precisely, from now on we will use the
extended permutation

π = (π0, π1, . . . , πn, πn+1) = (
−→
0 , π1, . . . , πn,

−−−→
n+ 1)

instead of the original permutation (π1, . . . , πn). We stress that these bound-
ary elements cannot be moved by a reversal.

Figure 9.10 shows a sorting sequence of the (extended) permutation
π = (

−→
0 ,
←−
2 ,
←−
1 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4 ,
−→
7). It will become clear below that this is a

shortest sorting sequence.

Definition 9.2.5 A pair πi, πi+1 of consecutive elements in a permutation
π = (π0, π1, . . . , πn, πn+1) is called adjacency if it has the form

−→
k ,
−−−→
k + 1 or

←−−−
k + 1,

←−
k for some k ∈ {0, 1, . . . , n}. (In this case, we also use the phrase “the

oriented elements k and k + 1 are adjacent in π”.) Otherwise, we speak of
a breakpoint.

In what follows, aπ and bπ denote the number of adjacencies and break-
points in π, respectively. Obviously, aπ and bπ are related as follows:

bπ = (n+ 1)− aπ

Furthermore, π = id if and only if bπ = 0 (or equivalently, aπ = n + 1). In
our example permutation π = (

−→
0 ,
←−
2 ,
←−
1 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4 ,
−→
7) there is only one

adjacency, viz,
←−
2 ,
←−
1 . Thus, bπ = 7− 1 = 6.

440 9 Sorting by Reversals

Lemma 9.2.6 There is the following lower bound for dπ:

dπ ≥
1

2
bπ

Proof Obviously, a reversal can remove at most two breakpoints. There-
fore, at least 1

2
bπ reversals are required to remove all bπ breakpoints. �

The length 3 sorting sequence in Figure 9.10 is a shortest possible be-
cause Lemma 9.2.6 implies that any sequence that sorts π has length at
least 1

2
bπ = 3.

9.3 The reality-desire diagram

The main tool for studying the sorting by reversals problem (and related
problems) is the breakpoint graph introduced by Bafna and Pevzner [24].
As suggested by Setubal and Meidanis [289], we use the term “reality-
desire diagram” instead.

In the forthcoming discussion, it is handy to split every element in the
permutation π into two signed elements. An element

−→
k with positive ori-

entation is replaced with −k,+k, whereas
←−
k is replaced with +k,−k. So

+ stand for the arrow-head and − stands for the shaft of the arrow that
indicates the orientation of an element. Because the boundary elements
always have positive orientation, it suffices to replace

−→
0 with +0 and

−−−→
n+ 1

with −(n+1). In this new notation, our example permutation has the form

π = (+0, + 2, − 2, + 1, − 1, − 3, + 3, + 5, − 5, + 6, − 6, − 4, + 4, − 7)

Clearly, an oriented element
−→
k = −k,+k (or

←−
k = +k,−k, respectively)

cannot be split by a reversal.

Definition 9.3.1 The reality-desire diagram of a permutation π is an
undirected graph with nodes +0,+1, . . . ,+n,−1,−2, . . . ,−n,−(n+1) and two
kinds of edges:

• for each pair πi, πi+1 of consecutive oriented elements in π there is a
reality edge that connects πi with πi+1. More precisely, it connects
the right component of πi with the left component of πi+1. For exam-
ple, if πi, πi+1 =

←−
1 ,
−→
3 = (+1,−1), (−3,+3) then there is a reality edge

(−1,−3) in the reality-desire diagram. Reality edges reflect the actual
neighbor relationships.

• For each k with 0 ≤ k ≤ n, there is a desire edge (+k,−(k + 1)).
Desire edges reflect the desired neighbor relationships in the identity
permutation id = (

−→
0 ,
−→
1 , . . . ,−→n ,−−−→n+ 1).

Figures 9.11 and 9.12 show a linear and a circular representation of the
reality-desire diagram of our example permutation.

9.3 The reality-desire diagram 441

+0 +2 −2 +1 −1 −3 +3 +5 −5 +6 −6 −4 +4 −7

Figure 9.11: The linear reality-desire diagram of our permutation.

+0
+2

−2

+1

−1

−3

+3
+5

−5

+6

+4

−7

−6

−4

Figure 9.12: The circular reality-desire diagram of our permutation.

442 9 Sorting by Reversals

Definition 9.3.1 immediately implies:

• Every node in a reality-desire diagram is incident to exactly one re-
ality edge and exactly one desire edge.

• Every connected component in the reality-desire diagram is a cycle
consisting of alternating reality and desire edges.

• For an adjacency
−→
k ,
−−−→
k + 1, the reality edge (+k,−(k + 1)) coincides

with the desire edge (+k,−(k + 1)) (the case
←−−−
k + 1,

←−
k is analogous). A

cycle corresponds to an adjacency if and only if it consists of exactly
two edges (one reality edge and one desire edge).

Lemma 9.3.2 A permutation π is the identity permutation if and only if its
reality-desire diagram has n+ 1 cycles.

Proof If π is the identity permutation, then aπ = n + 1. Hence its reality-
desire diagram has n+1 cycles. If π is not the identity permutation, then it
has at least one breakpoint. The cycle containing the reality edge induced
by the breakpoint has more than two edges. Because the reality-desire
diagram has a total of 2(n+ 1) edges, this implies that the overall number
of cycles must be less than n+ 1. �

In view of the preceding lemma, the process of transforming a permu-
tation π into the identity permutation by a minimum number of reversals
can be viewed as a process of transforming the reality-desire diagram of π
into a reality-desire diagram with as many cycles as possible. Thus, it is
helpful to characterize the effect of a reversal on a reality-desire diagram
(especially on the number of cycles).

Obviously, any reversal acts on exactly two reality edges. For example,
the reversal ρ(4, 5) applied to our example permutation

π = (
−→
0 ,
←−
2 ,
←−
1 ,
−→
3 ,
←−
5 ,
←−
6 ,
−→
4 ,
−→
7)

acts on the reality edges (+3,+5) and (−6,−4); see Figure 9.11. To be pre-
cise, it removes the edges (+3,+5) and (−6,−4), inverts the segment

←−
5 ,
←−
6 ,

and adds the new reality edges (+3,−6) and (+5,−4); see Figure 9.13. In
the following, it is convenient to specify the interval that is inverted by ρ
instead of specifying the segment. In our example, the reversal ρ(4, 5) of
the segment

←−
5 ,
←−
6 is denoted by ρ([+5, . . . ,−6]), and we say ρ inverts (or

reverses) the interval [+5,−5,+6,−6].
With the aid of the following definition, we will be able to characterize

the effect of a reversal on the number of cycles.

9.3 The reality-desire diagram 443

+0 +2 −2 +1 −1 −3 +3 −4 +4 −7−6 +6 −5 +5

Figure 9.13: The reversal ρ([+5, . . . ,−6]) applied to the permutation from
Figure 9.11 acts on the convergent reality edges (+3,+5) and
(−6,−4). As one can see in the figure, the number of cycles
remains unchanged.

Definition 9.3.3 Two distinct reality edges belonging to the same cycle
are called convergent if they are traversed in the same direction in a
traversal of the cycle. In the linear reality-desire diagram, this means
that both edges are traversed from left to right or both are traversed from
right to left. In the circular reality-desire diagram, this means that both
edges are traversed clockwise or both are traversed counter-clockwise.
Otherwise, they are divergent.

Note that the phrase “two reality edges are convergent” necessarily im-
plies that the two edges belong to the same cycle; the same is true for two
divergent reality edges.

The reality edges (+3,+5) and (−6,−4) in Figures 9.11 and 9.12 are con-
vergent, whereas e.g. the reality edges (+0,+2) and (−1,−3) are divergent.

Lemma 9.3.4 A reversal ρ applied to a permutation π changes the number
of cycles as follows:

• If ρ acts on two convergent reality edges, then the number of cycles
remains unchanged; see Figure 9.13.

• If ρ acts on two divergent reality edges, then the number of cycles
increases by one; see Figure 9.14.

• If ρ acts on two reality edges from different cycles, then the number of
cycles decreases by one; see Figure 9.15.

Proof Suppose that the reversal acts on the two reality edges (s, t) and
(u, v), and that s, t, u, v occur in that order in π. Clearly, the reversal can be
written as ρ([t, . . . , u]) and it has the following effects on the reality-desire
diagram: it removes the edges (s, t) and (u, v), inverts the interval [t, . . . , u],
and adds the new reality edges (s, u) and (t, v). Since desire edges always
remain unchanged, the reversal solely effects the cycle(s) containing (s, t)
and (u, v). Now, let us consider the different cases.

444 9 Sorting by Reversals

+0 −3 +3 +5 −5 +6 −6 −4 +4 −7−1 +1 −2 +2

Figure 9.14: The reversal ρ([+2, . . . ,−1]) applied to the permutation from
Figure 9.11 acts on the divergent reality edges (+0,+2) and
(−1,−3). The number of cycles increases by one.

+0 +2 −2 +1 −1 +6 −6 −4 +4 −7−5 +5 +3 −3

Figure 9.15: The reversal ρ([−3, . . . ,−5]) applied to the permutation from
Figure 9.11 acts on the reality edges (−1,−3) and (−5,+6),
which belong to different cycles. The number of cycles de-
creases by one.

• Since the two reality edges (s, t) and (u, v) are convergent, they be-
long to the same cycle. A traversal of this cycle that starts with
the edge (s, t), continues from t to u, moves along the edge (u, v),
and then goes back from v to s. In other words, the path has
the form (s, t, . . . , u, v, . . . , s). After the reversal, there is the path
(s, u, . . . , t, v, . . . , s). Therefore, the new reality edges (s, u) and (t, v) be-
long to the same cycle. Consequently, the number of cycles remains
the same.

• If the two reality edges (s, t) and (u, v) are divergent, a traver-
sal of their cycle that starts with the edge (s, t) has the form
(s, t, . . . , v, u, . . . , s). The reversal replaces the edges (s, t) and (u, v)
with the edges (s, u) and (t, v). So after the reversal, there are
the paths (s, u, . . . , s) and (t, . . . , v, t). In summary, the big cycle
(s, t, . . . , u, v, . . . , s) is split into two smaller cycles (s, u, . . . , s) and
(t, . . . , v, t). That is, the reversal increases the number of cycles by
one.

• If (s, t) and (u, v) belong to different cycles (s, t, . . . , s) and (u, v, . . . , u),
then the reversal merges them into the big cycle (s, u, . . . , v, t, . . . , s).
Therefore, the number of cycles decreases by one.

�

9.4 Components 445

Corollary 9.3.5 There is the following lower bound for the reversal dis-
tance dπ of a permutation π:

dπ ≥ n+ 1− cπ

where cπ denotes the number of cycles in the reality-desire diagram of π.

Proof The desired identity permutation has n + 1 cycles. Thus, in the
transformation from the reality-desire diagram of π to that of the identity
permutation, n+1− cπ cycles must be created. According to Lemma 9.3.4,
a reversal can increase the number of cycles by at most one. So any
sequence of reversals that sorts π has length at least n+ 1− cπ. �

Exercise 9.3.6 Give an example of a permutation that can not be sorted
with n+ 1− cπ reversals.

9.4 Components

In this section, we define the components of a reality-desire diagram and
provide a linear-time algorithm to find them all.

9.4.1 Elementary intervals

Definition 9.4.1 For every k ∈ {0, 1, . . . , n}, the elementary interval Ik of
the permutation π is defined as

Ik =

{
[+k, . . . ,−(k + 1)] if +k occurs in π before −(k + 1)
[− (k + 1), . . . ,+k] if +k occurs in π after −(k + 1)

An elementary interval Ik is called good if the oriented elements k and k+1
have different orientations in π; it is bad if the oriented elements k and
k + 1 have the same orientation but they are not adjacent in π.4

The oriented elements k and k + 1 are adjacent in π (i.e., either
−→
k ,
−−−→
k + 1

or
←−−−
k + 1,

←−
k occur consecutively in π) if and only if the elementary interval

Ik has the form [+k,−(k + 1)] or [−(k + 1),+k]. Such an interval is neither
good nor bad.

The notation ρ(I) means that the reversal ρ inverts the interval I. If −p
(or +q) is a boundary element of I, then +p (or −q) must also be contained
in I because a reversal cannot split an oriented element. In this chapter,

4As first done by Setubal and Meidanis [289], we use the attributes good and bad
instead of the originally suggested attributes oriented and unoriented because a sen-
tence like “An elementary interval Ik is called oriented if the oriented elements k and
k + 1 have different orientations in π” may easily confuse the reader.

446 9 Sorting by Reversals

we implicitly assume that this is indeed the case. But there is one ex-
ception: elementary intervals may violate this assumption. Therefore, we
define the meaning of a reversal applied to an elementary interval Ik as
follows: ρ(Ik) inverts all oriented elements that are completely contained
in Ik. That is, if −k (+(k + 1), respectively) is not in Ik, then the oriented
element k (k + 1, respectively) is not affected by ρ(Ik). For example, the
reversal of the elementary interval I2 = [+2, . . . ,−3] in the permutation

π = (+0, + 2, − 2, + 1, − 1, − 3, + 3, + 5, − 5, + 6, − 6, − 4, + 4, − 7)

does not move
−→
3 because it inverts the interval [+2, − 2, + 1, − 1].

An elementary interval Ik directly corresponds to the desire edge from
node +k to node −(k + 1) in the reality-desire diagram of π. The neigh-
boring reality edges of this desire edge are divergent if Ik is good and
convergent if Ik is bad. Note that the reversal ρ(Ik) acts on these neigh-
boring reality edges. By Lemma 9.3.4, the reversal of a good elementary
interval increases the number of cycles by one, whereas the reversal of a
bad elementary interval has no influence on the number of cycles. This
explains the attributes good and bad. According to Definition 9.4.1, the
elementary intervals of adjacencies are neither good nor bad. However,
the reader should not think of them as being neutral. They are excellent
because they are already part of the desired result.

The status (good or bad) of an elementary interval Ik can also be in-
ferred from the linear representation of the reality-desire diagram. There,
the desire edge corresponding to Ik is drawn as an arc. If both neighbor-
ing reality edges lie inside (outside, respectively) the arc, then Ik is bad;
otherwise it is good. Let us take a look at Figure 9.11 (page 441). The
elementary interval I5 = [+5,−5,+6,−6] is bad because both reality edges
(+3,+5) and (−6,−4) lie outside the arc (+5,−6). By contrast, the elemen-
tary interval I4 = [−5,+6,−6,−4,+4] is good because (−5,+6) is inside the
arc (−5,+4) but (+4,−7) is outside.

Exercise 9.4.2 Show that the reversal of a good elementary interval Ik
creates the adjacency

−→
k ,
−−−→
k + 1 or

←−−−
k + 1,

←−
k .

Definition 9.4.3 For every i with 1 ≤ i ≤ 2(n + 1) let pi denote the signed
element at position i in π = (+0, . . . ,−(n+ 1)).

Two intervals [pi, . . . , pj] and [pk, . . . , pl] overlap if either i < k ≤ j < l or
k < i ≤ l < j holds true. To put it differently, two intervals overlap if their
intersection is non-empty but neither is a subinterval of the other.

Lemma 9.4.4 An elementary interval Ik that does not overlap with any
other elementary interval has the form [+k,−(k+1)] or [−(k+1),+k] (in other
words,

−→
k ,
−−−→
k + 1 or

←−−−
k + 1,

←−
k is an adjacency in π).

9.4 Components 447

Proof Let p (q, respectively) be the maximum (minimum, respectively) ab-
solute value of all elements in Ik. If +p were an element of Ik, then −(p+1)
would not be an element of Ik and thus Ik would overlap with the elemen-
tary interval Ip. Hence −p is an element of Ik, but +p is not. Similarly,
one can show that +q is an element of Ik, but −q is not. It follows as a
consequence that +q and −p coincide with the boundary elements +k and
−(k+1) of Ik. Because there is no natural number i satisfying k < i < k+1,
Ik is either the interval [+k,−(k + 1)] or the interval [−(k + 1),+k]. �

For our purposes, the converse statement of Lemma 9.4.4 is impor-
tant: if the oriented elements k and k + 1 are not adjacent in π, then the
elementary interval Ik must overlap with another elementary interval.

In what follows, we will identify the elementary interval Ik with the desire
edge (+k,−(k + 1)). For example, the desire edge (+k,−(k + 1)) is said to
be good if the elementary interval Ik is good. Furthermore, we say that
two desire edges (+j,−(j + 1)) and (+k,−(k + 1)) overlap if the elementary
intervals Ij and Ik overlap.

Definition 9.4.5 Two different cycles c and d in the reality-desire diagram
of π overlap if there is a desire edge in c that overlaps with a desire edge
from d.

In the reality-desire diagram of Figure 9.11, the cycles (+3,+5,−6,−4)
and (−5,+6,−7,+4) overlap.

Definition 9.4.6 The overlap graph G of a permutation π is an undirected
graph defined as follows:

• The cycles in the reality-desire diagram of π are the nodes of G.

• There is an edge (c, d) if and only if the cycles c and d overlap.

The connected components of G are simply referred to as components.

The overlap graph of the permutation π from Figure 9.11 has four nodes:
the cycles c1 = (+0,+2,−3,−1), c2 = (−2,+1), c3 = (+3,+5,−6,−4), and
c4 = (−5,+6,−7,+4). Because it has just one edge (c3, c4), there are three
components.

In the following definition, we exclude cycles and components that cor-
respond to an adjacency (these are neither good nor bad).

Definition 9.4.7 A cycle c in the reality-desire diagram of permutation π
is called good if it contains at least one good desire edge; otherwise we
speak of a bad cycle. A component is good if it contains at least one good
cycle; otherwise it is bad.

448 9 Sorting by Reversals

9.4.2 Finding cycles and components

Finding cycles in the reality-desire diagram of a permutation π is rather
easy. Suppose that the 2n + 2 nodes in the reality-desire diagram are
stored left-to-right in an array v. Initially, each node is untagged. A node
will be tagged when it is visited for the first time. The algorithm scans the
nodes from left to right and searches for the first untagged node. If the
first untagged node appears at position i1, the algorithm starts at node
v[i1], follows the incident reality edge to node v[i2], tags v[i2], follows the
incident desire edge to node v[i3], tags v[i3], follows the incident reality
edge etc. until v[i1] is reached again. Clearly, v[i1], v[i2], v[i3], . . . , v[i1] is a
cycle. Then it resumes the left-to-right scan (and identifies further cycles)
until it reaches the last position 2n + 2. In this way, all cycles can be
found in O(n) time (there are 2n + 2 nodes and 2n edges in the reality-
desire diagram of π). It is quite obvious how to modify this algorithm so
that it also delivers the status of each cycle. This easy exercise is left to
the reader.

By contrast, it is much harder to find all components in linear time. This
is because the overlap graph can be of quadratic size. Bader et al. [20]
solved the problem by constructing an overlap forest so that two cycles of
the reality-desire diagram of π belong to the same tree in the forest if and
only if they belong to the same component in the overlap graph of π. An
overlap forest has exactly one tree per component and thus is of linear
size.

Definition 9.4.8 The extent of a cycle c in the reality-desire diagram of a
permutation π is the interval [c.b..c.e], where c.b = min{i | v[i] belongs to c}
and c.e = max{i | v[i] belongs to c}. The extent of a set of cycles {c1, . . . , ck} is
the interval [b..e], where b = min{ci.b | 1 ≤ i ≤ k} and e = max{ci.e | 1 ≤ i ≤ k}.

Suppose all cycles and their extents have been computed by the algo-
rithm described above, and that the cycles are numbered consecutively
from left to right. In the following, the number of a cycle is used as an
identifier of the cycle. In the initial forest F0, every cycle in the reality-
desire diagram of π is the root of a single-node tree. Proceeding induc-
tively, let Fi−1 be the forest obtained by processing the first i − 1 nodes of
the reality-desire diagram of π. The forest Fi is constructed from Fi−1 as
follows: Let the i-th node belong to the cycle c. If c starts at position i, i.e.,
position i is the leftmost node that belongs to the cycle c (so i = c.b), then
no information about overlaps of c with other cycles is yet available. Thus,
Fi = Fi−1. Otherwise, we infer that every cycle c′ starting at a position in
between the positions c.b and i and ending after position i must overlap
with c. Consequently, c and c′ belong to the same component C in the
overlap graph and c becomes the parent node of c′ in the overlap forest.

9.4 Components 449

Furthermore, the combined extent of c′ and the tree rooted at c is com-
puted (this corresponds to the extent of the component C up to position i)
and stored in c.b and c.e. We say that a tree rooted at c is active at position
i if i lies properly within the extent of c, and store the extent of active trees
on a stack. Pseudo-code of the algorithm can be found in Algorithm 9.1.
Each tree T in the overlap forest can be represented by the root r of the
tree. We use the identifier r.id of the cycle r at the root of T as a unique
identifier of T (and thus of the component corresponding to T). In the last
for-loop, the identifier c.id of a cycle c is changed to the identifier of the
root of the tree to which c belongs. This can be done by a left-to-right scan
of the array parent because the parent of a cycle c has an identifier that is
strictly smaller than j = c.id (i.e., parent[j] < j). Afterwards, the component
to which node v[i] belongs can be determined by the component identifier
C[ptr[i]].id.

Theorem 9.4.9 Algorithm 9.1 constructs a forest F so that the trees in the
forest correspond exactly to the components of the overlap graph.

Proof We show by induction that Algorithm 9.1 maintains the following
invariant for each i with 1 ≤ i ≤ 2n + 2: after the (i − 1)-th iteration of
the second for-loop, the trees in the forest Fi−1 correspond exactly to the
components of the overlap graph determined by the overlaps detected up
to position i − 1. More precisely, the set of nodes (cycles) of a tree con-
taining a cycle c coincides with the set of nodes (cycles) of the component
containing c.

The base case i = 1 (i.e., i − 1 = 0) is trivial because the overlap graph
has no edges yet (no overlap has been detected so far). By the inductive
hypothesis we may assume that the invariant holds for i − 1. In the in-
ductive step, let the i-th node in the reality-desire diagram of π belong
to cycle c. We prove that after the i-th iteration of the second for-loop,
the tree to which c belongs contains another cycle c′ if and only if the
component to which c belongs contains c′. Because the other trees and
components are unaffected, this shows that the invariant also holds after
the i-th iteration of the second for-loop. Observe that if i = c.b (i.e., i is the
leftmost node of cycle c), then neither the overlap forest not the overlap
graph changes. Therefore, the invariant is preserved is this case. Now we
consider a position i at which the overlap forest or the overlap graph (or
both) change.

“if ”: If c.b < i and c.b < top.b, then Algorithm 9.1 sets parent[top.id]← c.id.
In other words, the tree rooted at top becomes a subtree of the tree rooted
at c. By the inductive hypothesis, the nodes contained in the tree rooted
at c are contained in a component C and the nodes contained in the tree
rooted at top are contained in a different component C ′ in the overlap
graph determined by the overlaps detected up to position i − 1. We must
show that after the i-th iteration, every cycle c′ contained in the tree rooted

450 9 Sorting by Reversals

Algorithm 9.1 Constructing an overlap forest.
initialize an array ptr[1, . . . , 2n+ 2]
k ← 0 /* k counts the number of cycles */
in a left-to-right scan of the reality-desire diagram of π do

whenever a new cycle c = v[i1], v[i2], . . . , v[im], v[i1] is found do
k ← k + 1
c.b← min{ij | 1 ≤ l ≤ m}
c.e← max{ij | 1 ≤ l ≤ m} /* [b..e] is the extent of cycle c */
for j ← 1 to m do
ptr[ij]← k /* node v[ij] belongs to the k-th cycle */

c.id← k /* identify a cycle by its number */
C[k]← c /* C[k] is the cycle c with number c.id = k */

for j ← 1 to k do /* initialize the overlap forest */
parent[j]← ⊥ /* parent[j] is undefined */

for i← 1 to 2n+ 2 do
c← C[ptr[i]] /* node v[i] belongs to cycle c */
if i = c.b then
push(c)

extent← c
while (c.b < top.b) do
extent.b← min{extent.b, top.b}
extent.e← min{extent.e, top.e}
parent[top.id]← c.id
pop()

top.b← min{extent.b, top.b}
top.e← max{extent.e, top.e}
if i = top.e then
pop()

for j ← 1 to k do
if parent[j] 6= ⊥ then
C[j].id← C[parent[j]].id

/* now node v[i] belongs to the component with identifier C[ptr[i]].id */

9.5 Sorting a permutation without bad components 451

at top is contained in the component containing c. Because top was on the
stack before the i-th iteration, it follows that c.b < top.b < i < top.e. This
implies that there must be a desire edge belonging to cycle c that overlaps
with a desire edge belonging to top. In other words, the components C and
C ′ are connected by a new edge in the overlap graph. Consequently, after
the i-th iteration cycle c′ belongs to the component containing c.

“only-if ”: The new edges added to the overlap graph are those overlaps
that are detected at position i, i.e., they have not been detected up to posi-
tion i−1. Each of these overlaps is an overlap between cycle c and another
cycle c′. If c and c′ were already in the same component after the (i− 1)-th
iteration, then it follows from the inductive hypothesis that they are in the
same tree. So suppose that they were not in the same component, say c
belonged to component C and c′ belonged to component C ′. According to
the inductive hypothesis, the components C and C ′ correspond to trees T
and T ′. After the i-th iteration, there is an edge between c and c′ in the
overlap graph. Because the overlap of c and c′ is detected at position i,
there are desire edges (v[j], v[i]) and (v[k], v[l]) belonging to c and c′, respec-
tively, so that j < k < i < l. In this case, however, Algorithm 9.1 sets
parent[c′.id] ← c.id, i.e., the tree rooted at c′ becomes a subtree of the tree
rooted at c. Thus, every cycle of the former component C ′ (or equivalently,
of the former tree T ′) now belongs to the tree rooted at c. �

9.5 Sorting a permutation without bad components

In the overall sorting-by-reversals algorithm we are going to develop, all
bad components are eliminated first and then the resulting permutation
(without bad components) is sorted. We defer the elimination of bad com-
ponents to Section 9.6. In this section, we develop an algorithm that is
able to sort a permutation without bad components in O(n3) time. Later,
we shall see that the problem can be solved in O(n2) time.

Lemma 9.5.1 A reversal ρ(I) changes the status of an elementary interval
Ik (good into bad or vice versa) if and only if I contains one of the oriented
elements k and k + 1 but not the other.

Proof If I contains one of the oriented elements k and k + 1, but not the
other, then it changes the orientation of exactly one of them. So if they
have the same orientation (different orientation, respectively) before the
reversal ρ(I), then they have different orientation (the same orientation,
respectively) after the reversal. That is, the status of Ik changes. If I
contains both k and k + 1, then ρ(I) changes the orientation of both k and
k + 1. In this case, the status of Ik remains unchanged. Obviously, the
same is true if I neither contains k nor k + 1. �

452 9 Sorting by Reversals

Lemma 9.5.2 A reversal ρ(Ij) of an elementary interval Ij changes the sta-
tus of another elementary interval Ik if and only if Ij and Ik overlap.

Proof Clearly, if Ij and Ik overlap, then their boundary elements +j,
−(j + 1), +k, and −(k + 1) occur in alternating order in the permuta-
tion π. We consider the orders (a) +j, +k, −(j + 1), −(k + 1) and (b)
−(j + 1), +k, +j, −(k + 1); the other possible orders can be treated sim-
ilarly. Note that j 6= k. In case (a), −k must lie within the interval Ik;
hence +j, +k, −k, −(j + 1), −(k + 1) occur in that order in π, where
possibly −k = −(j + 1). In case (b), the elements occur in the order
−(j +1), +k, −k, +j, −(k+1) or in the order −(j +1),−k, +k, +j, −(k+1).
In both cases (a) and (b), +k and −k are contained in Ij but −(k+1) is not.
Thus, Lemma 9.5.1 implies that the reversal ρ(Ij) changes the status of
Ik.

If Ij and Ik do not overlap, then their boundary elements +j, −(j + 1),
+k, and −(k + 1) do not occur in alternating order. If both +j and −(j + 1)
precede (or succeed) +k and −(k+1), then Ij contains none of the oriented
elements k and k+1. The same is true if +j and −(j +1) occur in between
+k and −(k+1). Finally, if +k and −(k+1) occur in between +j and −(j+1),
then Ij contains both oriented elements k and k+1. In all these cases ρ(Ij)
does not change the status of Ik by Lemma 9.5.1. �

What happens when the inverted interval in the preceding lemma is a
non-elementary interval I? On the one hand, the if-part is still true: if I
and Ik overlap, then ρ(I) changes the status of Ik. To see this, suppose the
overlap of I and Ik contains +k. Then, however, −k must also be contained
in I by the definition of a non-elementary interval. Therefore, I contains
the oriented element k but not k+1. Hence ρ(I) changes the status of Ik by
Lemma 9.5.1. On the other hand, the only-if-part of the preceding lemma
crucially depends on the fact that the inverted interval is an elementary
interval. If a non-elementary interval I is contained in Ik, then ρ(I) may
change the status of Ik. For example, in the permutation

π = (+0, + 2, − 2, + 1, − 1, − 3, + 3, + 5, − 5, + 6, − 6, − 4, + 4, − 7)

the elementary interval I2 = [+2, . . . ,−3] is good. The interval I = [+2,−2]
is contained in I2, and in the permutation

π′ = πρ(I) = (+0, −2, +2, +1, −1, −3, +3, +5, −5, +6, −6, −4, +4, −7)

the elementary interval I ′2 = [+2, . . . ,−3] is bad.
In what follows, the overlap status between two elementary intervals Ij

and Ik is true if Ij and Ik overlap; otherwise it is false.

Lemma 9.5.3 A reversal ρ(I) changes the overlap status between two ele-
mentary intervals Ij and Ik if and only if I overlaps with both Ij and Ik.

9.5 Sorting a permutation without bad components 453

pj qjpk qk pj qj pk qk

IIj Ik I′I′j I′k
ρ(I)

Figure 9.16: Before the reversal, I overlaps with both Ij and Ik, and the
overlap status between Ij and Ik is true.

Ij Ik I I′j I′k I′
ρ(I)

Figure 9.17: Before the reversal, I overlaps with Ik but not with Ij.

Proof Let Ij = [pj, . . . , qj] and Ik = [pk, . . . , qk]. That is, pj, qj and pk, qk are
the boundary elements of the intervals Ij and Ik, respectively. Note that
{pj, qj} = {+j,−(j+1)}, {pk, qk} = {+k,−(k+1)}), and {pj, qj}∩{pk, qk} = ∅. The
overlap status between Ij and Ik is true if and only if their boundary ele-
ments occur in alternating order in π, i.e., their order is either pj, pk, qj, qk
or pk, pj, qk, qj. If I overlaps with both Ij and Ik, then ρ(I) inverts the order
of exactly one boundary element of Ij and one boundary element of Ik. In
other words, if the boundary elements occur in alternating order before
the reversal ρ(I), then this is not true afterwards (see Figure 9.16) and
vice versa. Thus, if I overlaps with both Ij and Ik, then ρ(I) changes the
overlap status between Ij and Ik.

If I overlaps with only one of the intervals or with none of them, then
the order of the boundary elements of Ij and Ik remains unchanged; see
Figure 9.17. Therefore, the overlap status remains the same. �

Definition 9.5.4 Let Ik be a good elementary interval of the permutation
π. The score score(Ik) of Ik is the number of good elementary intervals in
the permutation πρ(Ik).

So the score of a good elementary interval Ik can be computed by in-
verting Ik and counting the number of good elementary intervals in the
resulting permutation. The following theorem is due to Bergeron [37].

Theorem 9.5.5 The reversal of a good elementary interval with maximum
score does not create new bad components.

Proof Let t be the total number of good elementary intervals in the per-
mutation π, and for each good elementary interval Ii let g(Ii) (b(Ii), respec-
tively) be the number of good (bad, respectively) elementary intervals that
overlap with Ii.

454 9 Sorting by Reversals

Consider a good elementary interval Ik with maximum score. After the
reversal ρ(Ik), the oriented elements k and k+1 are adjacent; see Exercise
9.4.2. Furthermore, by Lemma 9.5.2, the reversal ρ(Ik) changes the status
of another elementary interval if and only if it overlaps with that interval.
Putting it all together, we infer that score(Ik) = t + b(Ik) − g(Ik) − 1. For a
proof by contradiction, suppose that ρ(Ik) creates a new bad component
C. So all elementary intervals (desire edges) in C are bad, but at least one
of them, say I ′j, was good before the reversal. According to Lemma 9.5.2,
Ij and Ik must overlap. Note that score(Ij) = t+ b(Ij)− g(Ij)− 1.

We claim that every bad elementary interval Ii that overlaps with Ik
must also overlap with Ij. Note that this directly implies b(Ij) ≥ b(Ik). We
prove the claim by contradiction. Suppose that there is a bad elementary
interval Ii that overlaps with Ik but not with Ij. Because Ii and Ik as
well as Ij and Ik overlap, it follows from Lemma 9.5.3 that the elementary
intervals I ′i and I ′j overlap in the permutation π′ = πρ(Ik). Moreover, by
Lemma 9.5.2 I ′i is a good elementary interval in π′. In conclusion, the
component C contains the good elementary interval (desire edge) I ′i. Hence
C is a good component. This contradiction proves the claim.

Analogously, one can show that each good elementary interval Ii that
overlaps with Ij must also overlap with Ik. (If there were a good elementary
interval Ii that overlaps with Ij but not with Ik, then I ′i and I ′j would still
overlap in the permutation π′ = πρ(Ik), and C would be a good component.)
Consequently, g(Ij) ≤ g(Ik). Now we distinguish the following cases:

• If b(Ij) = b(Ik) and g(Ij) = g(Ik), then Ij and Ik overlap with the same
elementary intervals. According to Lemma 9.5.3, this means that I ′j
does not overlap with any other elementary interval in π′. By Lemma
9.4.4, it must have the form [+j,−(j + 1)] or [−(j + 1),+j]. Thus, it is
neither good nor bad. This contradicts our assumption that I ′j is a
bad elementary interval that belongs to the bad component C.

• If b(Ij) > b(Ik) or g(Ij) < g(Ik), then

score(Ij) = t+ b(Ij)− g(Ij)− 1 > t+ b(Ik)− g(Ik)− 1 = score(Ik)

contradicts the fact that the score of Ik is maximum.

To sum up, ρ(Ik) does not create a new bad component. �

Corollary 9.5.6 If the permutation π has no bad component, then the re-
versal distance dπ satisfies:

dπ = n+ 1− cπ

where cπ is the number of cycles in the reality-desire diagram of π.

9.6 Dealing with bad components 455

Algorithm 9.2 Sorting a permutation π without bad components.
while π 6= id do
max← 0
for k ← 0 to n

compute score(Ik)
if score(Imax) < score(Ik) then
max← k

output ρ(Imax)
π ← πρ(Imax)

Proof Corollary 9.3.5 states that n + 1 − cπ is a lower bound for dπ, and
Algorithm 9.2 achieves this lower bound: the reversal of a good elemen-
tary interval with maximum score increases the number of cycles by one
because it creates a new adjacency and it does not create new bad com-
ponents by Theorem 9.5.5. �

On the one hand, it is not difficult to see that O(n3) is an upper bound
for the run time of Algorithm 9.2. On the other hand, Ozery-Flato and
Shamir [256] showed that Ω(n3) is a lower bound. Hence the worst-case
time complexity of Algorithm 9.2 is Θ(n3).

9.6 Dealing with bad components

According to Lemma 9.3.4, if a reversal ρ acts on two reality edges from
the same bad component or from two different components, then this does
not increase the number of cycles. Therefore, we now investigate how bad
components can be dealt with. There are two alternative ways to turn bad
components into good components. The first one is described in Lemma
9.6.1.

Lemma 9.6.1 Let C be a bad component and let Ik be an elementary inter-
val (a desire edge) in C. The reversal ρ(Ik) turns C into a good component
and the number of cycles remains unchanged.

Proof Because C is a bad component, it consists solely of bad cycles. By
the converse statement of Lemma 9.4.4, the bad elementary interval Ik
must overlap with another elementary interval, say Ij. Clearly, Ij also
belongs to C; hence it is also bad. According to Lemma 9.5.2, the elemen-
tary interval I ′j after the reversal ρ(Ik) is good and so is the component to
which it belongs.

Furthermore, ρ(Ik) acts on two convergent reality edges, so the number
of cycles remains unchanged by Lemma 9.3.4. �

456 9 Sorting by Reversals

Henceforth, a reversal of an elementary interval that turns a bad compo-
nent into a good component is called a flipping reversal. The next lemma
says that such a flipping reversal has no influence on the other compo-
nents.

Lemma 9.6.2 Let C1, . . . , Cm be the components of a permutation π. A re-
versal ρ(Ik) of an elementary interval Ik that belongs to C1 does not affect
the remaining components C2, . . . , Cm, i.e., they are also components of the
permutation π′ = πρ(Ik) and their status remains unchanged.

Proof Fix a component Ci 6= C1. Let Ij be an elementary interval (a desire
edge) that belongs to Ci. Ij does not overlap with Ik because C1 and Ci are
different components. According to Lemmata 9.5.2 and 9.5.3, the reversal
ρ(Ik) does neither change the status of Ij nor does it change the overlaps
of Ij with other elementary intervals. Therefore, the component Ci is still
a component after the reversal, and it has the same status as before. �

Let bcπ be the number of bad components of the permutation π. As we
have seen, a flipping reversal decreases the measure n+1−cπ+bcπ by one. If
all bad components are eliminated by flipping reversals (Lemma 9.6.1) and
the resulting permutation is sorted by Algorithm 9.2, then this requires
exactly n+1−cπ+bcπ reversals. However, this approach is not optimal. (To
be precise, n+1− cπ+ bcπ is an upper bound for dπ but not a lower bound.)
To see this, consider the permutation π = (

−→
0 ,
−→
8 ,
−→
1 ,
−→
6 ,
−→
2 ,
−→
4 ,
−→
3 ,
−→
5 ,
−→
7 ,
−→
9).

It has three bad components, each of which is a cycle; see Figure 9.18.
Thus, the approach described above needs n+ 1− cπ + bcπ = 9 reversals to
sort π. However, if one first applies the reversal ρ([−1, . . . ,+2]) to π, then
π′ = πρ([−1, . . . ,+2]) has just one good component, which consists of two
cycles; see Figure 9.19. Since π′ can be sorted with n + 1 − cπ′ + bcπ′ = 7
reversals, we infer that π can be sorted with 8 reversals,

The reversal ρ([−1, . . . ,+2]) applied to π is called a merging reversal be-
cause it merges the two bad components containing the reality edges that
it acts on. A merging reversal is always as good as a flipping reversal be-
cause it decreases the measure n+1− cπ+ bcπ by at least one (it eliminates
at least two bad components but also one cycle). If it eliminates more then
two bad components (as in our example above), than it is better than a
flipping reversal because it decreases the measure n+ 1− cπ + bcπ by more
than one.

In the sequel, we say that a component C overlaps with an interval I if
C contains an elementary interval Ik that overlaps with I.

Lemma 9.6.3 If a reversal ρ(I) acts on reality edges of two different com-
ponents C` and Cr (where C` occurs before Cr in the permutation π), then C`
and Cr as well as all components that overlap with I are merged into one
big component C ′ in the permutation π′ = πρ(I), but the other components

9.6 Dealing with bad components 457

+0
−9

+7

−7

+5

−5

+3

−3

+4
−4

+2

−2

+6

−6

+1

−1

+8

−8

Figure 9.18: The permutation π has three bad components (cycles).

+0
−9

+7

−7

+5

−5

+3

−3

+4
−4

+8

−8

+2

−2

+6

−6

+1

−1

Figure 9.19: The permutation π′ = πρ([−1, . . . ,+2]) has one good compo-
nent consisting of two cycles.

458 9 Sorting by Reversals

are not affected. Furthermore, if one of the components C` and Cr is bad,
then C ′ is good.

Proof Let e be the left reality edge on which ρ(I) acts. Since e belongs
to a cycle of the left component C` and one endpoint of e is in I and the
other endpoint is outside I, it follows that there must be a desire edge
in the cycle with one endpoint inside I and one endpoint outside I. The
elementary interval corresponding to this desire edge overlaps with the in-
terval I. Let Ij be this elementary interval that belongs to C` and overlaps
with I. Analogously, there is an elementary interval Ik that belongs to Cr
and overlaps with I. Because Ij and Ik do not overlap before the reversal,
we infer from Lemma 9.5.3 that they overlap after the reversal. Therefore,
ρ(I) merges C` and Cr into one big component C ′. Similar reasoning shows
that any other component that overlaps with I must be part of C ′ (after
the reversal). Moreover, because I overlaps with Ij and Ik, the reversal
ρ(I) changes their status. So if at least one of the components C` and Cr is
bad, then C ′ is a good component because it contains a good elementary
interval.

Now consider a component C that does not overlap with I. We claim
that ρ(I) does not change the status of any elementary interval Ii of C. For
a proof by contradiction, suppose that ρ(I) changes the status of Ii. By
Lemma 9.5.1, I must contain one of the oriented elements i or i+1 but not
the other. Without loss of generality, suppose that +i occurs before −(i+1)
in π, i.e., Ii = [+i, . . . ,−(i+1)]. If I contains the oriented element i but not i+
1, then I = [+i,−i, . . .] must be a proper subinterval of Ii = [+i,−i, . . . ,−(i+
1)] (recall that I does not overlap with Ii). Because Ij overlaps with I, it
follows that Ij must also overlap with Ii. However, this contradicts the
fact that C` and C are different components. Hence ρ(I) does not change
the status of any elementary interval Ii of C. Furthermore, according to
Lemma 9.5.3 the reversal ρ(I) does not change the overlap status between
Ii and any other elementary interval. Summing up, the reversal ρ(I) does
not affect components that do not overlap with I. �

9.6.1 Hurdles

Using the linear-time Algorithm 9.1 (page 450), we can tag every node v[i]
at position i in the reality-desire diagram with its status v[i].status and an
identifier v[i].id that indicates to which component the node belongs. By
enumerating all component identifiers, we obtain a circular sequence of
component identifiers. Then, this sequence is compacted:

• Every identifier belonging to a good component is discarded.

• The following process is repeated until all consecutive component
identifiers are different: If two consecutive identifiers belong to the
same (bad) component, then one of them is discarded.

9.6 Dealing with bad components 459

Algorithm 9.3 Constructing a compacted circular sequence of component
identifiers.

for i← 1 to 2n+ 1 do
if v[i].status = bad and v[i].id 6= v[i+ 1].id then

output v[i].id
if v[2n+ 2].status = bad and v[2n+ 2].id 6= v[1].id then

output v[2n+ 2].id

Of course, the compacted circular sequence of component identifiers
can be obtained more directly, as Algorithm 9.3 shows.

The next definition stems from [172].

Definition 9.6.4 A bad component C is called a hurdle if its component
identifier occurs exactly once in the compacted circular sequence of com-
ponent identifiers. Otherwise, C is called a non-hurdle. The number of
hurdles of π is denoted by hπ.

As an example, let us reconsider the permutation π from Figure 9.18.
The circular sequence of (bad) component identifiers is

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1

and the compacted circular sequence is 1, 2, 3, 2. Consequently, C1 and C3

are hurdles, whereas C2 is a non-hurdle.
As shown above, non-hurdles can be removed en passant by merging

hurdles. By contrast, we shall next see that it needs an extra reversal to
eliminate a hurdle.

Lemma 9.6.5 A reversal can remove at most two hurdles. If it removes two
hurdles, it decreases the number of cycles by one.

Proof Lemma 9.6.2 states that if a reversal ρ(I) acts on two reality edges
of the same component, say C, then the remaining components are not
affected. In this case, ρ(I) can remove at most one hurdle (namely C).

Lemma 9.6.3 states that if a reversal ρ(I) acts on reality edges of two dif-
ferent components, then all components that overlap with I are merged
into one big component. Of these, at most two bad components can be
hurdles (only one can overlap I on the left-hand side and only one can
overlap I on the right-hand side). Lemma 9.6.3 also states that compo-
nents that do not overlap with I are unaffected by the reversal ρ(I). Hence
the reversal ρ(I) removes at most two hurdles. If it removes two hurdles,
then it also decreases the number of cycles by one; see Lemma 9.3.4. �

460 9 Sorting by Reversals

Theorem 9.6.6 We have

dπ ≥ n+ 1− cπ + hπ

Proof Let π′ = πρ be the permutation after the reversal ρ has been applied
to the permutation π. Furthermore, let cπ′ and hπ′ be the number of cycles
and hurdles in the reality-desire diagram of π′, respectively. Define

∆(ρ) = (n+ 1− cπ + hπ)− (n+ 1− cπ′ + hπ′)

= (cπ′ − cπ) + (hπ − hπ′)

We show ∆(ρ) ≤ 1 by case analysis.

1. If the reversal ρ acts on two divergent reality-edges of the same cycle
c, then cπ′ = cπ+1 by Lemma 9.3.4. Let C be the component to which
the cycle c belongs. According to Lemma 9.6.2, ρ does neither remove
nor change the status of the remaining components. Because C is a
good component, it follows hπ ≤ hπ′. Hence ∆(ρ) ≤ 1.

2. If the reversal ρ acts on two convergent reality-edges of the same
cycle c, then cπ′ = cπ by Lemma 9.3.4. Again, we take advantage
of the fact that ρ can neither remove nor change the status of a
component that is different from the component C to which the cycle
c belongs. So if C is not a hurdle, then hπ ≤ hπ′. If C is a hurdle
and ρ removes it, we obtain hπ′ ≥ hπ − 1. In both cases, we have
∆(ρ) = (cπ′ − cπ) + (hπ − hπ′) = 0 + (hπ − hπ′) ≤ 1.

3. If the reversal ρ acts on reality-edges of different cycles c1 and c2, then
cπ′ = cπ−1 by Lemma 9.3.4. According to Lemma 9.6.5, the inequality
(hπ − hπ′) ≤ 2 holds. Consequently, ∆(ρ) = (cπ′ − cπ) + (hπ − hπ′) =
−1 + (hπ − hπ′) ≤ 1.

Because ∆(ρ) ≤ 1 implies that every reversal can decrease the quantity
n+1− cπ+hπ by at most one, we conclude that every sequence of reversals
that sorts a permutation π into the identity permutation must contain at
least n+1−cπ+hπ reversals. In other words, n+1−cπ+hπ is a lower bound
on the reversal distance dπ. This proves the theorem. �

Next we try to develop an algorithm that achieves this bound. By Lemma
9.6.5 two hurdles can be removed by a merging reversal at the cost of
increasing the number of cycles by one. So merging two hurdles decreases
the quantity n + 1 − cπ + hπ by one except for the case when it creates a
new hurdle.

Exercise 9.6.7 Give an example of a permutation in which the merging
of two hurdles creates a new hurdle.

9.6 Dealing with bad components 461

Definition 9.6.8 Two hurdles H1 and H2 are non-consecutive if in the
compacted circular sequence of component identifiers there is at least—
both in clockwise and counterclockwise directions—one other hurdle be-
tween them.

Lemma 9.6.9 A reversal that merges two non-consecutive hurdles H1 and
H2 does not create a new hurdle.

Proof Suppose that a non-hurdle NH is turned into a hurdle H ′ by the
merging reversal ρ(I). By Definition 9.6.4, the component identifier NH id

of NH occurs at least twice in the compacted circular sequence of com-
ponent identifiers of π, whereas the component identifier H ′

id of H ′ occurs
exactly once in the compacted circular sequence of component identifiers
of π′ = πρ(I).

According to Lemma 9.6.3, if the reversal ρ(I) merges two hurdles H1

and H2, then all components that overlap with I are merged into one
good component, whereas the other components are not affected. So if
the non-hurdle NH would overlap with I, then it would disappear. If the
non-hurdle NH is contained in I, then it clearly remains a non-hurdle.
Otherwise, if NH is not contained in I, then it can become a hurdle only if
there is no bad component contained in I. However, since H1 and H2 are
non-consecutive hurdles, there is at least one other hurdle in between H1

and H2, both in clockwise direction and in counterclockwise direction. So
there is at least one hurdle contained in I. �

So as long as the number of hurdles satisfies hπ ≥ 4, we can succes-
sively merge non-consecutive hurdles until there are only two or three
left. Exercise 9.6.10 asks you to prove that the former case causes no
problem.

Exercise 9.6.10 Show the following statement: If hπ = 2, then a reversal
that merges the two hurdles does not create a new hurdle.

However, we may run into trouble when dealing with permutations
having three hurdles because there is a particular constellation called
a fortress.

9.6.2 A fortress

Before we can explain what a fortress is, we must first introduce one more
preliminary notion.

Definition 9.6.11 A hurdle H is called a super hurdle if the removal of
H would turn a non-hurdle into a hurdle; otherwise H is called a simple
hurdle.

462 9 Sorting by Reversals

1

2

4

2

3

2

5

6

5

1 2 3 2 4 2 5 6 5 1

Figure 9.20: In this schematic diagram, there are six bad components.
The compacted circular sequence of component identifiers is
1, 2, 3, 2, 4, 2, 5, 6, 5 (right-hand side). The components 2 and 5
are non-hurdles, whereas 1, 3, 4, 6 are hurdles. The hurdle 6
is a super hurdle, while 1, 3, 4 are simple hurdles.

Figure 9.20 explains the difference between super hurdles and simple
hurdles.

Lemma 9.6.12 Let the compacted circular sequence of component identi-
fiers be given. A hurdle H is a super hurdle if and only if its identifier Hid

is flanked by the same component identifier NH id, and NH id occurs exactly
twice in the sequence.

Proof Recall that a bad component is a hurdle H if and only if its com-
ponent identifier occurs exactly once in the compacted circular sequence
of component identifiers. If Hid is flanked by the same component iden-
tifier NH id, and NH id occurs exactly twice in the sequence, then after the
removal of H the component identifier NH id occurs exactly once in the re-
sulting sequence (because one of the two consecutive identifiers NH id is
discarded). Since NH is a hurdle afterwards, H is a super hurdle. On the
other hand, if Hid is flanked by two different component identifiers, then
H is certainly not a super hurdle. Furthermore, if Hid is flanked by the
same component identifier NH id, but NH id occurs more than twice in the
sequence, then after the removal of H the bad component NH is still a
non-hurdle because its identifier occurs more than once in the resulting
sequence. �

If a super hurdle H is flanked by the non-hurdle NH , we say that NH
shields H.

Again, we consider the permutation π from Figure 9.18 (page 457) as
an example. We have seen that its compacted circular sequence of com-
ponent identifiers is 1, 2, 3, 2. The identifier 3 is obviously flanked by 2 on
both sides, and the same is true for 1 because the sequence is circular.

9.6 Dealing with bad components 463

+0-3+3
-6

+6
-5

+5

-4

+4

-7

+7

-2

+2

-1

+1

-8

+8

-11
+11

-14
+14

-13+13-12+12 -15+15
-10

+10
-9

+9

-16

+16

-23

+23

-22

+22

-17

+17

-20

+20

-19
+19

-18
+18

-21+21-24

Figure 9.21: The smallest possible fortress is shown on the left-hand side,
and a schematic diagram of this fortress is shown on the
right. If one of the super hurdles is removed by a flipping
reversal, then its shielding non-hurdle becomes a hurdle. If
one merges two of the super hurdles (and their shielding non-
hurdles), then the remaining non-hurdle becomes a hurdle.

Because 2 occurs exactly twice in the compacted sequence, it follows that
both components C1 and C3 are super hurdles.

Let us resume our discussion on clearing hurdles. If there are three
hurdles and at least one of them is simple, then we can remove the simple
hurdle by a flipping reversal. Because this does not create a new hurdle,
the quantity n+1−cπ+hπ decreases by one, and the remaining two hurdles
can safely be merged; cf. Exercise 9.6.10. However, if there are three
hurdles and all of them are super hurdles, both possibilities (a) flipping
one of them or (b) merging two of them will create a new hurdle! Such a
constellation is called a fortress. The definition below is a bit more general
because the shear existence of such a constellation has the consequence
that we must carefully revise our procedure of clearing hurdles.

Definition 9.6.13 A permutation π is called a fortress if it has an odd
number of hurdles, each of which is a super hurdle.

Figure 9.21 shows the smallest possible fortress; cf. [289, Figure 7.19].
It also gives the idea why one needs an extra reversal to eliminate a
fortress. Theorem 9.6.14 formalizes this fact.

Theorem 9.6.14 We have

dπ ≥ n+ 1− cπ + hπ + fπ

464 9 Sorting by Reversals

where fπ is defined by

fπ =

{
1 if π is a fortress
0 otherwise

Proof Let π′ = πρ be the permutation after the reversal ρ has been applied
to the permutation π, and let cπ′, hπ′, and fπ′ be the number of cycles,
hurdles, and the fortress indicator of π′, respectively. Define

∆(ρ) = (n+ 1− cπ + hπ + fπ)− (n+ 1− cπ′ + hπ′ + fπ′)

= (cπ′ − cπ) + (hπ − hπ′) + (fπ − fπ′)

We show that ∆(ρ) ≤ 1 by case analysis.
If π is not a fortress or both π and π′ are fortresses, we have (fπ−fπ′) ≤ 0.

In these cases, the theorem follows from Theorem 9.6.6. Let us consider
the remaining case: π is a fortress, but π′ is not. As in the proof of Theorem
9.6.6, we proceed by case distinction.

1. If the reversal ρ acts on two divergent reality-edges of the same cycle,
then cπ′ = cπ + 1 according to Lemma 9.3.4. By Lemma 9.6.2, all
super hurdles in π are also super hurdles in π′. So ρ can destroy the
fortress solely by increasing the number of hurdles (e.g. hπ′ = hπ + 1
implies that hπ′ is even, so that π′ is not a fortress). This yields
∆(ρ) = (cπ′ − cπ) + (hπ − hπ′) + (fπ − fπ′) ≤ 1 + (hπ − hπ′) + 1 ≤ 1 because
hπ − hπ′ ≤ −1.

2. If the reversal ρ acts on two convergent reality-edges of the same cycle
c, then cπ′ = cπ by Lemma 9.3.4. For an indirect proof, suppose that
∆(ρ) > 1. This is only possible if hπ − hπ′ ≥ 1. Once again, we use the
fact that ρ can neither remove nor change the status of a component
that is different from the component C to which the cycle c belongs,
and infer that C must be a hurdle and ρ removes it. However, since π
is a fortress, all hurdles in the reality-desire diagram of π are super
hurdles. By definition, the removal of a super hurdle creates a new
hurdle. To sum up, if ρ removes the super hurdle C, it follows that
hπ − hπ′ = 0. This contradiction shows that our supposition ∆(ρ) > 1
was wrong, i.e., ∆(ρ) ≤ 1 must be true.

3. If the reversal ρ acts on reality-edges of different cycles c1 and c2, then
cπ′ = cπ − 1 according to Lemma 9.3.4. Again, suppose that ∆(ρ) > 1.
This is only possible if hπ − hπ′ = 2 (recall that hπ − hπ′ ≤ 2 by Lemma
9.6.5). That is, π′ has an odd number of hurdles. So ρ(I) removes two
super hurdles H1 and H2 by merging them and all other components
that overlap with I into one good component; see Lemma 9.6.3. It
is not difficult to verify that none of the non-hurdles shielding the
remaining super hurdles can overlap with I. Because all components

9.6 Dealing with bad components 465

Algorithm 9.4 Sort a permutation π by reversals.
repeat

compute components, hurdles, simple hurdles, and super hurdles
if there is a bad component then /* hπ > 0 */

if hπ is even then
if hπ ≥ 4 then

output a reversal ρ merging two non-consecutive hurdles
else /* hπ = 2 */

output a reversal ρ merging the two hurdles
else /* hπ is odd */

if there is a simple hurdle then
output a reversal ρ flipping this simple hurdle

else /* fortress */
if hπ ≥ 5 then

output a reversal ρ merging two non-consecutive hurdles
else /* hπ = 3 */

output a reversal ρ merging any two hurdles
π ← πρ

until there is no bad component
apply Algorithm 9.2 to π

that do not overlap with I are unaffected by the reversal ρ(I) (Lemma
9.6.3), none of the remaining super hurdles is turned into a simple
hurdle. In other words, π′ is a fortress. This contradiction shows
that our supposition ∆(ρ) > 1 was wrong.

Because ∆(ρ) ≤ 1 implies that every reversal can decrease the quantity
(n+1− cπ + hπ + fπ) by at most one, we conclude dπ ≥ n+1− cπ + hπ + fπ. �

In order to show that the lower bound given in Theorem 9.6.6 is tight,
we now give an algorithm that achieves this lower bound. Clearly, the
algorithm must avoid the creation of a new fortress. Algorithm 9.4 does
so by a simple case differentiation. When applied to a permutation π, it
first computes components, hurdles, simple hurdles, and super hurdles.
If π has no bad component, then it is sorted by Algorithm 9.2. Otherwise,
there must be at least one hurdle and Algorithm 9.4 proceeds as follows:

• If the number hπ of hurdles is even, then π cannot be a fortress. If
hπ = 2, the algorithm merges the two hurdles; otherwise it merges
two non-consecutive hurdles. In both cases, this removes two (old)
hurdles but also a cycle. Furthermore, it does not create a new
hurdle by Lemma 9.6.9 and Exercise 9.6.10. Consequently, there
are hπ − 2 hurdles afterwards, so the resulting permutation is not a
fortress. To sum up, the measure n+ 1− cπ + hπ + fπ decreases by 1.

466 9 Sorting by Reversals

• If the number hπ of hurdles is odd but there is a simple hurdle, then
π cannot be a fortress. In this case, the algorithm eliminates a simple
hurdle by a flipping reversal. This neither creates a new hurdle nor
does it change the number of cycles. Because there are hπ−1 hurdles
afterwards and hπ−1 is even, it follows that the resulting permutation
cannot be a fortress. Again, the measure n+1− cπ+hπ+ fπ decreases
by 1.

• If the number hπ of hurdles is odd and there is no simple hurdle,
then π must be a fortress. If hπ ≥ 5, the algorithm merges two non-
consecutive hurdles. Although the resulting permutation is still a
fortress (cf. case (3) in the proof of Theorem 9.6.14), the measure
n+1− cπ+hπ+fπ decreases by 1. If hπ = 3, then the algorithm merges
any two hurdles. This removes two old hurdles (and a cycle) but also
creates a new hurdle. So the resulting permutation has two hurdles
and thus cannot be a fortress. Again, the measure n+1− cπ + hπ + fπ
decreases by 1.

Now we are in a position to state the main theorem, which is due to
Hannenhalli and Pevzner [145].

Theorem 9.6.15 The reversal distance dπ of a permutation π can be com-
puted by the formula

dπ = n+ 1− cπ + hπ + fπ

Proof Theorem 9.6.14 states that n + 1 − cπ + hπ + fπ is a lower bound for
dπ, and Algorithm 9.4 achieves this bound because each of the computed
reversals decreases the measure n+ 1− cπ + hπ + fπ by one. �

Corollary 9.6.16 The reversal distance dπ of a permutation π can be com-
puted in linear time.

Proof According to Theorem 9.6.15, dπ = n+ 1− cπ + hπ + fπ. We have seen
in Section 9.4.2 that cycles and components can be determined in linear
time. Furthermore, it is clear from Section 9.6.1 that hurdles and super
hurdles can also be identified in linear time. Therefore, the values cπ, hπ,
and fπ can be computed in linear time. �

The worst-case time complexity of the repeat-loop of Algorithm 9.4 is
O(n2) because in each iteration it computes components, hurdles, simple
hurdles, and super hurdles. Kaplan et al. [172] observed that this is
overkill: it suffices to compute them only once and store a list of hurdles
in the order they occur in the compacted circular sequence of component
identifiers. To cite Kaplan et al. [172]:

At the next stage this list is used to identify correct hurdles to
merge.

9.7 Sorting by reversals in quadratic time 467

This is because the sequence of reversals that clears all hurdles can be
determined in advance:

1. If the number hπ of hurdles is even, then the algorithm merges non-
consecutive hurdles until there are two hurdles left, which are sub-
sequently merged.

2. If hπ is odd and there is a simple hurdle, then this simple hurdle is
removed and the algorithm proceeds as in case (1).

3. If π is a fortress, then the algorithm merges non-consecutive hurdles
until there are three hurdles left. Two of them are merged, creating
a new hurdle, and the third hurdle is then merged with the new
hurdle.

Consequently all bad components can be removed in linear time. Berg-
eron et al. [38] presented an alternative linear-time algorithm.

9.7 Sorting by reversals in quadratic time

Algorithm 9.4 runs in Θ(n3) time because Algorithm 9.2 (page 455) does.
We draw the conclusion that the whole sorting algorithm can be made to
run in O(n2) time provided that a permutation without bad components
can be sorted in O(n2) time. Kaplan et al. [172] showed that this is indeed
possible, and we follow their presentation below.

For every permutation π of size n, we partition its set of elementary
intervals I = {I0, . . . In} into the set Ig of all good and the set Ib of all bad
elementary intervals.

Definition 9.7.1 A happy clique is a non-empty set H ⊆ Ig so that:

• The elements of H are pairwise overlapping, i.e., any two good ele-
mentary intervals Ii, Ij ∈ H overlap.

• For every good elementary interval Ik 6∈ H that overlaps with a good
elementary interval Ii ∈ H there is another good elementary interval
Il 6∈ H that overlaps with Ik but not with Ii.

Let Ii be an elementary interval of a permutation π. As in Theorem 9.5.5,
g(Ii) (b(Ii), respectively) denotes the number of good (bad, respectively)
elementary intervals that overlap with Ii.

Theorem 9.7.2 Let H ⊆ Ig be a happy clique and let Ik ∈ H so that b(Il) ≤
b(Ik) for any Il ∈ H. Then the reversal of Ik does not generate new bad
components.

468 9 Sorting by Reversals

Proof For a proof by contradiction, suppose that ρ(Ik) generates a new bad
component C ′. Thus, C ′ has only bad elementary intervals and at least
one of them, say I ′j, originates from a good elementary interval Ij. That
is, Ij and Ik overlap. By the definition of a happy clique, if Ij were not
an element of H, then there would be another good elementary interval
Il 6∈ H that overlaps with Ij but not with Ik. Because ρ(Ik) has no effect on
Il, I ′l = Il would still be good after the reversal, and according to Lemma
9.5.3 I ′l would still overlap with I ′j. In other words, the component C ′

would be good. These arguments show that Ij must be in H. It follows
exactly as in the proof of Theorem 9.5.5 that every bad elementary interval
that overlaps with Ik must also overlap with Ij. Hence b(Ij) ≥ b(Ik). It is
a precondition that conversely b(Ij) ≤ b(Ik) holds true. All in all, we have
b(Ij) = b(Ik).

Again, as in the proof of Theorem 9.5.5 one can show that every good
elementary interval that overlaps with Ij must also overlap with Ik. Thus,
g(Ij) ≤ g(Ik). A proof by contradiction will show that g(Ij) < g(Ik) is impos-
sible and hence g(Ij) = g(Ik) must hold. So suppose g(Ij) < g(Ik). Then,
there must be a good elementary interval Ii that overlaps with Ik but not
with Ij. We stress that after the reversal ρ(Ik) the resulting intervals I ′i
and I ′j must overlap by Lemma 9.5.3 because both Ii and Ij overlap with
Ik but not each other. Moreover, the interval Ii cannot be a member of
the happy clique H. (If it were, then it would overlap both Ij and Ik be-
cause Ij, Ik ∈ H.) According to the definition of a happy clique, there is
another good elementary interval Il 6∈ H that overlaps with Ii but not with
Ik. Again, because ρ(Ik) has no effect on Il, I ′l = Il is still good after the
reversal, and I ′l still overlaps with I ′i according to Lemma 9.5.3. To sum
up, I ′l is good and overlaps with I ′i, while I ′i overlaps with I ′j. We derive as
a consequence that I ′j belongs to a good component. This contradiction
proves g(Ij) = g(Ik).

The rest of the proof is verbatim the same as in Theorem 9.5.5: Ij and
Ik overlap with the same elementary intervals. According to Lemma 9.5.3,
this means that I ′j does not overlap with any other elementary interval in
π′. By Lemma 9.4.4, it must have the form [+j,−(j + 1)] or [−(j + 1),+j].
Thus, it is neither good nor bad. This contradicts our assumption that I ′j
is a bad elementary interval that belongs to the bad component C ′. �

9.7.1 Finding a happy clique

In the following, for every elementary interval Ii, let s(Ii) and e(Ii) denote
the start and end position of Ii in π = (+0, π1, . . . , πn,−(n + 1)). That is,
s(Ii) and e(Ii) are natural numbers between 1 and 2n + 2. Moreover, let
Ig = {Ĩ1, . . . , Ĩm} be the set of good elementary intervals. Without loss of
generality, we may assume that Ĩ1, . . . , Ĩm are ordered according their start
positions, i.e., s(Ĩ1) < s(Ĩ2) < · · · < s(Ĩm). (It is an easy exercise to show

9.7 Sorting by reversals in quadratic time 469

s(Ĩij) e(Ĩij)s(Ĩi1) e(Ĩi1)

Ji

ĨijĨi1

Ĩi+1

Figure 9.22: Finding a happy clique: Case (1).

that the left-to-right order of all good elementary intervals can be obtained
in linear time.) Algorithm 9.5 computes a happy clique by scanning the
good elementary intervals from left to right. During the scan, it maintains
a happy clique Hi of the set {Ĩ1, . . . , Ĩi}: if |Hi| = j and Hi = {Ĩi1 , . . . , Ĩij},
where 1 ≤ i1 < . . . i2 < · · · < ij ≤ i, then Hi is represented by a linked
list containing the intervals Ĩi1 , . . . , Ĩij in increasing order of their start
positions. Furthermore, the algorithm maintains a good interval Ji that
contains all the intervals in Hi provided that such an interval exists. If it
does not exist, then Ji is undefined, denoted by Ji = ⊥.

When the algorithm scans the next interval Ĩi+1, it proceeds according
to the following case differentiation (the cases are illustrated in Figures
9.22 and 9.23):

(1) If e(Ĩij) < s(Ĩi+1), then Ĩi+1 and all remaining good elementary intervals
do not overlap with an interval from Hi. In this case, the algorithm
stops and returns Hi as a happy clique.

(2) If Ĩi+1 overlaps with Ĩij but also with Ji, then Hi is also a happy clique
of the set {Ĩ1, . . . , Ĩi, Ĩi+1} and the algorithm scans the next interval
Ĩi+2. Observe that in this case, the interval Ji acts as a “shield” for
the current happy clique: as long as Ĩi+1 overlaps with Ji, no harm is
done to the happy clique Hi.

(3) Otherwise, Ĩi+1 overlaps with Ĩij but not with Ji (Cases 3a and 3b) or
Ĩi+1 is contained in Ĩij (Case 3c).

(3a) If Ĩi+1 overlaps with all intervals in Hi, then Hi can be expanded with
Ĩi+1, i.e., the new happy clique is Hi ∪ {Ĩi+1}.

(3b) If Ĩi+1 does not overlap with all intervals in Hi, then {Ĩi+1} is a happy
clique of the set {Ĩ1, . . . , Ĩi, Ĩi+1}.

(3c) If Ĩi+1 is contained in Ĩij , then {Ĩi+1} is the new happy clique, pro-
tected by the new shield Ji+1 = Ĩij .

Algorithm 9.5 contains a description of this procedure in pseudo-code.

470 9 Sorting by Reversals

s(Ĩi1) s(Ĩij) e(Ĩij) s(Ĩi1) s(Ĩij) e(Ĩij)

s(Ĩi1) s(Ĩij) e(Ĩij)s(Ĩi1) s(Ĩij) e(Ĩij)

e(Ĩi1)e(Ĩi1)

e(Ĩi1) e(Ĩi1)

Ji

ĨijĨi1 Ĩi1

Ji

Ĩij

Ĩi1 Ĩij

JiJi

ĨijĨi1

(2) (3a)

(3b) (3c)

Figure 9.23: Finding a happy clique: Cases (2) and (3).

Algorithm 9.5 Finding a happy clique

H1 ← {Ĩ1}
J1 ← ⊥

for i← 1 to m− 1

if e(Ĩij) < s(Ĩi+1) then return Hi /* Case (1) */
else /* s(Ĩi+1) < e(Ĩij) */

if Ji 6= ⊥ and e(Ji) < e(Ĩi+1) then /* Case (2) */
Hi+1 ← Hi

Ji+1 ← Ji
else /* Ji = ⊥ or e(Ĩi+1) < e(Ji) */

if e(Ĩij) < e(Ĩi+1) then
if s(Ĩi+1) < e(Ĩi1) then /* Case (3a) */
Hi+1 ← Hi ∪ {Ĩi+1}
Ji+1 ← Ji

else /* s(Ĩi+1) > e(Ĩi1), Case (3b) */
Hi+1 ← {Ĩi+1}
Ji+1 ← Ji

else /* e(Ĩi+1) < e(Ĩij), Case (3c) */
Hi+1 ← {Ĩi+1}
Ji+1 ← Ĩij

return Hm

9.7 Sorting by reversals in quadratic time 471

+0 −3 +3 −2 +2 −1 +1 −13 +13 +4 −4 +5 −5 +14 −14 −16 +16 −10 +10 −15 +15 +9 −9 +6 −6 +12 −12 −17 +17 −8 +8 −7 +7 −18−11 +11

Figure 9.24: The reality-desire-diagram for Exercise 9.7.3.

Exercise 9.7.3 Apply Algorithm 9.5 to the example in Figure 9.24.

For a formal correctness proof, we need the following lemma.

Lemma 9.7.4 Algorithm 9.5 maintains the following invariant for every i
with 1 ≤ i ≤ m:

(a) Hi contains pairwise overlapping good elementary intervals. Moreover,
if Ji is defined, then it is a good elementary interval that contains all
intervals of Hi.

(b) If Ji 6= ⊥, then every good elementary interval Ĩk 6∈ Hi with k ≤ i and
s(Ĩij) < s(Ĩk) overlaps with Ji. If Ji = ⊥, then there is no such Ĩk.

(c) Every good elementary interval Ĩk 6∈ Hi with s(Ĩk) < s(Ĩij) that over-
laps with an interval from Hi either overlaps with a good elementary
interval Ĩl so that e(Ĩl) < s(Ĩi1) or, provided that Ji 6= ⊥, it overlaps with
Ji.

Proof We prove the lemma by induction on i. The base case i = 1 is clear.
In the inductive step, we show by case analysis that the lemma holds for
i+ 1, under the assumption that it holds for i.

(1) e(Ĩij) < s(Ĩi+1): All remaining good elementary intervals do not overlap
with an interval from Hi. Clearly, the invariant holds in this case.
Note that in the remaining cases we have s(Ĩi+1) < e(Ĩij).

(2) Ji 6= ⊥ and e(Ji) < e(Ĩi+1): In this case, we haveHi+1 = Hi and Ji+1 = Ji.
By the inductive hypothesis and Ĩi+1 6∈ Hi+1, it must be shown in the
second part of the invariant: s(Ĩij) < s(Ĩi+1) implies that Ĩi+1 overlaps
with Ji+1. It is not difficult to see that this is indeed the case, because
(i) s(Ji+1) < s(Ĩij) (as Ji+1 = Ji contains all intervals from Hi+1 = Hi) in
combination with s(Ĩij) < s(Ĩi+1) has s(Ji+1) < s(Ĩi+1) as a consequence
and (ii) we have e(Ji) < e(Ĩi+1). The third part of the invariant holds
by the inductive hypothesis in conjunction with s(Ĩij) < s(Ĩi+1).

(3) Ji = ⊥ or e(Ĩi+1) < e(Ji): This case is split into three subcases.

472 9 Sorting by Reversals

(3a) e(Ĩij) < e(Ĩi+1) and s(Ĩi+1) < e(Ĩi1): In this case, Hi+1 = Hi ∪ {Ĩi+1} and
Ji+1 = Ji. For the first part of the invariant, we must show that Ĩi+1

overlaps with each interval from Hi. This is readily proven:

s(Ĩi1) < · · · < s(Ĩij) < s(Ĩi+1) < e(Ĩi1) < · · · < e(Ĩij) < e(Ĩi+1)

Moreover, Ji+1 = Ji contains Ĩi+1 as s(Ji) < s(Ĩi1) and e(Ĩi+1) < e(Ji).
The second part of the invariant holds vacuously. In the third part,
the inductive hypothesis implies that every good elementary interval
Ĩk 6∈ Hi+1 with s(Ĩk) < s(Ĩij) that overlaps with an interval from Hi+1

either overlaps with a good elementary interval Ĩl so that e(Ĩl) < s(Ĩi1)
or, provided that Ji+1 6= ⊥, it overlaps with Ji+1 = Ji. It remains
to be shown that the same is true for every Ĩk 6∈ Hi+1 with s(Ĩij) <

s(Ĩk) < s(Ĩi+1). We observe that e(Ĩij) < e(Ĩk) < e(Ĩi+1) would mean
that Ĩk ∈ Hi+1. Consequently, e(Ĩk) < e(Ĩij) must hold and hence Ĩk
is contained in Ĩij . In this case, however, case (3c) of the algorithm
would have been applicable to Ĩk and Ĩij (i.e., {Ĩk} is a happy clique
and Ĩij is the interval containing this happy clique). Because case
(3c) of the algorithm was not applied to Ĩk and Ĩij , also the third part
of the invariant is satisfied.

(3b) e(Ĩij) < e(Ĩi+1) and s(Ĩi+1) > e(Ĩi1): In this case, Hi+1 = {Ĩi+1} and
Ji+1 = Ji. The first part of the invariant is satisfied because Ji (pro-
vided it exists) contains Ĩi+1. Again, the second part of the invariant
holds vacuously. For the third part of the invariant, note that the
preconditions imply that Ĩi+1 overlaps with Ĩij but not with Ĩi1, and
let Ĩk be a good elementary interval that overlaps with Ĩi+1. We show
this third part by another case analysis. If s(Ĩk) < s(Ĩi1), then Ĩk con-
tains Ĩi1 and case (3c) of the algorithm would have been applicable
to Ĩij and Ĩk. Hence s(Ĩi1) < s(Ĩk). Furthermore, if e(Ĩk) < e(Ĩi1), then
Ĩi1 contains Ĩk and case (3c) of the algorithm would have been appli-
cable to Ĩk and Ĩij . Therefore, s(Ĩi1) < s(Ĩk) and e(Ĩi1) < e(Ĩk). This
means that Ĩk overlaps with Ĩi1. Since Ĩi+1 does not overlap with Ĩi1,
the interval Ĩi1 does the job.

(3c) e(Ĩi+1) < e(Ĩij): In this case, Hi+1 = {Ĩi+1} and Ji+1 = Ĩij . Clearly, the
first part of the invariant holds true. Again, the second part of the
invariant holds vacuously. For the third part of the invariant, let Ĩk
be a good elementary interval that overlaps with Ĩi+1. If Ĩk does not
overlap with Ĩij , then it must be contained in Ĩij and hence case (3c)
of the algorithm would have been applicable to Ĩk and Ĩij . Thus, Ĩk
overlaps with Ji+1 = Ĩij and we are done.

�

9.7 Sorting by reversals in quadratic time 473

Theorem 9.7.5 The output Hi of Algorithm 9.5 is a happy clique in Ig.

Proof Because Algorithm 9.5 maintains the invariant of Lemma 9.7.4,
every Hi, 1 ≤ i ≤ m, is a happy clique of the set {Ĩ1, . . . , Ĩi}. If the algorithm
stops in case (1) for some 1 ≤ i < m, then the remaining good elementary
intervals do not overlap with an interval from Hi. Thus, the output Hi is
a happy clique of the set Ig. Otherwise, the algorithm returns Hm, which
is a happy clique of the set Ig = {Ĩ1, . . . , Ĩm}. �

9.7.2 Searching the happy clique

Once we have identified a happy clique H, we must search it for an ele-
mentary interval with maximum number of overlaps with bad elementary
intervals, i.e., for an interval Ik ∈ H so that b(Il) ≤ b(Ik) for any Il ∈ H.
Let Î1, . . . , Îp be the intervals in H ordered in increasing order of their start
positions. That is,

s(Î1) < · · · < s(Îp) < e(Î1) < · · · < e(Îp)

The start and end positions of the intervals from H partition the straight
line from 1 to 2n+ 2 into 2p+ 1 disjoint intervals

K0 = [1..s(Î1)]

Kj = [s(Îj)..s(Îj+1)] for 1 ≤ j < p

Kp = [s(Îp)..e(Î1)]

Kj = [e(Îj−p)..e(Îj−p+1)] for p < j < 2p

K2p = [e(Îp)..2n+ 2]

The algorithm maintains an array cnt[1..p] of p counters. For each k with
1 ≤ k ≤ p the prefix sum

∑k
j=1 cnt[j] equals the number of bad elementary

intervals seen so far that overlap with Îk. Thus, at the beginning each
counter cnt[i] is initialized to 0. The algorithm scans the straight line from
1 to 2n + 2 twice in left-to-right direction. In a first scan, it computes for
each bad elementary interval I ∈ Ib the intervals Kl and Kr that contain
s(I) and e(I), respectively. In a second scan, it updates at most three
entries in the array of counters. This is done by case analysis on the
values l and r. This analysis is explained in Theorem 9.7.6.

Theorem 9.7.6 Algorithm 9.6 returns an interval from H with maximum
number of overlaps with bad elementary intervals.

Proof We claim that after each iteration of the third for-loop of Algorithm
9.6 the prefix sum

∑k
j=1 cnt[j], 1 ≤ k ≤ p, equals the number of bad ele-

mentary intervals seen so far that overlap with Îk. This is certainly true

474 9 Sorting by Reversals

Algorithm 9.6 Searching a happy clique
for i← 1 to p
cnt[i]← 0

for each bad elementary interval I ∈ Ib compute the intervals Kl and
Kr so that Kl contains s(I) and Kr contains e(I), and store the
values l and r

for each I ∈ Ib = {Î1, . . . , Îp} in increasing order of the start positions
if l < r then

if r ≤ p then
cnt[l + 1]← cnt[l + 1] + 1
if r < p then
cnt[r + 1]← cnt[r + 1]− 1

else if l ≥ p then
cnt[l − p+ 1]← cnt[l − p+ 1] + 1
if r < 2p then
cnt[r − p+ 1]← cnt[r − p+ 1]− 1

else /* l < p and p < r */
m← min{l, r − p}
cnt[1]← cnt[1] + 1
cnt[m+ 1]← cnt[m+ 1]− 1
M ← max{l, r − p}
if M < p then
cnt[M + 1]← cnt[M + 1] + 1

q ← argmax1≤k≤p
∑k

j=1 cnt[j]

return Îq

at the very beginning because cnt[i] is initialized to 0 for all 1 ≤ i ≤ p. So,
suppose the claim holds before an execution of the for-loop. To show that
it is also satisfied after the execution of the for-loop, we proceed by case
differentiation. Let I ∈ Ib be the bad elementary interval under considera-
tion, and let l and r be the indices so that Kl contains s(I) and Kr contains
e(I). If l = r, then I does not overlap any interval from H. Thus Algorithm
9.6 only proceeds when l > r.
Case (1): If r ≤ p, then I overlaps with the intervals Îl+1, . . . , Îr. Thus, we
increment cnt[l + 1] and decrement cnt[r + 1] (provided that r < p).
Case (2): If p ≤ l, then I overlaps with the intervals Îl−p+1, . . . , Îr−p. Thus, we
increment cnt[l − p+ 1] and decrement cnt[r − p+ 1] (provided that r < 2p).
Case (3): If l < p and p < r, then I overlaps with all intervals that (i)
started before s(I) and ended before e(I) and all intervals that (ii) started
after s(I) and ended after e(I). These are all intervals Îk for which (i) k ≤ l
and k + p ≤ r (hence k ≤ min{l, r − p}) or (ii) k > l and k + p > r (hence
k > max{l, r − p}) holds. Therefore, (i) we increment cnt[1] and decrement

9.7 Sorting by reversals in quadratic time 475

I3 I2 I4 I1 I13 I10 I8 I9 I7 I6
1 0 0 0 0 0 1 2 2 2 2 2
2 0 0 1 2 2 2 2 2 3 4 4
3 0 0 −1 −2 −1 −1 −1 −1 −1 −1 0
4 0 0 0 0 0 −1 −2 −2 −2 −2 −2

Figure 9.25: The values of the array cnt[1..4] whenever the beginning of a
new bad elementary interval was scanned.

cnt[m+1], where m = min{l, r− p}, and (ii) if M < p we increment cnt[M +1],
where M = max{l, r − p}.

It is readily verified that after the execution of the for-loop the prefix
sum

∑k
j=1 cnt[j], 1 ≤ k ≤ p, equals the number of bad elementary intervals

seen so far that overlap with Îk. �

As an example, we apply Algorithm 9.6 to the reality-desire-diagram in
Figure 9.26. There, the desire-edges are drawn as a thick (thin) line if they
are good (bad) elementary intervals. All four good elementary intervals
Î1 = I0, Î2 = I5, Î3 = I12, and Î4 = I11 (ordered in increasing order of
their start positions) belong to the happy clique H. Thus, the algorithm
maintains an array of four counters. The values of the entries in this
array cnt[1..4] are depicted in Figure 9.25. For instance, immediately after
the second bad interval I2 was scanned, we have cnt[3] = −1. At the end of
the scan, the prefix sums are

∑1
j=1 cnt[j] = 2,

∑2
j=1 cnt[j] = 6,

∑3
j=1 cnt[j] =

6, and
∑4

j=1 cnt[j] = 4. Therefore, the first good elementary interval Î1
overlaps with 2 bad elementary intervals, the second and the third overlap
with 6 bad elementary intervals, while Î4 overlaps with 4 bad elementary
intervals. Consequently, both Î2 and Î3 attain the maximum number of
overlaps with bad elementary intervals.

476 9 Sorting by Reversals

+
0

+
3

-3
+
4

-4
+
5

-5
+
2

-2
-1

3
+
1
3

-1
1

+
1
1

+
1

-1
-9

+
9

-8
+
8

-6
+
6

+
1
2

-1
2

-7
+
7

-1
0

+
1
0

-1
4

K
0

K
1

K
2

K
3

K
4

K
5

K
6

K
7

K
8

Figure 9.26: Apply Algorithm 9.6 to this reality-desire-diagram.

Chapter 10
Phylogenetic Reconstruction

10.1 Introduction

There is strong evidence that all life on earth is descended from a single
common ancestor. Over a period of at least 3.8 billion years that life form
has split repeatedly into new and independent lineages. The evolutionary
relationships among these species is referred to as their phylogeny and
phylogenetic reconstruction is concerned with inferring the phylogeny of
groups of organisms. These groups are called taxa (singular: taxon). Fig-
ure 10.1 shows a phylogenetic tree of the great apes. This tree has been
constructed based on genetic and fossil evidence but the actual phylogeny
is unknown because ancestral species have become extinct.

The splitting of lineages is called speciation. The most common rea-
son for a speciation event is that one population becomes split into two
sub-populations that can eventually no longer interbreed with each other.
There are several ways this can happen, but the easiest one to visual-
ize is geographical isolation. For example, the formation of the Congo
River separated two chimpanzee populations because chimpanzees are
not proficient swimmers, and the sea separates Sumatran from Bornean
orang-utans; cf. Figure 10.1. Once that happens, each of the two popula-
tions evolve independently of each other. They undergo different random
mutations and are exposed to different selection pressures. After many
generations, the changes accumulate to the extent that the two popula-
tions evolve into separate species.

The tree of life is a phylogeny of species, but methods of phylogenetic
reconstruction can also be applied in other biological contexts, such as
inferring the phylogeny of different populations within a species. These
methods can even be applied in non-biological settings: e.g. Barbrook et
al. [27] described the phylogeny of different fifteenth-century manuscripts
of “The Wife of Bath’s Prologue” from The Canterbury Tales.

478 10 Phylogenetic Reconstruction

Bonobo Human Gorilla Orangutan (S)Chimpanzee Orangutan (B)

Figure 10.1: Phylogeny of the great apes (Hominidae), including six ex-
tant species: chimpanzees (Pan troglodytes), bonobos (Pan
paniscus), humans (Homo sapiens), gorillas (Gorilla go-
rilla), Bornean orangutans (Pongo pygmaeus), and Suma-
tran orangutans (Pongo abelii). The length of a vertical
line (branch length) represents the amount of time that lies
between two speciation events. Chimpanzee and bonobo
split with the formation of the Congo River, around 2 mil-
lion years (myr) ago [261]. Scally et al. [282] placed the
human-chimpanzee and human-chimpanzee-gorilla specia-
tion events at approximately 6 and 10 myr ago. However, the
estimates differ from study to study: according to Ingman
et al. [160], the last common ancestor (LCA) of chimpanzees
and human lived about 5 myr ago, while [57] estimate that
it lived 5-6 myr ago. According to [207], the orangutans
diverged from the Hominidae family about 12-16 myr ago.
They estimate that the two orangutan species diverged about
400,000 years ago [207].

10.1 Introduction 479

In a rooted phylogenetic tree T , the root node r corresponds to the last
common ancestor (LCA) of all species in T . In this case, a path from the
root to a leaf is called an evolutionary path. If an equal amount of changes
occurs on every evolutionary path, i.e., evolutionary changes occur in a
more-or-less clocklike fashion, then this tree satisfies the molecular clock
hypothesis. In this case, one can assign a time t(v) to every internal node v
in the tree and a length of t(v)− t(w) to an edge (v, w) in the tree. Every ex-
tant species corresponds to time 0 and a speciation event corresponding to
an internal node v in the tree occurred the amount of t(v) time ago. Con-
sequently, the length of an edge represents the amount of time that lies
between two speciation events. Furthermore, the last common ancestor of
all species in T lived t(r) time ago and all evolutionary paths have the same
length t(r) (where the length of a path is the sum of the lengths of all edges
along the path). We shall see in Section 10.3 that these trees correspond
to so-called ultrametric trees. There was a time in which the molecular
clock hypothesis was widely accepted among biologists and thus the re-
construction of ultrametric trees was quite popular. Nowadays, however,
one knows that DNA sequences rarely evolve at a constant rate across
different lineages. From this perspective, edge lengths do not represent
time, but instead represent the expected amounts of evolution (usually
expressed as the expected numbers of nucleotide substitutions per site).
This leads to so-called additive phylogenetic trees, which are studied in
Section 10.4. Methods that reconstruct additive phylogenetic trees usu-
ally deliver an unrooted tree. Rooting such a tree—finding a unique root
node corresponding to the (usually imputed) last common ancestor of all
the taxa at the leaves of the tree—is itself a challenging problem. The most
common method for rooting trees is the use of an outgroup. This is a taxon
that is more distantly related to all other taxa than any other of the taxa.
In practice, finding an uncontroversial outgroup can be difficult: it must
be close enough to the other taxa to perform meaningful comparisons but
far enough from these to be a clear outgroup.

10.1.1 Methods of phylogenetic inference

Essentially, there are three types of methods for phylogenetic inference:

• distance methods,

• maximum parsimony (MP) methods, and

• maximum likelihood (ML) methods.

In this book, we provide an in-depth study of distance methods from a
computer science point of view, but we neither discuss MP methods nor
ML methods.

480 10 Phylogenetic Reconstruction

Distance methods construct a phylogenetic tree from a distance matrix
that contains the evolutionary distances between all pairs of taxa. Dis-
tances that are employed are e.g. the number of nucleotide differences
per site (Section 10.1.2), the alignment-free distance measure of Section
5.6.6, or the number of genome rearrangements (Chapter 9). As already
mentioned, we will study ultrametric and additive phylogenetic trees in
Sections 10.3 and 10.4. The length (or weight) of an edge (or branch) in a
tree represents the expected amount of evolution. In an ultrametric tree,
where we assume a constant rate of molecular evolution, the length of an
edge represents the elapsed time. If one ignores edge weights, one speaks
of the topology (shape) of a tree. Distance methods that have proved to
be useful for actual data analysis, such as UPGMA or neighbor-joining,
always produce a phylogenetic tree. So the question is, under what con-
ditions/assumptions can we trust the tree? We shall show in Section
10.3 that UPGMA provably constructs the correct tree provided that the
input distance matrix is ultrametric. Analogously, we shall see in Section
10.5 that several neighbor-joining algorithms (among them the neighbor-
joining algorithm developed by Saitou and Nei [276]) provably construct
the correct tree provided that the distance matrix is additive. However,
in most applications, the observed pairwise distances between taxa are
only estimates of the real distances. In other words, the observed data
deviate from the (unknown) real additive data. In this case, one can still
use neighbor-joining algorithms to reconstruct the topology of the tree.
Under certain criteria, this tree topology is provably trustworthy; see Sec-
tion 10.6. If only the topology of the tree is known, then one must assign
weights to the edges of the tree that best fit the data. This can be done
with standard least squares methods; see Section 10.6.2.

Maximum parsimony methods were originally developed for morpholog-
ical characters. Nei and Kumar [242] describe MP methods that are useful
for analyzing molecular data as follows:

In these MP methods, four or more aligned nucleotide (or amino
acid) sequences (m ≥ 4) are considered, and the nucleotides
(amino acids) of ancestral taxa are inferred separately at each
site for a given topology under the assumption that mutational
changes occur in all directions among the four nucleotides (or
20 amino acids). The smallest number of nucleotide (or amino
acid) substitutions that explain the entire evolutionary process
for the topology is then computed. This computation is done for
all potentially correct topologies, and the topology that requires
the smallest number of substitutions is chosen to be the best
tree. The theoretical basis of this method is William of Ockham’s
philosophical idea that the best hypothesis to explain a process
is the one that requires the smallest number of assumptions.

10.1 Introduction 481

The main idea of maximum likelihood methods can be summarized as
follows [242]:

In ML methods, the likelihood of observing a given set of se-
quence data for a specific substitution model is maximized for
each topology, and the topology that gives the highest maximum
likelihood is chosen as the final tree. The parameters to be con-
sidered are not the topologies but the branch lengths for each
topology, and the likelihood is maximized to estimate branch
lengths.

As said before, we neither discuss MP nor ML methods here. The inter-
ested reader is e.g. referred to [97,242].

10.1.2 Molecular anthropology

Molecular anthropology is the science that uses the methods of modern
molecular genetics to investigate questions that anthropologists are in-
terested in concerning human evolution. It has been extremely useful in
establishing the evolutionary tree of humans and other primates, but it
also includes such areas of research as genetically reconstructing man’s
ancient migrations. Where did we come from? As already observed by
Charles Darwin in his 1871 book “The Descent of Man” the family tree in
Figure 10.1 suggests that Africa was the cradle of humans because our
two closest living relatives—chimpanzees and gorillas—live there. How-
ever, it was unclear where anatomically modern humans (that is, humans
with skeletons similar to those of present-day humans) evolved. Ingman
et al. [160] describe the debate over recent human origins as follows:

The two main hypotheses for the evolution of modern humans
agree that Homo erectus spread from Africa around 2 myr ago.
The ‘recent African origin’ hypothesis states that anatomically
modern humans originated in Africa 100,000–200,000 years
ago and subsequently spread to the rest of the world, replac-
ing archaic human forms with little or no genetic mixing. The
alternative, ‘multi-regional’ hypothesis proposes that the trans-
formation to anatomically modern humans occurred in differ-
ent parts of the world, and supports this with fossil evidence
of cultural and morphological continuity between archaic and
modern humans outside Africa.

Starting with the landmark study of Cann et al. [49], this question has
been approached by analyzing DNA from individuals belonging to differ-
ent human populations. Mitochondrial DNA (mtDNA) is well suited for
this purpose because of high substitution rate and the lack of recombi-
nation, but nuclear chromosomes (particularly the Y chromosome) can

482 10 Phylogenetic Reconstruction

also be employed. While mtDNA is inherited from the mother (maternally
inherited), the Y chromosome is inherited from the father (paternally in-
herited). This enables researchers to trace back both the maternal and
paternal lineages far back in time.

In a landmark study, Ingman et al. [160] sequenced the complete mtDNA
of 53 humans of diverse origin. Apparently, they built a multiple align-
ment of the mtDNA sequences (which varied in length from 16,558 to
16,576 bp), excluded gaps (yielding a gapless alignment of length 16,553),
and obtained pairwise distances in this way (the distance between two
taxa is the number of nucleotide differences at the 16,553 sites).1 The
phylogenetic tree constructed from the pairwise distances is shown in
Figure 10.2. The mtDNA sequences (excluding the D-loop) have evolved
at roughly constant rates, i.e., the molecular clock hypothesis is satisfied.
Assuming that human-chimpanzee speciation happened around 5 myr
ago, the mutation rate (excluding the D-loop) is estimated to be 1.7 · 10−8

substitutions per site per year. Ingman et al. [160] conclude:

The age of the most recent common ancestor (MRCA) for mtDNA,
on the basis of the maximum distance between two humans
(5.82 · 10−3 substitutions per site between the Africans Mkamba
and San), is estimated to be 171,500 ± 50,000 yr BP. We can
also estimate the age of the MRCA for the youngest clade that
contains both African and non-African sequences (Fig. 2, as-
terisk) from the mean distance of all members of that clade to
their common node (8.85·10−4 substitutions per site) as 52,000 ±
27,500 yr BP. Because genetic divergence is expected to precede
the divergence of populations, this date can be considered as
the lower bound for an exodus from Africa. Notably, a group of
six African sequences (Fig. 4a, sequences 33-38) are genetically
distant to those of other Africans, but share a common ances-
tor with non-Africans. These lineages represent descendants
of a population that evidently gave rise to all the non-African
lineages. Whether the ancestors of these six extant lineages
originally came from a specific geographic region is not possible
to determine, but we note that these sequences are from five
populations that are now geographically unrelated.

1In mathematical terms, the distance between two taxa i and j is the Hamming distance
between the DNA sequences in rows i and j in the gapless alignment. When there is
no molecular clock, one should use sophisticated models of DNA evolution, proposed
e.g. by Jukes and Cantor [170] or Kimura [181]; see also [97,242].

10.1 Introduction 483

*

1 Chukchi
2 Australian

3 Australian
4 Piman

5 Italian
6 PNG Highland

7 PNG coast
8 PGN Highland

9 Georgian
10 German

11 Uzbek
12 Saam

13 Crimean Tatar
14 Dutch

15 French
16 English

17 Samoan
18 Korean

19 Chinese

20 Asian Indian
21 Chinese

22 PNG coast
23 Australian
24 Evenki

25 Buriat
26 Khirgiz

27 Warao
28 Warao
29 Sibirian Inuit
30 Guarani

31 Japanese
32 Japanese

33 Mkamba
34 Ewondo

35 Bamileke
36 Lisongo

37 Yoruba
38 Yoruba

39 Mandenka
40 Effik

41 Effik
42 Ibo

43 Ibo
44 Mbenzele

45 Biaka
46 Biaka
47 Mbenzele

48 Kikuyu
49 Hausa

50 Mbuti
51 Mbuti

52 San
53 San

Chimp

African

Non-African

98

100

98

100

98

82

Figure 10.2: Phylogenetic tree of 53 humans of diverse origin and the
chimpanzee as outgroup, constructed with the neighbor-
joining algorithm described in Section 10.5.2. Edge lengths
represent the number of nucleotide differences per site.
Bootstrap values, shown at 6 nodes, are explained in Section
10.6.3. Adapted with permission from Ingman et al. [160].

484 10 Phylogenetic Reconstruction

In other words, the study provides compelling evidence of an “Out of
Africa” migration. Because the MRCA2 is a woman, she is called “Mi-
tochondrial Eve” or “African Eve.”

So Figure 10.1 provides a picture of human-ape common ancestry and
the human-chimpanzee divergence about 6 myr ago, while Figure 10.2
provides evidence that anatomically modern humans arose in Africa about
200,000 years ago. But what happened in between? It could be that the
fossil skeleton of a female nicknamed “Lucy” found in 1974 in the Afar
Depression (Ethiopia) is one of the missing links. Lucy belongs to the
species Australopithecus afarensis, which lived between 3.9 and 3 million
years ago. Australopithecus, the name of the genus, comes from the Latin
word australis meaning southern and the Greek word pithekos meaning
ape. The name “southern ape” was chosen because the first fossil, the
fossilized skull of a child, was discovered in 1924 in Taung, South Africa.
The genus Homo (homo is a Latin word meaning human or man) is esti-
mated to be about 2.3 million years old, possibly having evolved from A.
afarensis ancestors. The genus is characterized by an upright posture,
large brains, high intelligence, and hairlessness. Apart from Homo sapi-
ens (sapiens is a Latin word meaning wise, intelligent), some of the most
famous members of the genus Homo are (dates are taken from [166]):

• Homo habilis (lived 2.3 to 1.6 myr ago),

• Homo ergaster (1.8 to 1.5 myr ago),

• Homo erectus (1.7 million to 40,000 years ago),

• Homo heidelbergensis (700,000 to 200,000 years ago),

• Homo neanderthalis (200,000 to 30,000 years ago), and

• Homo floresiensis (74,000 to 12,000 years ago).

H. habilis (“handy man”) was the earliest prehuman/human species to
show a significant increase in brain size and also the first to be found as-
sociated with stone tools (hence the name “handy man”). There is a con-
troversy over whether this species should be placed in the genus Homo
because new fossil discoveries show that this species shares some impor-
tant physical similarities with members of the genus Australopithecus. It
is debated whether H. habilis is a direct human ancestor.

H. erectus (“upright man”) fossils have been found in Africa (e.g. Lake
Turkana), Georgia (Dmanisi, located in the Caucausus, is the earliest
known hominid site outside of Africa), and in Asia, mostly in Indonesia

2The term MRCA is usually used to describe a common ancestor of individuals within
a species. We use the term last common ancestor (LCA) when discussing ancestry
between species.

10.1 Introduction 485

(“Java Man”) and China (“Peking Man”). A growing number of scientists
have redefined the species H. erectus so that it now contains only Asian
fossils. Many of the older African fossils formerly known as H. erectus
have now been placed into a separate species called H. ergaster (the name
“workman” was chosen because large stone tools were found near some
of its fossils), and this species is considered to be ancestral to H. erectus.
The redefined H. erectus is now generally believed to be a side branch on
our family tree, whereas H. ergaster is now viewed as one of our direct
ancestors. Some researchers believe that the hominin skulls discovered
in Ngandong (Indonesia) represent a small colony of H. erectus that sur-
vived long after the rest had died off. Recent dates seem to suggest that
the skulls are actually between 27,000 and 53,000 years old. However,
these dates were taken on faunal remains that other researchers believe
are not of the same age as the hominins.

H. heidelbergensis (“Heidelberg man;” in 1907 the first fossil was dis-
covered near the city of Heidelberg, Germany) evolved in Africa but by
500,000 years ago some populations were in Europe. H. heidelbergen-
sis began to develop regional differences that eventually gave rise to two
species of humans. European populations of H. heidelbergensis evolved
into H. neanderthalensis, while a separate population in Africa evolved
into H. sapiens. H. heidelbergensis was probably a descendant of H. er-
gaster. Fossils from Atapuerca in Spain date to 800,000 years old, and
may be H. heidelbergensis or a different species, H. antecessor.

H. neanderthalensis (“Man from the Neander Valley;” in 1856 the first
major specimen was found in the Neanderthal,3 Germany) was an ad-
vanced humans species, capable of intelligent thought processes and able
to adapt to and survive in some of the harshest environments known to
humans. Thousands of fossils representing the remains of many hun-
dreds of Neanderthal individuals have been recovered from sites across
Europe and southwestern to central Asia. Neanderthals and modern hu-
mans (“Cro-Magnons”) coexisted in Europe for several thousand years,
but the duration of this period is uncertain. Modern humans may have
first migrated to Europe 40,000-43,000 years ago and the Neanderthal
became extinct about 30,000 years ago. There is some evidence that
members of the two species may have met much earlier in the Middle
East. In 1982, the most complete Neanderthal skeleton found to date
was discovered in the Kebara Cave (Israel); it is estimated to be about
60,000 years old. In 2005, a set of 7 teeth from Tabun Cave in Israel were
studied and found to most likely belong to a Neanderthal that may have
lived around 90,000 years ago [60], and another Neanderthal from Tabun
was estimated to be ca. 122,000 years old. So Neanderthals lived in the
Middle East for a long period of time. The earliest anatomically modern

3The ’th’ is pronounced as ’t’.

486 10 Phylogenetic Reconstruction

specimens, found in Skhul and Qafzeh in Israel, are probably more than
90,000 years old [301]. Although it is possible that the early presence of
modern humans in the area was episodic, Neanderthals and early modern
humans might have made contact in the region more than 90,000 years
ago. So an interesting question arises: Did Neanderthals interbreed with
modern humans? Comparing DNA sequences from both species could
help to answer this question, but the recovery of DNA from ancient bones
and teeth is difficult because DNA degrades over time (the speed of the
degradation process depends on a number of factors, such as tempera-
ture and soil acidity). So exceptional circumstances are required for DNA
to survive over long time periods. Moreover, contamination by modern
DNA is a particularly difficult problem when the ancient DNA comes from
close relatives like H. neanderthalensis. Despite these difficulties, in 1997
Neanderthal mtDNA was successfully extracted from bones. Studies of
human and Neanderthal mtDNA found no evidence of interbreeding; see
e.g. [189]. In 2010, Svante Pääbo’s team from the Max Planck Institute
for Evolutionary Anthropology in Germany announced a draft sequence
of the Neanderthal genome [131]. Their comparison of the genomes of five
modern humans with the Neanderthal genome produced evidence consis-
tent with inter-species mating, known as hybridization, between H. nean-
derthalensis and H. sapiens [131]. According to the study, Neanderthals
have contributed approximately 1-4% to the genomes of non-African mod-
ern humans. This suggests that modern humans bred with Neanderthals
in the Middle East, after they left Africa, but before they spread to Asia
and Europe. However, Eriksson and Manica [92] provided an alternative
explanation: they claim that common ancestry, without any hybridiza-
tion, explains the genetic similarities between Neanderthals and modern
humans. Green et al. [131] point out themselves that alternative scenar-
ios cannot conclusively be ruled out:

Although gene flow from Neandertals into modern humans when
they first left sub-Saharan Africa seems to be the most parsimo-
nious model compatible with the current data, other scenarios
are also possible. For example, we cannot currently rule out a
scenario in which the ancestral population of present-day non-
Africans was more closely related to Neandertals than the an-
cestral population of present-day Africans due to ancient sub-
structure within Africa ...

Denisovans are the most recently discovered hominins. In 2008, a fin-
ger bone of a juvenile hominin was excavated in Denisova Cave in the Altai
Mountains in southern Siberia. The bone was found in a layer dated to
50,000–30,000 years ago. Krause et al. [187] were able to extract mtDNA
and their comparison with present-day human mtDNA yielded a big sur-
prise:

10.1 Introduction 487

Whereas Neanderthals differ from modern humans at an aver-
age of 202 nucleotide positions, the Denisova individual differs
at an average of 385 positions (...), and the chimpanzee at 1,462
positions (...). The Denisova hominin mtDNA thus carries al-
most twice as many differences to the mtDNA of present-day
humans as do Neanderthal mtDNAs.

That is, Denisovans are a genetically distinct group of humans, distantly
related to Neanderthals and even more distantly related to modern hu-
mans. For the first time in history, the discovery of an unknown hominin
was based on molecular sequence data and not on morphological data!
Because the finger bone was in excellent condition, it was possible to se-
quence the whole genome of the Denisova hominin. Reich et al. [266]
compared the Denisovan DNA sequences with those of Neanderthals and
present-day humans and concluded:

Assuming 6.5 million years for human-chimpanzee divergence,
this implies that DNA sequences of Neanderthals and the Denisova
individual diverged on average 640,000 years ago, and from
present-day Africans 804,000 years ago.

Their study also revealed that the Denisovans possibly interbred with the
ancestors of modern Melanesians when the latter migrated to Melanesia:

..., we estimate that 2.5 ± 0.6% of the genomes of non-African
populations derive from Neanderthals, in agreement with our
previous estimate of 1-4%. In addition, we estimate that 4.8 ±
0.5% of the genomes of Melanesians derive from Denisovans.
Altogether, as much as 7.4 ± 0.8% of the genomes of Melane-
sians may thus derive from recent admixture with archaic ho-
minins.

According to Reich et al. [266], the most plausible model of population
history is the following:

After the divergence of the Denisovans from Neanderthals, there
was gene flow from Neanderthals into the ancestors of all present-
day non-Africans. Later there was admixture between the Deniso-
vans and the ancestors of Melanesians that did not affect other
non-African populations.

This model is illustrated in Figure 10.3.
Homo floresiensis (“Man from Flores;” in 2003 remains were discovered

in the cave of Liang Bua on the Island of Flores, Indonesia) is a hominin
with unusual features. It is assumed that the remains of a largely com-
plete skeleton with skull belong to a female aged about 30 years old, who
stood about 1 meter tall (hence the nickname “Hobbit”) and had a brain

488 10 Phylogenetic Reconstruction

Figure 10.3: A model of the population history of modern humans, Ne-
anderthals, and Denisovans. N denotes the effective popu-
lations size, t denotes the time of population separation, f
denotes the amount of gene flow, and tGF denotes the time
of the gene flow. Reprinted with permission from Reich et
al. [266].

10.2 Basic definitions 489

volume of about 380-420 cm3 (by contrast, the brains of human pygmies
are almost as large as those of normal-sized humans). Despite of their
small brain size, H. floresiensis made and used stone tools and hunted
pygmy elephants (mostly juvenile ones). The remains of at least twelve
H. floresiensis individuals date from about 38,000 to 18,000 years old,
but archaeological evidence suggests H. floresiensis lived at Liang Bua
for a much longer period of time. Modern humans arrived in Indonesia
between 55,000 and 35,000 years ago, and may have interacted with H.
floresiensis, but there is no evidence of this at Liang Bua. Scientists are
trying to figure out how H. floresiensis is related to other human species.
Stone tools dating to 840,000 years ago were discovered on Flores, indi-
cating that a hominin species was living on the island at that time, but
there is a controversy over whether these stone tools have been made by
H. erectus or hominids of another smaller species (such as those found
at Dmanisi). It is possible that H. floresiensis shared a common ances-
tor with H. erectus but was not descended from it. Whatever the origins
of the ancestral population, it is accepted that the population underwent
long term isolation on the small island, with limited food resources and
a lack of predators. This results in island dwarfism, a common phe-
nomenon seen in other mammals in similar environments. For example,
the pygmy elephants on Flores showed the same adaptation: they are one
of the smallest species of Stegodon ever found. Apart from morphologi-
cal criteria, DNA sequences extracted from hominin remains can help in
understanding hominin evolution. Given the relatively recent age of the
unfossilized remains of H. floresiensis, there is hope that it might be pos-
sible to retrieve DNA from the bones. However, DNA degrades fast in the
tropical climate of Indonesia and initial efforts were unsuccessful (Nean-
dertal and Denisovan bones from which DNA has been extracted all came
from much colder climates).

So there is evidence that at least three other hominin species were still
in existence between 50,000 and 30,000 years ago, when modern hu-
mans were migrating out of Africa into Asia and Europe: Neanderthals,
Denisovans, and H. floresiensis.

10.2 Basic definitions

Phylogenies are usually represented as binary trees because speciation
events are generally bifurcating, that is, speciation occurs when an ances-
tral lineage splits into two new independent lineages. This is not entirely
correct. Although hybrid speciation and horizontal gene transfer are rare,
they do occur. Thus, the evolutionary history of all life on earth would
more appropriately be modeled by a phylogenetic network. For the sake

490 10 Phylogenetic Reconstruction

of simplicity, we will only deal with phylogenetic trees, but we do not insist
that the trees must be binary.

Definition 10.2.1 Let S = {s1, . . . , sn} be a set of taxa. A phylogenetic tree
on S is a triple T = (V,E, λ), where

• (V,E) is an acyclic connected graph (V is the set of nodes and E is the
set of undirected edges) in which there is either a distinguished root
node of degree ≥ 2 and all other internal nodes have a degree ≥ 3 or
there is no such distinguished root node and all internal nodes have
a degree ≥ 3. In the former case we speak of a rooted tree, and in
the latter case of an unrooted tree. Henceforth, we denote the set of
leaves (nodes of degree 1) by VL, and the set of internal nodes by VI.

• λ is a bijection λ : S → VL between the set of taxa and the set of
leaves.

An edge (v, w) ∈ E is an external edge if either v or w is a leaf, otherwise
it is an internal edge. A phylogenetic tree is binary if every internal node
has degree 3, except for the root node in a rooted tree.

This definition of a phylogenetic tree does not include edge weights.
These will be implicitly introduced in ultrametric trees (Definition 10.3.1)
and explicitly in additive trees (Definition 10.4.1).

In a phylogenetic tree T on S, leaves are usually labeled with extant
species. In this chapter we often identify a leaf with its label. For example,
when we speak of leaf si, where si ∈ S, then we mean the leaf λ(si). Internal
nodes correspond to ancestral species, which in most cases are extinct.
Thus, the topology of the tree describes the putative order of speciation
events that gave rise to the extant taxa. The extreme case in which a
phylogenetic tree has just one internal node results in a topology that
resembles a star. Hence it is called a star phylogeny.

The phylogenetic reconstruction algorithms presented in this chapter
are based on distances between taxa, and we formally define the relevant
concepts below. In the following, let S be the set of taxa.

Definition 10.2.2 A semimetric on S is a function d : S × S → R≥0 that
satisfies for all x, y ∈ S:

• d(x, y) = 0⇔ x = y (identity of indiscernibles)

• d(x, y) = d(y, x) (symmetry)

A metric or distance function on S is a semimetric d : S × S → R≥0 that
satisfies the triangle inequality, i.e. for all x, y, z ∈ S:

• d(x, y) ≤ d(x, z) + d(z, y)

10.2 Basic definitions 491

A metric d : S×S → R≥0 is called additive if it satisfies the additive inequal-
ity, i.e. for all w, x, y, z ∈ S:

• d(w, x) + d(y, z) ≤ max{d(x, y) + d(w, z), d(x, z) + d(w, y)}

An ultrametric on S is an additive metric d : S × S → R≥0 that satisfies the
ultrametric inequality, i.e. for all x, y, z ∈ S:

• d(x, y) ≤ max{d(x, z), d(y, z)}

Lemma 10.2.3 A semimetric d : S × S → R≥0 that satisfies the additive
inequality is in fact a metric.

Proof Suppose that the additive inequality

d(w, x) + d(y, z) ≤ max{d(x, y) + d(w, z), d(x, z) + d(w, y)}

holds for all w, x, y, z ∈ S. Choosing w = x, we obtain

d(x, x) + d(y, z) ≤ max{d(x, y) + d(x, z), d(x, z) + d(x, y)} = d(y, x) + d(x, z)

for all x, y, z ∈ S. In other words, the triangle inequality is satisfied. �

Lemma 10.2.4 A semimetric d : S × S → R≥0 that satisfies the ultrametric
inequality is in fact an additive metric.

Proof We have to show that the additive inequality d(w, x) + d(y, z) ≤
max{d(x, y) + d(w, z), d(x, z) + d(w, y)} holds for w, x, y, z ∈ S. According to
the ultrametric inequality we have:

d(w, x) ≤ max{d(w, z), d(x, z)}
d(w, x) ≤ max{d(w, y), d(x, y)}
d(y, z) ≤ max{d(y, x), d(z, x)}
d(y, z) ≤ max{d(y, w), d(z, w)}

Without loss of generality, assume that d(x, z) is the largest element of
{d(w, z), d(x, z), d(w, y), d(x, y)}. In particular, this implies d(w, x) ≤ d(x, z)
and d(y, z) ≤ d(x, z). Now, if d(w, x) ≤ d(w, y) or d(y, z) ≤ d(w, y), then the
additive inequality is a consequence of d(w, x) + d(y, z) ≤ d(x, z) + d(w, y) ≤
max{d(x, y) + d(w, z), d(x, z) + d(w, y)}. Otherwise, if d(w, x) > d(w, y) and
d(y, z) > d(w, y), then the inequalities d(w, x) ≤ d(x, y) and d(y, z) ≤ d(w, z)
follow. In this case, the additive inequality is also true because d(w, x) +
d(y, z) ≤ d(x, y) + d(w, z) ≤ max{d(x, y) + d(w, z), d(x, z) + d(w, y)}. �

Thus, in order to prove that a function d : S × S → R≥0 is (i) a metric, (ii)
an additive metric, or (iii) an ultrametric, it suffices to verify three proper-
ties: identity of indiscernibles, symmetry, and the respective inequality.

For ease of presentation, we number the n taxa consecutively and iden-
tify a taxon with its number. More precisely, we assume that the set S of
taxa is the set {1, . . . , n}.

492 10 Phylogenetic Reconstruction

Definition 10.2.5 A symmetric n×n matrix D = (dij) satisfying dii = 0 and
dij > 0 for all i 6= j with i, j ∈ {1, . . . , n} is called dissimilarity matrix.

Throughout this chapter, we assume that the input to a phylogenetic
reconstruction algorithm is a dissimilarity matrix. (Note that one can test
in O(n2) time whether or not an n × n matrix is a dissimilarity matrix.)
Since S = {1, . . . , n}, an n × n dissimilarity matrix D = (dij) induces a
function d : S × S → R≥0 defined by d(x, y) = dxy. Clearly, the definition of a
dissimilarity matrix implies that d is a semimetric.

Definition 10.2.6 An n×n dissimilarity matrix D = (dij) is called distance
matrix if the induced function d is a distance function (i.e., it satisfies
the metric axioms). Furthermore, we say that the matrix D is additive
(ultrametric, respectively) if the induced function d is additive (ultrametric,
respectively).

One can check in O(n3) time whether or not a matrix D is a distance
matrix (an ultrametric matrix, respectively). Take all 3-element subsets of
the set S = {1, . . . , n} and test the triangle inequality (the ultrametric in-
equality, respectively). Analogously, one can check in O(n4) time whether
or not a matrix D is an additive distance matrix.

Exercise 10.2.7 Give an example of a non-additive distance matrix.

Exercise 10.2.8 Provide an additive matrix that is not ultrametric.

10.3 Ultrametric distance matrices and trees

Definition 10.3.1 Let T = (V,E, λ) be a rooted phylogenetic tree on a set
S of taxa. Then T together with a marking µ : VI → R>0 (of the internal
nodes with positive numbers) is an ultrametric tree provided that for each
path v1, v2, . . . , vm, k from the root r = v1 to a leaf k the sequence of marks
µ(v1), µ(v2), . . . , µ(vm) is strictly decreasing.

Given a rooted phylogenetic tree T on a set of n taxa together with a
marking µ of the internal nodes, one can test by a depth-first traversal of
T whether it is ultrametric or not. This takes only O(n) time because T
has n leaves and at most n − 1 internal nodes (every internal node has at
least two children).

Before defining consistency of an ultrametric tree with a dissimilarity
matrix D, we recall the definition of the lowest common ancestor. Given
two nodes v and w in a rooted tree, their lowest common ancestor LCA(v, w)
is the node farthest from the root that is an ancestor of v and w (or, to put
it differently, it is the node u so that u is ancestor of v and w and there is
no proper descendant of u that is also an ancestor of v and w).

10.3 Ultrametric distance matrices and trees 493

3

1 6

6 4

3 2 4 5

9

9
9

9
9 9

44
6

6 3

0
0

01
2

1 2 3 4 5 6

0

94
0

04
5
6

3

D

9 9

9

Figure 10.4: The dissimilarity matrix D and the ultrametric tree T are
consistent.

Definition 10.3.2 Let S = {1, . . . , n} be a set of taxa, let D be an n × n
dissimilarity matrix, and let T = (V,E, λ, µ) be an ultrametric tree on S.
We say that D and T are consistent if µ(LCA(i, j)) = dij holds true for any
two leaves (taxa) i and j of T .

We will also say that D is consistent with T , and vice versa. Figure
10.4 shows a dissimilarity matrix D on the left that is consistent with the
ultrametric tree T on the right.

We remark that it is possible to check in O(n2) time whether an n × n
dissimilarity matrix D and an ultrametric tree T on a set of n taxa are
consistent: Preprocess T in O(n) time so that lowest common ancestor
queries can be answered in constant time (see Chapter 3), and then verify
µ(LCA(i, j)) = dij for each of the O(n2) pairs of taxa.

Ultrametric trees are those phylogenetic trees that satisfy the molecu-
lar clock hypothesis. We will come back to this topic in Section 10.4.1.
Moreover, we would like to stress that ultrametric trees can alternatively
be defined as additive trees in which the lengths of all evolutionary paths
(all paths from the root to a leaf) are equal. We will show the equivalence
of both definitions in Section 10.4.1.

By definition, a rooted phylogenetic tree T is an unordered tree in the
sense that the order of the children of a node in T is not specified. How-
ever, every drawing of such a tree is, in fact, an ordered tree. Because
there is a bijection between the set S = {1, . . . , n} of taxa and the leaves of
T , it is natural to use the canonical form of T in drawings. This canonical
form is the ordered tree that is obtained by ordering the children of nodes
in T as follows: Let v be an internal node in T , let {v1, . . . , vm} be the set of
its children, and for each child node vi let si be the minimum of all taxa in
the subtree rooted at vi. Then, order the children so that node vj appears
before node vk if and only if sj < sk. Figure 10.5 illustrates this.

Sections 10.3.1–10.3.2 are based on Gusfield’s book [139, 17.1] and the
work of Heun [150,151].

494 10 Phylogenetic Reconstruction

3

1 6

6 4

3 2 4 5

9

3

6 1

9

5 4 2

4

3

6

Figure 10.5: Two ordered representations of the same ultrametric tree.
The canonical form is shown on the left-hand side.

10.3.1 Characterization of ultrametric matrices

In the following, we are going to characterize ultrametric dissimilarity ma-
trices: they satisfy the so-called 3-point condition and are consistent with
an ultrametric tree.

Definition 10.3.3 An n × n dissimilarity matrix D satisfies the 3-point
condition if for all i, j, k ∈ {1, . . . , n} the two largest values out of dij, dik, djk
are equal.

The next theorem not only shows that an ultrametric matrix is consis-
tent with an ultrametric tree, but it is constructive in the sense that it
gives an algorithm for constructing the ultrametric tree.

Theorem 10.3.4 For any dissimilarity matrix D, the following statements
are equivalent:

(1) D is ultrametric.

(2) D satisfies the 3-point condition.

(3) D is consistent with an ultrametric tree. Moreover, this tree is unique.

Proof We prove (1)⇒(2), (2)⇒(3), and (3)⇒(1).

(1)⇒(2): It must be shown that D satisfies the 3-point condition for
all i, j, k ∈ {1, . . . , n}. Fix three points (taxa) i, j, k. Since D is ultrametric,
the ultrametric inequality dij ≤ max{dik, djk} holds true. If dik = djk, then
the 3-point condition is obviously satisfied. Now suppose that dik 6= djk.
Without loss of generality, assume that dik < djk. In conjunction with
dij ≤ max{dik, djk}, this implies dij ≤ djk. Because D is ultrametric, we also
have djk ≤ max{dij, dik} = dij (the last equality follows from dik < djk). In
summary, we have shown dij ≤ djk ≤ dij. Hence dik < djk = dij.

(2)⇒(3): The proof is by induction on the number n of taxa. If n = 1,

10.3 Ultrametric distance matrices and trees 495

δ1

δ2

δk−1

δk

1 T (D1)

T (D2)

T (Dk−1)

T (Dk)

Figure 10.6: Construction of an ultrametric tree.

then the tree consists of only one leaf (taxon). The base case n = 2 is
also clear: the root of the tree is marked with the distance d12 between
the two taxa 1 and 2, and the leaves 1 and 2 are its children. So let
n ≥ 3. For the induction step, suppose that the claim holds for every
natural number ni with ni < n. We arbitrarily choose some taxon out of
the n taxa, say taxon 1, and consider its distance to all other taxa. Let
{d12, d13, . . . , d1n} = {δ1, . . . , δk} and suppose that the δ-values are numbered
in increasing order, i.e., δ1 < δ2 < · · · < δk. The δ-values partition the set
{2, . . . , n} into disjoint subsets Si = {j ∈ {2, . . . , n} | d1j = δi}. For each Si
let Di be the dissimilarity matrix obtained from D by deleting all rows
and columns of D that do not correspond to a taxon from Si. Clearly,
Di is ultrametric. Let ni = |Si| be the number of taxa in Si. Since ni < n,
the inductive hypothesis implies that Di is consistent with an ultrametric
tree T (Di). Now we construct a path 1, v1, . . . , vk from leaf 1 to the root
r = vk consisting of new nodes v1, . . . , vk. Each node vi is defined to be the
parent node of the tree T (Di), and it is marked with δi (so µ(vi) = δi). This
approach is illustrated in Figure 10.6. The tree constructed in this way
may not yet be ultrametric, so it may be necessary to alter it, but we shall
see that after small modifications the resulting tree is indeed ultrametric.
By construction, the sequence of marks on the path from the root to leaf
1 is strictly decreasing. Furthermore, by the inductive hypothesis the
sequence of marks on the path from the root of a subtree T (Di) to a leaf
is strictly decreasing. We next show that the mark of the root of a subtree
T (Di) is less than or equal to the mark µ(vi) = δi of its parent node vi.
Because the mark of the root of a subtree T (Di) is equal to dxy, where
x and y are two leaves in T (Di) whose lowest common ancestor is the
root of T (Di), we can rephrase our claim as dxy ≤ δi; see Figure 10.7. By
assumption, D satisfies the 3-point condition. Therefore, the two largest
values out of dxy, d1x, d1y are equal. This, in combination with d1x = d1y = δi,
proves our claim dxy ≤ δi. In case dxy < δi, the sequence of marks on any
path from the root to a leaf in the subtree T (Di) is strictly decreasing and

496 10 Phylogenetic Reconstruction

δi

1 x y

T (Di)

Figure 10.7: If x and y are two leaves in T (Di) whose lowest common an-
cestor is the root of T (Di), then dxy ≤ δi.

1 T (Dj)

x

y

T (Di)

δi

δj

Figure 10.8: The two leaves x and y stem from different subtrees.

we are done. If dxy = δi, then we remove the edge from node vi to the root
of T (Di) (in other words, we identify node vi with the root of T (Di)). After
this small modification, the sequence of marks on any path from the root
to a leaf in the subtree T (Di) is strictly decreasing. It is clear that the
overall result of these modifications, the tree T (D), is ultrametric.

To show that the tree T (D) is consistent with D, one must prove that
dxy = µ(LCA(x, y)) is true for any two leaves x and y. By construction, it
suffices to verify this equality in the cases in which x is a leaf in T (Di)
and y is a leaf in T (Dj), where i 6= j. The situation is illustrated by Figure
10.8. Without loss of generality, we may assume δi > δj. Obviously,
the lowest common ancestor of x and y is the node vi with µ(vi) = δi,
and we must prove that dxy = δi. By assumption, D satisfies the 3-point
condition. Therefore, the two largest values out of dxy, d1x, d1y are equal.
Since d1y = δj < δi = d1x, it follows that dxy = d1x = δi.

It still must be shown that T (D) is unique. It is not difficult to see
that any ultrametric tree, that is consistent with D must contain a path
1, u1, . . . , uk from leaf 1 to the root r = uk so that µ(ui) = δi. Moreover, the
subtree at node ui must contain all taxa that have distance δi to taxon 1.
In other words, it must contain all taxa from the set Si. By the inductive
hypothesis, T (Di) is the unique ultrametric tree that is consistent with
Di. Consequently, T (D) is the unique ultrametric tree that is consistent
with D.

(3)⇒(1): By the definition of a dissimilarity matrix, it is sufficient to

10.3 Ultrametric distance matrices and trees 497

Case 1: LCA(i, j) 6= LCA(i, k) = LCA(k, j) Case 2: LCA(i, j) = LCA(i, k) 6= LCA(k, j)

i j k ji k

Case 3: LCA(i, j) = LCA(j, k) 6= LCA(i, k) Case 4: LCA(i, j) = LCA(i, k) = LCA(k, j)

ki j i j k

Figure 10.9: The four possible cases.

show that D satisfies the ultrametric inequality. That is, we must show
that for i, j, k ∈ {1, . . . , n} the inequality dij ≤ max{dik, djk} holds true.
Let T (D) be the unique ultrametric tree that is consistent with D. We
use a case-by-case analysis, and the four possible cases are depicted in
Figure 10.9. In case 1, we have LCA(i, j) 6= LCA(i, k) = LCA(k, j). Because
µ(LCA(x, y)) = dxy for any two leaves x and y in T (D) and every sequence
of marks on a path from the root to a leaf is strictly decreasing, it
follows that dij < dik = djk. Similarly, we derive djk < dij = dik in case
2, dik < dij = djk in case 3, and dij = dik = djk in case 4. In case 1,
dij < max{dik, djk} and in the remaining cases we have dij = max{dik, djk}.
That is, the ultrametric inequality is satisfied in all four cases. �

10.3.2 Construction algorithm

According to Theorem 10.3.4, every ultrametric matrix is consistent with
an ultrametric tree, and the proof of that theorem already comprises a
(quadratic time) algorithm to construct this tree. By Theorem 10.3.4, this
construction algorithm will only work correctly if the input matrix D is
indeed an ultrametric matrix. As mentioned earlier, we can check this by
testing the ultrametric inequality (or, equivalently, the 3-point condition)
for all possible 3-element subsets of S = {1, . . . , n}. However, this takes
O(n3) time, whereas the construction algorithm takes only O(n2) time (as
we shall see). There are two ways out of this trap: (a) let the algorithm
construct a tree and test afterwards in O(n2) time if this tree is ultramet-
ric and consistent with D, or (b) integrate the test into the construction
algorithm itself. Approach (b) is taken in Algorithm 10.1.

498 10 Phylogenetic Reconstruction

Algorithm 10.1 Construction of an ultrametric tree (if it exists).

Input: n× n dissimilarity matrix D.

1. Choose a taxon s out of the set S, say s = 1.

2. Determine k = |{d1j | 2 ≤ j ≤ n}| as well as the sequence δ1, . . . , δk
so that {δ1, . . . , δk} = {d12, . . . , d1n} and δ1 < · · · < δk. Simultaneously
partition {2, . . . , n} into disjoint sets S1, . . . , Sk:

Si = {j | 2 ≤ j ≤ n and d1j = δi}

3. Recursively compute the subtrees T (Di). Let ri be the root of T (Di)
and—if ri is not a leaf—let mi be its mark. During the computation,
maintain a pair of taxa (xi, yi) with dxiyi = mi.

4. Create a path 1, v1, . . . , vk from leaf 1 to the root r = vk consisting of
nodes v1, . . . , vk with marks δ1, . . . , δk. If ri is a leaf, then connect it
to node vi by adding the edge (vi, ri). With the remaining subtrees,
proceed as follows:

• If mi < δi, then connect T (Di) to node vi by adding the edge (vi, ri).

• If mi = δi, then connect T (Di) to the tree by identifying vi with ri.

• If mi > δi, then output the triple (xi, yi, 1) as a witness that D
is not ultrametric and terminate. (Note that (xi, yi, 1) does not
satisfy the 3-point condition because dxiyi = mi > δi = d1xi = d1yi.)

5. For each pair T (Di) and T (Dj) of subtrees with δi > δj, test for each
leaf x in T (Di) and for each leaf y in T (Dj) whether or not dxy = δi.
If dxy 6= δi, then output the triple (x, y, 1) as a witness that D is not
ultrametric and terminate. (If D were ultrametric, then d1x = δi > δj =
d1y would imply dxy = δi by the 3-point condition.)

Output: The tree T (D) and a pair of taxa (1, j), where j ∈ Sk.

10.3 Ultrametric distance matrices and trees 499

It is not hard to show that Algorithm 10.1 is correct. If it outputs a
triple of taxa, then these three taxa show that D does not satisfy the 3-
point condition. Hence D cannot be consistent with an ultrametric tree
by Theorem 10.3.4. Otherwise, Algorithm 10.1 outputs a tree T (D) and
a pair (1, j) of taxa with j ∈ Sk. By step 4 of the algorithm, T (D) is an
ultrametric tree. Moreover, step 5 ensures that T (D) is consistent with D.
Finally, note that the pair (1, j) of taxa satisfies d1j = δk, and δk is the mark
of the root of T (D).

Our next goal is to show that the worst-case time complexity of Al-
gorithm 10.1 is O(n2). Step 2 can be implemented in O(kn) time using
a linked list4 of “buckets” (sets that can also be implemented as linked
lists). The linked list maintains the δ-values in increasing order and each
value δi is associated with a bucket, called the δi-bucket. We scan the
values d12, . . . , d1n and for each value d1j we linearly search through the list
until either (a) an element δi with δi = d1j is found or (b) the right place
to insert the new d1j-value is found. In case (a) we put j into the already
existing δi-bucket, and in case (b) we make up a new d1j-bucket contain-
ing j. Clearly, each of the n− 1 scans through the list takes O(k) time, so
the overall time complexity is O(kn). After all values d12, . . . , d1n have been
processed, the list has the form [δ1, . . . , δk], where {δ1, . . . , δk} = {d12, . . . , d1n}
and δ1 < · · · < δk. Furthermore, each δi-bucket contains the set Si.

It is readily verified that step 4 of Algorithm 10.1 takes O(k) time.
In the analysis of step 5, it is important to note that

∑k
i=1 ni = n − 1,

where ni = |Si|. Consequently, there are

1

2

(
k∑
i=1

ni(n− 1− ni)

)
=

1

2

(
(n− 1)

k∑
i=1

ni −
k∑
i=1

n2
i

)
=

1

2

(
(n− 1)2 −

k∑
i=1

n2
i

)

many pairs (x, y) of taxa to which the (constant time) test dxy = δi must be
applied. Thus, step 5 takes O(n2 −

∑k
i=1 n

2
i) time.

To sum up, the worst case running time T (n) of Algorithm 10.1 can be
described by the recurrence

T (n) = O(kn) +
k∑
i=1

T (ni) +O(n2 −
k∑
i=1

n2
i) where

k∑
i=1

ni = n− 1

We claim that the solution is T (n) = O(n2). To prove that T (n) ≤ c · n2 for
an appropriate choice of the constant c > 0, the following lemma is useful.

4Using balanced search trees, step 2 can be implemented in O(n log k) time, but we are
content with the O(kn) time complexity.

500 10 Phylogenetic Reconstruction

Lemma 10.3.5 The following inequality holds:

k∑
i=1

n2
i ≤ k − 1 + (n− k)2

Proof Without loss of generality, let 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk. For 2 ≤ n` ≤ nk,
we have

(n` − 1)2 + (nk + 1)2 = n2
` − 2n` + 1 + n2

k + 2nk + 1

= n2
` + 2(nk − n`) + n2

k + 2

> n2
` + n2

k

That is,
∑k

i=1 n
2
i attains its maximum at n1 = n2 = · · · = nk−1 = 1 and

nk = n− k. �

Theorem 10.3.6 T (n) ≤ c ·n2 for an appropriate choice of the constant c > 0
and all n ∈ N.

Proof For an appropriate choice of the constants c̄ > 0 and c̃ > 0 the
recurrence can be written as T (n) ≤ c̄ · k · n+

∑k
i=1 T (ni) + c̃ · (n2 −

∑k
i=1 n

2
i).

We choose c = c̄ + c̃ and prove the theorem by induction on n. For the
induction step, suppose that the claim holds for every natural number ni
with ni < n. Then,

T (n) ≤ c̄ · k · n+
k∑
i=1

T (ni) + c̃ · (n2 −
k∑
i=1

n2
i)

I.H.

≤ c̄ · k · n+
k∑
i=1

c · n2
i + c̃ · (n2 −

k∑
i=1

n2
i)

= c̄ · k · n+ (c̄+ c̃) ·
k∑
i=1

n2
i + c̃ · n2 − c̃ ·

k∑
i=1

n2
i

= c̄ · (k · n+
k∑
i=1

n2
i) + c̃ · n2

≤ (c̄+ c̃) · n2

provided that kn +
∑k

i=1 n
2
i ≤ n2. The latter inequality is implied by the

stronger inequality kn+k−1+(n−k)2 ≤ n2 because
∑k

i=1 n
2
i ≤ k−1+(n−k)2

according to Lemma 10.3.5. Now we have

kn+ k − 1 + (n− k)2 ≤ n2

⇔ kn+ k − 1 + n2 − 2kn+ k2 ≤ n2

⇔ 0 ≤ kn− k2 − k + 1

⇔ 0 ≤ k · (n− k − 1) + 1

10.3 Ultrametric distance matrices and trees 501

The last inequality is true because 1 ≤ k ≤ n− 1 implies n− k − 1 ≥ 0. �

It should be pointed out that the O(n2) worst-case time complexity of
Algorithm 10.1 is optimal because the input matrix D has the size Θ(n2).

10.3.3 The UPGMA-algorithm

UPGMA is an agglomerative clustering method used in bioinformatics for
the creation of phylogenetic trees. Sokal and Sneath [298] attribute it
to Rohlf [268] and Sneath [295]. The acronym UPGMA stands for un-
weighted pair group method using arithmetic averages. Let us start with
some general notes on clustering.

Clustering (or cluster analysis) is the assignment of a set of observations
into subsets (called clusters) so that observations in the same cluster
are similar in some sense. In our context, the set of observations is the
set S = {1, . . . , n} of taxa and the dissimilarity matrix D specifies how
(dis)similar two clusters are.

Hierarchical clustering creates a hierarchy of clusters represented by a
rooted tree (often also called a dendrogram). The root of the tree corre-
sponds to a single cluster containing all taxa (observations), and each leaf
corresponds to a single taxon (an individual observation). Algorithms for
hierarchical clustering generally fall into two categories:

• Agglomerative: Each taxon (observation) starts in its own cluster,
and at each step of the algorithm, the pair of clusters with the short-
est distance (highest similarity) are combined into a single cluster.
The algorithm stops when all taxa (observations) are combined into
a single cluster. So this is a kind of bottom-up approach.

• Divisive: All taxa (observations) start in one cluster, and at each
step of the algorithm, clusters are partitioned into a pair of daughter
clusters, selected to maximize the distance (minimize the similarity)
between each daughter. So this is a kind of top-down approach.

Since we number the n taxa consecutively and identify a taxon with its
number, it is natural to do the same with clusters. To be precise, in the ag-
glomerative method we start with the clusters C1 = {1}, C2 = {2}, . . . , Cn =
{n}; the first new cluster that is obtained by merging two clusters is the
cluster Cn+1, the second one is the cluster Cn+2, and so on. Furthermore,
we use the phrases “cluster i” and “cluster Ci” interchangeably.

The agglomerative method can further be divided into several types ac-
cording to how the distance between clusters is defined. Usually the dis-
tance d(i, j) between two clusters Ci and Cj of sizes ni = |Ci| and nj = |Cj|
is one of the following:

502 10 Phylogenetic Reconstruction

• The maximum distance between elements of each cluster (also called
complete linkage clustering):

d(i, j) = max{dxy : x ∈ Ci, y ∈ Cj}

• The minimum distance between elements of each cluster (also called
single-linkage clustering):

d(i, j) = min{dxy : x ∈ Ci, y ∈ Cj}

• The mean distance between elements of each cluster (also called av-
erage linkage clustering, used e.g. in UPGMA):

d(i, j) =
1

ninj

∑
x∈Ci,y∈Cj

dxy

In this section, we focus on the UPGMA-algorithm, which is shown in
Algorithm 10.2. The general procedure of the agglomerative method has
already been explained above, so Algorithm 10.2 should be easy to under-
stand (an example is illustrated below). However, there is a discrepancy
between Algorithm 10.2 and what was explained above: Algorithm 10.2
uses the equation

d(k, `) =
ni · d(i, `) + nj · d(j, `)

ni + nj

to calculate the distance of the new cluster Ck = Ci∪Cj to the “old” cluster
C`, whereas—according to the above definition—it should be calculated as

d(k, `) =
1

nk n`

∑
x∈Ck,y∈C`

dxy

The discrepancy is settled by the next lemma.

Lemma 10.3.7 Let Ck = Ci ∪ Cj. For any cluster C` with i 6= ` 6= j we have

d(k, `) =
ni · d(i, `) + nj · d(j, `)

ni + nj

10.3 Ultrametric distance matrices and trees 503

Algorithm 10.2 UPGMA algorithm.

Input: n× n dissimilarity matrix D.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i ∈ S is a leaf in the tree T .

3. Each taxon i ∈ S defines a cluster Ci = {i} of size ni = 1.

4. For all i, j ∈ S, define d(i, j) = dij.

while |S| ≥ 2 do

1. Determine i, j ∈ S with i 6= j so that d(i, j) is minimal.

2. Let Ck = Ci ∪ Cj be a new cluster of size nk = ni + nj, and define

d(k, `) =
ni · d(i, `) + nj · d(j, `)

ni + nj

for each ` ∈ S \ {i, j}.

3. Set S = (S \ {i, j}) ∪ {k}.

4. Add a new node k to T with mark d(i, j).

5. Add edges from k to i and from k to j to the tree T .

Output: The tree T .

504 10 Phylogenetic Reconstruction

D 1 2 3 4 5
1 0 6 9 9 9
2 0 9 9 9
3 0 8 8
4 0 7
5 0

3 4 5 6
3 0 8 8 9
4 0 7 9
5 0 9
6 0

Figure 10.10: The original dissimilarity matrix D is shown on the left,
while the right-hand side shows the dissimilarity matrix af-
ter clusters C1 and C2 have been merged into the new cluster
C6.

Proof

d(k, `) =
1

nk n`

∑
x∈Ck,y∈C`

dxy

=
1

(ni + nj)n`

∑
x∈Ci∪Cj ,y∈C`

dxy

=
1

(ni + nj)n`

 ∑
x∈Ci,y∈C`

dxy +
∑

x∈Cj ,y∈C`

dxy

=

1

(ni + nj)n`
(ni n` d(i, l) + nj n` d(j, l))

=
ni d(i, `) + nj d(j, `)

ni + nj

�

Exercise 10.3.8 Analyze the running time of Algorithm 10.2. What is the
crucial factor—the most time consuming operation—in that algorithm?
You should be able to argue that O(n3) is an upper bound. Can you give
an implementation of Algorithm 10.2 with a better worst-case time com-
plexity? In Section 10.3.4, we will show that an O(n2) time implementation
of Algorithm 10.2 is possible, using a data structure called a quadtree.

We now illustrate Algorithm 10.2 by applying it to the dissimilarity ma-
trix D of Figure 10.10. Initially, each taxon i starts in its own cluster Ci,
and the distance d(i, j) between two clusters Ci and Cj is dij. The min-
imum in D is d12 = 6. Thus, clusters C1 and C2 are merged into a new
cluster C6. The distances of the new cluster C6 to the remaining cluster

10.3 Ultrametric distance matrices and trees 505

1 2

4
5

3

1 2

6

1 2

4
5

3

1 2

6

4 5

7

1 2

4
5

3

1 2

6

4 5

7

3

8

1 2

4
5

3

1 2

6

4 5

7

(i) (ii)

(iii) (iv)

9

3

8

Figure 10.11: The UPGMA-algorithm applied to the dissimilarity matrix D
of Figure 10.10 yields the phylogenetic tree shown in (iv).
For clarity, the marks at internal nodes are omitted. Inter-
mediate trees are shown in (i)–(iii), and clusters are illus-
trated above the trees.

C3, C4, and C5 are

d(3, 6) =
1 · d(1, 3) + 1 · d(2, 3)

1 + 1
= 9

d(4, 6) =
1 · d(1, 4) + 1 · d(2, 4)

1 + 1
= 9

d(5, 6) =
1 · d(1, 5) + 1 · d(2, 5)

1 + 1
= 9

The set S is updated to {3, 4, 5, 6}, the updated dissimilarity matrix is
shown on the right-hand side of Figure 10.10, and Figure 10.11 (i) de-
picts the updated tree.

506 10 Phylogenetic Reconstruction

3 4 5 6
3 0 8 8 9
4 0 7 9
5 0 9
6 0

3 6 7
3 0 9 8
6 0 9
7 0

Figure 10.12: Left-hand side: The dissimilarity matrix of clusters 3, 4, 5, 6.
Right-hand side: The matrix after clusters 4 and 5 have been
combined into the new cluster 7.

3 6 7
3 0 9 8
6 0 9
7 0

6 8
6 0 9
8 0

Figure 10.13: Another update of the dissimilarity matrix.

Now d(4, 5) is the shortest distance between two clusters. Therefore,
clusters 4 and 5 are merged into a new cluster 6. Figure 10.12 shows
the corresponding update of the dissimilarity matrix and Figure 10.11 (ii)
depicts the corresponding tree. Then, clusters 3 and 7 are combined into
a new cluster 8; see Figures 10.13 and 10.11 (iii). In the final step, the
remaining clusters 6 and 8 are merged.

Lemma 10.3.9 The sequence of marks generated in the n− 1 iterations of
the UPGMA-algorithm is increasing.

Proof We prove the lemma by induction on the number q of iterations of
the while-loop of the UPGMA-algorithm. The lemma is vacuously true for
q = 0. Let µ1, µ2, . . . , µq be the sequence of marks generated in the first
q iterations of the while-loop. According to the inductive hypothesis, we
have µ1 ≤ µ2 ≤ · · · ≤ µq. Suppose that in the q-th iteration the clusters
Ci and Cj are merged into a new cluster because d(i, j) is the shortest
distance between two clusters. Note that µq = d(i, j). In the (q + 1)-th
iteration, let d(k, `) be the shortest distance between two clusters, so that
Ck and C` are merged into a new cluster. That is, the new node gets the
mark µq+1 = d(k, `). In order to show µq = d(i, j) ≤ d(k, `) = µq+1, we have to
consider three possibilities. In the q-th iteration either

• clusters Ci and Cj are merged into the cluster Ck, or

• clusters Ci and Cj are merged into the cluster C`, or

• clusters Ci, Cj, Ck, and C` are pairwise disjoint (i.e., none of the
preceding two cases applies).

10.3 Ultrametric distance matrices and trees 507

We show that d(i, j) ≤ d(k, `) for the first case (the second case is symmet-
ric, and the third case is easy). The fact that d(i, j) is the shortest distance
in the q-th iteration has d(i, j) ≤ d(i, `) and d(i, j) ≤ d(j, `) as a consequence.
Thus,

d(k, `) =
ni d(i, `) + nj d(j, `)

ni + nj

≥ ni d(i, j) + nj d(i, j)

ni + nj
= d(i, j)

To sum up, µq = d(i, j) ≤ d(k, `) = µq+1. �

The next goal is to show that UPGMA produces the correct tree provided
that the input is an ultrametric dissimilarity matrix D. There is one ob-
stacle though: UPGMA always constructs a binary tree and there may not
be an ultrametric binary tree that is consistent with D. As an example,
consider three taxa with a pairwise dissimilarity of 1. The star phylogeny
of these three taxa, where the internal node r is the root of the tree and
µ(r) = 1, is consistent with this dissimilarity matrix, but UPGMA cannot
construct it. Instead, it constructs a binary tree in which both internal
nodes have mark 1. The problem of having edges (v, w) with µ(v) = µ(w) is
avoided in Algorithm 10.1 (page 498) by identifying such nodes v and w.
Of course, we could modify UPGMA accordingly, but refrain from doing
so (to avoid confusion with the usual definition of UPGMA given in the
literature). Instead, we will prove that UPGMA produces the correct tree
provided that the dissimilarity matrix D is consistent with an ultrametric
binary tree.

Lemma 10.3.10 Let D be an ultrametric dissimilarity matrix, and let T (D)
be the unique ultrametric tree that is consistent with D. Furthermore, let T
be the binary tree returned by UPGMA when applied to D. If we delete all
edges (v, w) from T for which µ(v) = µ(w) holds and identify the nodes v and
w, then we obtain T (D).

Proof According to Lemma 10.3.9, the sequence of marks generated in
the n − 1 iterations of the UPGMA-algorithm is increasing. This implies
that for each path v1, v2, . . . , vm, k in T from the root r = v1 to a leaf k, the
sequence of marks µ(v1), µ(v2), . . . , µ(vm) is decreasing. Thus, if we delete
all edges (v, w) from T for which µ(v) = µ(w) holds and identify the nodes
v and w, then we obtain an ultrametric tree. It remains to be shown
that this tree is consistent with D, i.e., for any two taxa x, y ∈ S the
equality µ(LCA(x, y)) = dxy must hold. This, in turn, is a consequence of
the following statement.

If UPGMA is applied to an ultrametric matrix D, then after each iteration
of its while-loop the following holds:

508 10 Phylogenetic Reconstruction

• For all clusters C` and Cm with `,m ∈ S and ` 6= m and all taxa x ∈ C`
and y ∈ Cm, we have dxy = d(`,m).

The proof is by induction on the number q of iterations of the while-loop.
The lemma is certainly true for q = 0 (before the while-loop is entered for
the first time). After the q-th iteration, for all clusters C` and Cm with
`,m ∈ S and ` 6= m and all taxa x ∈ C` and y ∈ Cm, we have dxy = d(`,m)
by the inductive hypothesis. Suppose that in the (q + 1)-th iteration the
clusters Ci and Cj are merged into a new cluster Ck because d(i, j) is the
shortest distance between two clusters. It must be shown that dxz = d(k, `)
for all taxa x ∈ Ck and z ∈ C`, where k 6= `. Let x ∈ Ci, y ∈ Cj, and
z ∈ C` be arbitrary but fixed. The ultrametric matrix D satisfies the 3-point
condition. Thus, the two largest values out of dxy = d(i, j), dxz = d(i, `),
dyz = d(j, `) are equal. Since d(i, j) is the shortest distance between two
clusters, it follows that dxz = dyz. Consequently,

d(k, `) =
ni · d(i, `) + nj · d(j, `)

ni + nj

=
ni · dxz + nj · dyz

ni + nj

=
(ni + nj) · dxz

ni + nj
= dxz

This concludes the proof. �

Corollary 10.3.11 If the dissimilarity matrix D is consistent with an ultra-
metric binary tree, then UPGMA applied to D constructs this tree.

Proof According to Theorem 10.3.4, D is consistent with an ultrametric
tree if and only if D is ultrametric. Moreover, the ultrametric tree T (D)
for D is unique. According to the preceding lemma, T (D) can be obtained
from the binary tree T constructed by UPGMA by deleting all edges (v, w)
from T for which µ(v) = µ(w) holds and identifying the nodes v and w.
However, if there were such an edge in T , then the resulting tree T (D)
would not be binary. Hence T = T (D). �

Exercise 10.3.12 The WPGMA-algorithm [296] (WPGMA is an acronym
for weighted pair group method using arithmetic averages) is almost identi-
cal to the UPGMA-algorithm. The sole difference between these algorithms
is the way in which the distance of an “old” C` cluster to the new cluster
Ck is defined. The WPGMA-algorithm uses the formula d(k, `) = d(i,`)+d(j,`)

2
.

Show that if the input is an ultrametric matrix D, then the outputs of the
UPGMA-algorithm and the WPGMA-algorithm coincide.

10.3 Ultrametric distance matrices and trees 509

Note that the terms weighted and unweighted refer to the labels created
by the algorithms, not the mathematics by which it is achieved. Thus the
simple averaging in WPGMA produces a weighted result, and the propor-
tional averaging in UPGMA produces an unweighted result.

10.3.4 Fast UPGMA implementation based on quadtrees

In this section, we present an implementation of the UPGMA-algorithm
that is based on a quadtree and runs in quadratic time; see [89]. (It
has been known since at least 1984 that UPGMA can be implemented in
O(n2) time [133,232].) A quadtree is a tree data structure in which each
internal node has four children. Its name was coined by its inventors
Finkel and Bentley [103]. Quadtrees are most often used to partition
a two dimensional space (in our context, the dissimilarity matrix D) by
recursively subdividing it into four quadrants (or regions).

Let D = (dij)1≤i,j≤n be an n × n matrix. For ease of presentation, we will
henceforth assume that n is a power of 2. The matrix is subdivided into
four submatrices:

• The northwest quadrant I: this is the matrix (dij) where 1 ≤ i, j ≤ n/2.

• The northeast quadrant II: this is the matrix (dij) where 1 ≤ i ≤ n/2
and n/2 + 1 ≤ j ≤ n,

• The southwest quadrant III: the matrix (dij) where n/2+1 ≤ i ≤ n and
1 ≤ j ≤ n/2.

• The southeast quadrant IV: the matrix (dij) where n/2 + 1 ≤ i, j ≤ n.

Figure 10.14 illustrates this decomposition.

Definition 10.3.13 Let D be an n×n matrix of elements from a totally or-
dered set. A quadtree of D is a labeled quaternary tree defined as follows:

• The root of the tree is labeled with the minimum element of D. If
n > 1, then the tree has four children:

– The first child of the root is the quadtree of the quadrant I.

– The second child of the root is the quadtree of the quadrant II.

– The third child of the root is the quadtree of the quadrant III.

– The fourth child of the root is the quadtree of the quadrant IV.

Figure 10.14 illustrates this recursive definition for n = 4.
We construct the quadtree of an n × n matrix D, where n = 2k, in a

bottom-up fashion. For ease of presentation, we simultaneously define a
(merely conceptual) matrix Al for each level l with 0 ≤ l ≤ k:

510 10 Phylogenetic Reconstruction

Figure 10.14: Quadtree

• l = k:

– Ak = D

– The k-th level of the quadtree consists of n2 = (2k)2 = 4k leaves,
labeled with the values dij, where 1 ≤ i, j ≤ n.

• l < k:

– The matrix Al = (alij), 1 ≤ i, j ≤ 2l, is defined by

alij = min{al+1
2i−1,2j−1, a

l+1
2i−1,2j, a

l+1
2i,2j−1, a

l+1
2i,2j}

– Given the 4l+1 nodes with labels al+1
ij (1 ≤ i, j ≤ 2l+1) at level l + 1

(0 ≤ l < k), the l-th level of the quadtree consists of 4l nodes with
labels alpq (1 ≤ p, q ≤ 2l) and the node alpq is the parent node of
the four nodes labeled with al+1

2p−1,2q−1 (first child), al+1
2p−1,2q (second

child), al+1
2p,2q−1 (third child), and al+1

2p,2q (fourth child).

The quadtree of an n × n matrix D, where n = 2k, can be constructed
in O(n2) time and space. This is because the k-th level of the tree has n2

nodes, the (k − 1)-th level has n2

4
nodes, the (k − 2)-th level has n2

42
nodes,

etc. So the overall number of nodes in the quadtree is

n2

k∑
i=0

(
1

4
)i = n2 1− (1

4
)k+1

1− 1
4

< n2 1

1− 1
4

=
4

3
n2

Lemma 10.3.14 Given the quadtree of an n × n matrix D, the minimum
element of D can be identified in constant time. A position (i, j) at which the
minimum occurs in D can be determined in O(log n) time.

10.3 Ultrametric distance matrices and trees 511

Proof By construction, the label of the root of the quadtree is the minimum
element of D. A position (i, j) at which this minimum occurs in D can be
determined by following the path from the root to a leaf vl with the same
label as the root. To be more precise, at each node v the path passes
through a child node having the same label as v. Because every internal
node has four children, following this path takes time proportional to the
depth of the quadtree, which is log4 n

2 = log2 n. It is not difficult to see
that the position (i, j) corresponding to leaf vl can be computed by means
of the path from the root to vl: each time the path passes from a parent
node to one of its four children, the choice of the child node determines
the next smaller quadrant in which the position (i, j) can be found. �

It is clear that the time to determine a position (i, j) of the minimum
element of D can be improved to O(1) time if one uses elements and their
position in the matrix D as labels of the nodes of the quadtree.

Lemma 10.3.15 If the matrix D′ is obtained from an n × n matrix D by
updating one row (or one column), then the quadtree of D′ can be obtained
in O(n) time by updating the quadtree of D.

Proof At most n elements change in the update of matrix D = Ak, where
k = log n. Because only two (non-diagonal) quadrants are affected by the
update, at most n

2
elements change in matrix Ak−1. Analogously, at most

n
22

elements change in matrix Ak−2, and so on. So the overall number of
nodes in the quadtree whose labels may possibly be updated is

n

k∑
i=0

(
1

2
)i = n

1− (1
2
)k+1

1− 1
2

< n
1

1− 1
2

= 2n

This proves that at most 2n− 1 nodes in the quadtree of D are affected by
the update. Since n of them are leaves, at most n − 1 labels at internal
nodes must be updated. Because the new label of an internal node is the
minimum of its current label and the new labels of the affected children,
the update takes constant time provided that the labels of its children
have already been updated. Thus, if we update the labels in a bottom-up
fashion, the update of the quadtree takes O(n) time. �

Obviously, the preceding lemma remains true if we update one row and
one column (or even two rows and two columns). An illustration of the
necessary changes can be found in Figure 10.15.

It is almost clear now that the quadtree of a dissimilarity matrix D en-
ables a quadratic time implementation of the UPGMA-algorithm, but there
are still some subtleties. Because we wish to maintain a closest pair of
clusters, the 0-entries on the main diagonal of matrix D must be set to
infinity i.e., dii = ∞ for all i with 1 ≤ i ≤ n. Moreover, either the entries

512 10 Phylogenetic Reconstruction

Figure 10.15: Changes in the quadtree (in the matrices A3, A2, A1, A0) of
an 8 × 8 matrix D, when row i = 2 and column j = 6 are
updated.

D 1 2 3 4
1 0 9 9 9
2 0 7 7
3 0 4
4 0

D 1 2 3 4
1 ∞ 9 9 9
2 ∞ ∞ 7 7
3 ∞ ∞ ∞ 4
4 ∞ ∞ ∞ ∞

Figure 10.16: The entries in the lower triangle and on the main diagonal
of the dissimilarity matrix D are set to infinity.

below the main diagonal (the lower triangle) or the entries above the main
diagonal (the upper triangle) are redundant because D is symmetric. For
this reason, the entries in the lower triangle are set to infinity as well.

Figure 10.16 shows a dissimilarity matrix D and its modified form. The
quadtree of the modified matrix is shown in Figure 10.17.

In each of the n − 1 iterations, UPGMA merges the two closest clusters
Ci and Cj into a new cluster Ck. According to Lemma 10.3.14, it takes
O(log n) time to determine the two closest clusters. Then, the new distance
matrix is obtained by deleting the rows and columns corresponding to the
clusters Ci and Cj, and adding a new row and column for cluster Ck. We
reuse the row and column corresponding to cluster Ci, that is, we store the
new distances of cluster Ck to the remaining clusters there. The deletion of
the row and column corresponding to cluster Cj is implemented by setting

10.3 Ultrametric distance matrices and trees 513

Figure 10.17: The quadtree of the modified dissimilarity matrix D of Fig-
ure 10.16. For ease of exposition, the nodes are labeled
with the minima and their positions in the matrix D.

Figure 10.18: Quadtree after the first iteration of UPGMA.

their entries to infinity. The quadtree of the new distance matrix can be
obtained in O(n) time according to Lemma 10.3.15. Thus, the quadtree
implementation of UPGMA has an overall worst-case time complexity of
O(n2).

In the example of Figures 10.16 and 10.17, UPGMA merges the two
closest clusters (taxa) 3 and 4 into a new cluster 5. The distances of this
new cluster to the remaining clusters (taxa) are d(5, 1) = 9 and d(5, 2) = 7.
Figure 10.18 depicts the resulting update of the quadtree.

Exercise 10.3.16 To continue the example above, infer from the label of
the root of the quadtree of Figure 10.18 that now clusters 2 and 5 have
minimum distance, namely d(2, 5) = 7. Consequently, in the next iteration
UPGMA merges these two clusters into a new cluster 6. The distance of
this new cluster to the only remaining cluster 1 is d(6, 1) = 9. Update the
quadtree of Figure 10.18 accordingly.

514 10 Phylogenetic Reconstruction

2

1 3 4

5

1 2 3 4 5 6

1
2
3
4
5
6

0
0

0
0

0

0 9 7 8 3 5
6 3 8

5 6
7

4
2
3
4 2

2

1

D

1

3
2

2

0

6

Figure 10.19: The dissimilarity matrix D and the additive tree T are con-
sistent.

10.4 Additive distance matrices and trees

In an influential paper, Waterman et al. [328] gave an O(n2) time algo-
rithm to construct additive trees; see [28] for a historical sketch of work
on additive trees. In Sections 10.4.2–10.4.4, we will follow Gusfield’s
approach [139, 17.4] that reduces the additive tree problem (devise an
efficient algorithm to construct an additive tree) to the ultrametric tree
problem; see also [151].

Definition 10.4.1 An additive tree is a phylogenetic tree T = (V,E, λ) on a
set of taxa S together with a weight function γ : E → R≥0. so that γ(v, w) > 0
for each internal edge (v, w). The distance between two nodes v and w in T
is defined by dT (v, w) =

∑m−1
k=1 γ(vk, vk+1), where v1, v2, . . . , vm is the (unique)

path between v = v1 and w = vm in T .

In an additive tree, external edges may have weight 0. This is because
we want to avoid taxa at internal nodes.

Definition 10.4.2 Let S = {1, . . . , n} be a set of taxa, let D be an n × n
dissimilarity matrix, and let T = (V,E, λ, γ) be an additive tree on S. D
and T are consistent if for any two leaves (taxa) i and j in T the equality
dT (i, j) = dij holds.

If an additive tree T is consistent with a dissimilarity matrix D, then
there cannot be two leaves i 6= j adjacent to the same internal node v so
that γ(v, i) = 0 = γ(v, j) because dT (i, j) = dij > 0.

Figure 10.19 shows an additive tree T that is consistent with the given
dissimilarity matrix D.

Note that it is possible to test in O(n2) time whether an n×n dissimilarity
matrix D and an additive tree T on a set of n taxa are consistent. Because
each internal node has a degree ≥ 3 and there n leaves, it follows that T
has at most n − 1 internal nodes. So, for each leaf i (1 ≤ i ≤ n) in T , one
can calculate the distance of i to any other node in O(n) time.

10.4 Additive distance matrices and trees 515

10.4.1 Ultrametric trees revisited

This section shows that ultrametric trees correspond to additive trees
that satisfy the molecular clock hypothesis. In an ultrametric tree T ′ =
(V,E, λ, µ) that is consistent with a dissimilarity matrix D, the value µ(v) is
the distance dij between any two taxa i and j with last common ancestor
v. If an additive tree T is consistent with the same dissimilarity matrix D,
then the distance dij between i and j is the sum of the edge weights on the
path from i to j, where edge weights represent expected amounts of evolu-
tion. In particular, dij = dT (i, v) + dT (v, j). If evolutionary changes occur at
a constant rate (i.e., the molecular clock hypothesis holds true), then the
species (taxa) i and j diverged t(v) time ago, and the distance dij = µ(v) be-
tween i and j should be dT (i, v)+dT (v, j) = t(v)+ t(v) because both lineages
evolved in the same amount t(v) of time. In summary, if we set t(v) = µ(v)

2

for every internal node v ∈ V in an ultrametric tree T ′ = (V,E, λ, µ), then
we obtain an additive tree in which the lengths of all evolutionary paths
are equal. This is formally proven in the next lemma.

Lemma 10.4.3 Let T ′ = (V,E, λ, µ) be an ultrametric tree that is consistent
with a dissimilarity matrix D. For every edge (v, w) ∈ E, define

γ(v, w) =

{
|µ(v)−µ(w)

2
| if both v and w are internal nodes

µ(v)
2

if w is a leaf

Then the rooted additive tree T = (V,E, λ, γ) is consistent with D and the
lengths of all evolutionary paths are equal.

Proof First, we observe that if v1 is an internal node in T that lies on a
path from the root r to leaf k, then the distance between v1 and k in T
can be computed as follows. Let v1, v2, . . . , vt, k be the path from v1 to k. As
illustrated in Figure 10.20, we have

dT (v1, k) =
t−1∑
i=1

γ(vi, vi+1) + γ(vt, k)

=
t−1∑
i=1

1

2
(µ(vi)− µ(vi+1)) +

µ(vt)

2

=
µ(v1)

2

It follows as a direct consequence that T is consistent with D, because for
two leaves i and j in T with LCA(i, j) = v we have

dT (i, j) = dT (i, v) + dT (v, j) =
µ(v)

2
+
µ(v)

2
= µ(v) = dij

516 10 Phylogenetic Reconstruction

γ(v1, k) =
∑t−1

i=1 γ(vi, vi+1) + γ(vt, k)

k

µ(v1)

µ(vt)

µ(v3)

µ(v2)

Figure 10.20: The distance dT (v1, k) from the internal node v1 to a leaf k on
a path from the root r to k is µ(v1)

2
because

∑t−1
i=1 γ(vi, vi+1) +

γ(vt, k) =
∑t−1

i=1
1
2
(µ(vi)− µ(vi+1)) +

µ(vt)
2

= µ(v1)
2

.

Moreover, for every evolutionary path from the root r to a leaf k, the equal-
ity dT (r, k) =

µ(r)
2

holds true. This proves the lemma. �

Conversely, if a rooted additive tree T = (V,E, λ, γ) is consistent with a
dissimilarity matrix D and the lengths of all evolutionary paths in T are
equal, then we obtain an ultrametric tree T ′ = (V,E, λ, µ) that is consistent
with D: For every internal node v ∈ V define µ(v) = 2 · dT (v, k), where k is
any leaf in the subtree of T rooted at v. The proof is left as an exercise to
the reader.

These facts explain the usual definition of an ultrametric tree: An ultra-
metric tree is a rooted additive tree in which all evolutionary paths have
equal lengths.

It should be pointed out that in its most common formulation, the
UPGMA-algorithm constructs a rooted additive tree. This formulation can
be obtained by the following modification of Algorithm 10.2 (page 503).
When UPGMA merges two clusters Ci and Cj into a new cluster Ck, it
places a new node k at height h(k) = dij

2
(instead of marking node k with

dij) and adds an edge from k to i with weight h(k)− h(i) and an edge from
k to j with weight h(k)− h(j) to the tree.

10.4.2 Reduction of the additive tree problem

In this section, we sketch a method that constructs an additive tree T that
is consistent with an additive (input) matrix D. The method consists of
three phases:

1. The matrix D is transformed into an ultrametric matrix D′.

2. The unique ultrametric tree T ′ that is consistent with D′ is con-
structed by Algorithm 10.1 (page 498).

10.4 Additive distance matrices and trees 517

D′
ultrametric matrix

TD
additive matrix additive tree ultrametric tree

T ′

(a)

(d)

(b)

(c)

Figure 10.21: Transformations (a) and (b) can be inverted by (c) and (d).

3. The tree T ′ is transformed into the tree T .

These three phases correspond to the dotted arrows in Figure 10.21. For
didactic reasons, we shall assume for a moment that we already know an
(unrooted) additive tree T that is consistent with D. It will be shown how
(a) T can be transformed into an ultrametric tree T ′, from which (b) the
ultrametric matrix D′ can easily be inferred; see Figure 10.21. Armed with
this knowledge, it will become easier to understand phases (1) and (3) of
the above-mentioned method.

Let us elaborate on the transformations (a) – (d) of Figure 10.21. We will
illustrate each transformation by means of the additive tree depicted in
Figure 10.19 (page 514).

(a) Transform the additive tree T into an ultrametric tree T ′.

i. Let dT (i, j) = dij be the longest distance between two leaves in T .

ii. In essence, root the tree T at leaf i. Strictly speaking, we must
proceed a little differently because the resulting tree is not a
phylogenetic tree. If i is adjacent to the node p, we remove the
edge (p, i) and root the tree at a new node r by adding the edges
(r, p) with weight γ(p, i) and (r, i) with weight 0.

For two leaves (taxa) k and l in the rooted tree with v = LCA(k, l),
we have 2 dT (v, k) = dik + dkl − dil by additivity; see Figure 10.22.

iii. The adapted tree T ′ is obtained from the rooted tree by elongat-
ing external edges so that each evolutionary path has length dij.
To be precise, the weight d of an external edge (v, k) in the rooted
tree is changed to d′ = d + dij − dik in the adapted tree T ′; see
Figure 10.23. It then follows dT ′(r, k) = dT ′(r, v) + d + dij − dik =
dT (i, v) + d+ dij − dik = dT (i, k) + dij − dik = dik + dij − dik = dij.

For every external edge (v, k), there must be a leaf l 6= k in the
subtree rooted at v; see Figure 10.24. Since v = LCA(k, l) it fol-

518 10 Phylogenetic Reconstruction

i

v

k l

Figure 10.22: 2 dT (v, k) = dik + dkl − dil and 2 dT (v, l) = dil + dkl − dik.

rooted tree adapted tree T ′

dijdij
d

d′ = d+ (dij − dik)

jk

k

j

v

r

v

r

Figure 10.23: Elongation of external edges.

v

k l

Figure 10.24: In the subtree of T ′ with root v, there is a leaf l 6= k.

10.4 Additive distance matrices and trees 519

9 = dij

7

4

2

additive tree T

root

the tree

elongate

the edges 0

2

1

2

1

00
2

21

3

2

2

31

2 02

2

1 3 4

5 6

2

2

1

1

3
2

2

0
1

5

3

4 2

63 6

1

r

5

4 2

r

+4

+0

+6

+2

+1

+9

Figure 10.25: The additive tree T from Figure 10.19 is transformed into
the ultrametric tree T ′.

lows from additivity (Figure 10.22) that

dT ′(v, k) = dT (v, k) + dij − dik

=
1

2
(dik − dil + dkl) + dij − dik

= dij −
1

2
(dik + dil − dkl)

and analogously

dT ′(v, l) = dT (v, l) + dij − dil

=
1

2
(dil − dik + dkl) + dij − dil

= dij −
1

2
(dik + dil − dkl)

iv. Let V ′
I be the set of internal nodes of T ′. Define µ : V ′

I → R>0 by
µ(v) = dT ′(v, k), where k is a leaf in the subtree rooted at v (note
that dT ′(v, k) = dT ′(v, l) for any other leaf l 6= k in that subtree).
Mark each internal node v with µ(v).

Figure 10.25 illustrates transformation (a). In the additive tree T , the
longest distance between two leaves (taxa) is dT (1, 2) = 9. Therefore,
we root T at node 1 as explained above. Then, we elongate external
edges so that each evolutionary path dT ′(r, k) has length dT (i, j) = dij.
Finally, we mark each internal node v with µ(v).

(b) The ultrametric matrix D′ that is consistent with the ultrametric tree
T ′ can be directly read off the tree: d′kl is defined by d′kl = µ(LCA(k, l))
for each pair of taxa k and l. In our example, we obtain the matrix D′

of Figure 10.26.

520 10 Phylogenetic Reconstruction

D′ 1 2 3 4 5 6
1 0 9 9 9 9 9
2 0 4 2 7 4
3 0 4 7 4
4 0 7 4
5 0 7
6 0

Figure 10.26: The ultrametric matrix D′ is consistent with the ultrametric
tree T ′ from Figure 10.25.

1

5

2

63

4

r 9

7

4

2

Figure 10.27: Algorithm 10.1 applied to D′ yields the ultrametric tree T ′.

We stress that the matrix D′ can be directly inferred from the matrix
D because for each pair of taxa k and l with v = LCA(k, l), we have

d′kl = µ(v) = dT ′(v, k) = dij −
1

2
(dik + dil − dkl)

as explained above. This transition from the matrix D to the matrix
D′ is called a Farris transform in the literature [95,96].

(c) Algorithm 10.1 applied to the ultrametric matrix D′ yields the ultra-
metric tree T ′ shown in Figure 10.27.

(d) The additive tree T emerges from the ultrametric tree T ′ by revers-
ing the transformation (a). Marks at internal nodes are removed and
edge weights are introduced, where external edges are shortened ap-
propriately:

γ(v, k) =

{
|µ(v)− µ(k)| if neither v nor k is a leaf
µ(v)− (dij − dik) if k is a leaf

Moreover, the root of T ′ is replaced with the distinguished taxon i.
This back transformation is depicted in Figure 10.28. In the next
section, it will be proven that the additive tree T is indeed consistent
with D.

10.4 Additive distance matrices and trees 521

55

2 4

1

1

2 4

33

1

r

6 6

=0
9

7

2

-(9-0)

-(9-3)

-(9-5)

-(9-8)-(9-9)

7

9

22

=1

=0

=1=2

3

2

2 2

3 1

-(9-7)=2

2

12

2
4

4

4 0

Figure 10.28: The tree T ′ (upper left) is transformed in the additive tree T
(upper right).

10.4.3 Characterization of additive matrices

In this section, we show that additive matrices can be characterized as
follows: they satisfy the so-called 4-point condition [47,333] and they are
consistent with an additive tree.

Definition 10.4.4 An n × n dissimilarity matrix D satisfies the 4-point
condition if for all i, j, k, l ∈ {1, . . . , n} the two largest values out of dij + dkl,
dik + djl, and dil + djk are equal.

As in the characterization of ultrametric matrices, the proof of the fol-
lowing theorem is constructive in the sense that it not only shows that
an additive matrix is consistent with an additive tree, but it also gives an
algorithm for constructing the additive tree. This algorithm was instigated
in the previous section.

Theorem 10.4.5 Let dij be the maximum entry in the n × n dissimilarity
matrix D. Let the matrix D′ be defined by d′kk = 0 and d′kl = dij− 1

2
(dik+dil−dkl)

for k 6= l. Then the following statements are equivalent.

1. D satisfies the 4-point condition.

2. D is additive.

3. D′ is ultrametric and D satisfies the triangle inequality.

4. D is consistent with an additive tree.

Proof We prove (1)⇒(2), (2)⇒(3), (3)⇒(4), and (4)⇒(1).

(1)⇒(2): It must be shown that the additive inequality

dpq + drs ≤ max{dpr + dqs, dps + dqr}

522 10 Phylogenetic Reconstruction

holds for all p, q, r, s ∈ {1, . . . , n}. Clearly, this is an immediate consequence
of the fact that the two largest values out of dpq + drs, dpr + dqs, and dps + dqr
are equal because D satisfies the 4-point condition.

(2)⇒(3): According to Lemma 10.2.3, the additive matrix D satisfies
the triangle inequality. Furthermore, it is readily verified that D′ is a
dissimilarity matrix. So all we have to prove is that the ultrametric
inequality d′pq ≤ max{d′pr, d′qr} holds for all p, q, r ∈ {1, . . . , n}. For an indirect
proof, suppose that d′pq > max{d′pr, d′qr}, i.e., (i) d′pq > d′pr and (ii) d′pq > d′qr. By
the definition of D′, (i) implies that

d′pq = dij −
1

2
(dip + diq − dpq) > d′pr = dij −

1

2
(dip + dir − dpr)

It is readily verified that this is equivalent to dpq + dir > dpr + diq. Similarly,
we obtain dpq + dir > dqr + dip from (ii). Putting the two inequalities together
into a compound inequality, we get dpq + dir > max{dpr + diq, dqr + dip}. This,
however, contradicts the fact that D is additive. Hence D′ is ultrametric.

(3)⇒(4): Let T ′ be the unique ultrametric tree that is consistent with D′.
Since D′ is the Farris transform of D, we can transform T ′ into a tree T
by transformation (d) from Section 10.4.2: marks at the internal nodes of
T ′ are removed and edge weights are introduced as follows:

γ(v, k) =

{
|µ(v)− µ(k)| if (v, k) is an internal edge
µ(v)− (dij − dik) if (v, k) is an external edge

However, the resulting (rooted) tree T is additive only if µ(v)− (dij − dik) ≥ 0
for each external edge (v, k). To show that this is indeed the case, let l 6= k
be a leaf in the subtree rooted at v; see Figure 10.24 (page 518). Because
D′ is ultrametric and v = LCA(k, l), we derive

µ(v) = d′kl = dij −
1

2
(dik + dil − dkl)

Thus, µ(v) ≥ dij − dik is equivalent to

dij − 1
2
(dik + dil − dkl) ≥ dij − dik

⇔ 1
2
(dik + dkl) ≥ 1

2
dil

⇔ dik + dkl ≥ dil

Clearly, the last inequality holds true because D satisfies the triangle
inequality. Hence γ(v, k) = µ(v)− (dij − dik) ≥ 0.

We still have to prove that the (rooted) additive tree T is consistent with
D. To this end, let k and l be two arbitrary leaves in T and let v = LCA(k, l).
According to Figure 10.29, the distance between v and k in T is dT (v, k) =

10.4 Additive distance matrices and trees 523

γ(v1, k) =
∑t−1

i=1 γ(vi, vi+1) + γ(vt, k)

k

µ(v1)

µ(vt)

µ(v3)

µ(v2)

Figure 10.29: The distance dT (v1, k) from a leaf k to a node v1 lying on
the path from k to the root of T can be computed by∑t−1

i=1 γ(vi, vi+1)+γ(vt, k) =
∑t−1

i=1(µ(vi)−µ(vi+1))+µ(vt)−(dij−dik).
Thus, dT (v1, k) = µ(v1)− (dij − dik).

µ(v) − (dij − dik). Clearly, dT (v, l) can be computed analogously. So we
obtain

dT (k, l) = dT (v, k) + dT (v, l)

= µ(v)− (dij − dik) + µ(v)− (dij − dil)
= 2µ(v)− 2dij + dik + dil

µ(v)=d′kl= 2(dij −
1

2
(dik + dil − dkl))− 2dij + dik + dil

= 2dij − dik − dil + dkl − 2dij + dik + dil

= dkl

Hence T is consistent with D.
Finally, we show that there is an external edge (r, i) in T with γ(r, i) = 0,

where r is the root of T . In other words, T can further be transformed
into an unrooted tree by replacing the root r with the leaf i. Note that for
all taxa k 6= l we have d′kl = dij − 1

2
(dik + dil − dkl) ≤ dij because dki + dil ≥ dkl

by the triangle inequality. Therefore, d′ij = dij is the maximum entry in D′.
Consequently, the mark of the root r of the ultrametric tree T ′ satisfies
µ(r) = d′ij = dij. By the definition of ultrametric trees, the marks of all other
internal nodes in T ′ are strictly smaller than µ(r) = dij. Now consider the
edge (v, i) in T ′ that leads to the leaf i. Since (v, i) is an external edge, it
follows from the discussion above that µ(v) ≥ dij−dii = dij. This is possible
only if v = r. So (r, i) is an external edge in T ′ and in T . Moreover, it
follows from the construction of T that γ(r, i) = µ(r)−(dij−dii) = dij−dij = 0.

(4)⇒(1): Let the matrix D be consistent with the additive tree T . We must
show that D satisfies the 4-point condition, i.e., for all p, q, r, s ∈ {1, . . . , n},
the two largest values out of dpq + drs, dpr + dqs, and dps+ dqr must be equal.
This is done by a case analysis on the location of the leaves (taxa) p, q, r, s
in the tree T . Figure 10.30 shows one possible constellation. In that

524 10 Phylogenetic Reconstruction

p

q s

r

Figure 10.30: In this additive tree T , we have dT (p, q) + dT (r, s) < dT (p, r) +
dT (q, s) = dT (p, s) + dT (q, r).

constellation, we have dT (p, q)+dT (r, s) < dT (p, r)+dT (q, s) = dT (p, s)+dT (q, r).
Since T and D are consistent, we infer dpq + drs < dpr + dqs = dps + dqr. The
other cases follow similarly. �

10.4.4 Construction algorithm

According to Theorem 10.4.5, a dissimilarity matrix D is consistent with
an additive tree if and only if D is additive, and the proof of that theorem
contains an algorithm to construct such a tree. Instead of testing whether
D is additive (prior to the construction), Algorithm 10.3 contains this test
as a built-in.

If Algorithm 10.3 returns a tree T , then the proof of Theorem 10.4.5
implies that T is additive and consistent with D (hence D is additive).
Otherwise, if Algorithm 10.3 terminates in step 2 with failure because
Algorithm 10.1 returns a triple (x, y, z), then we have d′xy > d′xz = d′yz. As
shown in the proof of the implication (2)⇒(3) in Theorem 10.4.5, this has

diz + dxy > max{diy + dxz, dix + dyz}

as a consequence. That is, the additive inequality does not hold for the
taxa i, x, y, z. By Theorem 10.4.5, no additive tree can be consistent with
the non-additive matrix D. In other words, Algorithm 10.3 correctly ter-
minates with failure. Similarly, if Algorithm 10.3 terminates in step 3 with
failure (see Figure 10.31 for an example), then this is because there is an
external edge (v, k) so that µ(v) < dij−dik. As shown in the proof of the im-
plication (3)⇒(4) in Theorem 10.4.5, this means that there must be a leaf
l in the subtree rooted at v so that dik + dkl < dil. So D does not satisfy the
triangle inequality. According to Lemma 10.2.3, D is not additive. Again,
Algorithm 10.3 correctly terminates with failure.

It is not difficult to verify that the Algorithm 10.3 runs in Θ(n2) time (the
formal proof is left to the reader).

10.4 Additive distance matrices and trees 525

Algorithm 10.3 Construction of an additive tree (if it exists).

Input: n× n dissimilarity matrix D.

1. Compute the matrix D′ by d′kk = 0 and d′kl = dij − 1
2
(dik + dil − dkl) for

k 6= l, where dij is a maximum entry in D.

2. Apply Algorithm 10.1 (page 498) to D′. If D′ is consistent with an
ultrametric tree T ′, then Algorithm 10.1 returns T ′. In this case,
proceed with step 3. Otherwise, if Algorithm 10.1 returns a triple
(x, y, z), then output the quadruple (i, x, y, z) as a witness that D does
not satisfy the additive inequality and terminate with failure.

3. For each external edge (v, k) in the ultrametric tree T ′, test whether
µ(v) ≥ dij − dik. If so, proceed with step 4. Otherwise, there is an
external edge (v, k) so that µ(v) < dij − dik. Then there must be a leaf
l in the subtree rooted at v so that dik + dkl < dil. Find such a taxon
l, output the triple (i, k, l) as a witness that D does not satisfy the
triangle inequality, and terminate with failure.

4. Transform T ′ into the tree T by deleting the marks at internal nodes,
introducing the edge weights

γ(v, k) =

{
|µ(v)− µ(k)| if (v, k) is an internal edge
µ(v)− (dij − dik) if (v, k) is an external edge

and replacing the root node with the leaf i.

Output: The tree T .

1 32
1
2

0
0

0

8
D

3

4
2

1 32
1
2

0
0

0

8 8
3

D′

3
1 2 3

1

2

3
8

3

5

-1=3-4

8-8=0
3-0=3

3

5

-1

Figure 10.31: Algorithm 10.3 applied to the matrix D outputs the triple
(1, 3, 2) and terminates with failure in step 3. The fact that
d13 + d32 < d12 shows that D does not satisfy the triangle
inequality for the taxa 1, 3, and 2.

526 10 Phylogenetic Reconstruction

2

6

3

4

5

vu w

1

Figure 10.32: A phylogenetic tree and its splits.

10.4.5 Splits and quartets

In the previous section, we have seen that an additive matrix D is consis-
tent with an unrooted additive tree T . Our next goal is to show that this
tree is unique. It should be stressed that this is not true for rooted addi-
tive trees. So in the rest of this chapter, the phrase “T is a tree” always
means that T is an unrooted phylogenetic tree on the set S = {1, . . . , n} of
the taxa, unless stated otherwise. The reader should keep this in mind.

Definition 10.4.6 Let e = (u, v) be an edge in the tree T . The removal of
e partitions T into two connected components. Moreover, it partitions S
into the set of taxa Xe that appear as leaves in the connected component
of T \{e} containing u and the set of taxa Xe = S \Xe that appear as leaves
in the connected component of T \ {e} containing v. Such a partition is
called a split at edge e.

Figure 10.32 shows a phylogenetic tree on six taxa and its splits.

Definition 10.4.7 For any (not necessarily distinct) i, j, k, l ∈ S, the tree T
induces the quartet (ij : kl) if there is a split at an edge e so that i, j ∈ Xe

and k, l ∈ Xe. We will say that i and j are separated from k and l by the
edge e. The set of all quartets induced by T is denoted by Q(T).

To put it differently, (ij : kl) is a quartet induced by T if the path con-
necting i and j has no node in common with the path connecting k and l.
By the above definition, (ii : jk) is a quartet for any i, j, k ∈ S provided that
j 6= i 6= k (but j may be equal to k).

10.4 Additive distance matrices and trees 527

j

i k

l
u v

Figure 10.33: Let the internal edge e on the path from u to v separate i
and j from k and l. If the additive tree T is consistent with
D, then we have dik + djl − (dij + dkl) = 2dT (u, v) ≥ 2γ(e) > 0.

Lemma 10.4.8 In an additive tree T , let the leaves i and j be separated
from the leaves k and l by an internal edge e. If T is consistent with the
dissimilarity matrix D, then dij + dkl < dik + djl = dil + djk.

Proof As explained in Figure 10.33, we derive dik+djl−(dij+dkl) > 0. Hence
dij + dkl < dik + djl. The equality dik + djl = dil + djk is a direct consequence
of the fact that the additive tree T is consistent with D. �

Note that Lemma 10.4.8 is true even if i = j or k = l.

Corollary 10.4.9 Let (ij : kl) be a quartet in an additive tree T . If T is con-
sistent with the dissimilarity matrix D and i, j, k, l ∈ S are pairwise distinct,
then dij + dkl < dik + djl = dil + djk.

Proof The fact that i, j, k, l ∈ S are pairwise distinct in combination with
(ij : kl) ∈ Q(T) implies that i and j must be separated from k and l by an
internal edge e. Thus, the corollary follows from Lemma 10.4.8. �

Exercise 10.4.10 Show that Corollary 10.4.9 no longer holds if we drop
the condition that i, j, k, l ∈ S must be pairwise distinct.

The following notion will be useful in subsequent sections.

Definition 10.4.11 Let T be a phylogenetic tree. Two distinct leaves i
and j that are adjacent to the same internal node in T are called leaf
neighbors.

Lemma 10.4.12 Suppose that the additive tree T is consistent with the
dissimilarity matrix D. Let i and j be leaf neighbors in T and let k, l ∈
S \ {i, j}. Then, dij + dkl ≤ dik + djl = dil + djk. Moreover, if T is binary and
|S| ≥ 4, then dij + dkl < dik + djl = dil + djk.

Proof Let i and j be adjacent to the internal node v. Because the additive
tree T is consistent with D, it follows that dik + djl = dT (i, k) + dT (j, l) =
dT (i, v) + dT (v, k) + dT (j, v) + dT (v, l) = dT (i, v) + dT (v, l) + dT (j, v) + dT (v, k) =
dT (i, l)+dT (j, k) = dil+djk. Since D is additive according to Theorem 10.4.5,

528 10 Phylogenetic Reconstruction

u

k l

v
ji

Figure 10.34: Taxa i and j are not leaf neighbors in the tree T .

the 4-point condition implies that the two largest values out of dij + dkl,
dik + djl, and dil + djk are equal. Hence dij + dkl ≤ dik + djl = dil + djk.

If T is binary and |S| ≥ 4, then i and j cannot have another leaf neighbor.
Thus, i and j must be separated from k and l by an internal edge e. So
the second statement is an immediate consequence of Lemma 10.4.8. �

Lemma 10.4.13 Let T be a phylogenetic tree on the set S of taxa, where
|S| ≥ 4. If the two taxa i and j are not leaf neighbors in T , then there are two
leaves k and l so that i, j, k, l ∈ S are pairwise distinct and (ik : jl) ∈ Q(T).
Furthermore, dik + djl < dij + dkl = dil + djk.

Proof Let i and j be adjacent to the nodes u and v in T , where u 6= v. Let
e be an edge on the path from u to v and consider the split at edge e. We
have i ∈ Xe and j ∈ Xe = S \Xe. Because every internal node has a degree
≥ 3, there must be taxa k ∈ Xe with i 6= k and l ∈ Xe with j 6= l; see Figure
10.34. Clearly, (ik : jl) is a quartet induced by T . The last statement is a
direct consequence of Corollary 10.4.9. �

10.4.6 Uniqueness of the additive tree

Lemma 10.4.14 There is exactly one unrooted phylogenetic tree for two or
three taxa. This tree is binary (i.e., every internal node has degree 3).

Proof If there are just two taxa, then their phylogenetic tree consists of
two leaves and an edge between them. If there are three taxa, then the
topology of the tree must be a star. To be precise, all three leaves (taxa)
are connected by an edge to an internal node v (the center of the star). �

Lemma 10.4.15 A distance matrix D for two or three taxa is consistent
with exactly one unrooted additive tree. This tree is binary.

Proof If S = {1, 2}, then the phylogenetic tree consists of two leaves 1
and 2 and an edge between them with weight d12. If S = {1, 2, 3}, then the
topology of the tree must be a star with center v. By additivity, the weights

10.4 Additive distance matrices and trees 529

1

v

2 3

Figure 10.35: In this additive tree, edge weights are unique.

of the edges are uniquely determined (see Figure 10.35) by

γ(1, v) =
d12 + d13 − d23

2

γ(2, v) =
d12 + d23 − d13

2

γ(3, v) =
d13 + d23 − d12

2

These weights are greater than or equal to 0 because D satisfies the trian-
gle inequality. �

Lemma 10.4.16 Suppose that |S| ≥ 4 and that the additive tree T is con-
sistent with a dissimilarity matrix D on S = {1, . . . , n}. Let the taxa i and j
be adjacent to the same node v in T (i.e., i and j are leaf neighbors), and let
T be the tree obtained from T as follows:

• Delete the leaves i and j and the edges (v, i) and (v, j).

• If v is a leaf in the resulting tree, then label v with a new (artificial)
taxon k. In this case, v must be adjacent to an internal node w be-
cause |S| ≥ 4, and γ(v, w) > 0 because (v, w) is an internal edge in T .
Otherwise, if v is not a leaf in the resulting tree,5 then add a new leaf
labeled with k and a new edge (v, k) with weight γ(v, k) = 0.

The tree T is consistent with the (n − 1) × (n − 1) dissimilarity matrix D
obtained from D by deleting the rows and columns corresponding to i and
j and adding a new row and column for the new taxon k with

dkm =
1

2
(dim + djm − dij)

for every m ∈ S \ {i, j, k} = S \ {i, j}.
5This case can occur only if the degree of node v is strictly greater than 3. So this case
cannot occur if T is a binary tree.

530 10 Phylogenetic Reconstruction

T
T

v

i
j

m

Figure 10.36: Let the additive tree T be consistent with the dissimilarity
matrix D. Suppose that taxa i and j are adjacent to the
same node v in T . By additivity, for any other taxon m, the
equalities dim = dT (i, v)+dT (v,m), djm = dT (j, v)+dT (v,m), and
dij = dT (i, v) + dT (v, j) hold. Thus, 2 · dT (v,m) = dim− dT (i, v) +
djm − dT (j, v) = dim + djm − dij.

Proof Consider the new taxon k and another leaf m 6= k in T . With the
derivation in Figure 10.36, it follows dT (k,m) = dT (v,m) = dT (v,m) = 1

2
(dim+

djm − dij) = dkm. Now consider two leaves l and m in T with l 6= k 6= m.
Because these are also leaves in T and T is consistent with D, we infer
dT (l,m) = dT (l,m) = dlm = dlm. Thus, T is consistent with D. �

Lemma 10.4.17 Let the additive tree T be consistent with a dissimilarity
matrix D, and let the taxa i and j be adjacent to the same node v in T . Then
γ(v, i) = 1

2
(dim + dij − djm) and γ(v, j) = dij − γ(v, i) = 1

2
(djm + dij − dim).

Proof According to the derivation in Figure 10.36, we have

γ(v, i) = dT (v, i) = dim − dT (v,m) = dim −
1

2
(dim − dij + djm) =

1

2
(dim + dij − djm)

Clearly, γ(v, j) = dij − γ(v, i) because T is additive. Therefore,

γ(v, j) = dij − γ(v, i) = dij −
1

2
(dim + dij − djm) =

1

2
(djm + dij − dim)

�

Theorem 10.4.18 If an additive tree T is consistent with a dissimilarity
matrix D, then there is no other additive tree T ′ (different from T) that is
consistent with D.

Proof Let T and T ′ be additive trees that are consistent with D. We show
by induction on the number n of taxa that T and T ′ must coincide. Lemma
10.4.15 covers the cases n = 2 and n = 3. Suppose n ≥ 4 and let the taxa

10.5 Neighbor-joining algorithms 531

i and j be leaf neighbors in T . We claim that i and j must also be leaf
neighbors in T ′. For an indirect proof of this claim, suppose that i and j
are not leaf neighbors in T ′. By Lemma 10.4.13, there are two other taxa
p and q so that i, j, p, q are pairwise distinct, (ip : jq) is a quartet induced
by T ′, and dip + djq < dij + dpq = diq + djp. On the other hand, we have
dij + dpq ≤ dip + djq = diq + djp by Lemma 10.4.12 because i and j are leaf
neighbors in T . The contradiction dij+dpq ≤ dip+djq < dij+dpq shows that i
and j must be leaf neighbors in T ′, too. Let T and T

′
be the trees obtained

from T and T ′, respectively, by deleting i and j and adding the new taxon
k (as specified in Lemma 10.4.16). By Lemma 10.4.16, both T and T

′
are

consistent with the (n− 1)× (n− 1) dissimilarity matrix D obtained from D
by deleting the rows and columns corresponding to i and j and adding a
new row and column for the new taxon k (as specified in Lemma 10.4.16).
According to the inductive hypothesis, T and T

′
coincide. In T = T

′
, k is

a leaf that is adjacent to an internal node, say w. If the edge (w, k) has
weight γ(w, k) > 0, then both T and T ′ are obtained from T = T

′
by adding

the edges (k, i) and (k, j). Because the edge weights of (v, i) and (v, j) are
uniquely determined by Lemma 10.4.17, it follows that T and T ′ coincide.
The case γ(w, k) = 0 similarly follows. �

Once again, we stress that we are dealing with unrooted trees. We know
from Theorem 10.4.5 that every additive matrix is consistent with an ad-
ditive tree and Theorem 10.4.18 implies that this tree is unique. In other
words, every additive matrix is consistent with exactly one additive tree.
By contrast, an additive matrix is not necessarily consistent with an ad-
ditive binary tree. Consider for example the additive matrix

D 1 2 3 4
1 0 2 2 2
2 0 2 2
3 0 2
4 0

It is consistent with the (additive) star phylogeny of the four taxa in which
every edge has weight 1, but it is not consistent with an additive binary
tree. Theorem 10.4.18 states that if there exists an additive binary tree T
that is consistent with D, then T is unique.

10.5 Neighbor-joining algorithms

The discussion of the preceding section directly leads to the so-called
neighbor-joining algorithms, algorithms that reconstruct an unrooted bi-
nary phylogenetic tree by successively joining leaf neighbors. A generic
neighbor-joining algorithm is formulated in Algorithm 10.4. We will get

532 10 Phylogenetic Reconstruction

to know several concrete neighbor-joining algorithms, which differ by the
specific neighbor selection criterion they use.

In essence, the correctness of the generic neighbor-joining algorithm is
an immediate consequence of the discussion of the preceding section. For
the convenience of the reader, however, we work out the details of the
correctness proof.

Theorem 10.5.1 If a dissimilarity matrix D is consistent with an additive
binary tree T and the neighbor selection criterion truly identifies leaf neigh-
bors, then the generic neighbor-joining algorithm (Algorithm 10.4) applied to
D constructs T .

Proof We will prove the theorem by induction on the number n of the
taxa. If n = 3, then the generic neighbor-joining algorithm returns the
correct tree; see Lemma 10.4.15. In the inductive step, we show the
theorem for n > 3, under the hypothesis that it holds for n − 1. Let T
be an additive binary tree that is consistent with D. Suppose that the
neighbor selection criterion selects the taxa i and j. By assumption, i and
j are leaf neighbors in T , i.e., they are adjacent to the same node k in T .
Let w be the third node adjacent to k (T is a binary tree, so k has degree
3). Because n > 3, w must be an internal node of T . Moreover, since T is
additive, the edge (k, w) has a strictly positive weight. Let T be the additive
binary tree obtained from T by deleting the edges from k to i and from k
to j. According to Lemma 10.4.16, T is consistent with the (n− 1)× (n− 1)
dissimilarity matrix D obtained from D by deleting the rows and columns
corresponding to i and j and adding a new row and column for the new
(artificial) taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}. By

the inductive hypothesis, the generic neighbor-joining algorithm applied
to D constructs T . It returns the tree obtained from T by adding node
k and edges (k, i) and (k, j) with weights γ(k, i) = 1

2
(dim + dij − djm) and

γ(k, j) = 1
2
(djm + dij − dim), where m ∈ S \ {i, j, k}. It is readily verified that

the returned tree is consistent with D (this is because T is consistent with
D). By Theorem 10.4.18, the returned tree coincides with T . �

The crux of developing a concrete neighbor-joining algorithm consists
of finding a criterion that provably selects leaf neighbors in the (yet un-
known) tree T for D. One might be tempted to select taxa i and j so that
dij is a minimum entry in the dissimilarity matrix D. This naive approach,
however, fails. To see this, consider the additive binary tree T and the ma-
trix D from Figure 10.37. Note that D and T are consistent. The minimum
entry in D is d12, but the taxa 1 and 2 are not leaf neighbors.

In the following, we will develop several neighbor selection criteria.

10.5 Neighbor-joining algorithms 533

Algorithm 10.4 Generic neighbor-joining algorithm.

Input: n× n dissimilarity matrix D, where n ≥ 3.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

while |S| > 3 do

1. Using a specific neighbor selection criterion, select two taxa i and j
that are leaf neighbors in the (yet unknown) tree T .

2. Add a new node k to the tree T .

3. Choose an m ∈ S \ {i, j} and add edges (k, i) and (k, j) with weights
γ(k, i) = 1

2
(dim − djm + dij) and γ(k, j) = dij − γ(k, i) = 1

2
(djm − dim + dij) to

the tree T .

4. Update the dissimilarity matrix by deleting the rows and columns
corresponding to i and j and adding a new row and column for the
new taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add the new (artificial) taxon k to S.

Termination:

Let i, j,m be the remaining three taxa. Add a new internal node v to
the tree T , and add edges (v, i), (v, j), and (v,m) to the tree T with
weights

γ(v, i) =
dij + dim − djm

2

γ(v, j) =
dij + djm − dim

2

γ(v,m) =
dim + djm − dij

2

Output: The tree T .

534 10 Phylogenetic Reconstruction

21

3 4

4 4

11 1
1 2 3 4

1
2
3

0
0

0

0 3 5 6
6 5

9
4

D

Figure 10.37: The naive approach to select leaf neighbors fails: d12 is a
minimum entry in D, but the leaves 1 and 2 are not neigh-
bors.

10.5.1 Farris’ neighbor-joining algorithm

Our first concrete neighbor-joining algorithm is based on a generalization
of the Farris transform introduced in Section 10.4.2. Farris [95, 96] ap-
plied his transformation to the original dissimilarity matrix D and then
used UPGMA on the transformed matrix D′; see also [7,59,241].

Definition 10.5.2 Farris’ neighbor selection criterion: Given the dissim-
ilarity matrix D for the set S = {1, . . . , n} of taxa, let c be a constant that
is greater than or equal to the maximum entry in D and let r ∈ S be some
distinguished taxon. Define the matrix D′ by d′ij = c − 1

2
(dri + drj − dij) for

all i, j ∈ S. Select taxa i and j so that d′ij is a minimum entry in D′.

The constant c serves the purpose to turn D′ into a dissimilarity matrix.6

Note that minimizing c − 1
2
(dri + drj − dij) for all i, j ∈ S is equivalent to

maximizing 1
2
(dri + drj − dij) for all i, j ∈ S.

In Section 10.4.2, we have already become acquainted with a special
form of the Farris transform, in which c is the maximum entry in D and r
is a taxon having the maximum distance c to another taxon.

Theorem 10.5.3 If a dissimilarity matrix D is consistent with an additive
binary tree T , then the Farris neighbor-joining algorithm constructs T .

Proof Without loss of generality, |S| = n > 3. According to Theorem 10.5.1,
it is sufficient to show that i and j are leaf neighbors in T whenever d′ij is
a minimum entry in the D′ matrix corresponding to D.

We first claim that Farris’ neighbor selection criterion will not select the
distinguished taxon r. For an indirect proof of the claim, suppose that

6In fact, any constant that is greater than or equal to max{dri | 1 ≤ i ≤ n} does the job,
but the above definition of c is independent of the choice of r.

10.5 Neighbor-joining algorithms 535

T2

i

k l

w

u

T1

j
v

Figure 10.38: If neither i nor j has a leaf neighbor 6= r, then one of the sub-
trees T1 or T2 does not contain r but rather the leaf neigh-
bors k and l.

Farris’ neighbor selection criterion selects r, i.e., d′rm is a minimum entry
in D′ for some m ∈ S. We have

d′rm = c− 1

2
(drr + drm − drm) = c

Because T is binary and |S| ≥ 4, there are leaf neighbors k and l in T with
k 6= r 6= l. It follows from Lemma 10.4.12 that dkl = dkl + drr < drk + drl.
Hence

d′kl = c− 1

2
(drk + drl − dkl) < c

This contradiction proves the claim.
For an indirect proof of the theorem, suppose that d′ij is a minimum

entry in the D′ matrix but i and j are not leaf neighbors in T . According
to the discussion above, neither i nor j coincides with r. We proceed by
case analysis.

Case 1: i or j has a leaf neighbor k 6= r. Without loss of generality,
let i be this taxon. On the one hand, d′ik − d′ij ≥ 0 because d′ij is minimal.
On the other hand, this contradicts

d′ik − d′ij = c− 1

2
(dri + drk − dik)− c+

1

2
(dri + drj − dij)

=
1

2
(dik + drj − (drk + dij))

< 0

where the last inequality follows from Lemma 10.4.12: dik + drj < drk + dij
because i and k are leaf neighbors in T .

Case 2: Neither i nor j has a leaf neighbor 6= r. Let i be adjacent
to node u and j be adjacent to node v in T , where u 6= v. Let T1 and T2
be the subtrees of T as depicted in Figure 10.38. Obviously, either T1
or T2 (or both) do not contain the distinguished taxon r. Without loss
of generality, let T1 be this subtree. T1 must contain leaf neighbors k

536 10 Phylogenetic Reconstruction

r

i

j

k

l

Figure 10.39: The situation in case 2 of the proof of Theorem 10.5.3.

and l; let these leaves be adjacent to the node w as depicted in Figure
10.38. Note that u 6= w. Furthermore, observe that the taxa r, i, j, k, l are
pairwise distinct. The situation is illustrated in Figure 10.39. Again, the
inequality d′kl − d′ij ≥ 0 holds true because d′ij is a minimum entry in the
D′ matrix. Because (ri : kl) and (rj : il) are quartets induced by T , and D
is consistent with the additive binary tree T , we conclude with Corollary
10.4.9 that (a) dri + dkl < drk + dil and (b) drj + dil < drl + dij. Using these
inequalities, we derive a contradiction as follows

d′kl − d′ij = c− 1

2
(drk + drl − dkl)− c+

1

2
(dri + drj − dij)

=
1

2
(dri + dkl + drj − drk − drl − dij)

(a)
<

1

2
(drk + dil + drj − drk − drl − dij)

=
1

2
(drj + dil − (drl + dij))

(b)
< 0

�

It is readily verified that the maximum entry in the current D matrix is
greater than or equal to the maximum entry in the D matrix of the next
iteration. Therefore, one can choose the same constant c in each iteration
of the Farris neighbor-joining algorithm (it is also possible to get rid of the
constant by maximizing 1

2
(dri + drj − dij) for all i, j ∈ S).

The choice of the distinguished taxon r is arbitrary. If one chooses
different distinguished taxa in each iteration, then the algorithm has a
worst-case time complexity of O(n3) because the matrix D′ must be re-
computed in each iteration. Because Farris’ neighbor selection criterion
will never select the distinguished taxon r, it is also possible to choose
the same taxon r in every iteration. Pseudo-code for this variant of Farris’
neighbor-joining algorithm is given in Algorithm 10.5.

Let us analyze the worst-case time complexity of Algorithm 10.5. In each
of the (n−3) iterations of the while-loop, the update of the matrices D and
D′ takes O(n) time. As in the fast implementation of the UPGMA-algorithm

10.5 Neighbor-joining algorithms 537

Algorithm 10.5 Farris’ neighbor-joining algorithm.

Input: n× n dissimilarity matrix D, where n ≥ 3.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

3. Let c be the maximum entry in D.

4. Select a distinguished taxon r ∈ S.

5. Compute the matrix D′ by d′ij = c− 1
2
(dri + drj − dij) for all i, j ∈ S.

while |S| > 3 do

1. Select i, j ∈ S so that d′ij is a minimum entry in D′.

2. Add a new node k to the tree T .

3. Add edges (k, i) and (k, j) with weights γ(k, i) = 1
2
(dri + dij − drj) and

γ(k, j) = dij − γ(k, i) = 1
2
(drj + dij − dri) to the tree T .

4. a) Update the matrix D by deleting the rows and columns corre-
sponding to i and j and adding new rows and columns for the
new taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}.

b) Update the matrix D′ by deleting the rows and columns corre-
sponding to i and j and adding new rows and columns for the
new taxon k with d′km = c− 1

2
(drk+ drm− dkm) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add the new (artificial) taxon k to S.

Termination:

Let i, j, r be the remaining three taxa. Add a new internal node v to
the tree T , and add edges (v, i), (v, j), and (v, r) to the tree T with
weights

γ(v, r) =
dir + djr − dij

2

γ(v, i) =
dij + dir − djr

2

γ(v, j) =
dij + djr − dir

2

Output: The tree T .

538 10 Phylogenetic Reconstruction

i k

l

m
j

r

p q

Figure 10.40: Nodes i and j are connected to the new node k. If t(i) = {l,m}
and t(j) = {p, q}, where l,m, p, q ∈ {1, . . . , n}, then t(k) is
obtained by choosing one element from t(i) and one ele-
ment from t(j), say t(k) = {l, p}. Moreover, the equali-
ties dT (k, r) =

drl+drp−dlp
2

, dT (k, i) = drl+drm−dlm
2

− dT (k, r), and
dT (k, j) =

drp+drq−dpq
2

− dT (k, r) hold.

(Section 10.3.4), we can use a quadtree to determine a minimum entry in
D′ in O(log n) (Lemma 10.3.14) and the update of the quadtree takes O(n)
time in each iteration (Lemma 10.3.15). Thus, the Farris neighbor-joining
algorithm can be implemented so that its worst-case time complexity is
O(n2). Note that this is optimal because the size of the input matrix D is
proportional to n2.

Taking this approach one step further [116], we can even refrain from
updating the input matrix D. Then, however, a difficulty arises from
the fact that the edge weights in Algorithm 10.5 are defined by means
of the current D matrix. So we must be able to assign the correct edge
weights based on the original input matrix. This is possible if we store
an original taxon (an element of {1, . . . , n}) from each of the two subtrees
at a newly created internal node. Pseudo-code for the resulting algorithm
can be found in Algorithm 10.6. To distinguish this variant of the Far-
ris neighbor-joining algorithm from Algorithm 10.5, we call it a “second
version of the Farris neighbor-joining algorithm.”

The differences between Algorithms 10.5 and 10.6 lie in steps 2-4 of the
while-loop. When a new node k is added to the tree in step 2, Algorithm
10.6 stores two original taxa in the set t(k): one from the subtree con-
taining i and one from the subtree containing j; see Figure 10.40 for an
illustration of the situation. Using Figure 10.40, it is a simple exercise to
prove that the edge weights assigned in step 3 of the while-loop of Algo-
rithm 10.6 are correct. It remains to be shown that in each iteration of
the while-loop Algorithms 10.5 and 10.6 compute the same matrix D′. The
correctness of Algorithm 10.6 is then a consequence of Theorem 10.5.3.

Theorem 10.5.4 If the input matrix Din is consistent with an additive bi-
nary tree T , then Algorithms 10.5 and 10.6 compute the same dissimilarity
matrix D′ in each iteration of the while-loop.

10.5 Neighbor-joining algorithms 539

Algorithm 10.6 Second version of Farris’ neighbor-joining algorithm.

Input: n× n dissimilarity matrix D, where n ≥ 3.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

3. Let c be the maximum entry in D.

4. Select a distinguished taxon r ∈ S.

5. Compute the matrix D′ by d′ij = c− 1
2
(dri + drj − dij) for all i, j ∈ S.

while |S| > 3 do

1. Select i, j ∈ S so that d′ij is a minimum entry in D′.

2. Add a new node k to the tree T and store t(k) = {l, p}, where l ∈ t(i) if
i 6∈ {1, . . . , n} and l = i otherwise, and p ∈ t(j) if j 6∈ {1, . . . , n} and p = j
otherwise.

3. Compute dT (k, r) =
drl+drp−dlp

2
, where t(k) = {l, p}.

Add an edge from k to i with weight

γ(k, i) =

{
dri − dT (k, r) if i ∈ {1, . . . , n}
drl+drm−dlm

2
− dT (k, r) otherwise, where t(i) = {l,m}

and an edge from k to j with weight

γ(k, j) =

{
drj − dT (k, r) if j ∈ {1, . . . , n}
drp+drq−dpq

2
− dT (k, r) otherwise, where t(j) = {p, q}

4. Update the matrix D′ by deleting the rows and columns correspond-
ing to i and j and adding a new row and column for the new taxon k
with d′km = 1

2
(d′im + d′jm) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add the new (artificial) taxon k to S.

Termination:

Let i, j, r be the remaining three taxa. Add a new internal node k to
the tree T , and add edges (k, i), (k, j), and (k, r) to the tree T with
weights γ(k, r) = dT (k, r), γ(k, i), and γ(k, j) as defined in step (3) of
the while-loop.

Output: The tree T .

540 10 Phylogenetic Reconstruction

Proof We show the theorem by induction on the number q of iterations of
the while-loop. The base case q = 0 is obvious. Let D be the dissimilarity
matrix after the q-th iteration of the while-loop in Algorithm 10.5 (so for
q > 1, D is not the original input matrix Din), and let D′ be its Farris trans-
formed matrix. By the inductive hypothesis, Algorithm 10.6 computes the
same matrix D′. Suppose that in the (q + 1)-th iteration, taxa i and j are
selected. Algorithm 10.5 obtains the new dissimilarity matrix D from D
by deleting the rows and columns corresponding to i and j and adding
a new row and column for the new taxon k with dkm = 1

2
(dim + djm − dij)

for all m with i 6= m 6= j. Furthermore, it obtains the new Farris trans-
formed matrix D

′
from D′ by deleting the rows and columns correspond-

ing to i and j and adding a new row and column for the new taxon k with
d
′
km = c− 1

2
(drk + drm − dkm). Thus, for all m with i 6= m 6= j, we have

d
′
km

= c− 1

2
(drk + drm − dkm)

= c− 1

2

(
1

2
(dri + drj − dij) + drm −

1

2
(dim + djm − dij)

)
=

1

2

(
2c− 1

2
(dri + drj + 2drm − dim − djm)

)
=

1

2

(
c− 1

2
(dri + drm − dim) + c− 1

2
(drj + drm − djm)

)
=

1

2
(d′im + d′jm)

This shows the theorem. �

10.5.2 Saitou and Nei’s neighbor-joining algorithm

The most popular neighbor-joining algorithm is due to Saitou and Nei
[120, 276, 303]. In the literature, it is most often referred to as “the
neighbor-joining algorithm.” Its neighbor selection criterion uses the ma-
trix N = (nij)i,j∈S defined by

nij = dij − (ri + rj),

where
ri =

1

|S| − 2

∑
m∈S

dim

and selects i, j ∈ S so that nij is a minimum entry in N . Saitou and Nei’s
neighbor-joining algorithm is presented in Algorithm 10.7.

According to Theorem 10.5.1, if a dissimilarity matrix D is consistent
with an additive binary tree T , then Algorithm 10.7 applied to D con-
structs T provided that (a) its neighbor selection criterion truly identifies

10.5 Neighbor-joining algorithms 541

Algorithm 10.7 Saitou and Nei’s neighbor-joining algorithm.

Input: n× n dissimilarity matrix D, where n ≥ 3.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

while |S| > 3 do

1. a) Compute the matrix N = (nij)i,j∈S, where nij = dij − (ri + rj) and
ri =

1
|S|−2

∑
m∈S dim.

b) Select i, j ∈ S so that nij is a minimum entry in N .

2. Add a new node k to the tree T .

3. Add edges (k, i) and (k, j) with weights γ(k, i) = 1
2
(dij + ri − rj) and

γ(k, j) = dij − γ(k, i) = 1
2
(dij + rj − ri) to the tree T .

4. Update the dissimilarity matrix by deleting the rows and columns
corresponding to i and j and adding a new row and column for the
new taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add the new (artificial) taxon k to S.

Termination:

Let i, j,m be the remaining three taxa. Add a new internal node v to
the tree T , and add edges (v, i), (v, j), and (v,m) to the tree T with
weights

γ(v, i) =
dij + dim − djm

2

γ(v, j) =
dij + djm − dim

2

γ(v,m) =
dim + djm − dij

2

Output: The tree T .

542 10 Phylogenetic Reconstruction

3× γ(e1)

γ(e3)

γ(e6)

γ(e5)

γ(e7)

γ(e9)2× γ(e2)

6× γ(e4)

γ(e8)

e7

e8

e9

e4

e1

e7

e8

e9e2
e3

e5
e6

i
#(i, e1) = 3

e7

e8

e9

e7

e8

e9

e1

e4

e2
e3

e5
e6

i

(i) (ii)

Figure 10.41: ri is computed by summing up the distances from leaf i to
all other leaves (and then dividing by n − 2). Thereby, the
contribution of each edge e is γ(e) #(i, e).

leaf neighbors (step 1 of the while-loop), and (b) the edge weights of the
newly created edges are correct (step 3 of the while-loop). In order to en-
hance readability, we prove these statements only for the case |S| = n (in
general, n must be replaced with |S| in the formulae below). Statement (a)
will be proven in Theorem 10.5.6. Statement (b) can easily be verified (cf.
Figure 10.36 on page 530):

γ(k, i) =
1

2
(dij + ri − rj)

=
1

2
dij +

1

2(n− 2)

(∑
m6=i

dim −
∑
m6=j

djm

)

=
1

2(n− 2)

∑
m6∈{i,j}

dij +
1

2(n− 2)

∑
m6∈{i,j}

(dim − djm)

=
1

2(n− 2)

∑
m6∈{i,j}

(dij + dim − djm)

=
1

(n− 2)

∑
m6∈{i,j}

dT (i, k)

= dT (i, k)

We need a few prerequisites to be able to prove Theorem 10.5.6. Our
exposition follows [280].

For a leaf i and an edge e in the tree T , let #(i, e) denote the number of
leaves in T that are reachable from i by a path that contains e. An ri-value
can be written with this new notation as:

ri =
1

n− 2

∑
m6=i

dim =
1

n− 2

∑
e∈E

γ(e) #(i, e)

The formula is illustrated in Figure 10.41; a formal proof is left to the
reader. Yet another notation will prove useful: For two nodes u and v in

10.5 Neighbor-joining algorithms 543

u v
ji

Figure 10.42: The situation of Lemma 10.5.5.

the tree T , let E(u, v) denote the set of all edges on the (unique) path from
u to v. Now we are in a position to prove the following lemma.

Lemma 10.5.5 Let the additive binary tree T be consistent with the dis-
similarity matrix D. If there is a path from leaf i via the internal node u to
the internal node v 6= u and an external edge (v, j) as depicted in Figure
10.42, then we have

ri − rj ≤ dT (i, u)− dT (v, j) +
1

n− 2

∑
e∈E(u,v)

γ(e) (#(i, e)−#(j, e))

Proof We use the above formula and repeatedly apply the definition of
#(i, e):

ri − rj

=
1

n− 2

∑
e∈E

γ(e)(#(i, e)−#(j, e)︸ ︷︷ ︸
=0 if e 6∈E(i,j)

)

=
1

n− 2

∑
e∈E(i,j)

γ(e)(#(i, e)−#(j, e))

=
1

n− 2

 ∑
e∈E(i,u)

γ(e)(#(i, e)︸ ︷︷ ︸
≤n−1

−#(j, e)︸ ︷︷ ︸
≥1

)

+
1

n− 2

 ∑
e∈E(u,v)

γ(e)(#(i, e)−#(j, e))

+

1

n− 2

 ∑
e=(v,j)

γ(e)(#(i, e)︸ ︷︷ ︸
=1

−#(j, e)︸ ︷︷ ︸
=n−1

)

≤ 1

n− 2

 ∑
e∈E(i,u)

γ(e)(n− 2)

+
1

n− 2

 ∑
e∈E(u,v)

γ(e)(#(i, e)−#(j, e))

− γ(v, j)
= dT (i, u) +

1

n− 2

 ∑
e∈E(u,v)

γ(e)(#(i, e)−#(j, e))

− dT (v, j)
�

Theorem 10.5.6 If a dissimilarity matrix D is consistent with an additive
binary tree T and nij is a minimum entry in the corresponding N matrix,
then i and j are leaf neighbors in T .

544 10 Phylogenetic Reconstruction

T2

i

k l

w

u

T1

j
v

Figure 10.43: If neither i nor j has a leaf neighbor, then both subtrees T1
and T2 contain leaf neighbors.

Proof For an indirect proof, suppose that nij is a minimum entry in the
matrix N , but i and j are not leaf neighbors in T . We will derive a contra-
diction by the following case distinction.

Case 1: i or j (or both) have a leaf neighbor. Without loss of generality,
assume that i has a leaf neighbor, say k. Because nij is minimal, nik−nij ≥
0 should be true. Let us try to verify this:

nik − nij
= dik − (ri + rk)− (dij − (ri + rj))

= dik − dij − rk + rj

= dik − dij −
1

n− 2

∑
m6=k

dkm +
1

n− 2

∑
m6=j

djm

= dik − dij +
1

n− 2

 ∑
m6∈{i,j,k}

(djm − dkm)

+
1

n− 2
(−dki − dkj + dji + djk)

=
1

n− 2

 ∑
m6∈{i,j,k}

(djm − dkm)

+
n− 3

n− 2
dik −

n− 3

n− 2
dij +

1

n− 2
(−dkj + djk)︸ ︷︷ ︸

=0

=
1

n− 2

∑
m6∈{i,j,k}

(dik + djm − (dij + dkm))

Because i and k are leaf neighbors in the binary tree T , it follows from
Lemma 10.4.12 that dik + djm < dij + dkm for any other taxon m 6∈ {i, j, k}.
Consequently, nik − nij < 0. This, however, contradicts the assumption
that nij is minimal.

Case 2: Neither i nor j has a leaf neighbor. Let i be adjacent to
node u and j be adjacent to node v in T , where u 6= v. Let T1 and T2 be
the subtrees of T as depicted in Figure 10.43. Without loss of generality,
we may assume that |T1| ≤ |T2|, where |T1| and |T2| denote the number of
leaves in T1 and T2, respectively. T1 must contain leaf neighbors k and l;
let these leaves be adjacent to the node w 6= u; see Figure 10.43. Next, we

10.5 Neighbor-joining algorithms 545

will show nkl < nij. By the definition of the N matrix, we have

nkl − nij
= (dkl − (rk + rl))− (dij − (ri + rj))

= dkl − dij − rk − rl + ri + rj

= dkl − dij + (ri − rk) + (rj − rl)

Since there is a path from leaf i via the internal node u to the internal
node w 6= u and an external edge (w, k), an application of Lemma 10.5.5
yields

ri − rk ≤ dT (i, u)− dT (w, k) +
1

n− 2

∑
e∈E(u,w)

γ(e) (#(i, e)−#(k, e))

Any path that starts from leaf i and uses an edge e ∈ E(u,w) cannot reach
a leaf outside T1. Hence #(i, e) ≤ |T1| for all e ∈ E(u,w). Furthermore, i, j,
and all leaves in T2 are reachable from k by a path that uses every edge e
in E(u,w). Thus, #(k, e) ≥ |T2| + 2 for all e ∈ E(u,w). By these two facts in
conjunction with |T1| ≤ |T2|, we obtain

ri − rk ≤ dT (i, u)− dT (w, k) +
1

n− 2
dT (u,w)(|T1| − |T2| − 2)

≤ dT (i, u)− dT (w, k)−
2

n− 2
dT (u,w)

There is also a path from leaf j via the internal node u to the internal node
w 6= u and an external edge (w, l). Therefore, we can similarly derive an
upper bound for rj − rl:

rj − rl ≤ dT (j, u)− dT (w, l)−
2

n− 2
dT (u,w)

Putting all pieces together, we obtain

nkl − nij
= dkl − dij + (ri − rk) + (rj − rl)

≤ dkl − dij + (dT (i, u) + dT (u, j)︸ ︷︷ ︸
=dij

)− (dT (k, w) + dT (w, l)︸ ︷︷ ︸
=dkl

)− 4

n− 2
dT (u,w)

= − 4

n− 2
dT (u,w)

Because T is additive, the path from u to w has a strictly positive weight,
i.e., dT (u,w) > 0. Hence nkl − nij < 0. This, however, contradicts the
assumption that nij is minimal. �

It is not difficult to see that Algorithm 10.7 has a worst-case time com-
plexity of O(n3).

546 10 Phylogenetic Reconstruction

10.5.3 Fast neighbor-joining

The fast neighbor-joining algorithm devised by Elias and Lagergren [87]
has an O(n2) running time. It improves upon Saitou and Nei’s neighbor-
joining algorithm by using the following two ideas: First, the minimum is
taken over the so-called visible set, which has cardinality O(n). Second,
the update of the nij values can be performed in constant time because
the row sums Ri =

∑
m∈S dim can be updated in constant time.

Definition 10.5.7 Given a dissimilarity matrix D, let the matrix N be
defined as in Saitou and Nei’s neighbor-joining algorithm. For a fixed but
arbitrary i ∈ S, a pair of taxa (i, l) is called visible from i if

nil = min{nij | j ∈ S, j 6= i}

In other words, (i, l) is visible from i if nil is a minimum entry in the i-th
row of the matrix N . The visible set V contains for each taxon i one pair
(i, l) that is visible from i.

The next lemma is called the “visibility lemma.”

Lemma 10.5.8 Let the dissimilarity matrix D be consistent with an addi-
tive binary tree T . If i and l are neighbors in T , then the pair (i, l) is visible
from i. Moreover, (i, l) is the sole pair that is visible from i.

Proof It must be shown that nil = min{nij | j ∈ S, j 6= i}. We know from
Case (1) in Theorem 10.5.6 that nil < nij for all j with i 6= j 6= l because i
and l are leaf neighbors in T . This proves the lemma. �

Pseudo-code for the fast neighbor-joining algorithm can be found in
Algorithm 10.8.

Theorem 10.5.9 If the dissimilarity matrix D is consistent with an additive
binary tree T , then the fast neighbor-joining algorithm constructs T .

Proof We will show by induction on the number t of iterations of the while-
loop that in each iteration the current visible set V contains all pairs of
neighbors in the additive binary tree yet to be constructed, and that the
npq-values for all (p, q) ∈ V coincide with those computed by Saitou and
Nei’s neighbor-joining algorithm. It then follows that the fast neighbor-
joining algorithm constructs T because Saitou and Nei’s neighbor-joining
algorithm does.

The base case t = 1 is a consequence of the visibility lemma 10.5.8. Let
S be the set of the taxa, D be the dissimilarity matrix, V be the visible set,
and Rm (for any m ∈ S) be the row sum of m in the t-th iteration. According
to the inductive hypothesis, D is consistent with an additive binary tree

10.5 Neighbor-joining algorithms 547

Algorithm 10.8 Fast neighbor-joining algorithm.
Input: n× n dissimilarity matrix D = (dij).

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

3. For each taxon i, compute Ri =
∑

m∈S dim

4. Compute the visible set V.

while |S| > 3 do

1. a) For each (p, q) ∈ V compute npq = dpq − (rp + rq),
where rp =

Rp

|S|−2
and rq =

Rq

|S|−2
.

b) Select (i, j) ∈ V so that nij = min{npq | (p, q) ∈ V}.

2. Add a new node k to the tree T .

3. Add edges (k, i) and (k, j) with weights γ(k, i) = 1
2
(dij + ri − rj) and

γ(k, j) = dij − γ(k, i) to the tree T .

4. Update the dissimilarity matrix by deleting the rows and columns
corresponding to i and j and adding a new row and column for the
new taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add k to S.

6. Compute Rk =
∑

m∈S dkm.

7. For all m ∈ S with m 6= k update Rm by Rm ← Rm − 1
2
(dim + djm + dij).

8. Delete all pairs (p, q) from V for which p or q is an element of {i, j}.

9. Determine a pair (k, l) that is visible from k and add it to V.

Termination:

Let i, j,m be the remaining three taxa. Add a new internal node v to
the tree T , and add edges (v, i), (v, j), and (v,m) to the tree T with
weights as in Algorithm 10.4 (page 533).

Output: The tree T

548 10 Phylogenetic Reconstruction

T , Rm =
∑

l∈S dlm (for any m ∈ S), and V contains all pairs of neighbors in
T . More precisely, if p and q are neighbors in T , then (p, q) ∈ V or (q, p) ∈ V
(or both).

By the correctness of Saitou and Nei’s neighbor selection criterion, if nij
is a minimum entry in the matrix N corresponding to D, then i and j are
leaf neighbors in T . Hence (i, j) ∈ V or (j, i) ∈ V. Thus, if Saitou and Nei’s
neighbor-joining algorithm selects taxa i and j in the (t + 1)-th iteration,
then so does the fast neighbor-joining algorithm. Let S be the set of the
taxa in the (t + 1)-th iteration, i.e., S = (S \ {i, j}) ∪ {k}. Furthermore, let
D be the dissimilarity matrix obtained in the (t+1)-th iteration from D by
deleting the rows and columns corresponding to i and j and adding a new
row and column for the new taxon k with dkm = 1

2
(dim + djm − dij) for all

m ∈ S \ {k}. By Lemma 10.4.16, D is consistent with the additive binary
tree T obtained from T by deleting the leaves i and j and their edges.

Moreover, Rm, the row sum of m in the (t+ 1)-th iteration, satisfies

Rm = Rm −
1

2
(dim + djm + dij)

= Rm − dim − djm +
1

2
(dim + djm − dij)

= Rm − dim − djm + dkm

=
∑
l∈S

dlm

Consequently, the values of npq computed in the (t + 1)-th iteration of the
fast neighbor-joining algorithm coincide with those computed in the (t+1)-
th iteration of Saitou and Nei’s neighbor-joining algorithm. The visible set
V in the (t + 1)-th iteration is obtained from the visible set V by deleting
all pairs (p, q) from V for which p or q is an element of {i, j} and adding
a pair that is visible from the new taxon k. It remains to be shown that
V contains all pairs of neighbors in the additive binary tree T . According
to the inductive hypothesis, this is true for all pairs of neighbors p and q
with p, q ∈ S \ {i, j} because p and q were already neighbors in T . If the
node k does not have a leaf neighbor in T , then we are done. Otherwise,
let l be the neighbor of k in T . By the visibility lemma 10.5.8, the pair (k, l)
is the sole pair that is visible from k (w.r.t D). Thus, (k, l) is the pair that
was added to V. This proves the theorem. �
Exercise 10.5.10 Prove that Algorithm 10.8 has a time complexity of
O(n2).

10.6 Non-additive dissimilarity matrices

In the preceding sections, we have seen that there are several O(n2) time
algorithms that reconstruct the correct phylogenetic tree provided that

10.6 Non-additive dissimilarity matrices 549

the dissimilarity matrix is additive. However, in most applications, the
observed pairwise dissimilarities between taxa are only estimates of the
real distances. In other words, the observed data deviate from the (un-
known) real additive data.

To cope with a non-additive dissimilarity matrix D = (dij), one can
search for a phylogenetic tree T that best fits the data, i.e., an additive
tree T that minimizes the weighted residual sum of squares

R =
n∑
i=1

n∑
j=i+1

wij(dij − dT (i, j))2

Cavalli-Sforza and Edwards [52] used wij = 1 whereas Fitch and Margo-
liash [112] used wij = 1/d2ij. This task, however, is NP-hard as shown by
Day [74].7

On the other hand, given a tree topology, it is possible to solve for the
edge weights (branch lengths) that minimize R by standard least squares
methods; see Section 10.6.2. Again, we will use neighbor-joining algo-
rithms to reconstruct the tree topology and derive criteria under which
the tree is provably trustworthy. It should be stressed that neighbor-
joining can in many cases be successfully applied, even if none of these
criteria is met. In fact, various empirical studies have shown that Saitou
and Nei’s neighbor-joining algorithm performs very well in practice [167,
192,304]. Although the Farris neighbor-joining algorithm has better the-
oretical properties than Saitou and Nei’s neighbor-joining algorithm (see
Section 10.6.1), it yields on average less accurate reconstructions [132].

10.6.1 Nearly additive matrices and quartet-consistency

In this section, it will be shown that all neighbor-joining algorithms con-
sidered so far will construct the correct phylogenetic tree (i.e., the correct
tree topology) provided that the observed dissimilarities do not deviate too
much in the L∞ metric from the real additive distances.

This is made precise in the next definition.

Definition 10.6.1 Let T be an additive tree and let Dτ be the induced
additive dissimilarity matrix. A dissimilarity matrix D is said to be nearly
additive w.r.t. T if

d∞(D,Dτ) = max
i,j∈S
|dij − dτij| <

1

2
·min
e∈T
{γ(e)}

A dissimilarity matrix D is said to be nearly additive if there is an additive
tree T so that D is nearly additive w.r.t. T .

7Agarwala et al. [7] showed NP-hardness for the L∞ norm. They also gave an O(n2) time
approximation algorithm for the L∞ norm.

550 10 Phylogenetic Reconstruction

j

i k

l
u v

Figure 10.44: dτik + dτjl − dτij − dτkl = 2dT (u, v) ≥ 2ε.

Exercise 10.6.2 Give an example of a nearly additive dissimilarity matrix
that is not additive.

Definition 10.6.3 A dissimilarity matrix D is said to be consistent with a
quartet (ij : kl) if

dij + dkl < min{dik + djl, dil + djk}

D is said to be quartet-consistent with a tree T if it is consistent with all
quartets induced by T .

Theorem 10.6.4 The following statements hold:

1. If a dissimilarity matrix D is consistent with an additive tree T and all
edges in T have a strictly positive weight, then D is nearly additive
w.r.t. T .

2. If a dissimilarity matrix D is nearly additive w.r.t. an additive tree T ,
then it is quartet-consistent with T .

3. If a dissimilarity matrix D is quartet-consistent with a tree T , then it is
a distance matrix.

Proof (1) Obvious.
(2) Let ε = mine∈T{γ(e)} and note that ε > 0. Let (ij : kl) be a quartet
induced by T . According to the assumption, we have dij + dkl < dτij + dτkl + ε
as well as dτik + dτjl − ε < dik + djl. Because (ij : kl) is a quartet induced by
T , there is an edge e so that i and j are separated from k and l by e. It
follows from ε ≤ γ(e) that dτij + dτkl + 2ε ≤ dτik + dτjl; see Figure 10.44. Putting
all pieces together, we get

dij + dkl < dτij + dτkl + ε ≤ dτik + dτjl − ε < dik + djl

The proof of dij + dkl < dil + djk is verbatim the same. Therefore, we have
dij+dkl < min{dik+djl, dil+djk}, i.e., D is consistent with the quartet (ij : kl).
Because the quartet was chosen arbitrarily, it follows that D is quartet-
consistent with T .
(3) Let D be quartet-consistent with T , and let i, j, k ∈ S be pairwise distinct

10.6 Non-additive dissimilarity matrices 551

taxa (leaves in T). Clearly, (ij : kk) is a quartet in T . Since D is consistent
with this quartet it follows

dij = dij + dkk < min{dik + djk, dik + djk} = dik + dkj

That is, the triangle inequality holds. Hence D is a distance matrix. �

The condition that all edges in T must have a strictly positive weight
cannot be dropped from the first statement of Theorem 10.6.4. To put it
differently, if a dissimilarity matrix D is consistent with an additive tree T
and an external edge in T has weight 0, then D cannot be nearly additive
w.r.t. T because mine∈T{γ(e)} = 0. The next lemma shows that in this case
D is not even quartet-consistent with T .

Lemma 10.6.5 If a dissimilarity matrix D is consistent with an additive
tree T and an external edge in T has weight 0, then D is not quartet-
consistent with T .

Proof Let the leaf i be adjacent to node u in T and γ(u, i) = 0. Since the
degree of u is at least 3, there are two different nodes v and w so that
(u, v) and (u,w) are edges in T . The removal of these edges splits T into
three connected components. Let j be a leaf in the connected component
containing v and let k be a leaf in the connected component containing w.
Then, (ii : jk) is a quartet in T . If D were quartet-consistent with T , then
the inequality

djk = dii + djk < min{dij + dik, dik + dij} = dij + dik

would hold true. However, we have djk = dT (j, u) + dT (u, k) = dT (j, i) +
dT (i, k) = dij + dik. �

The following example illustrates Lemma 10.6.5. The dissimilarity ma-
trix

D 1 2 3 4
1 0 1 2 2
2 0 3 3
3 0 2
4 0

is consistent with the additive tree T in Figure 10.45. Clearly, (ii : jk),
where i = 1, j = 2, and k = 3 is a quartet in T . If D were quartet-consistent
with T , then the inequality

d23 = d11 + d23 < min{d12 + d13, d13 + d12} = d12 + d13

would hold true. However, we have d23 = 3 = 1 + 2 = d12 + d13.

552 10 Phylogenetic Reconstruction

2

1 3

4

0

1
1

1

1

Figure 10.45: An additive tree with an external edge having weight 0.

Lemma 10.6.6 Let the dissimilarity matrix D on S = {1, . . . , n} be quartet-
consistent with a binary tree T . Suppose |S| ≥ 4 and that the taxa i and j
are adjacent to the same node k in T (i.e., i and j are leaf neighbors). Let
D be the (n − 1) × (n − 1) dissimilarity matrix obtained from D by deleting
the rows and columns corresponding to i and j and adding a new row and
column for the new taxon k with

dkm =
1

2
(dim + djm − dij)

for every m ∈ S \ {i, j, k}. Then D is quartet-consistent with the binary tree
T obtained from T by deleting the leaves i and j as well as the edges (k, i)
and (k, j).

Proof If n − 1 = 3, then T is a star. Suppose that k, p, and q are the
remaining three taxa. We show that D is quartet-consistent with T by
considering the following quartets (a) (kk : pq), (b) (kp : qq), and (c) (kk : qq)
in T . The quartets (kq : pp) and (kk : pp) need not be taken into account
because these cases are symmetric to (b) and (c), respectively.
(a) Because (kk : pq) ∈ Q(T), we have to show that

dkk + dpq < min{dkp + dkq, dkq + dkp}
⇔ dpq < dkp + dkq

⇔ dpq <
1

2
(dip + djp − dij) +

1

2
(diq + djq − dij)

⇔ dij + dpq <
1

2
(dip + djp + diq + djq)

Since T is binary, (ij : pq) is a quartet in T . By assumption this implies

dij + dpq < min{dip + djq, diq + djp}

It is easy to see that the claim follows.
(b) For (kp : qq) ∈ Q(T), we have to show that

dkp + dqq < min{dkq + dpq, dkq + dpq}
⇔ dkp < dkq + dpq

⇔ 1

2
(dip + djp − dij) <

1

2
(diq + djq − dij) + dpq

⇔ dip + djp < diq + djq + 2dpq

10.6 Non-additive dissimilarity matrices 553

The last inequality holds true because (ip : qq) and (jp : qq) are quartets in
T and thus dip < diq + dpq and djp < djq + dpq by the assumption that D is
quartet-consistent with T .
(c) For (kk : qq) ∈ Q(T), one must show that

dkk + dqq < min{dkq + dkq, dkq + dkq}
⇔ 0 < 2dkq

⇔ 0 < diq + djq − dij

The last inequality follows as in the proof of statement (3) in Theorem
10.6.4: (ij : qq) ∈ Q(t) implies dij < diq + djq.

Now suppose that n − 1 > 3. Let (kl : pq) be a quartet induced by T
that contains the new taxon k. Without loss of generality, we may assume
that |{k, l, p, q}| ≥ 4 (otherwise we can argue as in the case n − 1 = 3). In
order to prove that D is consistent with (kl : pq), we have to show that

dkl + dpq < min{dkp + dlq, dkq + dlp}

where dkl =
1
2
(dil + djl − dij), dkp = 1

2
(dip + djp − dij), dkq = 1

2
(diq + djq − dij),

dlp = dlp, dlq = dlq, and dpq = dpq. Thus, we must prove that

1

2
(dil + djl − dij) + dpq < min{1

2
(dip + djp − dij) + dlq,

1

2
(diq + djq − dij) + dlp}

or equivalently

1

2
(dil + djl) + dpq < min{1

2
(dip + djp) + dlq,

1

2
(diq + djq) + dlp}

Because (il : pq) is a quartet in T and D is quartet-consistent with T , we
have (1) dil + dpq < dip + dlq and (2) dil + dpq < diq + dlp. Analogously, because
(jl : pq) is a quartet in T , we have (3) djl + dpq < djp + dlq and (4) djl + dpq <
djq + dlp. The combination of (1) and (3) yields dil + djl +2dpq < dip+ djp+2dlq
and the combination of (2) and (4) yields dil + djl + 2dpq < diq + djq + 2dlp.
Thus, we derive the desired inequality

dil + djl + 2dpq < min{dip + djp + 2dlq, diq + djq + 2dlp}

This proves that D is consistent with every quartet (kl : pq) induced by T
that contains the new taxon k. Now consider a quartet (lm : pq) induced
by T that does not contain the new taxon k. Since (lm : pq) is also a
quartet in T , D is quartet-consistent with T , and D restricted to {l,m, p, q}
coincides with D restricted to {l,m, p, q}, it follows that D is also consistent
with (lm : pq). In summary, D is consistent with every quartet induced by
T , i.e., D is quartet-consistent with T . �

554 10 Phylogenetic Reconstruction

It should be pointed out that Lemma 10.6.6 is not valid for non-binary
trees. To see this, consider the star T of four taxa in which every edge has
weight 1. The induced additive matrix D is quartet-consistent with T . If
we join two of the taxa into a new taxon, we get an additive star T of three
taxa in which the new edge has weight 0. By Lemma 10.6.5, the additive
matrix D is not quartet-consistent with T .

Theorem 10.6.7 If a dissimilarity matrix D is quartet-consistent with a
binary tree T , then there is no other binary tree T ′ (different from T) so that
D is quartet-consistent with T ′.

Proof The proof is very similar to the proof of Theorem 10.4.18. Neverthe-
less, for the convenience of the reader, we will elaborate upon it.

Suppose that D is quartet-consistent with two binary trees T and T ′.
Lemma 10.4.14 covers the cases n = 2 and n = 3. For n > 3, we show that
two leaves i and j are neighbors in T if and only if they are neighbors in
T ′. For an indirect proof, suppose that i and j are leaf neighbors in T but
not leaf neighbors in T ′. As in the proof of Theorem 10.4.18, there are two
taxa p, q ∈ S so that (ij : pq) is a quartet in Q(T) and (ip : jq) is a quartet
in Q(T ′). On the one hand, because D is consistent with the quartet
(ij : pq) ∈ Q(T), we have dij + dpq < min{dip + djq, diq + djp}. On the other
hand, since D is consistent with the quartet (ip : jq) ∈ Q(T ′), it follows that
dip+djq < min{dij+dpq, diq+djp}. Consequently, dij+dpq < dip+djq < dij+dpq.
This contradiction shows that i and j are also leaf neighbors in T ′.

Let the leaf neighbors i and j be adjacent to node v in T and node v′ in
T ′. Label both nodes v and v′ with the new taxon k. Let T and T

′
be the

trees obtained from T and T ′, respectively, by deleting i and j and their
edges. Observe that the nodes with label k are leaves in T and T

′
because

T and T ′ are binary trees. Moreover, T and T
′
are binary trees. By Lemma

10.6.6, both T and T
′

are quartet-consistent with the (n − 1) × (n − 1)
dissimilarity matrix D obtained from D by deleting the rows and columns
corresponding to i and j and adding a new row and column for the new
taxon k with

dkm =
1

2
(dim + djm − dij)

for every m ∈ {1, . . . , n} \ {i, j, k}. According to the inductive hypothesis, T
and T

′
coincide. Therefore, T and T ′ coincide as well. �

Exercise 10.6.8 Suppose that quartet-consistency is defined as follows:
A dissimilarity matrix D is consistent with a quartet (ij : kl) if

dij + dkl ≤ min{dik + djl, dil + djk}

and D is quartet-consistent with a tree T if it is consistent with all quartets
induced by T . Show that Theorem 10.6.7 does not hold true with this
definition of quartet-consistency.

10.6 Non-additive dissimilarity matrices 555

Algorithm 10.9 In contrast to Algorithm 10.4 (page 533), this generic
neighbor-joining algorithm does not assign weights to edges.
Input: n× n dissimilarity matrix D = (dij), where n ≥ 3.

Initialization:

1. Let S = {1, . . . , n} be the set of taxa.

2. Each taxon i is a leaf in the tree T .

while |S| > 3 do

1. Using a specific neighbor selection criterion, select two taxa i and j
that are neighbors in the (yet unknown) tree T .

2. Add a new node k to the tree T .

3. Add edges (k, i) and (k, j) to the tree T .

4. Update the dissimilarity matrix by deleting the rows and columns
corresponding to i and j and adding a new row and column for the
new taxon k with dkm = 1

2
(dim + djm − dij) for all m ∈ S \ {i, j, k}.

5. Delete i and j from S and add the new (artificial) taxon k to S.

Termination:

Connect the remaining three taxa i, j,m in a star, i.e., add a new
internal node v as well as edges (v, i), (v, j), and (v,m) to the tree T .

Output: The tree T .

556 10 Phylogenetic Reconstruction

Theorem 10.6.9 If a dissimilarity matrix D is quartet-consistent with a
binary tree T , then the generic neighbor-joining algorithm (Algorithm 10.9)
applied to D constructs T .

Proof Similar to the proof of Theorem 10.5.1. �

Theorem 10.6.10 If a dissimilarity matrix D is quartet-consistent with a
binary tree T , then the Farris neighbor-joining algorithm constructs T .

Proof According to Theorem 10.6.9, it is sufficient to show that i and j
are leaf neighbors in T whenever d′ij is a minimum entry in the D′ matrix
corresponding to D. The proof of this fact is similar to that of Theorem
10.5.3 and we just provide the key observations.

According to the proof of Theorem 10.5.3, the Farris neighbor-joining
algorithm does not select the distinguished taxon r because the inequality
drk + drl > dkl holds for leaf neighbors k 6= r and l 6= r. This inequality holds
here as well: since (rr : kl) is a quartet in T and D is consistent with this
quartet, it follows

dkl = drr + dkl < min{drk + drl, drk + drl} = drk + drl

Case (1) in the proof of Theorem 10.5.3 is true because dik + drj < drk + dij
holds. This inequality holds here as well: because (ik : rj) is a quartet in
T and D is consistent with this quartet, we have

dik + drj < min{dri + djk, drk + dij}

Case (2) in the proof of Theorem 10.5.3 is true because the inequalities (a)
dri + dkl < drk + dil and (b) drj + dil < drl + dij hold. These inequalities also
hold here because (ri : kl) and (rj : kl) are quartets in T . �

Corollary 10.6.11 If a dissimilarity matrix D is quartet-consistent with a
binary tree T , then the second version of the Farris neighbor-joining algo-
rithm constructs T .

Proof According to the proof of Theorem 10.5.4, the second version of
the Farris neighbor-joining algorithm computes the same matrix D′ as
the Farris neighbor-joining algorithm. Hence the claim is a direct conse-
quence of Theorem 10.6.10. �

In view of the preceding results, one would expect the following state-
ment to be true: If a dissimilarity matrix D is quartet-consistent with
a binary tree T , then Saitou and Nei’s neighbor-joining algorithm con-
structs T . Quite surprisingly, this statement is not true (for more than
seven taxa). The following counterexample is due to Mihaescu et al. [222].

10.6 Non-additive dissimilarity matrices 557

D 1 2 3 4 5 6 7 8
1 0 3 2 2 2 3 3 3
2 3 0 3 3 3 2 2 2
3 2 3 0 0.1 0.4 3 3 3
4 2 3 0.1 0 0.4 3 3 3
5 2 3 0.4 0.4 0 3 3 3
6 3 2 3 3 3 0 0.1 0.4
7 3 2 3 3 3 0.1 0 0.4
8 3 2 3 3 3 0.4 0.4 0

Figure 10.46: The matrix D is additive.

1 2

3 4 6 7

5 8

1

11

0.05 0.05 0.05 0.05

0.2
0.80.8

0.2

0.15 0.15

Figure 10.47: The binary additive tree T is consistent with the dissimilar-
ity matrix D from Figure 10.46.

558 10 Phylogenetic Reconstruction

Dδ 1 2 3 4 5 6 7 8
1 0 2.7 2.6 2.6 2.6 4.4 4.4 4.4
2 2.7 0 4.4 4.4 4.4 2.6 2.6 2.6
3 2.6 4.4 0 0.1 0.4 2.7 2.7 2.7
4 2.6 4.4 0.1 0 0.4 2.7 2.7 2.7
5 2.6 4.4 0.4 0.4 0 2.7 2.7 2.7
6 4.4 2.6 2.7 2.7 2.7 0 0.1 0.4
7 4.4 2.6 2.7 2.7 2.7 0.1 0 0.4
8 4.4 2.6 2.7 2.7 2.7 0.4 0.4 0

Figure 10.48: The matrix Dδ is quartet-consistent with the binary additive
tree T of Figure 10.47.

The dissimilarity matrix D in Figure 10.46 is additive, and the binary
additive tree T of Figure 10.47 is consistent with it. Figure 10.48 shows
the dissimilarity matrix Dδ, which was obtained by distorting the addi-
tive matrix D. It is readily verified that Dδ is quartet-consistent with T ,
and according to Theorem 10.6.7 there is no other tree with this property.
However, Saitou and Nei’s neighbor-joining algorithm constructs a differ-
ent tree, namely the tree in Figure 10.49. In other words, it produces the
wrong tree.

On the positive side, Mihaescu et al. [222] have shown that Saitou and
Nei’s neighbor-joining algorithm constructs the correct tree if an addi-
tional property besides quartet-consistency holds true. As a matter of
fact, their result is a generalization of the following theorem.

Theorem 10.6.12 If a dissimilarity matrix D is nearly additive w.r.t. an
additive binary tree T , then Saitou and Nei’s neighbor-joining algorithm ap-
plied to D constructs T .

Proof See [19,87]. �

It can be shown that the fast neighbor-joining algorithm also produces
the correct tree if the input matrix D is nearly additive [87, 222]. In
essence, this is because the visibility lemma is also valid for nearly ad-
ditive dissimilarity matrices. In fact, it is even valid in the presence of
quartet-consistency, as Lemma 10.6.13 shows.

Lemma 10.6.13 Let the dissimilarity matrix D be quartet-consistent with
a binary tree T . If i and k are neighbors in T , then the pair (i, k) is visible
from i w.r.t. D. Moreover, (i, k) is the sole pair which is visible from i.

10.6 Non-additive dissimilarity matrices 559

1 2

3 4 6 7

5 8

Figure 10.49: The tree constructed from Dδ by Saitou and Nei’s neighbor-
joining algorithm. This tree is not quartet-consistent with
Dδ because dδ12 + dδ36 = 2.7 + 2.7 > 2.6 + 2.6 = dδ13 + dδ26.

Proof Because i and k are neighbors in T , it follows as in Case (1) of the
proof of Theorem 10.5.6 that for any j with i 6= j 6= k

nik − nij =
1

n− 2

∑
m6∈{i,j,k}

(dik + djm − (dij + dkm))

For any m 6∈ {i, j, k}, (ik : jm) is a quartet induced by T . Due to the fact that
D is quartet-consistent with T , it follows dik + djm − (dij + dkm) < 0 for any
m 6∈ {i, j, k}. Hence nik < nij. This proves that nik = min{nij | j ∈ S, j 6= i},
i.e., (i, k) is visible from i, and that there is no other pair that is visible
from i. �

We conclude this section with the ADDTREE neighbor-joining algorithm,
a quartet-method devised by Sattah and Tversky [279].

Definition 10.6.14 ADDTREE’s neighbor selection criterion: Given a dis-
similarity matrix D, for all pairs of taxa i and j, compute the number of
pairs of taxa k and l (where i, j, k, l are pairwise distinct) so that D is con-
sistent with the quartet (ij : kl). In other words, compute the matrix
Q = (qij)i,j∈S with

qij = |{(k, l) ∈ S × S : |{i, j, k, l}| = 4 and dij + dkl < min{dik + djl, dil + djk}}|

and then select two taxa that attain a maximum in Q.

It is unsurprising that the following theorem holds.

560 10 Phylogenetic Reconstruction

Theorem 10.6.15 If a dissimilarity matrix D is quartet-consistent with a
binary tree T , then ADDTREE constructs T .

Proof According to Theorem 10.6.9, we must show for n > 3 taxa that
the two taxa selected by ADDTREE’s neighbor selection criterion are leaf
neighbors in T . Fix a pair of leaf neighbors i and j in T . According
to Lemma 10.4.12, for any other pair k and l of taxa so that i, j, k, l are
pairwise distinct, we have dij + dkl < dik + djl = dil + djk. Thus,

qij = (n− 2)(n− 3)

attains the maximum possible value. To prove the theorem, it suffices to
demonstrate that no pair k and l of non-neighbors achieves this value.
If k and l are not leaf neighbors in T , then by Lemma 10.4.13 there are
two leaves p and q so that k, l, p, q ∈ S are pairwise distinct and dkp + dlq <
dkl + dpq = dkq + dlp. Therefore, qkl < (n− 2)(n− 3). �

The running time of a naive implementation of ADDTREE is O(n5): in
each of the n− 3 iterations, ADDTREE examines all quadruples, and their
number is proportional to n4. A cleverer implementation brings this worst-
case time complexity down to O(n4) [85]. In the initialization step, the
matrix Q = (qij)1≤i,j≤n is computed. Since Q has O(n2) many entries and
the computation of each entry takes O(n2) time, the time complexity of the
initialization step is O(n4). Now consider an iteration of the while-loop and
suppose that the taxa i and j are selected in Algorithm 10.9 (page 555).
Let D be the dissimilarity matrix obtained from D by deleting the rows and
columns corresponding to i and j and adding a new row and column for
the new taxon k with dkp =

1
2
(dip + djp − dij) for all p with i 6= p 6= j. The new

matrix Q for the new set of taxa S = (S \{i, j})∪{k} can be obtained from Q
in two phases as follows: In the first phase, for any pair l 6= m of taxa from
S\{i, j} we decrement the value qlm by one if dij+dlm < min{dil+djm, dim+djl)
holds. Then, for every taxon p ∈ S \ {i, j, l,m}, we test whether dip + dlm <
min{dil + dpm, dim+ dpl) or dpj + dlm < min{dpl + djm, dpm+ djl) is true. For each
positive test we decrement qlm by one. This first phase takes O(n3) time
and removes the contribution of the selected taxa i and j from the original
qlm value. The addition of the contribution of the new taxon k is done in
the second phase, in which the entries qkp for the new taxon k and all p
with i 6= p 6= j are computed from scratch in O(n3) time. Recall that qkp is
obtained by counting the number of pairs l and m so that |{k, p, l,m}| = 4
and dkp + dlm < min{dkl + dpm, dkm + dpl)}. During the computation of qkp,
whenever such a pair l and m is encountered, we increment the value qlm
by one. After these two phases, qlm = qlm.

Needless to say that ADDTREE’s overall time complexity of O(n4) is a
major disadvantage compared to the other neighbor-joining algorithms.

10.6 Non-additive dissimilarity matrices 561

1

5

x3 x4x1

x6

3
4

2
x7 x5x2

Figure 10.50: Estimating edge weights: We are searching for the weights
x1, . . . , x7 of the edges e1, . . . , e7.

10.6.2 Estimating edge weights

Once we have found a phylogenetic tree T , we must assign weights to the
edges of the tree that best fit the data. As in [52], we use standard least
squares methods to find the edge weights (branch lengths) that minimize
the residual sum of squares

R =
n∑
i=1

n∑
j=i+1

(dij − dT (i, j))2

Consider the tree in Figure 10.50. If the tree were additive, then the
following system of linear equations would have a solution.

x1 + x2 = d12
x1 + x3 + x6 = d13
x1 + x4 + x6 + x7 = d14
x1 + x5 + x6 + x7 = d15

x2 + x3 + x6 = d23
x2 + x4 + x6 + x7 = d24
x2 + x5 + x6 + x7 = d25

x3 + x4 + x7 = d34
x3 + x5 + x7 = d35

x4 + x5 = d45

This system of linear equations can also be written in matrix form as

1 1 0 0 0 0 0
1 0 1 0 0 1 0
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 1 1 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 1 0 0

x1
x2
x3
x4
x5
x6
x7

=

d12
d13
d14
d15
d23
d24
d25
d34
d35
d45

562 10 Phylogenetic Reconstruction

However, here we assume that the dissimilarity matrix is non-additive and
hence this equation cannot have a solution. Consequently, we search for
an approximate solution of the equation

Ax = d

where A is the known n(n−1)
2
× 2n − 3 coefficient matrix (a binary phyloge-

netic tree with n leaves has 2n − 3 edges), x = (x1, . . . , x2n−3) is a 2n − 3-
dimensional parameter vector representing the unknown edge weights,
and d = (d12, . . . , d(n−1)n) is the known n(n−1)

2
-dimensional vector consisting

of the pairwise distances between the n taxa.
We use least squares fitting to find the approximate solution. More pre-

cisely, we want to minimize the squared Euclidean norm of the residual
Ax− d, that is, the quantity

||Ax− d||2 =
n(n−1)/2∑

i=1

([Ax]i − di)
2

where [Ax]i denotes the i-th component of the vector Ax. Note that

||Ax− d||2 =
n∑
i=1

n∑
j=i+1

(

 ∑
ek∈E(i,j)

xk

− dij)2
where E(i, j) denotes the set of all edges on the path from leaf (taxon) i to
leaf (taxon) j in the phylogenetic tree T .

Using the fact that the squared Euclidean norm of a vector v is vTv,
where vT stands for the transpose of v, we can rewrite the expression as

(Ax− d)T (Ax− d) = (Ax)T (Ax)− dTAx− (Ax)Td+ dTd

The two middle terms dT (Ax) and (Ax)Td are equal and the minimum is
found at the zero of the derivative with respect to x:

d

dx

[
(Ax)T (Ax)− 2(Ax)Td+ dTd

]
= 2ATAx− 2ATd = 0

Therefore, the minimizing vector is a solution of the equation

ATAx = ATd (10.1)

which in fact is a system of linear equations. In our example, we have

ATAx =

4 1 1 1 1 3 2
1 4 1 1 1 3 2
1 1 4 1 1 2 2
1 1 1 4 1 2 3
1 1 1 1 4 2 3
3 3 2 2 2 6 4
2 2 2 3 3 4 6

x1
x2
x3
x4
x5
x6
x7

=

d12 + d13 + d14 + d15
d12 + d23 + d24 + d25
d13 + d23 + d34 + d35
d14 + d24 + d34 + d45
d15 + d25 + d35 + d45

d13 + d14 + d15 + d23 + d24 + d25
d14 + d15 + d24 + d25 + d34 + d35

10.6 Non-additive dissimilarity matrices 563

The matrix ATA on the left-hand side is a (2n− 3)× (2n− 3) square matrix,
which is invertible if the rank of A is 2n− 3. In our context, this is always
the case; see [44]. Therefore, the solution of the system of linear equations
is unique and given by

x = (ATA)−1ATd.

The matrix (ATA)−1AT is called the pseudoinverse of A.
In our example, the inverse of the matrix ATA has the form

(ATA)−1 =

5
12

1
12

0 0 0 −1
4

0

1
12

5
12

0 0 0 −1
4

0

0 0 5
16

0 0 − 1
16
− 1

16

0 0 0 5
12

1
12

0 −1
4

0 0 0 1
12

5
12

0 −1
4

−1
4
−1

4
− 1

16
0 0 9

16
− 3

16

0 0 − 1
16
−1

4
−1

4
− 3

16
9
16

and the components of the solution vector x = (ATA)−1ATd are

x1 =
1

2
d12 +

1

6
(d13 + d14 + d15 − d23 − d24 − d25)

x2 =
1

2
d12 −

1

6
(d13 + d14 + d15 − d23 − d24 − d25)

x3 =
1

4
(d13 + d23 + d34 + d35)−

1

8
(d14 + d15 + d24 + d25)

x4 =
1

6
(d14 − d15 + d24 − d25 + d34 − d35) +

1

2
d45

x5 = −1

6
(d14 − d15 + d24 − d25 + d34 − d35) +

1

2
d45

x6 = −1

2
d12 +

1

4
(d13 + d23 − d34 − d35) +

1

8
(d14 + d15 + d24 + d25)

x7 = −1

4
(d13 + d23 − d34 − d35) +

1

8
(d14 + d15 + d24 + d25)−

1

2
d45

The drawback of this standard least squares method is its time com-
plexity. The matrix A for a binary phylogenetic tree with n leaves (taxa) is
an n(n−1)

2
× (2n− 3) matrix. The multiplication of the (2n− 3)× n(n−1)

2
matrix

AT with the matrix A takes O(n4) time, using the standard implementation
of matrix multiplication. The inversion of the (2n− 3)× (2n− 3) matrix ATA
by Gaussian elimination requires O(n3) time. Both, the multiplication of

564 10 Phylogenetic Reconstruction

AT with the vector d and the multiplication of the (2n − 3) × (2n − 3) ma-
trix (ATA)−1 with the vector ATd take O(n3) time. Thus, the overall time
complexity is O(n4).

Bryant and Waddell [44,45] have shown that the vector

x = (ATA)−1ATd.

can be computed in O(n2) time, using the following two key ideas:

• In row i of the matrix (ATA)−1 all entries are zero, except for those
index pairs (i, j) for which ej is an edge directly adjacent to ei. Hence
the weight xi assigned to an edge ei depends only on the edges di-
rectly adjacent to ei. Because an internal edge has four directly ad-
jacent edges (an external edge has two directly adjacent edges), it is
possible to derive a system of five (three) linear equations with five
(three) unknowns. We shall see that this gives closed formulae for xi,
which enable us to compute each of the 2n − 3 edge weights in con-
stant time, provided that some information about the neighboring
edges is available.

• The information required in the previous step can be directly com-
puted on the tree T in O(n2) time.

According to Equation 10.1, we have

[ATAx]i = [ATd]i (10.2)

for all i with 1 ≤ i ≤ 2n − 3. Recall that each edge ei, 1 ≤ i ≤ 2n − 3, splits
the set S into two clusters Ci and Ci = S \ Ci. In the following, we make
use of the equalities

[ATAx]i =
∑

p∈Ci,q∈Ci

∑
et∈E(p,q)

xt

[ATd]i =
∑

p∈Ci,q∈Ci

dpq

If ei = (u, i) is an external edge with adjacent edges ej and ek as shown in
Figure 10.51, then

[ATAx]i =
∑

p∈Cj∪Ck

∑
et∈E(p,i)

xt

With the definition

y1 =
∑
p∈Cj

∑
et∈E(p,u)

xt and y2 =
∑
q∈Ck

∑
et∈E(q,u)

xt

10.6 Non-additive dissimilarity matrices 565

u

Cj

Ck

ei
ek

ej
i

Figure 10.51: ei is an external edge.

as well as nj = |Cj| and nk = |Ck|, it follows that

[ATAx]i =
∑
p∈Cj

∑
et∈E(p,i)

xt +
∑
q∈Ck

∑
et∈E(q,i)

xt = y1 + njxi + y2 + nkxi

[ATAx]j =
∑

p∈Cj ,q∈Ck

∑
et∈E(p,q)

xt +
∑
p∈Cj

∑
et∈E(p,i)

xt = nky1 + njy2 + y1 + njxi

[ATAx]k =
∑

q∈Ck,p∈Cj

∑
et∈E(q,p)

xt +
∑
q∈Ck

∑
et∈E(q,i)

xt = njy2 + nky1 + y2 + nkxi

For ease of readability, we define Pi = [ATd]i for all i with 1 ≤ i ≤ 2n − 3.
Then, equation 10.2 yields the following system of linear equations: 1 1 nj + nk

nk + 1 nj nj
nk nj + 1 nk

y1y2
xi

 =

PiPj
Pk

The matrix is invertible, and the last row of its inverse is

1

4njnk

(
(1 + nj + nk) (1 + nj − nk) (1− nj + nk)

)
This gives a closed formula for xi:

xi =
1

4njnk

(
(1 + nj + nk) (1 + nj − nk) (1− nj + nk)

)PiPj
Pk

=

1

4njnk
((1 + nj + nk)Pi + (1 + nj − nk)Pj + (1− nj + nk)Pk)

In case ei is an internal edge, we proceed in a similar fashion. In the
situation of Figure 10.52, we define y1 and y2 as above as well as

y3 =
∑
p∈Cl

∑
et∈E(p,v)

xt and y4 =
∑
q∈Cm

∑
et∈E(q,v)

xt

566 10 Phylogenetic Reconstruction

u

Cj

Ck

ei
ek

el

em

ej

Cl

Cm

v

Figure 10.52: ei is an internal edge.

Let us express the respective components of [ATAx] in terms of the un-
knowns y1, y2, y3, and y4:

[ATAx]i =
∑

p∈Cj∪Ck,q∈Cl∪Cm

∑
et∈E(p,q)

xt

= (nl + nm)y1 + (nl + nm)y2 + (nj + nk)y3 + (nj + nk)y4

+(nj + nk)(nl + nm)xi

[ATAx]j =
∑

p∈Cj ,q∈Ck∪Cl∪Cm

∑
et∈E(p,q)

xt

= (nk + nl + nm)y1 + njy2 + njy3 + njy4 + nj(nl + nm)xi

[ATAx]k =
∑

p∈Ck,q∈Cj∪Cl∪Cm

∑
et∈E(p,q)

xt

= nky1 + (nj + nl + nm)y2 + nky3 + nky4 + nk(nl + nm)xi

[ATAx]l =
∑

p∈Cl,q∈Cj∪Ck∪Cm

∑
et∈E(p,q)

xt

= nly1 + nly2 + (nj + nk + nm)y3 + nly4 + nl(nj + nk)xi

[ATAx]m =
∑

p∈Cm,q∈Cj∪Ck∪Cl

∑
et∈E(p,q)

xt

= nmy1 + nmy2 + nmy3 + (nj + nk + nl)y4 + nm(nj + nk)xi

Equation 10.2 yields the following system of linear equations:

B

y1
y2
y3
y4
xi

 =

Pi
Pj
Pk
Pl
Pm

where the matrix B has the shape

nl + nm nl + nm nj + nk nj + nk (nj + nk)(nl + nm)
nk + nl + nm nj nj nj nj(nl + nm)

nk nj + nl + nm nk nk nk(nl + nm)
nl nl nj + nk + nm nl nl(nj + nk)
nm nm nm nj + nk + nl nm(nj + nk)

10.6 Non-additive dissimilarity matrices 567

B is invertible and the last row of B−1 leads to the following closed formula:

xi =
1

4(nj + nk)(nl + nm)
[

(
n

nj
+

n

nk
+
n

nl
+

n

nm
− 4

)
Pi

+
nj + nk
njnk

((2nk − n)Pj + (2nj − n)Pk) +
nl + nm
nlnm

((2nm − n)Pl + (2nl − n)Pm)]

We claim that Algorithm 10.10 correctly computes edge weights that
minimize the residual sum of squares and that it runs in O(n2) time.

Let us first prove the correctness of Algorithm 10.10. The computation
of Pi for an external edge ei in step (1) is obviously correct, and the number
of leaves in the subtree below the edge ei is apparently 1 (there is only the
leaf i below ei). When the algorithm reaches the internal edge ei in the
bottom-up traversal in step (3), the values Pj, Nj, Pk, and Nk have already
been computed correctly. Lemma 10.6.16 shows that the computation of
Pi is correct and the number of leaves below the edge ei is obviously Ni =
Nj +Nk (the number of leaves below the edge ej plus the number of leaves
below the edge ek). In step (4), the edge weights are computed correctly by
the formulae derived above, noting that n = 1 + |Cj|+ |Ck| = 1 + |Cj|+Nk if
ei is an external edge and n = |Cj|+ |Ck|+ |Cl|+ |Cm| = |Cj|+Nk +Nl +Nm if
ei is an internal edge .

Lemma 10.6.16 Let ei be an internal edge in the binary phylogenetic tree
T and let ej and ek be edges adjacent to the same endpoint of ei. Let Cj,
Ck, and Ci be the corresponding clusters (see Figure 10.52, noting that Ci =
Cl ∪ Cm). Then,

Pi = Pj + Pk − 2
∑

p∈Cj ,q∈Ck

dpq

Proof This follows easily from the definition of Pi, Pj, and Pk:

Pi =
∑

p∈Ci,q∈Ci

dpq =
∑

p∈Ci,q∈Cj∪Ck

dpq =
∑

p∈Ci,q∈Cj

dpq +
∑

p∈Ci,q∈Ck

dpq

Pj =
∑

p∈Cj ,q∈Cj

dpq =
∑

p∈Cj ,q∈Ci∪Ck

dpq =
∑

p∈Cj ,q∈Ci

dpq +
∑

p∈Cj ,q∈Ck

dpq

Pk =
∑

p∈Ck,q∈Ck

dpq =
∑

p∈Ck,q∈Ci∪Cj

dpq =
∑

p∈Ck,q∈Ci

dpq +
∑

p∈Ck,q∈Cj

dpq

�

We still have to show that Algorithm 10.10 runs in O(n2) time. Step (1)
takes O(n2) time because there are n external edges and for every external
edge ei the computation of Pi takes O(n) time. Step (2) is negligible. At
first sight, it seems that step (3) requires O(n3) time but an amortized
analysis shows that this is not the case. In the computation of all internal

568 10 Phylogenetic Reconstruction

Algorithm 10.10 Bryant and Waddell’s algorithm.
Input: An n × n dissimilarity matrix D = (dij) and a binary phylogenetic
tree T for the set S = {1, . . . , n} of taxa.

1. For each external edge ei leading to leaf (taxon) i, compute

Pi =
∑
q∈S

diq

and set Ni = 1.

2. Root the tree T at an arbitrary internal edge e = (u, v), i.e., split the
edge e into two edges (r, u) and (r, v), where r is a new root node with
child nodes u and v.

3. In a bottom-up traversal of the rooted tree, compute the values Pi
and Ni for each internal edge ei by

Pi = Pj + Pk − 2
∑

p∈Cj ,q∈Ck

dpq

and Ni = Nj + Nk, where ej and ek are the child edges of ei. (For the
“root”-edge e = (u, v), these values can be computed either using the
values of the edges directly below node u or the values of the edges
directly below node v.)

4. In a second traversal of the rooted tree, compute the edge weight xi
of each edge ei as follows:

• If ei is an external edge with parent edge ej and sibling edge ek,
then set nj = n− (Nk + 1), nk = Nk, and

xi =
1

4njnk
((1 + nj + nk)Pi + (1 + nj − nk)Pj + (1− nj + nk)Pk)

• If ei is an internal edge with parent edge ej, sibling edge ek, and
child edges el and em, then set nj = n − (Nk + Nl + Nm), nk = Nk,
nl = Nl, nm = Nm, and

xi =
1

4(nj + nk)(nl + nm)
[

(
n

nj
+

n

nk
+
n

nl
+

n

nm
− 4

)
Pi

+
nj + nk
njnk

((2nk − n)Pj + (2nj − n)Pk)

+
nl + nm
nlnm

((2nm − n)Pl + (2nl − n)Pm)]

Output: The weighted tree T .

10.6 Non-additive dissimilarity matrices 569

edge weights, each distance dij, 1 ≤ i < j ≤ n, is added at most once.
Consequently, the total number of additions in step (3) is in O(n2). Clearly,
step (4) requires only O(n) time as there are 2n− 3 edges and the weight of
each edge can be computed in constant time with the help of the closed
formulae. All in all, Algorithm 10.10 has a worst-case time complexity of
O(n2).

10.6.3 Bootstrapping

Bootstrapping is a statistical technique to test the reliability or robustness
of a tree T under variations of the data.

To test the reliability of a tree T produced by a certain reconstruction
method from a multiple alignment A of n sequences with m columns, we
draw k samples from the data and build a phylogenetic tree for each sam-
ple i with 1 ≤ i ≤ k, More precisely, proceed as follows:

• Randomly draw a sample with replacement of size m from the columns
of A; the resulting pseudo-alignment Ai is called a bootstrap replicate.

• Compute the dissimilarity matrix Di based on Ai.

• Use the same method to construct a phylogenetic tree Ti for Di.

• Compute the set of splits induced by Ti.

For each edge e in T and each tree Ti, let I(e, Ti) = 1 if the split induced
by e in T also occurs in the set of splits induced by Ti. Otherwise, let
I(e, Ti) = 0. The bootstrap value of an edge e of T is defined by∑k

i=1 I(e, Ti)

k

Similarly, the bootstrap value of a node in T can be defined.
A large bootstrap value (95% or higher) of an edge e significantly supports

the hypothesis that e is also present in the “real” (unknown) tree, while
a small bootstrap value indicates that e is less reliable. See e.g. [97] for
more details.

Bibliography

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2:53–
86, 2004.

[2] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Enhanced suffix ar-
rays and applications. In S. Aluru, editor, Handbook of Compu-
tational Molecular Biology, chapter 7. Chapman & Hall/CRC Com-
puter and Information Science Series, 2006.

[3] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. CoCoNUT: An ef-
ficient system for the comparison and analysis of genomes. BMC
Bioinformatics, 9:476, 2008.

[4] M.I. Abouelhoda and E. Ohlebusch. A local chaining algorithm and
its applications in comparative genomics. In Proc. 3rd International
Workshop on Algorithms in Bioinformatics, volume 2812 of Lecture
Notes in Bioinformatics, pages 1–16. Springer-Verlag, 2003.

[5] M.I. Abouelhoda and E. Ohlebusch. Multiple genome alignment:
Chaining algorithms revisited. In Proc. 14th Annual Symposium on
Combinatorial Pattern Matching, volume 2676 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, 2003.

[6] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler
Transform: Data Compression, Suffix Arrays, and Pattern Matching.
Springer-Verlag, 2008.

[7] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On
the approximability of numerical taxonomy (fitting distances by tree
metrics). SIAM Journal on Computing, 28(3):1073–1085, 1999.

[8] A.V. Aho and M. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6):333–340,
1975.

572 Bibliography

[9] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. On finding lowest com-
mon ancestor in trees. SIAM Journal on Computing, 5(1):115–132,
1976.

[10] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Al-
gorithms. Addison-Wesley, 1983.

[11] M. Akra and L. Bazzi. On the solution of linear recurrence equa-
tions. Computational Optimization and Applications, 10(2):195–210,
1998.

[12] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common
ancestors: A survey and a new distributed algorithm. In Proc. 14th
Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, pages 258–264, 2002.

[13] S. Aluru and P. Ko. Lookup tables, suffix trees and suffix arrays.
In S. Aluru, editor, Handbook of Computational Molecular Biology,
chapter 5. Chapman & Hall/CRC Computer and Information Sci-
ence Series, 2006.

[14] S. Anderson, A.T. Bankier, B.G. Barrell, M.H. de Bruijn, A.R. Coul-
son, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger,
P.H. Schreier, A.J. Smith, R. Staden, and I.G. Young. Sequence
and organization of the human mitochondrial genome. Nature,
290(5806):457–465, 1981.

[15] A. Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, pages 85–96. Springer-Verlag, 1985.

[16] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradzev. On
economic construction of the transitive closure of a directed graph.
Doklady Akademii Nauk SSSR, 194:487–488, 1970. In Russian.

[17] M. Arnold. Effiziente Algorithmen zur Suche von längsten gemein-
samen Teilstrings und Repeats. Diploma thesis (in German), Uni-
versity of Ulm, Germany, 2008.

[18] M. Arnold and E. Ohlebusch. Linear time algorithms for general-
izations of the longest common substring problem. Algorithmica,
60(4):806–818, 2011.

[19] K. Atteson. The performance of neighbor-joining methods of phylo-
genetic reconstruction. Algorithmica, 25(2-3):251–278, 1999.

[20] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm
for computing inversion distance between signed permutations with

Bibliography 573

an experimental study. Journal of Computational Biology, 8(5):483–
491, 2001.

[21] M. Bader. The transposition median problem is NP-complete. Theo-
retical Computer Science, 412:1099–1110, 2011.

[22] M. Bader and E. Ohlebusch. Sorting by weighted reversals, trans-
positions, and inverted transpositions. Journal of Computational
Biology, 14:615–636, 2007.

[23] R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approxi-
mate string matching. In Proc. 3rd Annual Symposium on Combi-
natorial Pattern Matching, volume 644 of Lecture Notes in Computer
Science, pages 185–192. Springer-Verlag, 1992.

[24] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by
reversals. SIAM Journal on Computing, 25(2):272–289, 1996.

[25] V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM Journal
on Discrete Mathematics, 11(2):224–240, 1998.

[26] B.S. Baker. A program for identifying duplicated code. Computing
Science and Statistics, 24:49–57, 1992.

[27] A.C. Barbrook, C.J. Howe, N. Blake, and P. Robinson. The phy-
logeny of The Canterbury Tales. Nature, 394:839, 1998.

[28] J.-P. Barthélemy and A. Guénoche. Trees and proximity representa-
tions. John Wiley and Sons Inc., New York, 1991.

[29] S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander.
Human and mouse gene structure: Comparative analysis and ap-
plication to exon prediction. Genome Research, 10:950–958, 2000.

[30] M.J. Bauer, A.J. Cox, and G. Rosone. Lightweight BWT construction
for very large string collections. In Proc. 22nd Annual Symposium
on Combinatorial Pattern Matching, volume 6661 of Lecture Notes in
Computer Science, pages 219–231. Springer-Verlag, 2011.

[31] V. Becher, A. Deymonnaz, and P. Heiber. Efficient computation of all
perfect repeats in genomic sequences of up to half a gigabyte, with
a case study on the human genome. Bioinformatics, 25(14):1746–
1753, 2009.

[32] T. Beller, K. Berger, and E. Ohlebusch. Space-efficient computation
of maximal and supermaximal repeats in genome sequences. In
Proc. 19th International Symposium on String Processing and Infor-
mation Retrieval, volume 7608 of Lecture Notes in Computer Science,
pages 99–110. Springer-Verlag, 2012.

574 Bibliography

[33] T. Beller, S. Gog, E. Ohlebusch, and T. Schnattinger. Computing the
longest common prefix array based on the Burrows-Wheeler trans-
form. Journal of Discrete Algorithms, 18:22–31, 2013.

[34] R. Bellman. Dynamic Programming. Princeton University Press,
1957.

[35] M.A. Bender and M. Farach-Colton. The LCA problem revisited. In
Proc. Latin American Theoretical INformatics, volume 1776 of Lecture
Notes in Computer Science, pages 88–94. Springer-Verlag, 2000.

[36] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei. A locally
adaptive data compression scheme. Communications of the ACM,
29(4):320–330, 1986.

[37] A. Bergeron. A very elementary presentation of the Hannenhalli-
Pevzner theory. Discrete Applied Mathematics, 146(2):134–145,
2005.

[38] A. Bergeron, J. Mixtacki, and J. Stoye. The inversion distance prob-
lem. In O. Gascuel, editor, Mathematics of Evolution and Phylogeny,
chapter 10, pages 262–290. Oxford University Press, 2005.

[39] O. Berkman and U. Vishkin. Recursive star-tree parallel data struc-
ture. SIAM Journal on Computing, 22(2):221–242, 1993.

[40] J.L. Boore. Animal mitochondrial genomes. Nucleic Acids Research,
27(8):1767–1780, 1999.

[41] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Com-
munications of the ACM, 20(10):762–772, 1977.

[42] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment pro-
gram. Genome Research, 13:97–102, 2003.

[43] M. Brudno, C.B. Do, G.M. Cooper, M.F. Kim, E.D. Davydov,
NISC Comparative Sequencing Program, E.D. Green, A. Sidow,
and S. Batzoglou. LAGAN and Multi-LAGAN: Efficient tools for
large-scale multiple alignment of genomic DNA. Genome Research,
13(4):721–731, 2003.

[44] D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees—
Theory and Methods in Phylogenetic Analysis. PhD thesis, University
of Canterbury, New Zealand, 1997.

[45] D. Bryant and P. Waddell. Rapid evaluation of least-squares and
minimum-evolution criteria on phylogenetic trees. Molecular Biology
and Evolution, 15(10):1346–1359, 1998.

Bibliography 575

[46] L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is
difficult. SIAM Journal on Discrete Mathematics, 26(3):1148–1180,
2012.

[47] P. Buneman. A note on metric properties of trees. Journal of Com-
binatorial Theory, 17(B):48–50, 1974.

[48] M. Burrows and D.J. Wheeler. A block-sorting lossless data com-
pression algorithm. Research Report 124, Digital Systems Research
Center, 1994.

[49] R.L. Cann, M. Stoneking, and A.C. Wilson. Mitochondrial DNA and
human evolution. Nature, 325:31–36, 1987.

[50] A. Caprara. The reversal median problem. INFORMS Journal on
Computing, 15(1):93–113, 2003.

[51] H. Carrillo and D. Lipman. The multiple sequence align-
ment problem in biology. SIAM Journal of Applied Mathematics,
48(5):1073–1082, 1988.

[52] L.L. Cavalli-Sforza and A.W.F. Edwards. Phylogenetic analysis:
Models and estimation procedures. American Journal of Human Ge-
netics, 19:233–257, 1967.

[53] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-
focused review of comparative genomics tools: Capabilities, limita-
tions and future challenges. Briefings in Bioinformatics, 4(2):105–
123, 2003.

[54] W.I. Chang and E.L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4/5):327–344, 1994.

[55] K.-M. Chao and W. Miller. Linear-space algorithms that build local
alignments from fragments. Algorithmica, 13(1-2):106–134, 1995.

[56] G. Chen, S.J. Puglisi, and W.F. Smyth. Lempel-Ziv factorization us-
ing less time & space. Mathematics in Computer Science, 1(4):605–
623, 2008.

[57] Chimpanzee Sequencing and Analysis Consortium. Initial se-
quence of the chimpanzee genome and comparison with the human
genome. Nature, 437:69–87, 2005.

[58] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Canada, 1996.

[59] P. Clote and R. Backofen. Computational Molecular Biology. John
Wiley and Sons Inc., New York, 2000.

576 Bibliography

[60] A. Coppa, R. Grün, C.B. Stringer, S. Eggins, and R. Vargiu. Newly
recognized Pleistocene human teeth from Tabun Cave, Israel. Jour-
nal of Human Evolution, 49(3):301–315, 2005.

[61] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[62] F. Crick. Central dogma of molecular biology. Nature,
227(5258):561–563, 1970.

[63] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, 2000.

[64] M. Crochemore. An optimal algorithm for computing the repetitions
in a word. Information Processing Letters, 12:244–250, 1981.

[65] M. Crochemore and L. Ilie. Computing longest previous factor
in linear time and applications. Information Processing Letters,
106(2):75–80, 2008.

[66] M. Crochemore, L. Ilie, C.S. Iliopoulos, M. Kubica, W. Rytter, and
T. Waleń. LPF computation revisited. In Proc. 20th International
Workshop on Combinatorial Algorithms, volume 5874 of Lecture
Notes in Computer Science, pages 158–169. Springer-Verlag, 2009.

[67] M. Crochemore, L. Ilie, and W.F. Smyth. A simple algorithm for com-
puting the Lempel-Ziv factorization. In Proc. 18th Data Compression
Conference, pages 482–488. IEEE Computer Society, 2008.

[68] M. Crochemore, L. Ilie, and L. Tinta. The "runs" conjecture. Theo-
retical Computer Science, 412(27):2931–2941, 2011.

[69] M. Crochemore, C.S. Iliopoulos, M. Kubica, M.S. Rahman, and
T. Waleń. Improved algorithms for the range next value problem
and applications. In Proc. 25th Symposium on Theoretical Aspects of
Computer Science, pages 205–216. IBFI Schloss Dagstuhl, 2008.

[70] M. Crochemore, C.S. Iliopoulos, and M.S. Rahman. Optimal pre-
fix and suffix queries on texts. Information Processing Letters,
108(5):320–325, 2008.

[71] M. Crochemore, M. Kubica, J. Radoszewski, W. Rytter, and
T. Waleń. On the maximal sum of exponents of runs in a string.
Journal of Discrete Algorithms, 14:29–36, 2012.

[72] M. Crochemore and W. Rytter. Jewels of Stringology. World Scien-
tific, 2002.

Bibliography 577

[73] J.S. Culpepper, G. Navarro, S.J. Puglisi, and A. Turpin. Top-k
ranked document search in general text databases. In Proc. 18th
Annual European Symposium on Algorithms, volume 6347 of Lecture
Notes in Computer Science, pages 194–205. Springer-Verlag, 2010.

[74] W.H.E. Day. Computational complexity of inferring phylogenies
from dissimilarity matrices. Bulletin of Mathematical Biology,
49(4):461–467, 1987.

[75] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolu-
tionary change in proteins. In M.O. Dayhoff, editor, Atlas of Pro-
tein Sequence and Structure, volume 5, pages 345–358. National
Biomedical Research Foundation, 1978.

[76] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag,
third edition, 2008.

[77] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and
S.L. Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27(11):2369–2376, 1999.

[78] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algo-
rithms for large-scale genome alignment and comparison. Nucleic
Acids Research, 30(11):2478–2483, 2002.

[79] J. Dhaliwal, S.J. Puglisi, and A. Turpin. Practical efficient string
mining. IEEE Transactions on Knowledge and Data Engineering,
24(4):735–744, 2012.

[80] E.W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[81] T. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes
of Drosophila pseudoobscura. Genetics, 23:28–64, 1938.

[82] M. Domazet-Lošo and B. Haubold. Efficient estimation of pairwise
distances between genomes. Bioinformatics, 25(24):3221–3227,
2009.

[83] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press, 1998.

[84] A. Ehrenfeucht and D. Haussler. A new distance metric on strings
computable in linear time. Discrete Applied Mathematics, 20(3):191–
203, 1988.

578 Bibliography

[85] O. Elemento and O. Gascuel. An efficient and accurate distance
based algorithm to reconstruct tandem duplication trees. Bioinfor-
matics, 18:S92–S99, 2002.

[86] I. Elias and T. Hartman. A 1.375-approximation algorithm for sort-
ing by transpositions. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 3(4):369–379, 2006.

[87] I. Elias and J. Lagergren. Fast neighbor joining. Theoretical Com-
puter Science, 410(21-23):1993–2000, 2009.

[88] P. Elias. Universal codeword sets and representations of the in-
tegers. IEEE Transactions on Information Theory, 21(2):194–203,
1975.

[89] D. Eppstein. Fast hierarchical clustering and other applications of
dynamic closest pairs. Journal of Experimental Algorithmics, 5:1–23,
2000.

[90] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dy-
namic programming. I: Linear cost functions; II: Convex and con-
cave cost functions. Journal of the ACM, 39(3):519–567, 1992.

[91] N. Eriksen. (1 + ε)-approximation of sorting by reversals and trans-
positions. Theoretical Computer Science, 289(1):517–529, 2002.

[92] A. Eriksson and A. Manica. Effect of ancient population struc-
ture on the degree of polymorphism shared between modern hu-
man populations and ancient hominins. Proc. National Academy of
Science USA, 109(35):13956–13960, 2012.

[93] M. Farach. Optimal suffix tree construction with large alphabets.
In Proc. 38th Annual IEEE Symposium on Foundations of Computer
Science, pages 137–143, 1997.

[94] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the
sorting-complexity of suffix tree construction. Journal of the ACM,
47(6):987–1011, 2000.

[95] J.S. Farris. On the phenetic approach to vertebrate classification.
In Major Patterns in Vertebrate Evolution, pages 823–850. Plenum,
New York, 1977.

[96] J.S. Farris, A.G. Kluge, and M.J. Eckardt. A numerical approach
to phylogenetic systematics. Systematic Zoology, pages 172–189,
1970.

[97] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2004.

Bibliography 579

[98] D. Feng and R. Doolittle. Progressive sequence alignment as a pre-
requisite to correct phylogenetic trees. Journal of Molecular Evolu-
tion, 25:351–360, 1987.

[99] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing
and compression in external memory. In Proc. 9th Latin American
Theoretical Informatics Symposium, volume 6034 of Lecture Notes in
Computer Science, pages 697–710. Springer-Verlag, 2010.

[100] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. 41st Annual IEEE Symposium on Foundations
of Computer Science, pages 390–398, 2000.

[101] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combi-
natorics of genome rearrangements. MIT Press, 2009.

[102] N.J. Fine and H.S. Wilf. Uniqueness theorem for periodic func-
tions. Proceedings of the American Mathematical Society, 16:109–
114, 1965.

[103] R.A. Finkel and J.L. Bentley. Quad trees: A data structure for re-
trieval on composite keys. Acta Informatica, 4(1):1–9, 1974.

[104] J. Fischer. Efficient Data Structures for String Algorithms. PhD the-
sis, LMU München, Germany, 2007.

[105] J. Fischer. Optimal succinctness for range minimum queries. In
Proc. 9th Latin American Theoretical Informatics Symposium, volume
6034 of Lecture Notes in Computer Science, pages 158–169, Berlin,
2010. Springer-Verlag.

[106] J. Fischer. Combined data structure for previous- and next-smaller-
values. Theoretical Computer Science, 412(22):2451–2456, 2011.

[107] J. Fischer. Inducing the LCP-array. In Proc. 12th International Sym-
posium on Algorithms and Data Structures, volume 6844 of Lecture
Notes in Computer Science, pages 374–385. Springer-Verlag, 2011.

[108] J. Fischer and V. Heun. Theoretical and practical improvements on
the RMQ-problem, with applications to LCA and LCE. In Proc. 17th
Annual Symposium on Combinatorial Pattern Matching, volume 4009
of Lecture Notes in Computer Science, pages 36–48. Springer-Verlag,
2006.

[109] J. Fischer, V. Heun, and S. Kramer. Optimal string mining un-
der frequency constraints. In Proc. 10th European Conference on
Principles and Practice of Knowledge Discovery in Databases, vol-
ume 4213 of Lecture Notes in Computer Science, pages 139–150.
Springer-Verlag, 2006.

580 Bibliography

[110] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-
bounded compressed suffix trees. Theoretical Computer Science,
410(51):5354–5364, 2009.

[111] J. Fischer, V. Mäkinen, and N. Välimäki. Space efficient string min-
ing under frequency constraints. In Proc. 8th IEEE International
Conference on Data Mining, pages 193–202. IEEE Computer Soci-
ety, 2008.

[112] W.M. Fitch and E. Margoliash. Construction of phylogenetic trees.
Science, 155:279–284, 1967.

[113] P. Flick and E. Birney. Sense from sequence reads: Methods for
alignment and assembly. Nature Methods, 6(11 Suppl.):S6–S12,
2009.

[114] F. Franěk, W.F. Smyth, and Y. Tang. Computing all repeats using
suffix arrays. Journal of Automata, Languages and Combinatorics,
8(4):579–591, 2003.

[115] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–
499, 1960.

[116] A. Fürstberger. Rekonstruktion phylogenetischer Bäume. Diploma
thesis (in German), University of Ulm, Germany, 2007.

[117] H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related
techniques for geometry problems. In Proc. 16th Annual ACM Sym-
posium on Theory of Computing, pages 135–143. ACM Press, 1984.

[118] T. Gagie, S.J. Puglisi, and A. Turpin. Range quantile queries: An-
other virtue of wavelet trees. In Proc. 16th International Symposium
on String Processing and Information Retrieval, volume 5721 of Lec-
ture Notes in Computer Science, pages 1–6. Springer-Verlag, 2009.

[119] R. Garesse. Drosophila melanogaster mitochondrial DNA: Gene or-
ganization and evolutionary considerations. Genetics, 118(4):649–
663, 1988.

[120] O. Gascuel. A note on Sattath and Tversky’s, Saitou and Nei’s,
and Studier and Keppler’s algorithms for inferring phylogenies from
evolutionary distances. Molecular Biology and Evolution, 11(6):961–
963, 1994.

[121] R.F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with
level-ancestor queries. ACM Transactions on Algorithms, 2(4):510–
534, 2006.

Bibliography 581

[122] R. Giegerich, M. Carsten, and P. Steffen. A discipline of dynamic
programming over sequence data. Science of Computer Program-
ming, 51(3):215–263, 2004.

[123] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner:
A unifying view of linear-time suffix tree construction. Algorithmica,
19(3):331–353, 1997.

[124] S. Gog. Compressed Suffix Trees: Design, Construction, and Appli-
cations. PhD thesis, University of Ulm, Germany, 2011.

[125] S. Gog and J. Fischer. Advantages of shared data structures for
sequences of balanced parentheses. In Proc. 20th Data Compression
Conference, pages 406–415. IEEE Computer Society, 2010.

[126] S. Gog and E. Ohlebusch. Compressed suffix trees: Efficient com-
putation and storage of LCP-values. Journal of Experimental Algo-
rithmics, 2013.

[127] A. Golynski, J.I. Munro, and S.S. Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proc. 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 368–373, 2006.

[128] G. Gonnella and S. Kurtz. Readjoiner: a fast and memory efficient
string graph-based sequence assembler. BMC Bioinformatics, 13:82,
2012.

[129] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. In Information Retrieval: Data Structures
and Algorithms, chapter 5, pages 66–82. Prentice-Hall, Englewood
Cliffs, NJ, 1992.

[130] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705–708, 1982.

[131] R.E. Green et al. A draft sequence of the Neandertal genome. Sci-
ence, 328:710–722, 2010.

[132] I. Gronau and S. Moran. Neighbor joining algorithms for inferring
phylogenies via LCA distances. Journal of Computational Biology,
14(1):1–15, 2007.

[133] I. Gronau and S. Moran. Optimal implementations of UPGMA and
other common clustering algorithms. Information Processing Letters,
104(6):205–210, 2007.

[134] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed
text indexes. In Proc. 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 841–850, 2003.

582 Bibliography

[135] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM Jour-
nal on Computing, 35(2):378–407, 2005. An earlier version of this
article was presented at the Symposium on the Theory of Computing,
2000.

[136] Q.-P. Gu, S. Peng, and I.H. Sudborough. A 2-approximation algo-
rithm for genome rearrangements by reversals and transpositions.
Theoretical Computer Science, 210(2):327–339, 1999.

[137] S.K. Gupta, J.D. Kececioglu, and A.A. Schäffer. Improving the prac-
tical space and time efficiency of the shortest-paths approach to
sum-of-pairs multiple sequence alignment. Journal of Computa-
tional Biology, 2(3):459–472, 1995.

[138] D. Gusfield. Efficient methods for multiple sequence alignment
with guaranteed error bounds. Bulletin of Mathematical Biology,
55(1):141–154, 1993.

[139] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cam-
bridge University Press, 1997.

[140] D. Gusfield, G.M. Landau, and B. Schieber. An efficient algorithm
for the all pairs suffix-prefix problem. Information Processing Let-
ters, 41(4):181–185, 1992.

[141] D. Gusfield and J. Stoye. Linear time algorithms for finding and
representing all the tandem repeats in a string. Journal of Computer
and System Sciences, 69(4):525–546, 2004. An earlier version of
this article appeared as Report CSE-98-4, University of California,
Davis, 1998.

[142] B.J. Haas and S.L. Salzberg. Finding repeats in genome sequences.
In T. Lengauer, editor, Bioinformatics — From Genomes to Therapies,
Volume 1: Molecular Sequences and Structures, chapter 7. Wiley-
VCH Verlag, 2007.

[143] Y. Han. Improving the efficiency of sorting by reversals. In Proc. In-
ternational Conference on Bioinformatics and Computational Biology,
pages 406–409. CSREA Press, 2006.

[144] S. Hannenhalli and P.A. Pevzner. Transforming men into mice (poly-
nomial algorithm for genomic distance problem). In Proc. 36th An-
nual IEEE Symposium on Foundations of Computer Science, pages
581–592, 1995.

Bibliography 583

[145] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip:
Polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 48:1–27, 1999. An earlier version of this article
was presented at the Symposium on the Theory of Computing, 1995.

[146] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest com-
mon ancestors. SIAM Journal on Computing, 13:338–355, 1984.

[147] T. Hartman and R. Sharan. A 1.5-approximation algorithm for sort-
ing by transpositions and transreversals. Journal of Computer and
System Sciences, 70(3):300–320, 2005.

[148] B. Haubold, N. Pierstorff, F. Möller, and T. Wiehe. Genome com-
parison without alignment using shortest unique substrings. BMC
Bioinformatics, 6:123, 2005.

[149] S. Henikoff and J.G. Henikoff. Amino acid substitution matri-
ces from protein blocks. Proc. National Academy of Science USA,
89(22):10915–10919, 1992.

[150] V. Heun. Analysis of a modification of Gusfield’s recursive algorithm
for reconstructing ultrametric trees. Information Processing Letters,
108(4):222–225, 2008.

[151] V. Heun. Skriptum zur Vorlesung Algorithmische Bioinformatik:
Bäume und Graphen (in German), 2011. http://www.bio.ifi.
lmu.de/~heun/lecturenotes/.

[152] D.S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6):341–
343, 1975.

[153] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome
alignment. Bioinformatics, 18:S312–S320, 2002.

[154] W.K. Hon, K. Sadakane, and W.K. Sung. Breaking a time-and-space
barrier in constructing full-text indices. In Proc. 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 251–260,
2003.

[155] W.K. Hon, R. Shah, S.V. Thankachan, and J.S. Vitter. String re-
trieval for multi-pattern queries. In Proc. 17th International Sympo-
sium on String Processing and Information Retrieval, volume 6393
of Lecture Notes in Computer Science, pages 55–66. Springer-Verlag,
2010.

[156] R.N. Horspool. Practical fast searching in strings. Software—
Practice and Experience, 10(6):501–506, 1980.

584 Bibliography

[157] T.C. Hu and A.C. Tucker. Optimal computer search trees and
variable-length alphabetical codes. SIAM Journal on Applied Mathe-
matics, 21(4):514–532, 1971.

[158] D. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers,
40(9):1098–1101, 1952.

[159] L.C.K. Hui. Color set size problem with applications to string match-
ing. In Proc. 3rd Annual Symposium on Combinatorial Pattern Match-
ing, volume 644 of Lecture Notes in Computer Science, pages 230–
243. Springer-Verlag, 1992.

[160] M. Ingman, H. Kaessmann, S. Pääbo, and U. Gyllensten. Mitochon-
drial genome variation and the origin of modern humans. Nature,
408:708–713, 2000.

[161] International Human Genome Sequencing Consortium. Initial se-
quencing and analysis of the human genome. Nature, 409:860–921,
2001.

[162] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie
Mellon University, 1988.

[163] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science, pages
549–554, 1989.

[164] G. Jacobson and K.-P. Vo. Heaviest increasing/common subse-
quence problems. In Proc. 3rd Annual Symposium on Combinatorial
Pattern Matching, volume 644 of Lecture Notes in Computer Science,
pages 52–66. Springer-Verlag, 1992.

[165] J.-E. Jeon, H. Park, and D.-K. Kim. Efficient construction of gen-
eralized suffix arrays by merging suffix arrays. Journal of KISS:
Computer Systems and Theory, 32(6):268–278, 2005.

[166] D. Johanson and B. Edgar. From Lucy to language. Simon & Schus-
ter, 2006.

[167] K.S. John, T. Warnow, B. Moret, and L. Vawter. Performance study
of phylogenetic methods: (unweighted) quartet methods and neigh-
bor joining. Journal of Algorithms, 48:174–193, 2003.

[168] D.B. Johnson. A priority queue in which initialization and queue
operations take O(log logD) time. Mathematical Systems Theory,
15:295–309, 1982.

Bibliography 585

[169] D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence
similarity using maximum independent set algorithms for interval
graphs. In Proc. 3rd Scandinavian Workshop on Algorithm Theory,
volume 621 of Lecture Notes in Computer Science, pages 326–337.
Springer-Verlag, 1992.

[170] T.H. Jukes and C.R. Cantor. Evolution of protein molecules. In
Mammalian Protein Metabolism, page 21–132. Academic Press, New
York, 1969.

[171] W. Just. Computational complexity of multiple sequence align-
ment with SP-score. Journal of Computational Biology, 8(6):615–
623, 2001.

[172] H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algo-
rithm for sorting signed permutations by reversals. In Proc. 8th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 344–351,
1997.

[173] J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting.
Theoretical Computer Science, 387(3):249–257, 2007.

[174] J. Kärkkäinen, G. Manzini, and S.J. Puglisi. Permuted longest-
common-prefix array. In Proc. 20th Annual Symposium on Combina-
torial Pattern Matching, volume 5577 of Lecture Notes in Computer
Science, pages 181–192. Springer-Verlag, 2009.

[175] J. Kärkkäinen and P. Sanders. Simple linear work suffix array con-
struction. In Proc. 30th International Colloquium on Automata, Lan-
guages and Programming, volume 2719 of Lecture Notes in Computer
Science, pages 943–955. Springer-Verlag, 2003.

[176] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In Proc. 2nd
Annual International Computing and Combinatorics Conference, vol-
ume 1090 of Lecture Notes in Computer Science, pages 219–230.
Springer-Verlag, 1996.

[177] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time
longest-common-prefix computation in suffix arrays and its appli-
cations. In Proc. 12th Annual Symposium on Combinatorial Pattern
Matching, volume 2089 of Lecture Notes in Computer Science, pages
181–192. Springer-Verlag, 2001.

[178] J. Kececioglu and D. Sankoff. Exact and approximation algorithms
for sorting by reversals, with application to genome rearrangement.
Algorithmica, 13:180–210, 1995.

586 Bibliography

[179] Z. Khan, J. Bloom, L. Kruglyak, and M. Singh. A practical algorithm
for finding maximal exact matches in large sequence data sets using
sparse suffix arrays. Bioinformatics, 25(13):1609–1616, 2009.

[180] D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction
of suffix arrays. In Proc. 14th Annual Symposium on Combinatorial
Pattern Matching, volume 2676 of Lecture Notes in Computer Science,
pages 186–199. Springer-Verlag, 2003.

[181] M. Kimura. A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide se-
quences. Journal of Molecular Evolution, 16(2):111–120, 1980.

[182] D.E. Knuth. The Art of Computer Programming, Volume 4A: Combi-
natorial Algorithms, Part 1. Addison-Wesley, 2011.

[183] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[184] P. Ko and S. Aluru. Space efficient linear time construction of suffix
arrays. In Proc. 14th Annual Symposium on Combinatorial Pattern
Matching, volume 2676 of Lecture Notes in Computer Science, pages
200–210. Springer-Verlag, 2003.

[185] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a
word in linear time. In Proc. 40th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 596–604, 1999.

[186] R. Kolpakov and G. Kucherov. On maximal repetitions in words.
Journal of Discrete Algorithms, 1:159–186, 2000.

[187] J. Krause, Q. Fu, J.M. Good, B. Viola, M.V. Shunkov, A.P. Dere-
vianko, and S. Pääbo. The complete mitochondrial DNA genome of
an unknown hominin from southern Siberia. Nature, 464:894–897,
2010.

[188] S. Kreft and G. Navarro. LZ77-like compression with fast random
access. In Proc. 20th Data Compression Conference, pages 239–248.
IEEE Computer Society, 2010.

[189] M. Krings, A. Stone, R.W. Schmitz, H. Krainitzki, M. Stoneking,
and S. Pääbo. Neandertal DNA sequences and the origin of modern
humans. Cell, 90(1):19–30, 1997.

[190] A. Kügel and E. Ohlebusch. A space efficient solution to the fre-
quent string mining problem for many databases. Data Mining and
Knowledge Discovery Journal, 17(1):24–38, 2008.

Bibliography 587

[191] M.O. Külekci, J.S. Vitter, and B. Xu. Efficient maximal repeat
finding using the Burrows-Wheeler transform and wavelet tree.
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, 9(2):421–429, 2012.

[192] S. Kumar and S.R. Gadagker. Efficiency of the neighbor-joining
method in reconstructing evolutionary relationships in large phylo-
genies. Journal of Molecular Evolution, 51(6):544–553, 2000.

[193] S. Kurtz. Reducing the space requirement of suffix trees. Software—
Practice and Experience, 29(13):1149–1171, 1999.

[194] S. Kurtz. Foundations of Sequence Analysis. Lecture notes for a
course in the summer semester 2003, Center for Bioinformatics,
University of Hamburg, Germany, 2003.

[195] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher,
J. Stoye, and R. Giegerich. REPuter: The manifold applications
of repeat analysis on a genomic scale. Nucleic Acids Research,
29(22):4633–4642, 2001.

[196] S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, C. An-
tonescu, and S.L. Salzberg. Versatile and open software for com-
paring large genomes. Genome Biology, 5(R12), 2004.

[197] T.-W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S.-M. Yiu. High
throughput short read alignment via bi-directional BWT. In Proc.
International Conference on Bioinformatics and Biomedicine, pages
31–36. IEEE Computer Society, 2009.

[198] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biology, 10(R25), 2009.

[199] E.L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart, and Winston, New York, 1976.

[200] M. Lermen and K. Reinert. The practical use of the A∗ algorithm
for exact multiple sequence alignment. Journal of Computational
Biology, 7(5):655–671, 2000.

[201] C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string
kernel for SVM protein classification. In Proc. 7th Pacific Symposium
on Biocomputing, pages 566–575, 2002.

[202] H. Li and R. Durbin. Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics, 25(14):1754–1760,
2009.

588 Bibliography

[203] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang.
Soap2: an improved ultrafast tool for short read alignment. Bioin-
formatics, 25(15):1966–1977, 2009.

[204] G.-H. Lin and G. Xue. Signed genome rearrangement by reversals
and transpositions: Models and approximations. Theoretical Com-
puter Science, 259(1-2):513–531, 2001.

[205] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for mul-
tiple sequence alignment. Proc. National Academy of Science USA,
86(12):4412–4415, 1989.

[206] R.A. Lippert, C.M. Mobarry, and B. Walenz. A space-efficient con-
struction of the Burrows-Wheeler transforms for genomic data.
Journal of Computational Biology, 12(7):943–951, 2005.

[207] D.P. Locke et al. Comparative and demographic analysis of orang-
utan genomes. Nature, 469:529–533, 2011.

[208] M.G. Maaß. Linear bidirectional on-line construction of affix trees.
Algorithmica, 37(1):43–74, 2003.

[209] M.G. Maaß. Computing suffix links for suffix trees and arrays. In-
formation Processing Letters, 101(6):250–254, 2007.

[210] M.G. Main. Detecting leftmost maximal periodicities. Discrete Ap-
plied Mathematics, 25(1-2):145–153, 1989.

[211] M.G. Main and R.J. Lorentz. An O(n log n) algorithm for finding all
repetitions in a string. Journal of Algorithms, 5(3):422–432, 1984.

[212] V. Mäkinen and G. Navarro. New search algorithms and time/space
tradeoffs for succinct suffix arrays. Technical report C-2004-20,
University of Helsinki, 2004.

[213] V. Mäkinen and G. Navarro. Position-restricted substring search-
ing. In Proc. Latin American Theoretical INformatics, volume 3887 of
Lecture Notes in Computer Science, pages 703–714. Springer-Verlag,
2006.

[214] U. Manber and E.W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[215] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal
of the ACM, 48(3):407–430, 2001.

Bibliography 589

[216] G. Manzini. Two space saving tricks for linear time LCP array com-
putation. In Proc. 9th Scandinavian Workshop on Algorithm Theory,
volume 3111 of Lecture Notes in Computer Science, pages 372–383.
Springer-Verlag, 2004.

[217] G. Mauri and G. Pavesi. Pattern discovery in RNA secondary struc-
ture using affix trees. In Proc. 14th Annual Symposium on Combina-
torial Pattern Matching, volume 2676 of Lecture Notes in Computer
Science, pages 278–294. Springer-Verlag, 2003.

[218] E.M. McCreight. A space-economical suffix tree construction algo-
rithm. Journal of the ACM, 23(2):262–272, 1976.

[219] E.M. McCreight. Priority search trees. SIAM Journal of Computing,
14(2):257–276, 1985.

[220] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in
O(log logN) time and O(n) space. Information Processing Letters,
35(4):183–189, 1990.

[221] F. Meyer, S. Kurtz, R. Backofen, S. Will, and M. Beckstette. Structa-
tor: fast index-based search for RNA sequence-structure patterns.
BMC Bioinformatics, 12:214, 2011.

[222] R. Mihaescu, D. Levy, and L. Pachter. Why neighbor-joining works.
Algorithmica, 54:1–24, 2009.

[223] W. Miller, K.D. Makova, A. Nekrutenko, and R. Hardison. Compar-
ative genomics. Annual Review of Genomics and Human Genetics,
5:15–56, 2004.

[224] S.E. Mitchell, A.F. Cockburn, and J.A. Seawright. The mitochon-
drial genome of Anopheles quadrimaculatus species A: complete
nucleotide sequence and gene organization. Genome, 36(6):1058–
1073, 1993.

[225] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: Find-
ing local similarities by multiple sequence alignment. Bioinformat-
ics, 14(3):290–294, 1998.

[226] D.R. Morrison. PATRICIA—Practical Algorithm to Retrieve Informa-
tion Coded in Alphanumeric. Journal of the ACM, 15(4):514–534,
1968.

[227] D.W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold
Spring Harbor Laboratory Press, New York, 2001.

590 Bibliography

[228] J.I. Munro. Tables. In Proc. 16th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 1180 of
Lecture Notes in Computer Science, pages 37–42. Springer-Verlag,
1996.

[229] J.I. Munro and V. Raman. Succinct representation of balanced
parentheses, static trees, and planar graphs. In Proc. 38th Annual
IEEE Symposium on Foundations of Computer Science, pages 118–
126, 1997.

[230] J.I. Munro and V. Raman. Succinct representation of bal-
anced parentheses and static trees. SIAM Journal on Computing,
31(3):762–776, 2001.

[231] J.I. Munro, V. Raman, and S.S. Rao. Space efficient suffix trees.
Journal of Algorithms, 39(2):205–222, 2001.

[232] F. Murtagh. Complexities of hierarchic clustering algorithms: State
of the art. Computational Statistic Quarterly, 1(2):101–113, 1984.

[233] S. Muthukrishnan. Efficient algorithms for document retrieval
problems. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 657–666, 2002.

[234] J.H. Nadeau and B.A. Taylor. Lengths of chromosomal segments
conserved since divergence of man and mouse. Proc. National
Academy of Science USA, 81(3):814–818, 1984.

[235] K. Narisawa, S. Inenaga, H. Bannai, and M. Takeda. Efficient com-
putation of substring equivalence classes with suffix arrays. In
Proc. 18th Annual Symposium on Combinatorial Pattern Matching,
volume 4580 of Lecture Notes in Computer Science, pages 340–351.
Springer-Verlag, 2007.

[236] G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[237] G Navarro. Wavelet trees for all. In Proc. 23rd Annual Symposium
on Combinatorial Pattern Matching, volume 7354 of Lecture Notes in
Computer Science, pages 2–26. Springer-Verlag, 2012.

[238] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):Article 2, 2007.

[239] G. Navarro and V. Mäkinen. Dynamic entropy-compressed se-
quences and full-text indexes. ACM Transactions on Algorithms,
4(3):Article 32, 2008.

Bibliography 591

[240] S.B. Needleman and C.D. Wunsch. A general method applicable to
the search for similarities in the amino-acid sequence of two pro-
teins. Journal of Molecular Biology, 48(3):443–453, 1970.

[241] M. Nei. Molecular Evolutionary Genetics. Columbia University Press,
New York, 1987.

[242] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford
University Press, New York, 2000.

[243] G. Nong. An optimal suffix array construction algorithm. Technical
report, Department of Computer Science, Sun Yat-sen University,
China, 2011.

[244] G. Nong, S. Zhang, and W.H. Chan. Linear suffix array construction
by almost pure induced-sorting. In Proc. Data Compression Confer-
ence, pages 193–202. IEEE Computer Society, 2009.

[245] E. Ohlebusch and M.I. Abouelhoda. Chaining algorithms and appli-
cations in comparative genomics. In S. Aluru, editor, Handbook of
Computational Molecular Biology, chapter 15. Chapman & Hall/CRC
Computer and Information Science Series, 2006.

[246] E. Ohlebusch, T. Beller, and M.I. Abouelhoda. Computing the
Burrows-Wheeler transform of a string and its reverse. In Proc.
23rd Annual Symposium on Combinatorial Pattern Matching, vol-
ume 7354 of Lecture Notes in Computer Science, pages 243–256.
Springer-Verlag, 2012.

[247] E. Ohlebusch, J. Fischer, and S. Gog. CST++. In Proc. 17th Inter-
national Symposium on String Processing and Information Retrieval,
volume 6393 of Lecture Notes in Computer Science, pages 322–333.
Springer-Verlag, 2010.

[248] E. Ohlebusch and S. Gog. A compressed enhanced suffix array
supporting fast string matching. In Proc. 16th International Sympo-
sium on String Processing and Information Retrieval, volume 5721
of Lecture Notes in Computer Science, pages 51–62. Springer-Verlag,
2009.

[249] E. Ohlebusch and S. Gog. Efficient algorithms for the all pairs
suffix-prefix problem and the all pairs substring-prefix problem. In-
formation Processing Letters, 110(3):123–128, 2010.

[250] E. Ohlebusch and S. Gog. Lempel-Ziv factorization revisited. In
Proc. 22nd Annual Symposium on Combinatorial Pattern Matching,
volume 6661 of Lecture Notes in Computer Science, pages 15–26.
Springer-Verlag, 2011.

592 Bibliography

[251] E. Ohlebusch, S. Gog, and A. Kügel. Computing matching statis-
tics and maximal exact matches on compressed full-text indexes. In
Proc. 17th International Symposium on String Processing and Infor-
mation Retrieval, volume 6393 of Lecture Notes in Computer Science,
pages 347–358. Springer-Verlag, 2010.

[252] E. Ohlebusch and S. Kurtz. Space efficient computation of rare
maximal exact matches between multiple sequences. Journal of
Computational Biology, 15(4):357–377, 2008.

[253] D. Okanohara and K. Sadakane. An online algorithm for finding the
longest previous factors. In Proc. 16th Annual European Symposium
on Algorithms, volume 5193 of Lecture Notes in Computer Science,
pages 696–707. Springer-Verlag, 2008.

[254] D. Okanohara and K. Sadakane. A linear-time Burrows-Wheeler
transform using induced sorting. In Proc. 16th International Sympo-
sium on String Processing and Information Retrieval, volume 5721 of
Lecture Notes in Computer Science, pages 90–101. Springer-Verlag,
2009.

[255] C. O’Keefe and E. Eichler. The pathological consequences and evo-
lutionary implications of recent human genomic duplications. In
Comparative Genomics, pages 29–46. Kluwer Press, 2000.

[256] M. Ozery-Flato and R. Shamir. Two notes on genome rearrange-
ment. Journal of Bioinformatics and Computational Biology, 1(1):71–
94, 2003.

[257] I. Pe’er and R. Shamir. The median problems for breakpoints are
NP-complete. Technical Report TR98-071, Electronic Colloquium
on Computational Complexity, 1998.

[258] P. Pevzner. Computational Molecular Biology: An Algorithmic Ap-
proach. The MIT Press, 2000.

[259] P. Pevzner and G. Tesler. Genome rearrangements in mammalian
evolution: Lessons from human and mouse genomic sequences.
Genome Research, 13:37–45, 2003.

[260] E. Prieur and T. Lecroq. On-line construction of compact suffix
vectors and maximal repeats. Theoretical Computer Science, 407(1-
3):290–301, 2008.

[261] K. Prüfer et al. The bonobo genome compared with the chimpanzee
and human genomes. Nature, 486:527–531, 2012.

Bibliography 593

[262] S.J. Puglisi, W.F. Smyth, and A. Turpin. A taxonomy of suffix array
construction algorithms. ACM Computing Surveys, 39(2):Article 4,
2007.

[263] S.J. Puglisi, W.F. Smyth, and M. Yusufu. Fast, practical algorithms
for computing all the repeats in a string. Mathematics in Computer
Science, 3(4):373–389, 2010.

[264] S.J. Puglisi and A. Turpin. Space-time tradeoffs for longest-
common-prefix array computation. In Proc. 19th International Sym-
posium on Algorithms and Computation, volume 5369 of Lecture
Notes in Computer Science, pages 124–135. Springer-Verlag, 2008.

[265] M. Raffinot. On maximal repeats in strings. Information Processing
Letters, 80(3):165–169, 2001.

[266] D. Reich et al. Genetic history of an archaic hominin group from
Denisova Cave in Siberia. Nature, 468:1053–1060, 2010.

[267] J. Rissanen and G.G. Langdon. Arithmetic coding. IBM Journal of
Research and Development, 23(2):149–162, 1979.

[268] F.J. Rohlf. A Numerical Taxonomic Study of the Genus Aedes
(Diptera: Culicidae) with Emphasis on the Congruence of Larval and
Adult Classifications. PhD thesis, University of Kansas, 1962.

[269] B. Ryabko. Technical correspondence on "A locally adaptive data
compression scheme". Communications of the ACM, 30(9):792,
1987.

[270] K. Sadakane. Compressed text databases with efficient query algo-
rithms based on the compressed suffix array. In Proc. 11th Interna-
tional Symposium on Algorithms and Computation, volume 1969 of
Lecture Notes in Computer Science, pages 410–421. Springer-Verlag,
2000.

[271] K. Sadakane. Succinct representations of lcp information and im-
provements in the compressed suffix arrays. In Proc. 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 225–232,
2002.

[272] K. Sadakane. New text indexing functionality of the compressed
suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[273] K. Sadakane. Compressed suffix trees with full functionality. The-
ory of Computing Systems, 41:589–607, 2007.

594 Bibliography

[274] K. Sadakane. Succinct data structures for flexible text retrieval sys-
tems. Journal of Discrete Algorithms, 5(1):12–22, 2007.

[275] K. Sadakane and Navarro G. Fully-functional succinct trees. In
Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 134–149, 2010.

[276] N. Saitou and M. Nei. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4:406–425, 1987.

[277] S.L. Salzberg and J.A. Yorke. Beware of mis-assembled genomes.
Bioinformatics, 21(24):4320–4321, 2005.

[278] D. Sankoff. Edit distance for genome comparison based on non-
local operations. In Proc. 3rd Annual Symposium on Combinatorial
Pattern Matching, 3rd Annual Symposium, volume 644 of Lecture
Notes in Computer Science, pages 121–135. Springer-Verlag, 1992.

[279] S. Sattath and A. Tversky. Additive similarity trees. Psychometrika,
42(3):319–345, 1977.

[280] M. Sauerhoff. Manuscript on neighbor-joining (in Ger-
man), 2004. http://ls2-www.cs.uni-dortmund.de/~sauerhof/
neighbor_joining.pdf.

[281] G. Sauthoff, M. Möhl, S. Janssen, and R. Giegerich. Bellman’s
GAP—a language and compiler for dynamic programming in se-
quence analysis. Bioinformatics, 29(5):551–560, 2013.

[282] A. Scally et al. Insights into hominid evolution from the gorilla
genome sequence. Nature, 483:169–175, 2012.

[283] B. Schieber and U. Vishkin. On finding lowest common ances-
tors: Simplification and parallelization. SIAM Journal on Computing,
17(6):1253–1262, 1988.

[284] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search
in a string with wavelet trees and bidirectional matching statistics.
Information and Computation, 213:13–22, 2012.

[285] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[286] U. Schöning. Algorithmik. Spektrum Akademischer Verlag, 2001. In
German.

Bibliography 595

[287] S. Schwartz, W.J. Kent, A. Smit, Z. Zhang, R. Baertsch, R.C. Hardi-
son, D. Haussler, and W. Miller. Human-mouse alignments with
BLASTZ. Genome Research, 13:103–107, 2003.

[288] S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck,
R. Gibbs, R. Hardison, and W. Miller. PipMaker–a web server for
aligning two genomic DNA sequences. Genome Research, 10(4):577–
586, 2000.

[289] J.C. Setubal and J. Meidanis. Introduction to Computational Molec-
ular Biology. PWS Publishing, Boston, MA, 1997.

[290] X. Shen, X. Ma, J. Ren, and F. Zhao. A close phylogenetic relation-
ship between Sipuncula and Annelida evidenced from the complete
mitochondrial genome sequence of Phascolosoma esculenta. BMC
Genomics, 10:136, 2009.

[291] J.T. Simpson and R. Durbin. Efficient construction of an assembly
string graph using the FM-index. Bioinformatics, 26(12):i367–i373,
2010.

[292] J.T. Simpson and R. Durbin. Efficient de novo assembly of large
genomes using compressed data structures. Genome Research,
22:549–556, 2012.

[293] J. Sirén. Compressed suffix arrays for massive data. In Proc. 16th
International Symposium on String Processing and Information Re-
trieval, volume 5721 of Lecture Notes in Computer Science, pages
63–74. Springer-Verlag, 2009.

[294] T.F. Smith, M.S. Waterman, and W.M. Fitch. Comparative biose-
quence metrics. Journal of Molecular Evolution, 18:38–46, 1981.

[295] P.H.A. Sneath. The construction of taxonomic groups. In G.C.
Ainsworth and P.H.A. Sneath, editors, Microbial Classification,
pages 289–332. Cambridge University Press, 1962.

[296] P.H.A. Sneath and R.R. Sokal. Numerical Taxonomy: The Principles
and Practice of Numerical Classification. W.H. Freeman and Com-
pany, San Francisco, 1973.

[297] E. Sobel and H.M. Martinez. A multiple sequence alignment pro-
gram. Nucleic Acids Research, 14(1):363–374, 1986.

[298] R.R. Sokal and P.H.A. Sneath. Principles of numerical taxonomy.
W.H. Freeman and Company, San Francisco, 1963.

596 Bibliography

[299] V. Sperschneider. Bioinformatics: Problem Solving Paradigms.
Springer-Verlag, Berlin, 2008.

[300] J. Stoye. Affix trees. Technical report 2000-04, University of Biele-
feld, Germany, 2000.

[301] C.B. Stringer, R. Grün, H.P. Schwarcz, and P. Goldberg. ESR dates
for the hominid burial site of Es Skhul in Israel. Nature, 338:756–
758, 1989.

[302] D. Strothmann. The affix array data structure and its applications
to RNA secondary structure analysis. Theoretical Computer Science,
389(1-2):278–294, 2007.

[303] J.A. Studier and K.J. Keppler. A note on the neighbor-joining algo-
rithm of Saitou and Nei. Molecular Biology and Evolution, 5(6):729–
731, 1988.

[304] K. Tamura, M. Nei, and S. Kumar. Prospects for inferring very large
phylogenies by using the neighbor-joining method. Proc. National
Academy of Sciences USA, 101(30):11030–11035, 2004.

[305] E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by
reversals. Discrete Applied Mathematics, 155:881–888, 2007.

[306] R.E. Tarjan. Applications of path compression on balanced trees.
Journal of the ACM, 26(4):690–715, 1979.

[307] C.H. Teo and S.V.N. Vishwanathan. Fast and space efficient string
kernels using suffix arrays. In Proc. 23rd International Conference
on Machine Learning, pages 929–936. ACM Press, 2006.

[308] G. Tesler. Efficient algorithms for multichromosomal genome rear-
rangements. Journal of Computer and System Sciences, 65(3):587–
609, 2002.

[309] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Im-
proving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position specific gap penalties and
weight matrix choice. Nucleic Acids Research, 22:4673–4680, 1994.

[310] F. Tinti, C. Piccinetti, S. Tommasini, and M. Vallisneri. Mitochon-
drial DNA variation, phylogenetic relationships, and evolution of
four Mediterranean genera of soles (Soleidae, Pleuronectiformes).
Marine Biotechnology, 2(3):274–284, 2000.

Bibliography 597

[311] G. Tischler. On wavelet tree construction. In Proc. 22nd Annual
Symposium on Combinatorial Pattern Matching, volume 6661 of Lec-
ture Notes in Computer Science, pages 208–218. Springer-Verlag,
2011.

[312] C. Trapnell and S.L. Salzberg. How to map billions of short reads
onto genomes. Nature Biotechnology, 27(5):455–457, 2009.

[313] T.J. Treangen and X. Messeguer. M-GCAT: interactively and effi-
ciently constructing large-scale multiple genome comparison frame-
works in closely related species. BMC Bioinformatics, 7:433, 2006.

[314] E. Ukkonen. Approximate string-matching with q-grams and maxi-
mal matches. Theoretical Computer Science, 92(1):191–211, 1992.

[315] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[316] N. Välimäki, S. Ladra, and V. Mäkinen. Approximate all-pairs suf-
fix/prefix overlaps. Information and Computation, 213:49–58, 2012.

[317] N. Välimäki and V. Mäkinen. Space-efficient algorithms for doc-
ument retrieval. In Proc. 18th Annual Symposium on Combinatorial
Pattern Matching, volume 4580 of Lecture Notes in Computer Science,
pages 205–215. Springer-Verlag, 2007.

[318] P. van Emde Boas. Preserving order in a forest in less than logarith-
mic time and linear space. Information Processing Letters, 6(3):80–
82, 1977.

[319] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implemen-
tation of an efficient priority queue. Mathematical Systems Theory,
10:99–127, 1977.

[320] S.V.N. Vishwanathan and A.J. Smola. Fast kernels for string and
tree matching. In B. Schölkopf, K. Tsuda, and J.-P. Vert, editors,
Kernel Methods in Computational Biology, chapter 5. MIT Press,
Cambridge, MA, 2004.

[321] J. Vuillemin. A unifying look at data structures. Communications of
the ACM, 23(4):229–239, 1980.

[322] M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt. essaMEM:
finding maximal exact matches using enhanced sparse suffix ar-
rays. Bioinformatics, 29(6):802–804, 2013.

[323] R.A. Wagner and M.J. Fischer. The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168–173, 1974.

598 Bibliography

[324] M.E.M.T. Walter, Z. Dias, and J. Meidanis. Reversal and transposi-
tion distance of linear chromosomes. In Proc. Symposium on String
Processing and Information Retrieval, pages 96–102. IEEE Computer
Society, 1998.

[325] L. Wang and T. Jiang. On the complexity of multiple sequence align-
ment. Journal of Computational Biology, 1(4):337–348, 1994.

[326] M.S. Waterman. Introduction to Computational Biology: Maps, Se-
quences and Genomes. Chapman Hall, 1995.

[327] M.S. Waterman, T.F. Smith, and W.A. Beyer. Some biological se-
quence metrics. Advances in Mathematics, 20(3):367–387, 1976.

[328] M.S. Waterman, T.F. Smith, M. Singh, and W.A. Beyer. Additive
evolutionary trees. Journal of Theoretical Biology, 64(2):199–213,
1977.

[329] D. Weese and M.H. Schulz. Efficient string mining under con-
straints via the deferred frequency index. In Proc. Advances in Data
Mining. Medical Applications, E-Commerce, Marketing, and Theoret-
ical Aspects, volume 5077 of Lecture Notes in Computer Science,
pages 374–388. Springer-Verlag, 2008.

[330] P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1–11,
1973.

[331] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic
acid and protein data banks. Proc. National Academy of Science
USA, 80:726–730, 1983.

[332] M. Yamamoto and K.W. Church. Using suffix arrays to compute
term frequency and document frequency for all substrings in a cor-
pus. Computational Linguistics, 27(1):1–30, 2001.

[333] K. Zarestkii. Reconstructing a tree from the distances between its
leaves. Uspekhi Mathematicheskikh Nauk, 20:90–92, 1965. In Rus-
sian.

[334] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–
343, 1977.

[335] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

Index

ψ-function, 186, 286
Φ-algorithm, 81, 84, 134
$, see sentinel character
Σ, see alphabet
Σ∗, 10
Σ+, 10
Σn, 10
⊥, see undefined value
ω-interval, 60
ε, see empty string
3-point condition, 494
4-point condition, 521

absent word, 104, 322
additive inequality, 491
additive metric, 491
additive tree, 479, 514, 521, 530

construction algorithm, 525
adjacency, 439, 442, 446
Aho-Corasick algorithm, 29, 375
alignment, 385

anchor-based, 417
cost, 388
graph, 391
length, 386, 407
multiple, 407
optimal, 388, 400
pairwise, 386, 394, 397, 401, 403
similarity score, 400

alphabet, 9
alphabet interval, 303
approximate occurrence, 378
approximate string matching, 374

approximation algorithm, 409, 413,
434

backward search, 299
balanced parentheses sequence, 266

enhanced, 266
ballot number, 48
bidirectional wavelet index, 369
binary search, 120, 262, 263, 274,

295, 300, 334
BLOSUM matrix, 404
bootstrapping, 483, 569
bottom-up traversal, 94, 134, 149,

151, 156, 185, 209, 220, 229,
244, 248, 321, 568

Boyer-Moore-Horspool algorithm, 13
BPS, see balanced parentheses sequence
BPSpre , 259
branch length, see edge length
breadth-first traversal, 30, 99, 104
breakpoint, 439

graph, 440
Burrows and Wheeler transform, 282
BWT, 283

C(A), see Cartesian tree
Ccan(A), see canonical Cartesian tree
Csup(A), see Super-Cartesian tree
C-array, 70, 263, 285, 299
canonical Cartesian tree, 37
Cartesian tree, 36
Catalan number, 46
cDNA, 226
center star method, 411
center string, 411

600 Index

chain, 419
character, 9
child interval, 87, 273
child table, 107
chromosome, 3
CLD-table, see child table
clustering, 501
colinear, 418
common substring, 181
common suffix array, 173, 206
compact trie, 31, 113
component, 447

bad, 447
good, 447

compressed full-text index, 281
compressed suffix tree, 281
convergent reality edges, 443
correction term, 217, 249, 347
cost

Levenshtein, 389
operation-weighted, 388

counting query, 116, 262
CT (φ), see correction term
cycle, 442

bad, 447
good, 447

cyclic string, 79, 141

de Bruijn graph, 142
de Bruijn sequence, 141, 179
decision query, 116, 262
depth

of a node in a rooted tree, 36
depth-first traversal, 35, 99, 258
desire edge, 440

bad, 447
good, 447

dissimilarity matrix, 492
additive, 492
additive tree consistency, 514
nearly additive, 549
quartet-consistent with a tree, 550
ultrametric, 492
ultrametric tree consistency, 493

distδ, 409
distance, 388, 490

edit, 377

distance matrix, 492
distance method, 479
distinct elements range query, 222
divergent reality edges, 443
divide and conquer, 62, 395
DNA, 1

double-stranded, 2
replication, 2
single-stranded, 1

document array, 173, 206, 345
D-array, see document array
document frequency, 216, 244
document listing problem, 221, 348

forbidden pattern, 350
multi-pattern, 349, 351

duplication with modification, 385
dynamic programming, 42, 390, 408,

420, 424

edge length, 479, 483
edist, see edit distance
edit distance, 377, 398, 411
edit operations, 377
elementary interval, 445

bad, 445
good, 445
status, 446

embedded lcp-interval, 87
empty string, 10
enclosing lcp-interval, 87
enhanced suffix array, 59, 79

generalized, 179, 206
enumeration query, 116, 118, 263
ESA, see enhanced suffix array
estimation of edge weights, 561
Euclidean algorithm, 172
eukaryotic cell, 3
Euler tour, 35
Eulerian cycle, 142, 144
evolution, 7
evolutionary path, 479, 515
exact match, 183

left maximal, 183
maximal, 183
right maximal, 183

exponent, 170
extent

Index 601

of a cycle, 448
of a set of cycles, 448

external edge, 490, 514

failure link, 25
Farris transform, 520, 534
Fibonacci string, 170
fission, 429
FM-index, 299
fortress, 463
four-point condition, 521
Four-Russians technique, 48
fragment, 418

chaining, 419
frameshift, 8
frequent string mining problem, 248
fusion, 429

gap penalty, 404
affine, 405
gap-extension, 405
gap-open, 405

gene, 3
arrangement, 430

gene expression, 3
generalized suffix array, 179, 206, 345
genetic code, 4
genome rearrangements, 429
GESA, see enhanced suffix array, gen-

eralized

hairpin loop, 357
Hamming distance, 375, 482
Hamming sphere, 375
happy clique, 467
heaviest increasing subsequence, 424
Hirschberg’s algorithm, 397, 414
home index, 103
homolog, 385
human genome, 3, 138
hurdle, 459

non-consecutive hurdles, 461
simple, 461
super, 461

hybridization, 224

identity permutation, 432, 438
increasing subsequence, 424

indel, 377, 387
induced sorting, 68
induced sorting algorithm, 68, 292
internal edge, 490
inverse suffix array, 60
inversion, 429, 438
ISA, see inverse suffix array

k-common substring problem, 208
k-common repeated substring prob-

lem, 215
k-mer, 183, 419
k-differences problem, 378
keyword tree, 24
k-mismatch, 375
k-mismatch problem, 375
Knuth-Morris-Pratt algorithm, 20

LACA, see LCP-array construction al-
gorithm

last common ancestor, 385, 479, 515
LCA, see lowest common ancestor
lcp, see longest common prefix
LCP-array, 79

local maximum, 144
LCP-array construction algorithm, 81,

84, 319
lcp-index, 86
lcp-interval, 86
lcp-interval tree, 87
lcs, see longest common suffix
leaf neighbors, 527
least squares method, 561
Lempel-Ziv factorization, 125, 332
Levenshtein costs, 389
Levenshtein distance, 377
lexicographic order, 60
lexicographic product, 66
LF -mapping, 284, 300
`-index, 86, 272
line-sweep paradigm, 354, 420
LMS-position, 70
LMS-substring, 74
LMS-suffix, 74
longest common prefix, 79, 85, 157
longest common substring, 181, 208

all-pairs, 237

602 Index

longest common suffix, 79, 85, 157
longest increasing subsequence, 424
longest previous substring, 126
lowest common ancestor, 34, 92, 185,

492
LPS-array, 126

master theorem, 67
matching statistics, 194, 195, 228,

241, 250, 336
bidirectional, 202
mutual, 202

maximal exact match, 183, 340, 419
rare, 203

maximal unique match, 184, 203, 419
maximum likelihood method, 480
maximum parsimony method, 480
maximum similarity, 387
MEM, see maximal exact match
merging suffix arrays, 173, 203, 250
metric, 388, 439, 490
MFT, see move-to-front
minimum distance, 387
mitochondrial DNA, 429, 481
molecular anthropology, 481
molecular clock hypothesis, 479, 515
most recent common ancestor, 482
move-to-front, 288
mRNA, 4, 226, 357
mtDNA, see mitochondrial DNA
multiple alignment, 407

problem, 408
progressive, 415

MUM, see maximal unique match
mutation, 7

natural selection, 8
nearly additive, 549
neighbor selection criterion, 532

ADDTREE, 559
Farris, 534
Saitou and Nei, 540

neighbor-joining, 416, 483
ADDTREE algorithm, 559
Farris’ algorithm, 537, 539, 556
fast algorithm, 547, 558
generic algorithm, 533, 555

Saitou & Nei’s algorithm, 541, 558
non-hurdle, 459

shields super hurdle, 462
NSVLCP, 89, 93, 269
NSVSA, 128, 333
nucleotide, 1

oligonucleotide, 224
oligonucleotide selection problem, 226
on-line algorithm, 110, 374, 426
orientation

negative, 432
positive, 432

orthogonal range-searching, 420
ortholog, 385
outgroup, 479
output function, 28
output set, 28
output-sensitive algorithm, 24, 143
overlap

component/interval, 456
cycles, 447
desire edges, 447
forest, 448
fragments, 418
graph, 447
intervals, 61, 446
status, 452

pairwise alignment, 386
palindrome, 182
PAM matrix, 403
paralog, 385
parent interval, 87, 90, 270, 337
PATRICIA tree, 31
pattern, 11, 24, 116, 299
pattern matching, see string match-

ing
PCR, see polymerase chain reaction
peak, 131
peak elimination, 133, 134
perfect binary tree, 307
period

starting at a position, 159
to the left of a position, 159

period-length, 157
periodicity, 157

Index 603

left-maximal, 158
maximal, 158
right-maximal, 158
type 1, 163
type 2, 163

permutation
oriented, 437
signed, 437

phylogenetic tree, 415, 483, 490
binary, 490
canonical form, 493
rooted, 490
unrooted, 490

phylogeny, 477
of the great apes, 478
star, 490

PLCP-array, 81
point mutation, 7, 429
polymerase chain reaction, 224
postorder traversal, 297
prefix, 11

proper, 11
prefix function

for one pattern, 16
for several patterns, 25

prefix tandem repeat, 97
preorder traversal, 35, 258
PrevOcc-array, 130
primer, 224
primer selection problem, 224
primitive string, 157
priority queue, 423
priority search tree, 421
prokaryotic cell, 3
protein, 6
PSVLCP, 89, 93, 271
PSVSA, 128, 333

quadtree, 509
quartet, 526
quartet-consistency, 550

range maximum query, 335
two dimensional, 420

range minimum query, 33, 275
rank query, 257, 299
rank-array, 60

read, 231
reading frame, 8
reality edge, 440
reality-desire diagram, 440

circular representation, 440
linear representation, 440

reciprocal translocation, 429
relevant substring, 248
repeat, 139

longest, 140, 141
maximal, 139, 149, 329
non-overlapping, 155
supermaximal, 139, 145, 330
tandem, 139

repeated pair, 149
left instance, 149
left maximal, 150
maximal, 150
non-overlapping, 155
overlapping, 155
right instance, 149
right maximal, 150

replication error, 2
reversal, 429, 438

distance, 438
merging, 456

reverse string, 10, 358
rightmost path

in a Cartesian tree, 37
in a Super-Cartesian tree, 107

RMQ, see range minimum query
RNA, 3
rRNA, 5, 357
run, 170, 288

SA, see suffix array
SA′, 206
SACA, see suffix array construction

algorithm
score

elementary interval, 453
similarity, 400
sum-of-pairs, 408

scoring matrices, 403
seed-and-extend paradigm, 384
segment, 438

conserved , 434

604 Index

select query, 258, 299
semimetric, 490
sentinel character, 60
sequence, 10
sequence assembly, 231
short read mapping, 374
shotgun sequencing, 231
similarity, 402

operation-weighted, 399
singleton interval, 88
skew algorithm, 61
skip and count, 195
slink, see suffix link table
sorting by reversals, 432, 438
sorting by transpositions, 434
sparse suffix array, 263
sparse table algorithm, 43
speciation, 477
split, 526
strand

coding, 3
forward, 437
heavy, 430
lagging, 2
leading, 2
light, 430
reverse, 437
template, 3

string, 10
cyclic, 79
empty, 10

string matching, 11, 116
approximate, 374
safe shift, 13, 15, 16

substring, 10
proper, 11

succinct data structure, 262
suffix, 11

proper, 11
suffix array, 60

common, 173, 206
generalized, 179, 206

suffix array construction algorithm,
61, 68

suffix insertion algorithm, 113
suffix link, 185
suffix link interval, 186, 276

suffix link table, 188
suffix tree, 111

construction algorithm, 114
suffix-prefix matching problem, 231,

352
sum-of-pairs score, 408
Super-Cartesian tree, 105, 266
synteny block, 435

tandem array, 157
left-maximal, 157
maximal, 157
right-maximal, 157

tandem repeat, 157
taxon, 477
term frequency, 244
text, 11
TF-IDF score, 349
three-point condition, 494
top-down traversal, 98, 105, 117, 188,

192, 244, 324, 371
transcription, 4
translation, 4
translocation, 429
transposition, 429
triangle inequality, 490
trie, 24, 297
tRNA, 5, 357

ultrametric, 491
ultrametric inequality, 491
ultrametric tree, 479, 492, 516

construction algorithm, 495
undefined value, 20
unique substring, 104

shortest, 104, 225, 322, 323
UPGMA, 501, 503

Watson-Crick base pairs, 2
wavelet tree, 303

Huffman shaped, 315
of the document array, 348
weight-balanced, 315

whole genome alignment, 417
word suffix array, 79
WPGMA, 508

