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1) Parse
We rely on the R parser to convert the input files
into an abstract syntax tree (AST).

The figure on the right illustrates the AST
for the R code “a <- 42; b <- 3; a”.
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2) Normalize
Subsequently, we create a uniform and version-
independent representation of the AST, abstracting
away from the intricacies of the R language.

Currently, we support R versions 3.6 – 4.4.1.
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3) Dataflow Analysis
The analysis uses a syntax-guided approach in the
form of a stateful fold over the normalized AST,
intertwining dataflow and control flow analysis.
Fold handlers are dispatched dynamically using an
abstract interpretation of the R environment
(mapping symbols to their definitions).

We support side-effects, higher-order functions,
sourced files, and more of R’s dynamic nature.

The figure on the right illustrates the incremental
construction of the dataflow graph, desugaring <-
into a function call (mirroring R’s semantics).
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4) Backward Program Slicing
A slice for a program point is a subset of the program
containing only the parts that may have an influence
on the computation at that point. On the dataflow
graph, this reduces to a reachability problem.

In practice, slicing for points of interest achieves an
average reduction of 87.3% in lines of code.
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5) Reconstruction
As a final step, we use the nodes selected by the
backward program slicing to reconstruct an
executable R program.
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flowR
A program slicer and dataflow analyzer
for the R programming language.

Available for Visual Studio Code and RStudio.

87.3% average reduction in LOC when
slicing for points of interest

473 msaverage time to analyze an R
program (without caching)

96.1% identical results with automated
input-output equivalence testing
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https://github.com/flowr-analysis/flowr

