
Static Dataflow Analysis of R Programs
Florian Sihler, Matthias Tichy

1) Parse
We rely on the R parser to convert the input files
into an abstract syntax tree (AST).

The figure on the right illustrates the AST
for the R code “a <- 42; b <- 3; a”.

exprlist

expr

expr SYMBOL

LEFT_ASSIGN

expr NUM_CONST;

...

expr SYMBOL

a

<-

; 42

a

2) Normalize
Subsequently, we create a uniform and version-
independent representation of the AST, abstracting
away from the intricacies of the R language.

Currently, we support R versions 3.6 – 4.4.1.

RExpressionList

RBinaryOp

RSymbol

RNumber

...

RSymbol

0

lhs

rhs
1

2

a

<-

42

a

3) Dataflow Analysis
The analysis uses a syntax-guided approach in the
form of a stateful fold over the normalized AST,
intertwining dataflow and control flow analysis.
Fold handlers are dispatched dynamically using an
abstract interpretation of the R environment
(mapping symbols to their definitions).

We support side-effects, higher-order functions,
sourced files, and more of R’s dynamic nature.

The figure on the right illustrates the incremental
construction of the dataflow graph, desugaring <-
into a function call (mirroring R’s semantics).

<-

42

a

arg

arg, ret

def-by
def-by

a <-

3

b

arg

arg, ret

def-by
def-by

reads

Symbol use Value

Symbol definition Function call

4) Backward Program Slicing
A slice for a program point is a subset of the program
containing only the parts that may have an influence
on the computation at that point. On the dataflow
graph, this reduces to a reachability problem.

In practice, slicing for points of interest achieves an
average reduction of 87.3% in lines of code.

<-

42

a

arg

arg, ret

def-by
def-by

a <-

3

b

arg

arg, ret

def-by
def-by

reads
1

2

3

4

5) Reconstruction
As a final step, we use the nodes selected by the
backward program slicing to reconstruct an
executable R program.

a <- 42
a

flowR
A program slicer and dataflow analyzer
for the R programming language.

Available for Visual Studio Code and RStudio.

87.3% average reduction in LOC when
slicing for points of interest

473 msaverage time to analyze an R
program (without caching)

96.1% identical results with automated
input-output equivalence testing

41
03

re
al

-w
or

ld
re

se
ar

ch
ar

tif
ac

ts

October 30, 2024 Institute of Software Engineering and Programming Languages Ulm University

https://github.com/flowr-analysis/flowr

