
Comparing Correctness-by-Construction
with Post-Hoc Verification—A

Qualitative User Study

Tobias Runge1(B), Thomas Thüm2(B), Loek Cleophas3,4(B), Ina Schaefer1(B),
and Bruce W. Watson4,5(B)

1 TU Braunschweig, Braunschweig, Germany
{tobias.runge,i.schaefer}@tu-bs.de

2 University of Ulm, Ulm, Germany
thomas.thuem@uni-ulm.de

3 TU Eindhoven, Eindhoven, The Netherlands
loek@fastar.org

4 Stellenbosch University, Stellenbosch, South Africa
bruce@fastar.org

5 Centre for Artificial Intelligence Research, Stellenbosch, South Africa

Abstract. Correctness-by-construction (CbC) is a refinement-based
methodology to incrementally create formally correct programs. Pro-
grams are constructed using refinement rules which guarantee that the
resulting implementation is correct with respect to a pre-/postcondition
specification. In contrast, with post-hoc verification (PhV) a specification
and a program are created, and afterwards verified that the program sat-
isfies the specification. In the literature, both methods are discussed with
specific advantages and disadvantages. By letting participants construct
and verify programs using CbC and PhV in a controlled experiment, we
analyzed the claims in the literature. We evaluated defects in intermedi-
ate code snapshots and discovered a trial-and-error construction process
to alter code and specification. The participants appreciated the good
feedback of CbC and state that CbC is better than PhV in helping
to find defects. Nevertheless, some defects in the constructed programs
with CbC indicate that the participants need more time to adapt the
CbC process.

1 Introduction

Correctness-by-construction (CbC) [17,19,25,30] as proposed by Dijsktra is a
method for the construction of formally correct programs. The programmer refines
an abstract statement with pre-/postcondition specification to a concrete imple-
mentation, guided by the specification and refinement rules. It is claimed that pro-
grammers construct programs with low defect rates with CbC [20]. There are three
reasons for this that need to be evaluated. First, the structured reasoning disci-
pline which is enforced by the refinement rules reduces the possibility to introduce

c© Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12233, pp. 388–405, 2020.
https://doi.org/10.1007/978-3-030-54997-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-54997-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-54997-8_25


Comparing Correctness-by-Construction with Post-Hoc Verification 389

defects. Second, defects in the code can be traced to their source through the refine-
ment structure. Third, programmers and users gain trust in the program because
a formal methodology was used to create the program [25]. We implemented the
correctness-by-construction approach in a graphical IDE called CorC,1 which sup-
port users during the construction and verification of programs.

With deductive post-hoc verification (PhV), we refer to techniques as used
in the KeY community [4], which verify a program after its creation. A verifier
checks whether the program satisfies its pre-/postcondition specification. PhV
does not provide a strict guideline on how to construct the program; the pro-
grammer can freely implement the program. This can decrease the time taken to
create a first (potentially faulty) version of a program, but can increase the pro-
gram verification time because it is more likely that defects occur in the code [36].
In order to evaluate this claim, we consider the post-hoc verifier KeY [4] as an
instance. KeY can verify Java programs annotated with pre-/postcondition spec-
ifications in the Java Modeling Language (JML).

As the title suggests, we compare correctness-by-construction with post-hoc
verification. In a qualitative user study, participants use CorC and KeY to imple-
ment and verify an algorithm with each tool. By analyzing 347 intermediate code
snapshots, we get better insights in the process used by participants to construct
and verify algorithms. With a user experience questionnaire, we compare which
advantages and disadvantages of the verification techniques and the tools have
been experienced. Our contributions in this paper are the following.

– We give an overview of advantages and disadvantages of CbC and PhV.
– We designed and performed a user study to compare both approaches. We

analyze the defects in code and specification of each intermediate snapshot
for both tools.

– We discuss our insights and compare CbC with PhV based on our user study.

2 Verification Techniques

In our user study, we evaluate the techniques PhV and CbC. Therefore, we first
present and compare the foundations of both techniques. We also survey claims
about their advantages and disadvantages as discussed in the research literature.

2.1 Post-hoc Verification

With post-hoc verification, we refer to a method which is used to verify whether
a program satisfies a given specification. A programmer develops a program and
a pre-/postcondition specification. Besides the pre-/postcondition specification,
loop invariants can be defined to specify the behavior of loops in the code. The
correctness of the program can be verified by using a deductive verification tool,
such as KeY [4]. It translates the program and the specification to a dynamic
logic formula (i.e., proof obligations). The program is executed symbolically, and
1 see https://github.com/TUBS-ISF/CorC and [34] for explanation of the editor.

https://github.com/TUBS-ISF/CorC


390 T. Runge et al.

the formula is updated according to the new symbolic state. After the program is
completely executed, it no longer appears in the formula, and the remaining first-
order proof goal can be evaluated by theorem proving. The verification can be
performed (semi-)automatically or interactively. We use automatic verification
in this paper in order to be able to focus the user study on the construction
of programs and specification. Most users in industry do not have a theoretical
background to verify programs interactively.

2.2 Correctness-by-Construction

Correctness-by-construction in the classical Dijkstra-style [17,25] is a program-
ming method which starts with a Hoare triple specification. This Hoare triple
contains a precondition, an abstract statement (i.e., a statement that is a place-
holder for concrete code), and a postcondition. The triple asserts total correct-
ness. If the program is in a state where the precondition holds, its execution will
terminate in a state where the postcondition holds. An abstract statement in a
Hoare triple can be refined to a concrete program using refinement rules. The
rules introduce new statements, such as loops or assignments. By refining the
program, the pre-/postcondition specification is propagated through the con-
structed program, so that the refined statements are also surrounded by a pre-
and a postcondition, forming more Hoare triples [17,25]. These refinement rules
introduce proof obligations which have to be discharged to establish the correct
application of the refinements rules. E.g., it has to be verified that by executing
an assignment the corresponding postcondition is implied, or that a loop invari-
ant holds after each iteration. The correctness of these proof obligations can be
checked using verification tools [1,34]. We implemented tool support for the con-
struction of programs following CbC [34]. The graphical editor CorC visualizes
program refinements in a tree-like structure.

2.3 Contrasting Correctness-by-Construction and Post-hoc
Verification

CbC and PhV are two different methods to create verified software. Neverthe-
less, they share commonalities. Both start with a pre-/postcondition specification
and result in a program that satisfies this specification. The procedure to con-
struct the program, however, is different. With CbC, the program is constructed
stepwise by applying checkable refinement rules. With PhV, the program is con-
structed without a strict guideline (i.e., the programmer can freely develop the
program and intermediate steps are not proven). Afterwards, the final program
can be verified.

It is claimed that CbC can lead to well-structured code that can be verified
more easily [25,36]. The additional time needed to construct the code is said
to be amortized with a significantly reduced time to prove the code. When
applying CbC, every refined statement leads to a provable side condition, where
a theorem prover can check whether this condition is satisfied. If the check fails,
the programmer can alter the refined statement to establish the proof. This is



Comparing Correctness-by-Construction with Post-Hoc Verification 391

a potential advantage compared to PhV because problems in the verification
process can be pinned to small parts of the program. In contrast, with PhV
additional expertise or sophisticated tool support is necessary to infer the defect
from open goals in the proof [33].

Programmers who use the CbC approach are bound to the stepwise refine-
ment using rules. Therefore, after each refinement the program with all condi-
tions can be reviewed by the programmers. They can continuously check the
surrounding specification of every statement. This can raise awareness of defects
in the program, resulting in fewer defects in comparison to PhV programming.
The number of required iterations to get to a correct program with CbC may also
be reduced because defects are detected early, even before a prover is used [36].

An open question is whether the experience of developers is crucial for the
development of correct code. Using PhV, programmers can implement algo-
rithms as they normally do and verify whether the program is correct after-
wards. Using CbC, the programmer needs an understanding of the refinement
rules to construct programs. Whether this barrier noticeably increases the time
of the construction process, or whether the CbC method does not have a negative
influence needs to be evaluated.

These claims are established in the literature but need to be evaluated in a
user study. We analyze defects in intermediate and final programs and interpret
the answers of a questionnaire to provide evidence for the claims.

3 Design of a User Study

To qualitatively evaluate CbC and PhV, we performed a user study with the two
tools, CorC and KeY. We decided explicitly for a controlled experiment to mon-
itor all participants in parallel during the tasks and to collect all programming
results. We selected CorC because it is a new tool that supports the CbC method
in a graphical user interface and which has been taught to the participants. KeY,
which is a major tool for the automatic verification of Java programs, is used
to get good comparability as CorC uses KeY as back-end for the verification.
Therefore, we have a comparable expressiveness with both tools.

We provide the participants a pre-/postcondition specification for an algo-
rithm, and they developed code to satisfy this specification. The algorithms can
be implemented in under ten lines of code. We decided explicitly for this size,
so the whole experiment could be done in 90 min because it is complicated to
motivate people to do longer experiments. We also excluded the process of writ-
ing an adequate pre-/postcondition specification because this has to be done
for both techniques and highly influences what needs to be implemented and
verified. The same starting point reduces the divergence, so that we can analyze
the results on the same basis. We want to qualitatively analyze how the partici-
pants develop and verify code. Therefore, we took intermediate snapshots of the
code every time the code was verified and analyzed the defects created during
the development process. We checked a total of 347 versions of programs, some-
thing which is not feasible with larger programs and more participants. The user



392 T. Runge et al.

experience with the tools was measured qualitatively by a questionnaire in order
to find improvement potentials. The material of the user study is published on
GitHub.2

Objective. We surveyed in Sect. 2.3 whether CbC can have a positive impact on
programming and verifying code. Hence, we want to evaluate whether a positive
impact can be detected (i.e, programmers appreciate that defects could be more
easily detected with CbC). We consider three research questions to evaluate the
methodologies (RQ1–2) and the tools (RQ3) qualitatively.

RQ1: What errors do participants make with CbC or PhV?
RQ2: What is the process of participants to create programs with CbC or PhV?
RQ3: Do participants prefer CorC or KeY?

Participants. Our participants were students of a software quality course at TU
Braunschweig, Germany. We decided for these students because they were taught
the fundamentals of software verification, and they got an introduction to both
tools. They have experience in verifying methods with both tools although the
specific algorithms of this experiment were new to them. We had ten participants
which were divided into two groups randomly. The programming experience
that was measured with an initial questionnaire [18] was 2.189 for group A
and 1.791 for group B.3 The experience of individuals ranged between 1.609
and 2.777. With a Mann-Whitney test, we calculated no significant difference
between both groups (p-value = 0.1514). Most of the students have several years
of programming experience in industry, and therefore, can be compared to junior
developers. Six participants had three to seven years experience as programmer
in industry, two were new programmers in larger projects, and only two never
programmed in larger projects.

The participants voluntarily attended in the experiment. They knew that
they took part in an experiment and that this experiment did not affect the
grade of the course. Every participant was paid AC 10 to create an incentive for
them. Participants who solved one or both exercises also had the chance to win
AC 50 (i.e., one of them was randomly selected). This lottery should increase the
motivation to solve the exercises by creating a realistic pressure to succeed.

Material. In our experiment, the participants had to implement and verify
two algorithms. For every participant, we prepared a computer with an Eclipse
installation that supports CorC and KeY, and contained a workspace with the
two exercises. We also provided a cheat sheet containing the syntax of KeY and
CorC to help the participants. In order for us to properly analyze the experiment,
participants took the programming experience questionnaire before the exercises

2 https://github.com/Runge93/UserstudyCbCPhV.
3 The calculation is explained in the work by Feigenspan et al. [18]. They derived with

stepwise regression testing that the experience in comparison to classmates with
factor 0.441 summed up with the logical programming experience with factor 0.286
is the best indicator for programming experience.

https://github.com/Runge93/UserstudyCbCPhV


Comparing Correctness-by-Construction with Post-Hoc Verification 393

and a user experience questionnaire afterwards. The user experience question-
naire is a combination of open questions (OQ 1–4) and the User Experience
Questionnaire4 (UEQ).

OQ1: What was better in CorC/KeY?
OQ2: How did you proceed with the task in CorC/KeY?
OQ3: Which tool would you use for verification, and why?
OQ4: Which tool better supports avoiding or fixing defects, and why?

UEQ is an established questionnaire which measures six properties of a prod-
uct (e.g., attractiveness) by asking the user to rate the product with 26 items.
Each item describes the product positively and negatively, and the user must
evaluate which and to what extent one of the descriptions fits. Additionally, the
workspaces were saved to analyze the created code and specifications.

Tasks. We used the Latin square design to arrange the participants. Group A
used CorC for a maximum element algorithm, and KeY for modulo. Group B did
the exercises in the same order, but each one with the other tool. We switched
the order of the tools to address learning and ordering effects. We believe that
an order between tools is worse than an order between exercises because we
want to get insights in the usability of the tools. Additionally, the order between
exercises was not varied because a split into four groups was not manageable. For
each exercise, we provided a pre-/postcondition, and a task description in which
we explained the purpose of the algorithm, so that the partcipants understood
what the implementation should achieve.

The algorithm maximum element finds the index of the maximum element in
an array. The array is assumed to be non-empty to simplify the algorithm, so that
an index of the array should always be returned. The algorithm modulo gets two
integers a and b as input and computes the two values factor and remainder for
the equation factor ∗ b + remainder = a. For the construction of the algorithm,
the division and modulo operations are prohibited. Both algorithms are similar
in size and cyclomatic complexity.

The tasks were designed such that a small, manageable subset of Java is
sufficient to implement the algorithms. Assignments, If-Then-Else, and While
were the only necessary statements. We excluded method calls because they
complicate the verification for these two algorithms unnecessarily.

Variables. In our experiment, the tool is an independent variable, with the
two treatments CorC and KeY. To check the correctness of the code in KeY,
we reran the proof for the solution of every participant. In CorC, we checked
that all nodes in the refinement hierarchy are proven. If a solution was not
proven, we checked whether the code is correct with KeY and, if necessary,
adjusted the specification, such as a loop invariant, to close the proof. If the code
was also incorrect, we checked how many defects were in the code by adjusting
the code. To evaluate the programming and verification process, we analyzed
the intermediate snapshots. Here, the changes and defects were also counted in
4 https://www.ueq-online.org/.

https://www.ueq-online.org/


394 T. Runge et al.

Table 1. Defects in code and specification of the final programs of participants

#Defects KeY CorC

Code Specification Code Specification

Verified 2 3

No defects 8 2 4 3

Minor defects 1 4 3 2

Major defects 1 3 1 2

Incomplete 0 1 2 3

terms of changed lines. For example, if an incorrect assignment was fixed by
a participant, we count one change in the program and reduce the number of
defects by one. The time needed for every exercise was measured manually. If a
participant solved a task, the time was noted. After 30 min, we interrupted the
participants when they were not finished.

Deviations. The participants assigned themselves randomly to a group by
selecting one computer. We missed that the participants per groups were
unequal. Group A had six participants, and group B had only four. This unequal
distribution changed which exercise was done with which tool. Since we used the
Latin square design, the influence should not be significant because we still had
ten results for each treatment.

4 Results and Discussion

In this section, we present the results of our evaluation. We analyzed the data
of the created programs and the answers of the questionnaire. The compara-
bly small number of participants reduces the generalizability of the results, but
allows us to evaluate the process of the participants in detail by analyzing all 347
intermediate code snapshots. This gives us anecdotal evidence to qualitatively
discuss advantages and disadvantages of CbC and PhV.

4.1 Defects in Implementation

To answer the first research question, RQ1, what errors do participants make
with CbC or PhV, we analyze defects in the program and the specification.

There are ten implementations with each tool. The defects in the code are
shown in Table 1 in column two and four, numbered left-to-right from one. With
KeY, eight programs were correct and two of them were verified. In one case,
only a loop guard was slightly incorrect (e.g., two variables were compared with
less than, but less than or equal was correct). Only one program contained major
defects. We classified a program to have major defects, if we could not correct



Comparing Correctness-by-Construction with Post-Hoc Verification 395

Table 2. Initial and final defects in the programs of participants

Row Initial defects Final defects KeY CorC

1 0 0 6 1

2 1 0 1 1

3 2 0 1 0

4 3 0 0 1

5 4 0 0 1

6 1 1 1 0

7 2 1 0 2

8 3 1 0 1

9 >5 >5 1 1

10 Incomplete 0 2

the program with at most five changes. With CorC, four programs were correct
and three of them could be verified. In three programs, a minor defect occurred,
one program had numerous mistakes, but also two programs were incomplete.

In the case of intermediate specifications which needed to be provided, for
both tools the results were worse. In Table 1, the defects in intermediate and loop
invariant specifications are shown in column three and five. Only in two cases for
KeY and three cases for CorC no defects occurred. In KeY, four specifications
contained minor defects, such as a missing boundary for a control variable or
an incorrect comparison of two variables. Three programs had major defects
in the specification. For example, it was not properly specified which elements
of the array were already examined in the maximum element algorithm. One
participant did not create an invariant. In the case of CorC, two minor and two
major defects occurred, but also three algorithms had incomplete specifications.
Two of these three incomplete specifications could be explained as incomplete
programs. In the third case, the algorithm was created but not specified.

To analyze the defects in more detail, we counted the defects during the
programming task. In Table 2, the defects in the initial (i.e., programs at the
first verification attempt) and final programs are shown. One difference between
programming in KeY and CorC is that the participants in KeY started the
first verification after the program was completely constructed. In CorC, some
users started earlier, with incomplete programs because they could verify Hoare
triples for parts of the programs that were already completely concretized. With
KeY, six participants created a program without any defects (Row 1). In two
cases (rows 2 and 3), one or two defects were found. One participant started
with one defect, but could not find the defect (Row 6). The participant also had
three defects in an intermediate result, but never found the incorrect loop guard
condition. One program had more than five defects in the beginning and the end
(Row 9). With CorC, only one program had no defects in the beginning (Row 1).
Three participants started with one to four defects and fixed the defects (rows 2,
4, and 5). One participant who started with two defects and ended with one
(Row 7), had a correct intermediate result, but inserted one defect in the final
version. One participant had a result which could not be fixed easily (Row 9).



396 T. Runge et al.

Two programs were incomplete in CorC (Row 10). Their developers started with
the first refinements, but could not finalize the program in the CorC editor.

The construction of algorithms with KeY was mostly the same. The partici-
pants created a correct or nearly correct algorithm. Afterwards, a loop invariant
was constructed and the program was verified. Astonishingly, no participant could
verify the program on the first try even though the program was correct because
the loop invariants were incorrect or too weak (e.g., for modulo the special case that
the input parameters could be equal was not handled). The approach of the par-
ticipants to get the program to a verifiable state was different. Some participants
mostly changed the invariant and verified the program again. Others changed the
loop and the invariant. A correct program was changed up to ten times to another
correct solution, but no sufficient invariant for KeY to verify the program was
found. Some participants also changed whether the loop variable was increased
or decreased several times.

With CorC, the most common approach was to create the program with all
refinements and specify the intermediate conditions or loop invariants in parallel.
Often the program was completely refined before the first verifier call. If the ver-
ification was not possible, missing parts such as the initialization of control vari-
ables were added, assignment or conditions were changed. In three cases, the initial
defects were found, but in one case, a correct intermediate program was changed to
an incorrect program. The participant with the incorrect result started with a pro-
gram where he forgot to decrease the control variable in the loop. Afterwards, the
participant decreased the variable correctly, but the loop invariant was wrong, so
the statements couldnot be verified. So, the programwas changed again to decrease
the control variable at another place in the program. In the process, the participant
introduced an incorrect execution path where the variable is not decreased. Two
other participants started with a loop, but forgot the initialization of necessary
variables. This mistake was recognized during the exercise.

In summary, both tools in some cases lead to correct and verified programs.
Small defects occurred with both tools, but in CorC, we observed incomplete
programs. If the program could not be verified, participants mostly changed the
loop guards, the loop body, or loop invariants. The changes in the code are fewer
with CorC than with KeY. If a program could not be verified, the problem was
in most cases an insufficient loop invariant or a wrong loop guard. With PhV,
most participants created correct code in the first place. As shown in Table 2,
only three defects were found in the process in total. With CbC, the users started
mostly with a defective program and found twelve defects in total. This higher
number of found defects may be explained with better tool support in CorC,
but also with the higher number of existing defects. With PhV, only four defects
existed by excluding the completely wrong program. Thus 75% of the defects
were found. For CbC, there are 15 defects in total, so 80% have been found.

RQ1. Comparing the defects in code, participants made similar errors with
both techniques (e.g., incorrect loop guard), but they made fewer and mostly
minor errors with PhV. This could be explained with the familiar environment of
standard Java with JML. The two incomplete programs in CorC can be explained
by problems interacting with the tool. Thus in total, more correct programs



Comparing Correctness-by-Construction with Post-Hoc Verification 397

were created with PhV than with CbC. That more programs were verified with
CbC anyway is interesting. One explanation could be that programs with CbC
were less changed. The participants might have thought more about the program
instead of changing the program by trial-and-error. Due to the similar correction
rates of defects for both tools, we cannot confirm a negative influence of CbC
in the programming process, but we should further investigate why more defect
programs with CbC exist.

4.2 Analysis of Programming Procedure

From the intermediate snapshots, we can evaluate the programming procedure
by analyzing the changes and defects in code and intermediate specification,
and missing program or specification parts. We analyzed 20 solutions containing
between 9 and 39 snapshots. We excluded the incomplete and entirely incorrect
cases because we could not count wrong or missing parts with the same scale as
for the other cases. In the following, three typical results are shown.

In Fig. 1, we show the graph of a participant solving the maximum element task
in CorC. The participant started the verification process with two missing lines
of code and two missing intermediate specification lines. The participant also had
two defects in the intermediate specification. Overall, 25 steps were taken by the
participant to achieve the correct solution. In the first 13 steps, the program and
the specification were changed, but no defects were fixed. In Step 14, the invariant
of the program was corrected. The special case that there can be more than one
maximum element in the array was included in the invariant. The next steps were
used to verify the program, until the participant realized that the initialization of
variables was missing. After this fix in Step 21, the program was verified.

In Fig. 2, the process to construct the maximum element algorithm in KeY is
shown. The participant started with a correct program where the invariant was
missing. After introducing the invariant with a defect, the participant changed
the code and the invariant during the whole task without finding a sufficient
invariant. The program was changed to iterate the array from forward to back-
ward and vice versa several times. The main reason that the program could not
be verified was that the invariant did not specify which elements of the array
were already visited. There were similar cases with KeY where also only the
invariant was wrong. The code and intermediate specifications were changed by
most participants during their development process. There were two participants
who mostly changed the invariant instead of the code.

In Fig. 3, we show a graph of a user developing the modulo algorithm in
CorC. The participant started with one defect in the code, an incorrect loop
guard, and two missing specification parts, the invariant and an intermediate
condition. In the first steps, the participant tried to verify the whole program
without changing it. Then, the missing specifications were added, but both were
wrong. In the invariant, the comparison operator was the wrong way around,
and the intermediate condition was too weak (i.e., it was not specified that the
correct factor was found). The specification was changed until step twelve, then
the participant tried to verify the program again. As this did not lead to a



398 T. Runge et al.

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 1. Process to construct maximum element algorithm in CorC

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 2. Process to construct maximum element algorithm in KeY

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Changes Code Changes SpecificaƟon Missing Code

Missing SpecificaƟon # Defects in Code # Defects in SpecificaƟon

% verified

Fig. 3. Process to construct modulo algorithm in CorC



Comparing Correctness-by-Construction with Post-Hoc Verification 399

-1,25
-1,00
-0,75
-0,50
-0,25
0,00
0,25
0,50
0,75
1,00
1,25
1,50
1,75

AƩracƟveness Perspicuity Efficiency Dependability SƟmulaƟon Novelty

CorC KeY

Fig. 4. Results of the user experience questionnaire

solution, the code and specification were changed again. The wrong comparison
in the invariant was found, but the other two problems remained until the end.

RQ2. With the detailed analysis of all 347 program snapshots, we can discuss
the programming process of the participants. We saw that correct programs were
changed several times if they could not be verified, and surprisingly remained
correct. The participants did not realize that only the intermediate specification
was insufficient. They need better tool support to pinpoint the defects in code
or specification. We also noticed a non-monotonic construction process for both
techniques. By monotonic, we mean that a program is specified, constructed,
and then verified to be correct. An example for the non-monotonic construction
process with CbC and PhV are the trial-and-error changes in specification and
code. For example with PhV, the users changed to iterate the array from forward
to backward in several cases. With CbC, the users verified a correct part of
the program, but changed it if they could not verify the complete program. In
comparison to PhV, participants using the CbC approach changed the code less.
Furthermore, a correct specification may favor the finding of mistakes in the
program. Often defects were found after a correct loop invariant was introduced.
In our evaluation, all programs with correct specifications had no defects.

4.3 User Experience

The results of the UEQ are presented in Fig. 4. The answers of the participants
were evaluated according to the six measurements: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty. The scale is between +3 and
−3 for each item. Overall, the average answers of the participants are higher
for CorC. For perspicuity both tools got a negative mean value. KeY also has a
negative result for novelty. We measured a significant difference with the T-test.5

Stimulation (p = 0.0457) and novelty (p = 0.0274) are significantly different.

5 Statistical hypothesis test to compare two independent samples which are normally
distributed.



400 T. Runge et al.

For the open questions, we clustered the answers to analyze whether the
participants had similar experiences. The results are shown in the following.

OQ1. What was better in CorC/KeY? Five to six participants valued the clar-
ity of CorC. They also valued the good feedback of CorC to spot the defects
in the program because the program is split into individually provable state-
ments. On the negative side, the unfamiliar syntax and the handling of the tool
were mentioned. In the case of KeY, the well-known Java and JML syntax was
appreciated by nearly all participants. Two participants also valued the clarity
of KeY. One participant disliked the bad error messages of KeY. Another one
mentioned that KeY gives more information about the problem, but this follows
from the design of the experiment. CorC uses KeY as back-end for verification,
but we suppressed the KeY editor on purpose in CorC because the verification
problems for the implemented algorithms should be small enough to be verified
automatically [34]. In the normal configuration, CorC can deliver the same infor-
mation by opening the proof in KeY. In summary, the known syntax in KeY was
an advantage, but the participants appreciated the better potential in CorC to
find the defects because the program was decomposed into provable statements.

OQ2. How did you proceed with the task in CorC/KeY? In KeY, all participants
created the code first, then they created the loop invariant and verified the
program. One participant emphasized that the program was inferred from the
postcondition. In CorC, the common case was to construct the code stepwise.
Two participants explicitly mentioned that they created the program in CorC
first, then specified the program. Two others started with the specification in
CorC. In contrast to KeY, the participants wrote specifications only in CorC
before or during the construction of the code.

OQ3. Which tool (CorC/KeY) would you use for verification, and why? Five
participants decided to use CorC for verification. They appreciated the clarity.
Two participants mentioned the support to verify and debug individual state-
ments. One participant highlighted the reflective coding process that is encour-
aged by CorC. Four participants decided to use KeY. They liked the familiar
environment and syntax. As in the first question, one participant mentioned that
KeY gives more information. There is no clear trend towards one tool.

OQ4. Which tool (CorC/KeY) better supports avoiding or fixing defects, and
why? Most participants decided for CorC to avoid or fix defects. They appreci-
ated that defects are assigned to individual statements, therefore, it was easier
to understand the problem. One participant mentioned that the stepwise con-
struction helped to create correct programs. For both tools, some participants
indicated that defects were detected and only correct code could be verified.
Although nearly the same number of participants would use KeY or CorC for
verification, most participants wanted to use CorC to find or fix defects in the
coding process. That defects were associated to specific statements was well
received by the participants.

RQ3. The third research question, whether participants prefer CorC or KeY,
can be answered with the results of the questionnaire. The participants preferred



Comparing Correctness-by-Construction with Post-Hoc Verification 401

KeY because of the familiar syntax, and CorC for the better feedback if there
were defects in the code. This leads to a balanced vote on which tool the partic-
ipants would use for verification. Interestingly, the participants voted in favor of
CorC when it comes to finding and fixing defects. This should be further inves-
tigated; what keeps participants from using CorC even though they mention
that it helped better to find defects. With the answers of the participants and
the analysis of the snapshots, we can also confirm how the participants worked
on the tasks. In KeY, the program was developed, and afterwards the specifi-
cation was constructed. So, the code was mostly correct in the first place. In
CorC, they had different approaches. They interleaved coding and specification
or started with the specification. This results in starting the verification earlier
with incomplete or incorrect programs. Surprisingly, nobody complained about
the additional specification effort in CorC.

4.4 Threats to Validity

In our experiment, we had only 10 participants. This reduces the generalizability
of the results, but allowed us to analyze all 347 versions of program snapshots in
detail. The participants were all students of a software quality course. We could
ensure that all students had the required theoretical and practical precognition.
They are no experts in verifying software, but smaller tasks, such as those of
our experiment, were solved before by the participants in class. Most students
also have part-time jobs in companies, so the results are generalizable to junior
developers. The motivation of the students is doubtful, but the lottery gave an
incentive to accomplish the tasks. Another limitation for the experiment was
the limited time. Most participants have accomplished to write correct code,
but only five out of twenty algorithms were also verified. With more time it is
possible that more algorithms would have been verified. We only used two small
size exercises in our experiment, and therefore, cannot generalize the results to
bigger problems. The results of the experiment also depend on our introduction
of the tools—though we tried to introduce both tools equally without bias to
the students.

5 Related Work

In the literature, tool support for verification was previously evaluated, but PhV
was not compared with CbC.

Spec# is an extension of the programming language C# to annotate
code with pre-/postconditions and verify the code using the theorem prover
Boogie [10,11]. Barnett et al. [11] explained their lessons learned of constructing
this verification framework. In contrast, we focus on how users solve program-
ming and specification tasks. Petiot et al. [33] examined how programmers could
be supported when a proof is not closed. They implemented tool support that
categorizes the failure and gives counter examples to improve the user feedback.
This idea is complementary to the CbC method by pinpointing the failure to



402 T. Runge et al.

a small Hoare triple, which was appreciated by the participants in this study.
Johnson et al. [23] interviewed developers about the use of static analysis tools.
They came to the same result as we did that good error reporting is crucial
for developers. Hentschel et al. [21] studied the influence of formal methods to
improve code reviews. They detected a positive impact of using the symbolic exe-
cution debugger (SED) to locate errors in already existing programs. This setup
is different to our evaluation where the participants had to program actively.
The KeY tool [12,13] was already evaluated to get insight into how participants
use the tool interactively. In contrast, we wanted to evaluate the automatic part
of KeY because we think that most users do not have a theoretical background
to verify a program interactively.

Besides CorC and KeY, there are other programming languages and tools
using specification for program verification. For example Eiffel [28,29] with the
verifier AutoProof [24,35], SPARK [9], Whiley [32], OpenJML [15], Frama-C [16],
VCC [14], Dafny [26,27], VeriFast [22], and VerCors [5]. These languages and
verification tools can be used to compare CbC with post-hoc verification. As we
only used a subset of the Java language in our experiment (comparable to a sim-
ple while language), the difference to other programming languages is minimal,
and we expect similar results for those tools as with KeY.

A related CbC approach is the Event-B framework [1]. Here, automata-
based systems are specified, and can be refined to concrete implementations.
The Rodin platform [3] implements the Event-B method. For the predecessor of
Event-B, namely the B method, Atelier B [2] is used to prove correctness. The
main difference to CorC is the different abstraction level. CorC uses source code
with specification rather than automata-based systems. The CbC approaches
of Back [8] and Morgan [30] are related to CbC by Dijkstra, and it would be
interesting to evaluate these approaches in comparison to our CbC tool in a
future study. For example, ArcAngel [31] could be used as an implementation
of Morgan’s refinement calculus. Back et al. [6,7] build the invariant based pro-
gramming tool SOCOS. They start explicitly with the specification of not only
pre-/postconditions but also invariants before the coding process. In their exper-
iment, they discovered that good tool support is needed and that invariants are
found iteratively by refining an incomplete and partly wrong invariant; an insight
which we can confirm.

6 Conclusion and Future Work

We compared correctness-by-construction and post-hoc verification by using the
tools CorC and KeY. Participants could create and verify programs, but the
majority failed to create invariants that were strong enough. When a program
could not be verified, trial-and-error was the most popular strategy to fix the
program. Regarding user experience, KeY and CorC were both considered useful
to verify software, but the good feedback of CorC was explicitly highlighted. Nev-
ertheless, the defects in the programs with CorC indicate that the participants
need more time to get used to CorC.



Comparing Correctness-by-Construction with Post-Hoc Verification 403

We evaluated the user study qualitatively to get insights in how users create
verified programs. For future work, we could repeat the experiment with more
participants to get quantitative data about defects in the programs. Furthermore,
our insights about the trial-and-error programming process could be used to
improve the usability of both tools.

Acknowledgment. We would like to thank Alexander Knüppel and Domenik
Eichhorn for their help with the user study. The hints and suggestions of Alexan-
der helped to construct the final version of the study. Thanks to Domenik for setting
up the tools.

References

1. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, Cambridge (2005)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.:
Deductive Software Verification-The KeY Book: From Theory to Practice, vol.
10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

5. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07317-0 5

6. Back, R.-J.: Invariant based programming: basic approach and teaching experi-
ences. Formal Aspects Comput. 21(3), 227–244 (2009)

7. Back, R.-J., Eriksson, J., Myreen, M.: Testing and verifying invariant based pro-
grams in the SOCOS environment. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007.
LNCS, vol. 4454, pp. 61–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73770-4 4

8. Back, R.-J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

9. Barnes, J.G.P.: High Integrity Software: The Spark Approach to Safety and Secu-
rity. Pearson Education, London (2003)

10. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

11. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

12. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-
1 1

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-73770-4_4
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-319-15201-1_1


404 T. Runge et al.

13. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. Electron. Proc.
Theor. Comput. Sci. 167, 4–13 (2014)

14. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

15. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

16. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

17. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

18. Feigenspan, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring pro-
gramming experience. In: 2012 IEEE 20th International Conference on Program
Comprehension (ICPC), pp. 73–82. IEEE (2012)

19. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
20. Hall, A., Chapman, R.: Correctness by construction: developing a commercial

secure system. IEEE Softw. 19(1), 18–25 (2002)
21. Hentschel, M., Hähnle, R., Bubel, R.: Can formal methods improve the efficiency

of code reviews? In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 1

22. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

23. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-
ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 672–681. IEEE Press (2013)

24. Khazeev, M., Rivera, V., Mazzara, M., Johard, L.: Initial steps towards assessing
the usability of a verification tool. In: Ciancarini, P., Litvinov, S., Messina, A.,
Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC, vol. 717, pp. 31–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70578-1 4

25. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27919-
5

26. Leino, K.R.M.: Specification and verification of object-oriented software. Eng.
Methods Tools Softw. Saf. Secur. 22, 231–266 (2009)

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

28. Meyer, B.: Eiffel*: a language and environment for software engineering. J. Syst.
Softw. 8(3), 199–246 (1988)

29. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
30. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
31. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.: ArcAngel: a tactic language for

refinement. Formal Aspects Comput. 15(1), 28–47 (2003)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-33693-0_1
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-319-70578-1_4
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-27919-5
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20


Comparing Correctness-by-Construction with Post-Hoc Verification 405

32. Pearce, D.J., Groves, L.: Whiley: a platform for research in software verification.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
238–248. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 13

33. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4 8

34. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6 2

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

36. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 730–748. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 52

https://doi.org/10.1007/978-3-319-02654-1_13
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-319-47166-2_52

	Comparing Correctness-by-Construction with Post-Hoc Verification—A Qualitative User Study
	1 Introduction
	2 Verification Techniques
	2.1 Post-hoc Verification
	2.2 Correctness-by-Construction
	2.3 Contrasting Correctness-by-Construction and Post-hoc Verification

	3 Design of a User Study
	4 Results and Discussion
	4.1 Defects in Implementation
	4.2 Analysis of Programming Procedure
	4.3 User Experience
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References




