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Figure 1: PlantPal is a web application that allows for shared control of a precision agriculture robot (PAR) to enable remote
robot-assisted urban gardening for multiple users. a) PlantPal features various field views, dynamic field visualizations, live
streams, timelines, and a chat. b) Each user of PlantPal is assigned to their own field plot (a 1m x 1m space) and can remotely
execute tasks (e.g., sowing seeds, watering, and weeding) by sending requests to FarmBot [49], an open-source PAR, that was
installed on a real garden bed (18m2). c) We deployed PlantPal in a 3-week evaluation. After the study period, most participants
successfully cultivated various crops on their plots.

ABSTRACT
Urban gardening is widely recognized for its numerous health and
environmental benefits. However, the lack of suitable garden spaces,
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demanding daily schedules and limited gardening expertise present
major roadblocks for citizens looking to engage in urban gardening.
While prior research has explored smart home solutions to support
urban gardeners, these approaches currently do not fully address
these practical barriers. In this paper, we present PlantPal, a sys-
tem that enables the cultivation of garden spaces irrespective of
one’s location, expertise level, or time constraints. PlantPal enables
the shared operation of a precision agriculture robot (PAR) that is
equipped with garden tools and a multi-camera system. Insights
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from a 3-week deployment (N=18) indicate that PlantPal facilitated
the integration of gardening tasks into daily routines, fostered a
sense of connection with one’s field, and provided an engaging
experience despite the remote setting. We contribute design con-
siderations for future robot-assisted urban gardening concepts.

CCS CONCEPTS
•Human-centered computing→ User studies; • Applied com-
puting → Computers in other domains.

KEYWORDS
Urban Gardening; Sensors; Nature Engagement; Urban Informatics

ACM Reference Format:
Albin Zeqiri, Julian Britten, Clara Schramm, Pascal Jansen, Michael Rietzler,
and Enrico Rukzio. 2025. PlantPal: Leveraging Precision Agriculture Robots
to Facilitate Remote Engagement in Urban Gardening. In CHI Conference
on Human Factors in Computing Systems (CHI ’25), April 26-May 1, 2025,
Yokohama, Japan. ACM, New York, NY, USA, 21 pages. https://doi.org/10.
1145/3706598.3713180

1 INTRODUCTION
Engagement in urban gardening is considered an effective method
to preserve local biodiversity [19, 39, 92], enhance access to fresh
produce [37, 69], and improve citizens’ mental and physical well-
being [15, 84, 95]. Many large-scale political initiatives (e.g., [20, 33])
highlight urban gardening as a key component of broader efforts
to expand and enhance green spaces in densely populated cities.
Consequently, various research fields, including Human-Computer
Interaction (HCI) [13, 28, 59, 60, 78], have investigated strategies to
promote urban gardening and re-engage former gardeners.

Prior HCI research surrounding the garden has focused on assist-
ing individuals in developing gardening skills (e.g., [16, 52, 100]),
exploring hidden or unnoticed aspects of their gardens (e.g., [14, 85,
94]), and fostering social connections among gardeners (e.g., [60,
87]). Numerous studies have proposed smart automation or sensor
kits (e.g., [2, 60, 87, 100]) to enhance precision in plant care and im-
prove gardeners’ expertise by providing additional information [78].
Approaches leveraging smart gardening devices have likewise been
proposed to facilitate collaboration and task management in com-
munity gardens [28, 30, 78]. While these strategies effectively sup-
port individuals who are already regularly involved in gardening,
they fall short of making consistent engagement in gardening more
approachable or feasible for the broader population. As related
research suggests, primary barriers for citizens interested in gar-
dening extend beyond lacking knowledge or coordination [41, 82].
Especially in confined urban environments, they include practical
challenges such as lacking availability of spaces suitable for urban
gardening (i.e., backyards or balconies) [3, 21, 22, 41, 81, 82], hectic
daily schedules [21, 82], limited tolerance for the physical demands
of gardening [41], or inconsistent motivation [21, 54]. These fac-
tors, frequently in combination, have been shown to discourage
individuals interested in gardening or those who have previously
tried it from re-engaging [41]. The question of how technological
advances can be leveraged to shape alternative urban gardening
experiences that are more accessible to a broader audience remains

under-addressed in current research.

In this paper, we introduce PlantPal, a system designed to fa-
cilitate on-demand access to and the cultivation of garden spaces
regardless of an individual’s location, expertise, or time limita-
tions. At the core of PlantPal is a remotely controllable Precision
Agriculture Robot (PAR) named FarmBot [49], equipped with essen-
tial gardening tools and resources, enabling it to perform a range
of gardening tasks on demand (Fig. 1b). PlantPal also features a
multi-camera setup that provides real-time visual feedback, allow-
ing users to verify the PAR’s actions and monitor plant health
and growth progress on the field. As users cultivate their gardens
using PlantPal, the sampled data are used to create digitally aug-
mented visualizations, including detailed field views, plant growth
time-lapses, and event timelines for one’s field plot (Fig. 1a). Addi-
tionally, by utilizing a PAR as a shared resource among multiple
users, PlantPal allows up to 18 people to cultivate their garden plots
simultaneously. The design of PlantPal followed a three-step pro-
cess. We reviewed existent literature surrounding urban gardening,
technology-mediated nature engagement inHCI, andHuman-Robot
Interaction (HRI). Based on this knowledge, we ideated by mapping
PARs’ capabilities against current challenges preventing participa-
tion in urban gardening. We conducted a formative survey (N=42)
to probe stances toward aspects resulting from our initial mapping
(e.g., remote engagement in urban gardening and collaboration
with PARs). Leveraging the acquired feedback, we derived three
design goals that guided the design and implementation of PlantPal.

We deployed our prototype (Fig. 1c) on a real garden bed (18m2)
during a 3-week field study (N=18) to understand how users engage
with PlantPal and probe how the introduction of remote interac-
tion with a gardening bed using PARs affects users’ connectedness
to their plots, longitudinal engagement, gardening success, and
perceptions urban gardening. Our findings indicate that PlantPal
facilitates the integration of garden cultivation into daily routines,
provides an engaging experience, and increases gardeners’ per-
ceived connectedness to their fields, despite the remote setting.
Additionally, we found trends suggesting that the degree to which
PAR automation capabilities are leveraged may impact gardeners’
perceived connectedness and longitudinal engagement with re-
mote urban gardening. Based on the development and evaluation
of PlantPal, we derive design considerations relevant to the design
of future PAR-enabled urban gardening concepts. In summary, we
contribute the following:

(1) The development of PlantPal, a proof-of-concept system
leveraging shared control over a PAR to enable remote cul-
tivation of a real garden plot for multiple users. The setup
offers a flexible control approach between the user and the
PAR, offering dynamic adaptability to individual schedules
while digitally augmenting the visualization of plant growth
to enhance engagement and accessibility.

(2) Insights from a 3-week exploratory deployment of PlantPal
(N=18) indicating gardening success, an engaging and satis-
fying user experience, and connectedness to a garden despite
a fully remote setting.
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(3) Design considerations for future PAR-enabled urban garden-
ing concepts and fully remote technology-supported nature
experiences, addressing free exploration, risk of destruction,
sustainable resource use, and digital augmentation.

2 BACKGROUND AND RELATEDWORK
The development of PlantPal is grounded in related research on
challenges of citizens looking to pursue urban gardening, HCI ap-
proaches aiming to enhance gardening practices, and HRI with
PARs.

2.1 Challenges Related To Urban Gardening
Urban gardening encompasses all the practices related to growing
food within and near cities, from inner city allotments and com-
munity gardens to periurban off-ground cultivation [34]. Going
by this definition, practices such as backyard, allotment, rooftop,
balcony, and community gardening are included under the broader
umbrella term of urban gardening. Engagement in urban gardening
is connected to numerous benefits, such as enhancing well-being
and food resilience [15, 37, 69]. Much research on urban gardening
focuses on understanding the motivations, strategies, goals, and
challenges of citizens who actively engage in urban gardening or
intend to do so (e.g., [30, 57, 82, 87]). Prior work has identified a
wide range of motivations, including practical, intrinsic, and aes-
thetic factors [64]. According to Murtagh and Frost [64], practical
motivations often center around food production and promoting
biodiversity, while intrinsic motivations typically involve personal
pleasure and enjoyment throughout the growing process. Addi-
tionally, aesthetic motivations encompass the desire to shape one’s
environment and are known as key driving factors. Previous re-
search has demonstrated that, despite strongmotivations, the ability
to act on intentions to cultivate an urban garden is often accom-
panied by various challenges [40, 41, 46]. A common issue is the
lack of accessible spaces for urban gardening [3, 21, 22, 39, 41, 82].
Previous studies have additionally noted the unequal distribution
of green spaces between lower- and higher-income neighborhoods
in large cities [35, 55, 65]. Gardening also demands knowledge of
crop seasonality, the required frequency of plant care tasks, and the
ability to assess plant health throughout the growth cycle. Lacking
such knowledge has been shown to impede crop cultivation suc-
cess [17, 41], which can, in turn, diminish motivation, especially for
novice gardeners [21]. For those aiming to engage in urban garden-
ing consistently, integrating this practice into their daily routines
is a key consideration. Grassroots initiatives like urban community
gardens, where individuals share gardening spaces, aim to reduce
barriers and foster social connection [46, 87]. Research indicates
that interest in these gardens has increased recently despite a tem-
porary decline during the COVID-19 pandemic [12]. Community
gardens provide opportunities for members to share knowledge,
support those new to gardening, and manage tasks collaboratively,
addressing challenges such as the lack of private green space and
limited gardening experience. However, community gardens are
always accessible [46].

2.2 Supporting Gardening Through Technology
In HCI research, various works have focused on understanding
and supporting gardeners, not just in urban settings. Research
on urban gardening often includes ethnographic studies of prac-
tices, traditions, and challenges in private and community gardens
(e.g., [30, 59]). A key focus of this research has been exploring how
technology can be introduced to better support gardeners in their
activities [78]. Understanding where and when technology may
enhance gardening or any nature engagement experience is crucial
as the introduction of technology also has the potential to dimin-
ish nature experiences [11, 24, 51]. Since gardening encompasses
activities and experiences that go beyond the cultivation of plants,
technological support should extend to various aspects beyond
the gardening process itself. In a literature mapping,Rodgers et al.
[78] show that technical approaches surrounding urban gardening
primarily aim to teach gardening skills, support the connection
and coordination between gardeners, and reduce resource waste.
Technologies used to support urban gardeners and gardening com-
munities frequently fall under the broader category of IoT tech-
nologies [78], including smart irrigation systems [2, 60, 73] and
sensory toolkits [52, 100] to monitor plant health markers. For in-
stance, GrowKit [100] or WeSense [52] leverage smart sensors to
educate users on plant health. With "Connected Roots", McDonald
[60] demonstrated how automated irrigation systems linked across
multiple units in a residential building can facilitate interactions
among residents interested in gardening. This approach exempli-
fies how automation can be used to assign new social value to a
typically repetitive gardening task. When and where to incorporate
technology to support gardening experiences has also been a re-
search concern in the past. Additionally, a growing body of research
explores ways to strengthen human-nature relationships [78, 98].
For example, Vella et al. [94] demonstrated using camera traps to
help citizens observe and reflect on backyard ecosystems, while
Soro et al. [85] proposed using technology-mediated auditory ex-
periences to raise awareness of local bird species and foster a sense
of connectedness with local biodiversity [14, 85]. These works do
not directly address the topic of urban gardening in the sense of
crop cultivation. However, they focus on non-human actors and
habitats users may create through gardening.

In summary, prior work investigating how the introduction of
technology may support the gardening endeavors of urban dwellers
has focused on enhancing gardening skills, facilitating social inter-
actions and coordination between gardeners, promoting sustain-
ability through resource-efficient practices and monitoring tools,
and aspects that go beyond the process of plant cultivation. In the
context of urban gardening, technology has been successfully em-
ployed to enhance gardeners’ capabilities. However, as highlighted
in the previous section, many users express interest in gardening
but are hindered by practical barriers. Addressing the needs of these
individuals requires shifting from enhancing capabilities to creating
opportunities through technology.

2.3 Collaboration with Agriculture Robots
Previous HCI research on enhancing gardening capabilities has pri-
marily used traditional smart gardening devices. However, recent

2025-02-06 10:32. Page 3 of 1–21.
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advances in precision agriculture enable technology to take a more
active role in gardening. PARs are autonomous or semi-autonomous
systems designed to perform tasks such as planting, watering, weed-
ing, and monitoring crop health [10, 93]. The scale at which PARs
are deployed, whether in small gardens or large fields, affects their
size, functionality, and user interaction. Larger PARs manage ex-
tensive farm operations [72], while smaller ones are suited for local
urban settings [38]. Small-scale consumer PARs such as FarmBot
are often fixed in private backyards and do not require significant
movement outside the designated field. Remote controllability al-
lows users to interact with these PARs on-demand, whether nearby
or at a distance [93]. Control methods for PARs vary depending
on task complexity and environmental conditions [43, 99]. Fully
autonomous PARs handle simple tasks like irrigation, while more
complex tasks use semi-autonomous control, where human inter-
vention is needed for decision-making [93]. High-precision tasks,
such as pruning or inspection, rely on teleoperation, with human
operators remotely guiding the PAR step by step. Similar mixed-
initiative approaches are commonly found in HRI research [31, 99].
As previously mentioned, crop cultivation requires consistent man-
agement of gardening tasks. PARs are able to execute tasks like wa-
tering [63, 67], pruning [1], harvesting [7, 25], monitoring [23, 58],
and mapping [18], often necessitating specialized hardware [93].
Small-scale PARs, like those designed for individual consumers,
are often built to handle various gardening tasks, prioritizing user
convenience. The aforementioned factors (i.e., scale, interaction
proximity, tooling) additionally influence how PARs visualize in-
formation for the user. Effective information communication is
important for maintaining situation awareness, trust, and accep-
tance [68] across diverse tasks, settings, and interaction strategies.
Meta-analyses from HRI and HCI highlight the importance of mini-
malism and simplicity, ensuring consistency while delivering only
relevant information [43, 99]. The level of detail is largely influ-
enced by the task, control strategy, and user expertise. For instance,
users of commercial PARs may require less detailed information
than remote operators managing large-scale farming tasks with
drones.

In urban gardening, using PARs for collaborative interaction
introduces novel concepts, such as fully remote engagement, due
to the broad range of tasks PARs can manage. Prior work, such
as Webber et al. [98], comprehensively reviewed the literature on
technology-mediated nature engagement, finding that approaches
vary across the dimensions of distance and directness. In distant
settings, engagement often involves interactive videos [83], ab-
stract representations [77], or computer-generated depictions [53].
Shared PARs represent a novel form of distant nature engagement,
where remote engagement with a robotic actor leads to tangible
physical changes in the environment. Further, discourse about the
effects of PARs deployed at scale in future cities is already emerging
(cf. [38]). Therefore, investigating interaction with PARs for urban
gardening could open new research spaces and facilitate the design
of novel urban greening strategies. The following sections detail
how PlantPal adopts this approach and addresses common barriers
to urban gardening participation.

3 DESIGNING AND IMPLEMENTING
PLANTPAL

In the following, we detail the user-centered design process [66]
used to develop PlantPal. We first describe the derivation of our
initial concept and then explain the hardware setup and software
implementation of PlantPal.

3.1 Design Rationale
By reviewing prior studies surrounding urban gardening, we pro-
vided an overview of barriers that prevent engagement with urban
gardening. The development of PlantPal aimed to create a novel
PAR-enabled urban gardening experience for individuals interested
in gardening but who find it too inaccessible or impractical to pur-
sue. Shared control over a PAR to cultivate gardens remotely has
remained unexplored in prior work (see Section 2.2), leaving the
design of such a system ambiguous. We initially set out to define de-
sign goals to guide the development of PlantPal. In this process, we
began by mapping the capabilities of current PARs (see Section 2.3)
to the challenges urban gardeners face (see Section 2.1). The aimwas
to systematically align and ideate the technological possibilities of
PARs with urban gardeners’ real-world needs and challenges. Each
mapping included an explanation of how a PAR capability could ad-
dress a specific challenge (Challenge: Availability of suitable spaces
→ PAR capability: remote controllability → Leverage remote control
capabilities to facilitate on-demand access to a field managed by a
PAR). Two authors first independently generated and iteratively re-
fined these mappings, resolving conflicts through discussion. Aside
from mappings surrounding immediate and continuous interaction
with a potential garden space, ambiguities remained around bal-
ancing automation, user control, and information communication.
For example, remote access to a distant green space may bridge the
unavailability of nearby green spaces. Still, preferences for active
involvement may vary depending on users’ gardening expertise,
goals, motivations, and how comfortable they feel about having
control over a shared PAR.

3.2 Formative Survey
We conducted an online formative survey (N=42) to gather user
perspectives on remote collaboration with a PAR and preferences
for addressing ambiguities in the previous challenge-capability
mappings.

3.2.1 Survey Design. After filling out consent forms, the formative
survey began with demographic questions. Participants were then
presented with a list of barriers identified from our review of urban
gardening literature and asked to indicate which barrier primarily
prevents them from engaging in urban gardening. The main sec-
tion of the survey focused on understanding participants’ views on
collaborating with PARs to cultivate garden spaces remotely. Given
that consumer PARs are not widely known, we included a segment
with visual depictions of FarmBot, and its capabilities. We then in-
troduced the concept of using PARs to enable remote experiences in
a shared garden. This was followed by various statements gauging
expectations regarding the role of PARs in decision-making, addi-
tional functionalities other than gardening tasks, and the potential
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for sharing the robot as a resource among multiple gardeners. State-
ments were rated on a 7-point Likert scale. Afterward, participants
were asked to briefly describe concerns and opportunities they saw
with our concept.

3.2.2 Participants. We recruited participants from Prolific1, which
has been shown to provide reliable data [74] and further allows
for participant filtering. Initially, 50 participants were recruited, of
whom eight failed attention checks (according to Prolific guide-
lines2), leaving 42 participants. Their ages ranged from 20 to 71
years (𝑀 = 30.80, 𝑆𝐷 = 10.06). 22 participants identified as female,
and 20 participants identified as male. Regarding occupation, 24
participants were employed, 7 were self-employed, 6 were students,
4 were out of work, and 1 was retired. Thirteen participants held
a bachelor’s degree, 12 completed high school, 12 held a master’s
degree, and 5 held no formal degree. Participants resided in various
living environments: 25 in urban areas, 13 in suburban areas, and
4 in rural areas. Our sample consisted of participants who (1) self-
reported interest in pursuing gardening and (2) were unable to do so
to their liking at the time of the study. The most frequently reported
barrier in our sample was lacking access to green spaces (67.60%),
similar to related literature (e.g., [21, 40, 41]).

3.2.3 Collaborating with PARs. We analyzed how user ratings were
distributed to understand how preferences varied across previously
identified context-dependent aspects of the proposed concept. Re-
sults indicate that preferences for control initiatives differed consid-
erably. Statements proposing the PAR take full initiative in garden-
ing tasks, with users as spectators, were more frequently met with
reservations. More precisely, 40.54% of participants agreed with
this notion, while 59.46% disagreed. In contrast, 45.95% of partici-
pants preferred taking the initiative in gardening decisions, with
the robot merely serving as an "extended arm" to access gardening
spaces, while 29.73% disagreed and 24.32% were undecided. State-
ments proposing a hybrid approach, where the robot simplifies
repetitive tasks such as watering and reviews user actions, while
the user takes the initiative for more complex tasks such as deciding
on the removal of weeds, received the most agreement (75.68%).
80.95% of participants welcomed the notion of using a PAR as a
shared resource among multiple gardeners, while 19.05% disagreed.

3.2.4 Remote Garden Cultivation. Participants provided brief free-
text responses about opportunities and concerns regarding remote
garden cultivation. Our goal in analyzing the qualitative data was
to identify expressed opportunities and concerns and assess their
relevance.We did so by inductively coding responses as one or more
keywords to summarize the main opportunities or concerns. Similar
to Elliott [32], we then counted occurrences of keywords to indicate
their relevance within our sample. The coding was done in a joint
session by two authors (result: 30 codes). Codes were discussed and
merged in the same joint session, resulting in 17 codes. To convey
the trends of our data, we present the most frequent sentiments
supported by excerpts from the feedback and their incidence (see
supplementary material for the full code list). Participants expected

1https://www.prolific.com/ Accessed: 24/01/25
2https://researcher-help.prolific.com/en/article/fb63bb Accessed: 24/01/2025

PAR-supported remote garden cultivation to potentially raise effi-
ciency (30x), produce larger yields (10x), and increase accessibility
(10x). While efficiency and accessibility of remotely managing a
garden were appreciated ("[..] allows for more people to take control
of growing their own plants/food etc. within society as there is a bit
less maintenance and time required" (P14)), reservations were also
expressed ("It may induce dependence on technology, a lot of expenses,
lack of direct benefits from gardening, perception of the nature as
something totally controllable" (P36)). Destruction (15x) ("That it may
malfunction and damage the beds and vegetables." (P15)) and dis-
connectedness from nature (15x) ("Disconnection from nature due
to less interaction with plants; expensive technology." (P38)) were the
most mentioned concerns. Notably, this has been highlighted as
a concern in prior literature as well [51, 78]. Participants further
note that PAR-supported gardening would not be considered a re-
placement for gardening but rather an alternative ("I don’t have
a garden so I think it’s useful for that but this is more like its own
thing to me. I can garden but it’s a different gardening" (P41)). This
alternative way of garden cultivation may change perceptions (10x)
of gardening to be "only about the result at the end." (P2).

3.2.5 Design Goals. Our initial analysis of matching PAR capabili-
ties and urban gardening challenges, along with preferences and
concerns shared by users in the formative survey, informed the
following design goals.

D1 Remote On-Demand Access. Spaces suitable for gardening
are often not equally distributed [35, 55, 65] or otherwise not acces-
sible. From our initial matching of PAR capabilities with gardeners’
challenges (cf. Section 3.1), we conclude that PlantPal should func-
tion as a fully remote concept on a consistently available private
device. This concept can facilitate shared interaction with a distant
garden irrespective of physical presence.

D2 Adaptable Initiative in Decision-Making. Preferences re-
garding automation and control initiative between a human user
and PAR did not indicate that one specific control initiative was pre-
ferred over the other (cf. Section 3.2.3). We conclude that PlantPal
should foster flexibility, allowing users to calibrate their preferred
control initiative according to their goals, preferences, expertise,
and contextual factors.

D3 Meaning Beyond Execution of Gardening Tasks. Partici-
pants voiced concerns about absent direct interaction with a garden
leading to disengagement from nature and potential destruction (cf.
Section 3.2.4). They further view PAR-supported remote gardening
as an alternative to traditional gardening rather than a replacement.
We conclude that PlantPal should provide ways to engage with
gardening beyond the execution of plant care tasks. PlantPal should
aim to balance the introduced remoteness (D1) and foster a sense of
ownership and connection to one’s garden space, avoiding adverse
disengagement as noted in our formative survey and prior literature
(e.g., [11, 24, 26]).

The following sections outline the technical setup of PlantPal
and detail the software implementation, highlighting the integrated
strategies and their alignment with the design goals.

2025-02-06 10:32. Page 5 of 1–21.
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Figure 2: An illustration showing the hardware components of PlantPal. We installed a PAR (FarmBot) on a real garden bed
and extended its camera system (originally including only the borescope camera) to provide multi-view monitoring (cameras A,
B, and C). FarmBot executes gardening tasks using various tools held in a tool bay at a fixed location on the garden bed.

3.3 Technical Setup
As discussed in Section 2.3, PARs designed for individual consumers
are beginning to emerge. While many are still in the prototypical
phase, their availability for open-source development makes them
suitable platforms for PlantPal. To enable remote on-demand garden
interaction, PAR prototypes should support diverse gardening tasks
and allow hardware and software extensions. We selected FarmBot
(Genesis XL model), an open-source PAR, as the foundation for
PlantPal. FarmBot is designed for small-scale gardening and can
execute seeding, watering, weeding, and sensing (e.g., soil moisture)
actions [48]. Its open-source framework allows for customization
and integration of additional features, aligning with our purposes.

3.3.1 Movement. FarmBot operates on a track-based platform sim-
ilar to a standard CNC device, enabling movement across the X, Y,
and Z axes (Fig. 3) with four NEMA 17 stepper motors [50]. These
motors, in combination with a belt pulley system, convert rota-
tional motion into precise linear movement, allowing the robot to
navigate the garden bed accurately for tasks like planting, watering,
and weeding. Typical of platforms using track-based movement,
the area the robot operates within is mapped as a Cartesian co-
ordinate system, with movements specified as three-dimensional
coordinates.

3.3.2 Execution of Tasks. FarmBot performs tasks as sequences,
utilizing five specialized tools for watering, seeding, weeding, and

sensing [48]. The Z-axis head of the robot is equipped with a uni-
versal tool mount (UTM) featuring twelve electrical connections
and magnets. The tools are stored at a fixed location in the field,
where a tool bay is installed (Fig. 2). The tool pickup process is the
same for all gardening tasks.

The robot moves to the tool’s position, lowers its tool mount
to connect via magnets, and establishes an electrical connection
through the pins (Fig. 4). For example, to execute awatering task, the
robot first retrieves the watering nozzle by moving to its location,
mounting it, and then moving to the designated location to disperse
water. The electrical connection between the tool head and the
mount enables more complex tasks, such as seeding and weeding.
In the case of seeding, the tool head consists of a needle connected
to a vacuum pump. After mounting the seeding head, movement
to the seed container is initiated. The tool is then lowered while
activating the vacuum pump to capture a seed that is transported to
the designated planting spot. A rotary motor is used to cut weeds
and trim overgrown or weak crop parts.

3.3.3 Built-in Sensors. To enable continuous monitoring of the
garden bed, FarmBot collects input through two key sensors. First,
one of the tool heads includes a soil moisture sensor [50], which
provides data to visualize the current moisture saturation. This can
be used to adjust watering schedules, suspending them during rain
if soil moisture is sufficient. Second, for scanning, mapping, and
visualizing the current growth status of the garden, FarmBot uses

2025-02-06 10:32. Page 6 of 1–21.
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Figure 3: FarmBot moves on a track-based setup as shown
in a). This allows for movement across three dimensions:
X-axis movement in b), Y-axis movement in c), and Z-axis
movement in d).

a USB borescope camera mounted on the Z-axis next to the tool
mount (Fig. 2). The camera captures images to assess field depth
and optimize Z-axis movements for tasks such as seeding, where
accurate soil height is essential. Furthermore, these images provide
a static visual representation of the current condition of the garden
bed.

3.3.4 Extended Multi-Camera System. The built-in borescope cam-
era enables basic plant monitoring but captures single moments,
lacking continuous traceability of the robot’s actions. This limita-
tion restricts users’ ability to fully understand the robot’s activities
in the field, particularly in a remote gardening setting, where con-
tinuous monitoring is critical to maintaining an understanding
of ongoing robot actions [93] or encounters with non-human ac-
tors [94]. To address this, we extended FarmBot’s camera system
with a customized multi-camera setup featuring three additional
cameras, bringing the total to four. Each camera is built around a
Raspberry Pi 4B3 with an attached camera module, positioned to
maximize coverage (Fig. 2). Camera A, equipped with a 180° fish-eye
lens, was placed at a distance to give an overview of the robot and
its position within the field, showing its overall operation. Camera
B was positioned on the tool bay’s side to capture the robot’s home
position, allowing users to verify tool pickups and understand the
tool attachment process during tasks. Camera C, identical to Cam-
era A and located at the center of the Y-axis, used a 180° fish-eye
lens to provide a detailed view of the area, compensating for the
borescope camera’s limited coverage. This multi-camera system
provides a comprehensive overview of plant growth, the robot’s ac-
tions, and the spatial context of the field. We designed 3d printable
waterproof cases to fit the mounting positions on the robot. The
FarmBot’s two additional 24V pins were used as power supplies
for our camera system. The camera streams were made accessible

3https://www.raspberrypi.com/products/raspberry-pi-4-model-b Accessed: 24/01/2025

Figure 4: The universal tool mount (UTM) component on
FarmBot (a) allows to establish an electrical and magnetic
connection to a variety of tools that can be used to execute
gardening tasks (b))

online via a web server (Ubuntu 20.04 LTS), running a MediaMTX
media proxy4.

3.4 The PlantPal Web Application
To control the FarmBot, a fully open-source web application is
already provided by the developers5. With it, users can fine-tune
settings, create custom sequences/routines, and obtain visualiza-
tions of their gardens. Like most CNC control applications, the in-
tegrated functions favor tech-savvy users interested in fine-tuning
the system and exploring its functionalities. Further, FarmBot’s
innate web application does not foresee multiple users’ shared use
of one robot. Instead, it is designed to provide control to one nearby
user who owns the robot. Inspired by the existent web application,
we sought to implement a customized version that enables the
shared use of one FarmBot. Additionally, this enabled us to align
control mechanisms, visualizations, and field design mechanisms
with the design goals outlined in Section 3.2.5. Our full-stack web
application, PlantPal, was implemented using Nuxt36 and VueJS7.
VueJS was used for frontend development, while Nuxt3 was used for
backend development. To ensure reliable management of multiple
users and logging of user actions, we used a MySQL database. To
communicate with FarmBot, PlantPal further leverages the Farm-
BotJS and OpenFarm API [47]. Interacting remotely with a garden
plot by collaborating with a PAR allows for always-accessible and
on-demand engagement with urban gardening. Further aligning
with D1, PlantPal’s design was optimized for mobile devices to
ensure that access to the PAR and the multi-camera system can be
achieved at any point throughout the day.

3.4.1 General Overview. To use PlantPal, each user receives an
individual user account with personalized log-in information. Upon
login, the user is first given a general overview of the layout and
functionalities. As shown in Fig. 5, PlantPal featured a two-row
layout where the top row represents a map view of the field and
the bottom row provides UI elements that consist of additional
relevant information such as the weather at the field’s location,

4https://github.com/bluenviron/mediamtx Accessed: 24/01/2025
5https://github.com/FarmBot/Farmbot-Web-App Accessed: 24/01/2025
6https://nuxt.com/ Accessed: 24/01/2025
7https://vuejs.org/ Accessed: 24/01/2025
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Figure 5: An overview of the PlantPal web application. It is optimized for mobile use to make it accessible on demand. a)The
global field view provides an overview of all fields on the PlantPal field. Users can use scrolling and dragging gestures to zoom
into other gardeners’ plots and review what they have planted. b) Similarly, a personal field view is provided that is focused on
the execution of gardening tasks, designing a garden layout, and reviewing progress. c) At any time, users can active a live
stream that enables real-time monitoring from three different perspectives. Displaying the live stream at the bottom allows for
parallelization between virtual and real-world aspects. d) Using the timeline, users can review their own decisions or, if they
chose a higher automation level, the action that the PAR performed during their absence. e) Lastly, a chat was implemented as
a way for conflict resolution between gardeners and to support social interaction more broadly.

daily plant care tasks, plant care actions (e.g., weeding, seeding,
and watering), and access to the multi-camera live stream. The top
row can assume two states: a (zoomable) full-field overview or an
already zoomed-in field view focusing on one’s personal plot. The
following section elaborates on strategies developed to address the
established design goals.

3.4.2 Control Strategies. FarmBot is typically configured such that
users can set timed routines for watering, seeding, and weeding
tasks. However, customized control strategies were required in our
multi-user, remote gardening approach to offer flexibility between
more active and passive control. Leaning on existent robot control
strategies (e.g., [70, 71, 93]), we implemented three control modes:
(1) Manual, (2) Hybrid, and (3) Automated. Each mode balances
initiative in decision-making differently between the user and the
robot. Using Manual mode, users control all key decisions, such as
where to sow seeds, water, or remove weeds, with the robot merely
executing tasks and offering non-binding warnings, such as when
seeds are sown too close together. In contrast, Automated mode per-
mits FarmBot to manage all tasks autonomously, with users serving
as spectators except during planting, where users can choose the
crops they would like to plant. At the same time, the location-based
algorithms determine the optimal position instead of the user. In
Hybrid mode, the robot takes a more active role in decision-making.
While users still guide tasks, such as selecting plant types, the robot
intervenes to prevent mistakes (i.e. non-binding warnings turn into
binding restrictions going from Manual to Hybrid). For instance, it
will stop the user from planting seeds too close together or watering
excessively. This mode requires less fine-grained decision-making
from the user, with the robot ensuring that critical gardening errors

are avoided while still allowing the user to know when and if tasks
should be executed. PlantPal allows users to switch between these
modes based on their willingness or ability to take initiative in
decision-making for tasks related to plant health. PlantPal does not
automatically adapt the modes based on user profiles or behavior
as changing between control modes already adapts the options and
restrictions PlantPal provides. The flexible switching mechanism
aligns with the aims outlined in D2 as the user can freely choose
their level of involvement.

3.4.3 Digital Augmentations of the Gardening Process. PlantPal
incorporates a variety of visualizations designed to augment the
remote gardening experience to provide alternative perspectives
unique to the remote setting. While PlantPal allows users to trigger
actions on garden plots from anywhere remotely, our formative
survey revealed concerns about establishing a personal connection
with the plants and field. Drawing inspiration from recent work
on technology-supported nature engagement, highlighting that
distant interaction can offer alternative experiences distinct from
in-person engagement [53, 83, 98], we designed PlantPal to embrace
this notion, especially in connection to D3.

PlantPal provides several digital augmentations. One feature is
the daily capture of field images by FarmBot, offering users con-
current insight into the current state of their garden. These images
are overlaid with practical information, such as the exact locations
of newly planted seeds, even when only soil is visible until ger-
mination. Leaning on Farmbot’s innate web application [47], we
visualize expected plant growth through dynamic growth circles to
offer a predictive view of how large each crop will grow. This allows
users to manage present tasks and anticipate future developments.
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Figure 6: The degree of detail and realism regarding field visualizations can be dynamically adapted. a) shows how a photo grid
overlay can be visualized for the global field. Similarly, b) showcases this for a personal field plot.

Additionally, daily images are saved and compiled into a time-
lapse, which extends as the user interacts with their field over
time. Using the field visualization, users can play this time-lapse
at any point. Building on prior research (e.g., [76, 83]), this feature
aims to encourage reflection on past developments leading to the
present state. In-person gardening, by contrast, typically focuses on
the immediate present as gardeners physically interact with their
plants in real-time, responding to visible needs such as watering
or weeding as they arise. Users can toggle between abstract views
and detailed real-time representations of their garden. Inspired by
FarmBot’s web interface, PlantPal ’s switchingmechanism lets users
choose their preferred degree of detail between data-rich or abstract
representations. We argue that this approach aligns with the crop
cultivation process, as gardeners may require detailed information
for decision-making when plant care actions are executed, while at
other times, they may only need to check on the field to verify its
current state without needing comprehensive data. This flexibility is
designed to enable seamless personalization of the user experience
when interacting with PlantPal.

3.4.4 Inter-Gardener Relations. While for some individuals, gar-
dening is primarily outcome-focused (e.g., harvesting crops) [37, 69],
others emphasize the process, which encompasses more than the
physical care of plants [11, 24]. Social interaction, especially in
urban community gardens, is a key component of the gardening
experience, fostering communication and collaboration among gar-
deners [27, 36, 44]. Our formative survey indicated that participants
viewed shared features as important for a system like PlantPal,
which facilitates remote engagement with garden spaces. Garden-
ing with PlantPal mirrors aspects of traditional shared gardens,
where users manage individual plots in a shared space. In commu-
nity gardens, collaboration often involves knowledge exchange and
coordinated plant care [97]. PlantPal, however, introduces a PAR
as a constant gardening partner, adding a unique dynamic. While
the PAR is a shared resource, effective communication remains
relevant, especially as users may engage at varying control levels
(Manual, Hybrid, Automated). Conflicts may arise when gardeners
operate differently. For instance, users inManual mode might plant
near plot borders, causing overgrowth into neighboring spaces
and impacting others. To resolve such issues, PlantPal includes a
chat function for direct communication among gardeners sharing

the robot (Fig. 5). Additionally, PlantPal implements a First-Come-
First-Served task queue to manage access when multiple gardeners
request the robot within a short time. The global field view and
event timelines (Fig. 5) allow users to monitor each other’s progress
and the field’s overall state. In PlantPal’s current implementation,
users cannot edit the progress shared with others. This decision
prevents scenarios where users hide information, which could dis-
tort the visual representation of progress on the global field and
potentially lead to demotivation due to excessive hidden data. The
above aspects align with D3, providing a dimension of engagement
beyond gardening tasks.

4 EVALUATION
To explore how users interact with PlantPal and assess the impact
of robot-assisted garden cultivation on gardening outcomes, users’
connection to their plots, and attitudes toward urban gardening,
we conducted a 3-week exploratory field study.

4.1 Study Design
Recent research suggests that longitudinal studies investigating
the effects of technology-supported interactions with natural en-
vironments remain rare [98]. We deployed FarmBot on an 18m2
field near our institute, dividing it into 18 plots (1𝑚𝑥1𝑚) assigned
to participants. In our freestanding setup without protective struc-
tures (e.g., greenhouse), we evaluate PlantPal over 3 weeks under
real-world conditions. Participants were told that they could use
PlantPal to design a personalized garden layout and cultivate their
assigned plots over the study period. The study was conducted
at the Botanical Garden of the University of Ulm, Germany, and
participants were compensated with €30,00. The study was carried
out in full compliance with the ethical guidelines and regulations
established by the university’s review board.

4.1.1 Measures. For quantitative metrics, we assessed participants’
connection to their field using the Inclusion of Other in the Self
(IOS) Scale [4, 5]. We also used subscales from the Environmental
Attitude Inventory (EAI) [62] to assess views on perceived enjoy-
ment, alteration, conservation, and dominance over nature. These
scales assessed shifts in participants’ perceptions of technology
use in natural environments, their roles, and green self-perception
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Figure 7: Illustration a) shows the distribution of participants on the virtual field and b) the same distribution on the real
garden bed as sampled from the PlantPal app (top-down view).

related to cultivating a garden. Our formative survey highlighted
enjoyment of and connectedness to nature as concerns (cf. Sec-
tion 3.2.4). These measures enabled us to determine how effectively
PlantPal addressed these concerns. Additionally, we measured over-
all user experience with PlantPal using the brief version of the User
Experience Questionnaire (UEQS) [80], usability using the System
Usability Scale (SUS) [9], and included single item questions to
capture sentiments about remote gardening and collaboration with
PARs. User logs were recorded to track how participants integrated
PlantPal into their daily routines and how they used specific fea-
tures. Finally, we conducted voluntary semi-structured interviews
(similar to Vella et al. [94]) to gain deeper insights into participants’
strategies and perceptions, as well as to clarify patterns observed
in the user logs. The following describes our sample and the study
procedure.

4.1.2 Participants. Initially, we recruited participants from our per-
sonal networks. We further used snowball sampling [42] to gather
a total set of 18 participants. Participants were required to be indi-
viduals whose ability to engage in gardening to their satisfaction is
hindered by one or more barriers outlined in Section 2.1. The num-
ber of participants matched the available plots in our field (Fig. 7).
Participants’ ages ranged from 21 to 64 (𝑀 = 33.33, 𝑆𝐷 = 14.84).
Ten participants identified as female and eight as male. Seven par-
ticipants held a bachelor’s degree, six held a high school diploma,
three held a master’s degree, one held a Doctorate, and one had
completed an apprenticeship. Eight participants were students, six
were employed, two were out of work, and two were self-employed.
Regarding living situations, 12 participants lived in private apart-
ments without access to a backyard garden, four lived in houses
with shared gardens suitable for cultivating crops, and two resided
near green spaces where crop cultivation was not permitted. We
included four participants with access to a gardening space. These
participants expressed interest in utilizing PlantPal to grow crops
for which they lacked space in their current gardens, replicating
the concept of allotment gardening. Including these participants
allowed us to explore how individuals with existing green space
but spatial limitations would engage with PlantPal. Sixteen par-
ticipants had tried cultivating plants before participating in our
study, while two were novices with no prior gardening knowledge

but expressed a strong interest in learning. Based on the Affinity
for Technology Interaction (ATI) Scale [6, 91], participants scored
𝑀 = 3.92 (𝑆𝐷 = 0.93), reflecting moderate familiarity and interest
in digital systems.

4.1.3 Procedure. Each participant went through a kick-off session
where theywere introduced to the study process, provided informed
consent, and completed a pre-study questionnaire. In the introduc-
tion, participants received personalized login information for the
PlantPal web application and were guided through the function-
alities. The layout of PlantPal was described to the participants,
and they were further shown how the individual control modes
(i.e., Manual, Hybrid, Automated) differ (cf. Section 3.4.2). Lastly,
participants received a brief walkthrough on adding crops to their
fields, watering them, and conducting weed management via the
PlantPal interface. They were further made aware that progress
on the app would be visible to other participants. As FarmBot
requires seeds for desired crops to be supplied in a container before-
hand, we curated a selection of crops based on participant feedback
during the recruiting process. With the selection we offered, we
aimed to address different gardening motivations such as food
production [37, 69], support for biodiversity [19, 92], or aesthetic
appeal [64]. The resulting list of crops that could be cultivated dur-
ing the study consisted of lettuce, radish, cornflower, marigold, and
cumin. Before the study, the chosen seeds were sorted and laid out
in FarmBot’s seeding containers to make them accessible. Apart
from setting up FarmBot itself, no other on-site intervention was
required. Most participants then started designing their personal
field layouts towards the end of the kick-off session and used the
system for three weeks. During the evaluation period, participants
could contact the study supervisors via a contact form embedded
within the PlantPal web application for any questions. At the end
of the three weeks, participants completed a post-study question-
naire and could participate in voluntary semi-structured interviews.
Afterward, participants were compensated and asked if they would
like to keep their PlantPal access for the remainder of the growing
season.
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Figure 8: Participants planted various crops in their fields. The resulting distribution of crops on the entire field is shown in a).
PlantPal allowed the participants to focus on their personal field view in addition to the global view. b) shows the example of
P3, who planted two rows of radishes and one row of cornflowers (b.1). This virtual crop distribution was replicated by FarmBot
on a real garden plot (b.2) and led to successful cultivation toward the conclusion of the study (b.3). Similarly, the progress
across selected time points during the 3-week study can be seen in c). The precise and continuous watering within the same
locations that were specified virtually by participants led to soil displacements that make the distribution of crops seen in a)
visible on the real garden bed in c). The maturity of most crops was not reached at the conclusion of the study, yet successful
cultivation across all fields can be observed (c-Day 21)

5 RESULTS
5.1 Garden Cultivation
Fig. 8c shows the participants’ individual garden plots at different
time points throughout the study. Participants took different ap-
proaches to designing their field plot layouts. Thirteen participants
manually placed crops, while five selected the crops but let FarmBot
arrange them, leading to machine-like grid layouts. 250 crops were
initially planted, with an average of𝑀 = 13.89 (𝑆𝐷 = 3.92) per field.
Seventeen participants chose a mix of crops, while one participant
exclusively cultivated radishes on their plot (P4). Planting success
was gauged based on the percentage of crops that reached germina-
tion and progressed beyond early growth stages. This was judged
visually and using the FarmBot’s plant growth monitoring. On av-
erage,𝑀 = 80.75% (𝑆𝐷 = 17.18%) of the seeds planted successfully
grew past the germination stage. Using the log files gathered dur-
ing the three weeks, we observed preferences for one of the three
control modes (cf. Fig. 10). We define such a preference as more
than 50% of the study duration spent in one mode. In particular, P5,
P7, P9, P10, and P17 spent most of the study duration in Automated,
P1, P12, and P15 leveraged Manual the most, and P2-P4, P6, P8, P11,
P13, P14, P16, P18 preferred using PlantPal in Hybrid. Participants
preferring Automation mode successfully cultivated 𝑀 = 75.00%
(𝑆𝐷 = 15.81%), those who preferred Manual mode successfully
cultivated𝑀 = 75.00% (𝑆𝐷 = 20.41%), and participants preferring
Hybrid mode successfully cultivated𝑀 = 85.35% (𝑆𝐷 = 14.29%).

5.2 Questionnaire Data
We assessed normality using Shapiro-Wilk tests to determine the
appropriate statistical method to examine differences between pre-
and post-study ratings.

5.2.1 EAI. Dominance over nature, the appropriateness of alter-
ing nature through human intervention, enjoyment of nature, and
perception of one’s conservation behavior were measured via EAI
subscales (7-point Likert ratings). Paired t-tests revealed no sig-
nificant differences for dominance, alteration, and enjoyment of
nature subscales. However, a paired t-test on the subscale of per-
sonal conservation behavior showed a significant increase between
pre- (𝑀 = 5.36, 𝑆𝐷 = 1.03) and post-study (𝑀 = 5.89, 𝑆𝐷 = 0.61)
ratings (𝑡 (17) = −2.82, 𝑝 = 0.012, 𝑑 = 0.66) (Fig. 9).

5.2.2 IOS. A paired t-test indicated a significant increase between
pre- (𝑀 = 2.83, 𝑆𝐷 = 1.15) and post-study (𝑀 = 4.06, 𝑆𝐷 = 1.98)
ratings (𝑡 (17) = −2.15, 𝑝 = 0.046, 𝑑 = 0.51). Additionally, we de-
scriptively compared pre- and post-study ratings grouped by pre-
ferred control mode. No statistical tests were conducted due to
the small and uneven group sizes. IOS scores increased by 0.2
(pre: 𝑀 = 2.2, 𝑆𝐷 = 1.1; post: 𝑀 = 2.4, 𝑆𝐷 = 1.52) for partici-
pants preferring Automated mode. For those preferring Manual
mode, IOS scores remained the same (pre:𝑀 = 4.0, 𝑆𝐷 = 1.0; post:
𝑀 = 4.0, 𝑆𝐷 = 1.73) and increased by 1.6 (pre:𝑀 = 2.8, 𝑆𝐷 = 1.03;
post:𝑀 = 4.4, 𝑆𝐷 = 2.17) for those preferring Hybrid mode.
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Figure 9: Distributions for a) Inclusion of Other in the Self
(IOS) Scale and b) average scores for the subscales Enjoyment
of Nature, Altering Nature, Dominance over Nature, and Per-
sonal Conservation Perception in the Environmental Attitude
Inventory (EAI). Pre- and post-study results are shown. The
significant increase (𝑝 < 0.05) for the conservation subscale
is denoted with *.

5.2.3 SUS & UEQS. The resulting average score of 𝑀 = 78.38
(𝑆𝐷 = 10.82) on the SUS indicated an above-average level of usabil-
ity, according to Bangor et al. [9]. Evaluation of the UEQS resulted
in a score of 𝑀 = 1.38 (𝑆𝐷 = 1.09) on the pragmatic quality sub-
scale, 𝑀 = 1.54 (𝑆𝐷 = 0.68) for hedonic quality, and an overall
score of𝑀 = 1.46 (𝑆𝐷 = 0.61), indicating a positive user experience,
with the system being perceived as functional and pleasant [80].

5.2.4 Single-Item Ratings. Single-item Likert ratings were used
to measure changes in motivations for gardening, the willingness
to interact with robotic actors to garden, and preferences for per-
sonal involvement in gardening. A paired t-test yielded signifi-
cant differences for the statement "I perceive gardening as an ac-
tivity I would do primarily to grow my own food." between pre-
(𝑀 = 5.72, 𝑆𝐷 = 1.32) and post-study (𝑀 = 4.89, 𝑆𝐷 = 1.53) ratings
(𝑡 (17) = −0.53, 𝑝 = 0.04, 𝑑 = −0.50). Further, regarding willingness
to interact with a robot for collaboration in urban gardening, an
exact Wilcoxon-Pratt Signed-Rank test found a significant differ-
ence between pre- (𝑀 = 1.61, 𝑆𝐷 = 1.04) and post-study (𝑀 = 2.33,
𝑆𝐷 = 1.57) ratings for the statement "I would use smart devices such
as farming robots for gardening." (𝑍 = −2.44, 𝑝 = 0.031, 𝑟 = 0.65). No
further significant differences between pre- and post-study answers
were found for the remaining ratings.

Control Mode Switches Over Time

Figure 10: A scarf plot showing the control modes partici-
pants used throughout the study duration (grey=automated,
yellow=hybrid, and green=manual). The control mode used
the longest on a given day was estimated based on user logs
to assign the visualized labels.

5.2.5 Retention. Since three weeks were insufficient for crops to
mature fully, participants were offered extended access to PlantPal
and their field. Sixteen participants agreed: nine to harvest their
crops, five to donate them, and two were motivated primarily by
satisfaction. Participants who did not wish to extend their access
to PlantPal mentioned digital detox as a reason (P13) and felt that
using PlantPal on a laptop would be preferable for them (P10).
However, PlantPal was optimized for mobile specifically.

5.3 User Logs
5.3.1 Login Behavior. We recorded a total of 1217 logins into Plant-
Pal, where logins were defined as opening the PlantPal web page,
while logoffs could either be counted as switching to a different
tab, closing the tab, or closing the browser. Login durations var-
ied (𝑀 = 4.16𝑚𝑖𝑛𝑠 , 𝑆𝐷 = 20.26𝑚𝑖𝑛𝑠) and occurred distributed
throughout the day. Longer login durations may have been due to
participants not explicitly closing the PlantPal window or browser.
Applying outlier filtering results in a login time of 𝑀 = 1.31𝑚𝑖𝑛𝑠

(𝑆𝐷 = 1.35𝑚𝑖𝑛𝑠). The majority of users (37.72%, 459 logins) were
active after 4 PM. The remaining logins occurred either in the morn-
ing or throughout the day. On average, 14 participants (𝑀 = 14.14,
𝑆𝐷 = 3.02) logged in daily in the first week, 9 in the second week
(𝑀 = 9.14, 𝑆𝐷 = 1.21), and 9 in the third week (𝑀 = 9.00, 𝑆𝐷 = 1.15).
All participants logged in at least once a day in the first week. In
the second week, 16 participants logged in at least once a day, and
17 in the third week.

5.3.2 Actions & Patterns. Participants performed various actions,
such as examining map visualizations (33.39%), executing gardening
tasks (13.48%), viewing one of the live streams (11.79%), reviewing
the robot’s actions using the (personal and global) timeline (7.81%).
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Feature Engagement over Time

Visualizations Plant Care Live Stream Timeline Chat

Figure 11: Line plot illustrating howusers engagedwithPlant-
Pal over the study period. We visualized user logs by clus-
tering actions according to their goal (visualization, plant
care, live stream, timeline, and chat). Participants Interacting
represents the number of unique participant IDs counted for
the feature categories for each day.

The chat feature was used the least (1.66% of all actions, used only
by P8 and P13). Participants did not always explicitly change map
filters and instead merely switched between global and personal
field windows (30.47% of actions). We additionally analyzed which
features were often used in conjunction. This was done by group-
ing actions as tuples based on timestamps (i.e., actions occurring
right after another). Here, it became apparent that logging in to
execute a gardening task was frequently followed by reviewing
the live streams. Further, participants tended to review the time-
line followed by the current image of one’s field, resembling brief
"checkups".

5.3.3 Longitudinal Changes in Behavior. Control mode logs showed
preferences for specificmodes, yet, on average, participants switched
between control modes𝑀 = 2.8 (𝑆𝐷 = 1.75) times. Control mode
switches occurred throughout the study period (cf. Fig. 10), with
some users (e.g., P1, P12, P15) not switching at all or throughout the
later portions of the study duration (e.g., P4, P6). While 14 partici-
pants did at some point try the Automated mode, the fully Manual
mode was either only used shortly or throughout the entire study
duration. Participants frequently switched between Automated and
Hybrid.

Fig. 11b illustrates the total number of participants performing
different actions on PlantPal. Plant care actions by automated users,
as well as simple logins without UI interactions, were excluded from
tracking. All participants initially performed plant care actions and
engaged with visualization and surveillance features (e.g., map
views and live streams) during the sowing phase. However, daily
plant care actions decreased after the first week. A similar number
of participants utilized visualization (𝑀 = 12.43, 𝑆𝐷 = 3.26) and live

stream features (𝑀 = 11.29, 𝑆𝐷 = 3.25) during the first week. Live
stream usage declined over time, while visualizations experienced
similar use. Plant care actions became more sporadic towards the
study’s conclusion. On average, the timeline feature was used by
eight participants in the first week (𝑀 = 8.86, 𝑆𝐷 = 2.79), five in
the second (𝑀 = 4.71, 𝑆𝐷 = 1.89), and three in the third (𝑀 = 3.00,
𝑆𝐷 = 1.41) week. While multiple participants opened the chat,
only two actively sent messages. The average number of actively
interacting participants (i.e., those not only logging in to check but
triggering UI-based interaction events regardless of the category)
in the first week was 14 (𝑀 = 13.57, 𝑆𝐷 = 2.88), 9 in the second
(𝑀 = 8.57, 𝑆𝐷 = 1.40), and 8 in the third week (𝑀 = 8.00, 𝑆𝐷 =

1.83).

5.4 Qualitative Data
5.4.1 Analysis. Out of 18 participants, 12 (P1-P7, P10-P12, P15,
and P18) participated in voluntary post-study interviews. Inter-
views lasted 𝑀 = 24.07𝑚𝑖𝑛𝑠 (𝑆𝐷 = 8.55𝑚𝑖𝑛𝑠). We defined a set
of questions (see Appendix A) for the semi-structured interviews.
Further, for each participant, we also reviewed the respective user
logs before the interview sessions and noted interesting or irregular
behaviors to gain more context from the participants. The interview
audio files were first transcribed using whisperX [8]. Moreover, if
participants sent notes or messages to the study supervisors via
the reporting feature of PlantPal, these notes were also included
for analysis. The analysis excluded chat messages between par-
ticipants, as awareness of their messages being observed could
introduce a bias in how they converse. Reflexive thematic analysis
similar to Terry et al. [90] was used to analyze the data. Two authors
inductively coded the interviews. This resulted in two codebooks
(49 and 68 codes) that were merged by discussing similar codes and
conflicting views (65 codes). In a joint session, open codes were then
grouped into nine clusters, which resulted in three main themes.
The themes are presented in the following, supported by excerpts
from the interviews.

5.4.2 Theme 1 - Integrating Remote Gardening while Navigating
Daily Life. A core aspect of PlantPal is its flexibility in allowing
users to control their level of initiative. Participants first described
their overall experiences and how they integrated PlantPal into
daily life.

Routines. They reported using PlantPal at specific times in their
routines, such as in the morning while brushing their teeth (P18)
or after work in the evening (P1-P4). In contrast, irregular usage
patterns were also reported ("I didn’t check on it [their plot] at
specific times, just randomly, sometimes at night even." P7 ). When
asked about the integration of PlantPal into their routines and what
facilitated it, participants highlighted easy access to a garden and
being able to not only integrate PlantPal into existing routines but
also establish new routines around PlantPal ("It wasn’t much effort,
so I just had a set time for it. At some point, it was almost like a
routine to go check up [referring to their plot] straight after work."
P1).

Tailoring. Participants gave various explanations for control mode
switches. The novelty of the concept motivated participants to
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examine what FarmBot’s capabilities (e.g., "I was curious. What does
this thing [Farmbot] do? What will be the result?" P11), but decisions
to change control modes were also informed by schedules or breaks
in them ("If I knew that my routine was going to be all over the place
for some time, using fully automated would be the better choice for
me since the plot gets taken care of no matter what" P1). Apart from
schedules, participants also considered personal aspects such as
their gardening expertise when choosing their preferred control
mode (e.g., "I don’t know a thing [referring to gardening]. I kept
it [PlantPal ] in fully automated at first. It would have taken way
longer for me to think about when and what to do, or probably nothing
would have grown" P5). Rationales for the popularity of Hybrid were
grounded in perceiving it as a balanced trade-off (P2-P4, P6, P18).

Disruptions. Participants also shared how they leveraged PlantPal’s
control modes to adapt their use to temporary changes to their daily
routines. Such circumstances included general busyness (P10, P11),
studying for an exam (P4), or traveling (P10, P11). For example, P4
switched to fully automated mode before an exam to free up more
time for studying alongside work ("It’s already quick [plant care],
but I was somewhat overwhelmed before [exam name] and had to
switch to more automation" P4). External factors, such as weather
conditions (P1, P2, P3, P15, P18), also shaped participants’ ability to
get involvement. During the second week and continuing into the
third week of the study, frequent rain showers occurred, prompting
a reduction in the frequency of gardening tasks ("And it rained at
some point, so I stopped watering, and that created a bit of a break"
P18) and switching to Automated so that checking if and when it
stopped raining was not necessary (P2, P3, P6).

5.4.3 Theme 2 - Managing Distance with Digital Augmentation.
PlantPal was designed for fully remote operation, contrasting tra-
ditional in-situ gardening. Users must still manage gardening’s
inherent asynchronicity, where actions are connected to outcomes
that unfold over time.

Asynchronicity. Participants felt that the monitoring and visualiza-
tion features of PlantPal were helpful as they provided an always-
available way to check up on changes quickly (P1, P4, P6, P11, P15).
Continuity in features like timelines was perceived as beneficial
("This photo concept with the timeline is pretty neat. I can go back and
see what happened. That would actually be beneficial in real garden-
ing but not just for progress. I could check for animals on my field too"
P18). They additionally connected their preferred progress-tracking
method to their chosen control mode. In Automated mode, users
mainly act as spectators, verifying that FarmBot performs tasks
as expected to ensure successful crop cultivation. ("I concentrated
primarily on the timeline. That’s all I needed to know if the robot
took care of my field" P5). Conversely, utilizing more manual control
modes prompted participants to focus more intently on observing
plant growth to confirm the success of their actions ("I’m not very
knowledgeable about this [gardening] and used it [photo grid] to try
and judge if the plant is healthy, growing at the right pace, getting
enough water, or too much sun." P12).

Remoteness. PlantPal introduces a constant element of distance due
to remote control. This was reported to impact the perception of
actions and progress in the field, influencing the design of plots.
Reasons for this were difficulties gauging the size of the field and

how accurate measures were (P1-P4, P6, P12), leading to particular
crop choices and layouts ("I know the app told me the dimensions,
but I’ve not grown lettuce for example, so I didn’t know how accurate
it is and if it would all fit. I know that radishes don’t get that big." P4).
Participants used features like live streams and map visualizations
to keep track of their progress, yet plant growth is inherently slow.
Until germination, the lack of visible changes, combined with the
distance and inability to examine the field in situ, led to doubts and
worry ("Well, once the seeds are in the ground, there isn’t a lot going
on. I saw the germination times, but still, at first, I thought, okay, did
I do something wrong? Is it supposed to take this long?" P1).

Perception of Gardening. General perceptions of how to care for a
garden were also influenced, with participants sharing that they
felt like they had to check their plot more often due to "having the
garden in their pocket" (P18). Comparatively, gardening via PlantPal
was perceived to be distinctly different from traditional gardening,
which participants described as more sensory-rich ("getting your
hands dirty" (P10); "spending time in fresh air" (P11)). Contrarily,
PlantPal was described as an alternative experience that emphasizes
"providing an opportunity to do it [gardening] at all and get some
healthy food." (P2). Participants found different ways to address the
more distant gardening experience. For instance, manual control
was highlighted as one such method as it allowed for more agency
("If I don’t have time to be there, I’d say I still want to be in control, like,
yes, I’m watering or weeding now, I’m the one pressing the button. I
don’t need to decide everything myself, but I still want to have the final
say, so it feels valuable for me." P12). Participants also highlighted
that they would have welcomed gamified elements such as streaks
to further their motivation and attachment to the gardening process
via PlantPal (P7, P12, P15).

5.4.4 Theme 3 - Learning to Collaborate with a Robotic Gardening
Partner in a Shared Space. Despite participants having heard ofmore
common smart home technology for gardening (e.g., mowing robots
or automated irrigation), PlantPal represented a novel experience.

Learning. While PlantPal aimed to lower the required gardening
knowledge by delegating tasks to a PAR, it introduced new demands,
such as technological proficiency ("Wrapping your head around it
[collaborating with a robot] takes a while. I am not a tech-expert
and use my phone to text at most." P3). Using the Automated mode
allowed participants to observe the FarmBot in action and learn
about its operations. By starting as spectators, they could gradually
get involved in plant care. They described feeling more competent
about plant care (P1, P4, P5, P7), which seemed to raise motivation
and confidence (e.g., "If you’ve never really done it [gardening] before,
you probably think you need a green thumb or some kind of special
skills. But actually, I found that since I was able to watch and learn
from the robot at the beginning and then do it independently in the
end, I feel like I can do it." P4). It also became apparent that UI issues
such as delays become amuchmore potent risk in remote gardening.
For instance, P1 described the following: "I think I overwatered my
field at the beginning. I pressed the "Water All" button, but it took a
bit to give me feedback, so I pressed it 2-3 more times. I then saw that
all my tapping was taken as individual watering requests.". While
this has the potential to cause destruction, it has also led to more
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extensive reflection before deciding on what action to execute (P1,
P4, P12, P15, P18).

Comparison. Sharing one PAR with other gardeners also influenced
participants. While some participants did not pay extensive atten-
tion to the other plots around them, others were influenced more
profoundly. PlantPal implements no competitive gamification ele-
ments (e.g., leaderboards). Yet, participants who did monitor growth
on the entire field (e.g., using the map or live streams) described feel-
ings of competitiveness from comparing plot designs and growth
progress. This prompted some users to plant more than they had
originally envisioned ("I planted some seeds at the beginning but
then again around week two. The plot next to me [P8] had way more
and green bits were already showing" P7 ). In contrast, observing
growth across the entire field led to satisfaction and joy toward the
conclusion of the study ("The most positive thing for me was that
at some point you could see when everything started to grow. Took a
while but then you feel like there’s quite a lot coming suddenly." P15).

Dissent. Participants generally trusted FarmBot to perform tasks as
requested, but concerns arose over factors like water usage and wa-
tering height (P1, P4, P6, P15, P18), often reflecting how they would
act in the garden themselves. ("The watering looked pretty aggressive
to me. I don’t know if that’s good for those smaller seedlings. Per-
sonally, I would have been a bit more careful with that." P15). While
participants rarely interacted with PlantPal simultaneously, situa-
tions where FarmBot had to handle multiple garden care requests
did arise. Participants described situations where this led to longer
waiting times, as FarmBot was handling tasks of all fully automated
users (cf. Section 3.4.2), while those using Manual or Hybrid mode
logged in to execute their tasks (e.g., "I wanted to water my plants
in the evening because I thought it would be better for them, but I
saw that the robot’s task queue had gotten quite long. I guess that’s
when the robot took care of the plants of all users. [..] I submitted my
request and left. Would have taken too long to wait and watch." P12).

5.4.5 Positive & Negative Aspects. In the open feedback, partici-
pants mentioned several positive and negative aspects of PlantPal.
The system’s flexibility in switching between various modes, en-
abling gradual learning and control over the gardening process,
was appreciated (1x). PlantPal was described as easy and intuitive
to use (1x), simple, and time-saving (3x), with participants enjoy-
ing the connection between robotics and gardening, comparing it
to "Tamagotchi for grown-ups" (P8). Participants also highlighted
the live stream feature and remote watering functionality, which
increased their sense of control and involvement (1x). Interaction
with PlantPal further sparked new motivation for participants to
improve their gardening expertise by cultivating indoor plants (4x).
Areas for improvement included a preference for using PlantPal on
laptops or PCs for better visibility (3x) and the lack of notifications
in automated mode, leading to disengagement (5x). More feedback
was requested (2x), such as interface cues (e.g., inactive buttons) and
detailed task performance metrics (e.g., water usage in milliliters).

6 DISCUSSION
In the following, we discuss our study outcomes and reflect on
the design process of PlantPal. Based on our insights, we propose

design considerations for remote robot-assisted urban gardening
experiences.

6.1 Design & Field Deployment of PlantPal
6.1.1 Design Goals. To address practical barriers preventing inter-
ested citizens from pursuing urban gardening, PlantPal’s design
was guided by three goals (cf. Section 3.2.5): enabling on-demand
multi-user interaction, supporting dynamically adjustable levels of
involvement, and providing experiences that extend beyond basic
plant care. To promote accessibility (D1), PlantPal was implemented
as a smartphone-optimized web application, allowing users to per-
form tasks and monitor the field in real time. Login data coupled
with qualitative feedback, indicated that PlantPal facilitated these
activities, ensuring accessibility at any time. In alignment with D2,
PlantPal offered three control modes (cf. Section 3.4.2), enabling
users to adjust their level of involvement based on their prefer-
ences and schedules. User logs revealed transitions between modes,
reflecting flexibility and adaptability, while interview responses
demonstrated integration into daily routines. PlantPal further in-
corporated features like time-lapses, growth visualizations, a time-
line, and chat functionality to foster interactions beyond plant care
execution (D3). User logs showed engagement with most features,
excluding the chat, throughout the study. Study results addition-
ally showed a significant increase in perceived connectedness and
personal conservation perception.

6.1.2 Gardening Outcomes. Previous research has shown that food
production is among the most common motivators for citizens to
engage in urban gardening [41, 69]. In our evaluation of PlantPal,
we explored how effectively users could cultivate their desired
crops within their garden spaces despite the unfamiliar notion of
collaborating with a PAR. Following calls in prior research [98],
we deployed PlantPal under real circumstances (i.e., freestanding).
Overall, the success rate and gardening outcomes were satisfactory
(cf. Section 5.1). Sixteen participants continued using PlantPal be-
yond the study period to maintain their garden. From qualitative
responses in the interview, we conclude that participants did not
see PlantPal as a replacement for traditional gardening, as it lacks
the sensory-rich experience of direct contact with a garden. Instead,
they viewed it as a convenient alternative that makes gardening
more accessible (cf. Section 5.4.3).

6.1.3 Connectedness. Discussion on whether technology enhances
or diminishes nature-based activities like gardening has been a long-
standing topic in HCI literature [51, 78]. With systems like PlantPal,
which enable fully remote interaction and allow users to offload
gardening responsibilities to a PAR, acting as a permanent garden
collaborator, there is a potential trade-off between accessibility, con-
venience, and the authenticity of nature experiences. Building on
prior research (e.g., [52, 76, 83]) and inspired by the FarmBot web
application, we implemented strategies that allowed users to moni-
tor garden conditions, reflect on past developments via time-lapses
and timelines, and anticipate future growth using visual indicators.
Pre- and post-study IOS ratings suggest that PlantPal enhanced
participants’ connection to their plots, possibly due to first-time
gardening experiences or renewed interest. Trends by preferred
PAR control method suggest that participants using the Automated
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mode reported lower connectedness, while those favoring Hybrid
or Manual modes reported higher connectedness. Facilitation of
routine-building was a common qualitative finding and has been
connected to lasting engagement in prior literature [75]. We argue
that offering this spectrum of control is likely beneficial for engag-
ing people in urban gardening. However, it also raises the need for
further exploration in HCI to understand how interface design can
be refined to prevent disengagement caused by over-reliance on
convenience.

6.1.4 Remote Gardening as an Entry Point. A common barrier to en-
gagement in urban gardening is negative past experiences [21, 57]
or limited gardening expertise, making gardening seem difficult
or unapproachable. Prior approaches already address this point by
providing information [52, 100] and using automation [73]. Plant-
Pal extends this by allowing users to use automation based on their
personal desire for involvement. We found that novice participants
used this concept to gradually gain confidence by watching Farm-
Bot perform tasks. Contrarily, experienced gardeners sometimes
questioned how FarmBot was executing tasks (e.g., watering) and
grounded their skepticism in their expertise. Aligning with exis-
tent research (e.g., [56]), for more experienced gardeners, designing
with an emphasis on trust gains more relevance. This can include
allowing more fine-grained control over PAR parameters, such as
watering height. However, it should be noted that while PlantPal
reduces demands for required knowledge to garden, it introduces
new requirements, such as technical proficiency with a smartphone
and a willingness to gain a basic understanding of how a PAR oper-
ates. Existent literature highlights that this may, in itself, represent
a new barrier [96] that may diminish inclusivity, increasing the
importance of intuitiveness for fully remote gardening concepts
similar to PlantPal.

6.1.5 Intergardener Effects. PlantPal was designed to leverage one
PAR shared among multiple users. Additionally, the provided global
map allows gardeners to review the entire field (i.e., other garden-
ers’ progress). Based on interview responses, this led to varying
outcomes. For one, gardeners shared joy for each other’s progress,
finding it pleasant and satisfying to follow. However, the ability
to review and judge other gardeners’ progress also invited partic-
ipants to compare their plot layout and progress to that of other
participants. This introduced aspects of competitiveness, replicat-
ing known group behaviors [45]. Unlike community gardens, where
all actions can be viewed by present members, virtual gardens that
are only worked remotely provide the opportunity to hide certain
information, such as progress or executed actions. These aspects are
currently not addressed by PlantPal, as all participants knew they
could review the progress on the entire field. Hiding information
gardeners feel uncomfortable sharing could further reduce feel-
ings of insufficiency and pressure to achieve a positive gardening
outcome.

6.1.6 Engagement Over Time. Deploying PlantPal for three weeks
enabled us to observe user behavior beyond the initial novelty
phase. After bulk seeding and exploring PlantPal’s features, partici-
pants adapted to regular usage. While login data indicates frequent
and consistent access, analysis of control mode switches and UI

interactions reveals a shift from active engagement to passive mon-
itoring over time. PlantPal connects virtual actions with tangible
changes in a distant garden, creating a bi-directional relationship
where participants influence the physical environment while also
being affected by external factors (e.g., rainfall reducing the ne-
cessity of plant care actions). Such disruptions sometimes led to
disengagement. Gamification (e.g., streaks) and notifications were
noted to achieve re-engagement. We intentionally avoided this ap-
proach, as our target audience consisted of users already interested
in gardening. However, based on these results, we conclude that
incorporating digital strategies to motivate engagement is advisable
to address the perceived distance of systems like PlantPal.

6.2 Design Considerations & Implications
The following paragraphs present design considerations we es-
tablished based on the development process of PlantPal and the
insights from our 3-week deployment.

6.2.1 Encourage and Support Free Exploration. In in-situ garden-
ing experiences, exploration is an element that is ever-present and
can support learning and encounters with other gardeners [52]
or non-human actors [94]. Behaviors, where users can freely ex-
plore their and other gardeners’ spaces, are equally as important
in remote gardening experiences. Prior work proposing distant
nature experiences has typically enabled exploration of environ-
ments at different representation levels (i.e., abstracted, mediated,
simulated) [98]. PlantPal embraces this notion by integrating views
that show the real environment, coupled with more abstracted or
generated visualizations. The offered views were, however, prede-
fined and static in that cameras could not be moved except for those
attached to FarmBot. This allows users to explore only a fraction
of the actual space. Open comment suggestions indicate that using
360° video players that allow for more extensive exploration would
be preferred over static views. This could further users’ interest
and provide improved situation awareness [89].

6.2.2 Embrace Risk as a Design Element to Foster Connectedness.
When novices start gardening, it is common for initial attempts to
fail due to mistakes. While this can lead to demotivation [21, 57], it
is also an inherent part of the learning process. Given that PlantPal
connects virtual actions to the tangible shaping of a garden space,
there is a constant risk that destruction may occur. For instance,
when users believed they had made a mistake, such as repeatedly
watering, it caused initial worry but also increased carefulness
in following interactions. The risk of irreversible destruction as
a design element has been proposed as a design element in prior
research (e.g., [79, 86]). To foster attachment and care, we argue that
deliberately balancing this risk factor, allowing for some mistakes
(as PlantPal does in its Manual mode), should be considered more
broadly in PAR-supported remote gardening and distant nature
engagement concepts.

6.2.3 Consider Sustainability when Resource-Intensive Actions Be-
come Easily Accessible. Sustainable gardening practices emphasize
conserving natural resources, promoting biodiversity, and mini-
mizing environmental impact. In our deployment of PlantPal, we
observed that distance when interacting with a garden remotely
can lead users to perceive it as more game-likely, as reflected in
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open feedback comparing it to "Tamagotchi for grown-ups" (P8).
Coupled with the notion of having "the garden in your pocket" (P18),
such views can lead to phases where users experiment with dif-
ferent interface elements, such as repeatedly moving the robot
or excessively watering before planting seeds, simply to observe
the system’s responses. While this experimentation can boost user
engagement, the waste of resources such as water in a distant
location may not be as present. This is especially true when the
system allows for more experimental interactions, where users
have full control, and the robot takes a secondary role. We propose
introducing resource management systems to minimize resource
consumption, such as limiting daily water use or robot movement
requests. While users may never use resources to their limit, the
visual indication of limitations can serve as a nudging mechanism
similar to eco-feedback [88] to avoid waste and foster a sense of
conservation for the collective, which reflects suggestions from
sustainable HCI work (e.g., [61]).

6.2.4 Leverage Digital Augmentation to Reveal Hidden Aspects of
Plant Growth. Gardening is inherently a slow process that requires
patience, often involving phases where no visible changes occur
in the garden bed. In shared or community gardens, social inter-
actions often bridge these idle phases [59]. With PlantPal, user
logs revealed that during the early stages, when users typically
planted their seeds, there was an increase in visualization changes,
information-seeking behaviors, and feelings of "wanting something
to happen". Since no immediate physical changes were visible in the
garden, participants sought alternative ways to stay informed about
the garden’s status. Typically, underground growth processes are
hidden, but the sensing capabilities of PARs, coupled with real-time
visualizations, could bridge this gap by digitally augmenting and
displaying information about usually hidden growth processes.

7 LIMITATIONS & FUTUREWORK
Limitations. We acknowledge several limitations of our study. Our
field deployment of PlantPal was designed to provide participants
with a realistic scenario in which PlantPal could be used in the
future. To achieve this, we installed the farming robot controlled by
PlantPal in a real garden bed and deployed it for three weeks. How-
ever, this timeframe does not fully capture the gardening process,
which typically spans entire seasons with different crops sown at
various times. While we allowed participants to retain access to
their garden plots beyond the study, with 16 participants opting
to do so, the data from this extended period was not included in
our analysis. As a result, ongoing engagement with PlantPal and
the sustained positive effects may have evolved differently if the
study had been longer and our findings should be viewed early
findings. Another limitation lies in the farming robot itself. Plant-
Pal envisions a future where such robots are widely available in
urban environments, potentially serving as caretakers of green
spaces [38]. However, this concept is still speculative, and the cur-
rent deployment relies on a single robot in a supervised setting.
This limits the generalizability, as scaling the system to larger urban
contexts with multiple robots could introduce new challenges in
terms of coordination, maintenance, and user interaction. Lastly,
four participants in our study sample had access to a green space
where they could grow their own crops and utilized the PlantPal

field in a manner similar to an allotment garden. We acknowledge
that these participants do not fully represent urban residents who
are unable to engage in gardening due to a lack of suitable spaces,
thereby reflecting an alternative use case.

Future Work. We optimized PlantPal for mobile phones to ensure
proper content display across various screen sizes. However, is-
sues arose with older smartphone models featuring smaller screens,
where content was not rendered correctly. Future iterations of
PlantPal should address these limitations, including optimization
for larger screens, as requested by participants in our study. In our
study, novice gardeners often observed the robot to learn gardening
processes, which increased their confidence. This approach could be
expanded to other contexts, such as traditional community gardens.
Similar to research using drones to teach movement patterns [29],
PARs could support novice gardeners as they build foundational
skills in these settings. Additionally, our evaluations revealed trends
indicating that the level of control significantly influences the gar-
dening experience. Conducting sufficiently powered studies to com-
pare different control modes and their longitudinal impact on the
gardening experience can deliver additional implications for design
and contexts in which each is suited best.

8 CONCLUSION
In this work, we proposed using remote collaboration PARs to en-
able garden cultivation regardless of location, space limitations, or
time constraints. By reviewing the literature on HRI, urban garden-
ing, and HCI, we identified the capabilities of current PARs and
how they align with the challenges citizens face in urban gardening.
We conducted a formative survey to sample preferences regarding
our concept and cleared up design ambiguities Building on these
insights, we developed PlantPal, a web application that provides
on-demand access to a garden space via a PAR. PlantPal tackles
urban gardening barriers by enabling flexible user involvement and
enhancing engagement with digital augmentations. To evaluate
PlantPal, we deployed it on a real garden bed (18m2) for three weeks
with N=18 participants. Participants were able to cultivate their
own garden space successfully. They reported having had an enjoy-
able experience where they could establish a connection with their
plot despite the remote setting. We derived design considerations
addressing exploration, risk, sustainability, and digital augmenta-
tion based on our findings. These considerations can broadly inform
the design of future PAR-enabled urban gardening concepts and
fully remote technology-supported nature experiences.

OPEN SCIENCE
We make the source code for the PlantPal web application, 3D
models and scripts for our extended camera system, and hardware-
related insights/manuals publicly available. They can be accessed
at https://github.com/J-Britten/PlantPal.
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A GUIDELINE PROTOCOL
SEMI-STRUCTURED INTERVIEWS

1. General Usage
• Describe your general experiences from week 1 to week 3.
– What were your goals?
– What was the focus over the weeks?

• What was the most enjoyable aspect? What was the least
enjoyable?

• Describe a typical day and how the app was integrated into
it.

• What was your thought process behind creating the garden
layout?

• To what extent did the fact that it was a virtual field influence
your decisions?

• During the study, did you observe the state of other partici-
pants’ fields? Why or why not?

2. Levels of Automation
• How were the different levels of automation perceived?
• Did you switch between levels of automation?
– Why or why not?
– What triggered a switch?

• Which level of automation was the most useful? Why?
• Which level was the least useful? Why?

3. Effects of Remote Interaction
• How did it feel to never have to be on-site?
• To what extent did the app’s features compensate for not
being physically present?

• Howwas the support for decision-making (e.g., what to plant,
when to water/whether watering was needed) perceived?

• What was observed in the live streams/images?
– What was the goal of the observation?
– What specifically did you see?
– Were there any surprises?
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4. Interaction with the Robot
• How did you assess the robot’s capabilities?
• How was it perceived that the robot was a shared resource
for all fields?

• Did you observe the robot while it was performing its tasks?
Why or why not?

• Were you afraid of breaking something? Why?
• Were there any problems, confusion, or surprises regarding
the robot’s behavior?

• To what extent did participating in the study and using the
system influence your perception of your gardening skills?
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