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Figure 1: Human-in-the-loop (HITL) MOBO of eHMI design in a pedestrian crossing scenario. The AV communicates its
intention to stop and allow pedestrians to cross the street. The goal is to improve user ratings on multiple design objectives,
such as trust, safety, acceptance, and aesthetics, while minimizing mental demand. MOBO iteratively uses design parameter
values (𝑝1 to 𝑝𝑛) and user ratings of the design objectives to suggest optimized designs for each iteration.

Abstract
The absence of a human operator in automated vehicles (AVs) may
require external Human-Machine Interfaces (eHMIs) to facilitate
communication with other road users in uncertain scenarios, for ex-
ample, regarding the right of way. Given the plethora of adjustable
parameters, balancing visual and auditory elements is crucial for
effective communication with other road users. With N=37 partici-
pants, this study employed multi-objective Bayesian optimization
to enhance eHMI designs and improve trust, safety perception, and
mental demand. By reporting the Pareto front, we identify opti-
mal design trade-offs. This research contributes to the ongoing
standardization efforts of eHMIs, supporting broader adoption.
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1 Introduction
Automated vehicles (AVs) are poised to significantly alter traffic dy-
namics [38] and interactions within traffic environments [22, 28, 58].
Communication tools become essential in the absence of a human
operator to communicate with other road users in uncertain situa-
tions, such as determining the right of way. These tools are com-
monly referred to as external Human-Machine Interfaces (eHMIs).
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Various modalities were proposed for eHMIs, including displays
on grilles [39] and windshields [30], LED strips [39, 59], movement
patterns [80], and projections [2, 64]. External devices like smart-
phones [45] and enhanced infrastructure were considered [72]. Ad-
ditionally, various eHMI concepts and designs have been explored,
such as text-based designs [12] that convey vehicle status [37] or
intentions [34]. Research generally found positive effects of these
eHMIs on trust, clarity, hedonic qualities, and pedestrian crossing
behaviors.

Previous work evaluated a limited subset of possible eHMI de-
signs. However, given the numerous design parameters, it is crucial
to have a broader picture of the optimal eHMI. In the realm of user
interfaces (UIs) for AV passengers, Normark [65] enabled passen-
gers to manually customize the size, location, and color of icons
on the dashboard, center stack, and Head-Up Display (HUD). By
tailoring these interfaces to individual preferences, the user experi-
ence can be significantly enhanced, leading to increased perceived
safety and trust.

Instead of relying on manual adjustments to different UI design
aspects, Multi-Objective Bayesian Optimization (MOBO) offers a
method to identify optimal design parameters iteratively (see Fig-
ure 1). MOBO has been successfully applied across various domains
to address design optimization challenges [10, 11, 48, 50, 56]. MOBO
predicts which design changes will most effectively meet desired
objectives, such as enhancing passengers’ trust. It manages multiple
objectives by finding the best balance, represented by the Pareto
front, ensuring the most effective trade-offs in UI design [61].

In consideration of these factors, this study is guided by the
following research question (RQ):

RQ1: What are the characteristics of an optimized
eHMI for AVs that, among other objectives, enhance
pedestrians’ trust and perceived safety?

To explore this RQ, we conducted a user study with N=37 par-
ticipants. We applied MOBO to optimize the eHMI’s design (see
Figure 1), focusing on the parameters: color, blink frequency, size,
positioning, and loudness of the auditory component. These param-
eters were optimized based on the objectives: trust in automation,
understanding, mental demand, perceived safety, acceptance, aes-
thetics, and the duration until starting to cross.

To explore design preferences across gender, we compared the
parameters and objectives based on the participants’ gender. Previ-
ous work [66] already showed that gender impacts crossing deci-
sions. Therefore, Colley et al. [25] recommended also evaluating
this factor for eHMI studies. Therefore, the second RQ was:

RQ2: How do the parameters and objectives differ for
gender?

In the virtual reality (VR) study, N=37 participants had to cross a
two-lane road with traffic in both directions. The traffic was mixed,
consisting of AVs and manually driven vehicles. On the near side of
the road, AVs communicated their stopping using the eHMI design
determined by the MOBO in each iteration.

The comparison of eHMI design parameters between female and
male participants revealed no significant differences. However, qual-
itatively comparing the resulting parameter values on the Pareto
front suggests that certain parameter ranges—such as cyan color
and a 3Hz flashing animation—could serve as starting points for

all users and allow focusing on optimization of other parameters
to increase efficiency. Unlike earlier LED strip-based approaches,
using the entire front of the AV as an eHMI, combined with a high
auditory volume, supports accessibility and multimodality. These
findings offer a practical baseline to personalize and refine eHMIs
for diverse users. Participants consistently rated the eHMI highly,
reinforcing the need for explicit eHMIs, contrasting with studies
questioning their necessity.

Contribution Statements [78]:
• Artifact or System We developed a VR, Unity-based simula-
tion of a pedestrian crossing a non-signalized street, designed to
optimize the eHMI through MOBO iteratively, allowing the iden-
tification of optimal design parameters based on user feedback
across six objectives.

• Empirical study that tells us about howpeople use a system.
We conducted a between-subjects study (N=37) to investigate the
impact of gender on user experience and UI design for eHMIs.
Our findings show no significant differences between male and
female participants. TheMOBO process led to very high objective
scores.

2 Related Work
We base our work on research on pedestrian-vehicle interactions,
focusing on crossing behaviors in traffic and the role and influence
of eHMIs in AVs on traffic interactions. Additionally, it presents BO
to optimize eHMIs.

2.1 External Communication of Automated
Vehicles

Current traffic interactions frequently rely on gestures and eye
contact to resolve ambiguities [68]. Although explicit communi-
cation is rarely required [54], eHMIs were proposed to facilitate
interactions between AVs and vulnerable road users such as pedes-
trians and cyclists [44]. Previous research has categorized external
communication strategies by modality, message type, and vehicle
location [22, 23, 28]. Colley and Rukzio [22] identified eight types
of messages: Instruction, Command, Advisory, Answer, Historical,
Predictive, Question, and Affective. Communication can occur at
various locations on the vehicle, through personal devices, or via
infrastructure like sidewalks, with key interaction points such as
the windshield or bumper being particularly important [33]. Most
work and the ISO technical report [1] recommend communicating
the intention of the AV instead of giving advice or commands such
as “Go”. Therefore, our optimization focused on transmitting this
information.

Effective eHMI deployment includes considering the communi-
cation relationship (ranging from one-to-one to many-to-many),
ambient noise levels, and road user (e.g., pedestrian, cyclist) [22].
Research examined eHMI effectiveness across different groups, in-
cluding children[13, 27], individuals with vision, mobility, or cogni-
tive impairments [4, 24, 42], and general pedestrians [3, 31, 32, 58],
and cyclists [47]. Generally, eHMIs have shown positive results. For
instance, Dey et al. [30] demonstrated that distance-dependent in-
formation could significantly improve pedestrians’ understanding
of AV intentions and willingness to cross safely. Colley et al. [24]
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found that visually impaired individuals preferred clear, speech-
based communications over other forms. To address accessibility
challenges, our optimization also includes speech output.

However, challenges remain, such as ensuring children accu-
rately interpret and use eHMIs [27], concerns about overtrust [46],
scalability [17, 18, 26], and exploration of the social implications
of eHMIs [16, 52, 69, 70]. Furthermore, previous work indicated
that instead of defining novel eHMIs, research should focus on
consolidating previous approaches [32]. With this optimization of
well-known parameter constraints (e.g., position), we contribute to
this consolidation.

2.2 Multi-Objective Bayesian Optimization for
Interface Designs

The design of UIs involves selecting parameter values such as ele-
ment positioning, color, and transparency to achieve specific design
objectives like trust and perceived safety. These objectives can be
represented as objective functions, with their values (e.g., trust
ratings) being determined by specific combinations of design pa-
rameters. Since predicting the best parameter combinations is chal-
lenging due to the unknown relationship between parameters and
objective functions, this problem can be framed as an optimization
task [9].

Given the impracticality of testing all potential design combina-
tions due to the vast design space, BO offers an efficient approach
to modeling the relationship between parameter combinations and
objective function values. BO is particularly suitable for optimizing
unknown and complex functions with limited prior data [7, 10, 55].
It balances sampling of new parameter spaces and the optimization
of known promising regions, leading to optimal designs with fewer
iterations.

BO has been applied successfully in various UI design contexts,
such as fine-tuning animation appearances [8], customizing image
aesthetics [51], optimizing font settings [48], and improving UI
interactions [35]. In Human-Computer Interaction (HCI), obtain-
ing objective function values requires user feedback often, making
HITL optimization a valuable method. HITL adds a user-centered
feedback loop to BO, allowing iterative refinement of design pa-
rameters based on user interactions and ratings [14, 51, 79].

However, the design of an eHMI involves multiple objectives,
necessitating the use of MOBO. MOBO optimizes several objectives
simultaneously, resulting in a Pareto front representing a range
of optimal designs, balancing trade-offs between conflicting ob-
jectives [61]. MOBO has been applied in diverse areas, including
multi-finger text entry [74] and personalized explanations for image
classifiers [11].

Despite its potential, HITL MOBO was not explored in eHMI
design with its unique challenges due to subjective objectives like
perceived safety and trust, considering the vulnerability of road
users like pedestrians and the dynamic nature of traffic, which our
work addresses.

3 External Communication Concept
To simulate our eHMI concept, we used Unity (version 2022.3). We
opted for a VR simulation using the HTC VIVE Pro, a common
method for immersive investigation of eHMIs (e.g., see Colley et al.

[20]). VR is an appropriate choice as testing pedestrian crossing
scenarios while manipulating the eHMI design can endanger road
users in the real world.

3.1 Scenario
The pedestrian scenario starts at a sidewalk. The participant needs
to cross a two-lane road. Road users in this scenario are manually
driven vehicles, AVs, and the participant. On the lane closer to the
participant, AVs and manually driven vehicles drive at a 50:50 rate.
Only manually driven vehicles are in the far lane.

After 18s, the next AV on the near lane will stop and let the
participant cross. This duration lets the participant experience AVs
and manually driven vehicles, representing an externally valid
scenario. The manually driven vehicles on the far lane do not stop.

3.2 Generating External Communication
We defined an eHMI that employs a visual display on the hood,
windshield, and grille inspired by eHMIs that use LED light panels
(e.g., see [39, 59]). This area is visible from a pedestrian’s perspective
when driving towards the pedestrian. The area covers the AV’s full
width and height but excludes headlights and front lights.

The eHMI’s size and position can vary horizontally and verti-
cally, such as a narrow strip on the hood or a small display on the
windshield’s upper edge. However, the optimal position and size
for pedestrian communication are unclear. A larger display may be
visible from a distance but unclear in its message, while a smaller,
more specific display (e.g., on the grille) may be less noticeable.

Therefore, we developed a method to generate an eHMI in Unity
that can be positioned and resized dynamically across the wind-
shield, hood, and radiator grille. The parameters and bounds of
width and height for this generation are depicted in Figure 3. We
always center the mesh (i.e., the width) horizontally on a vertical
position axis (see Figure 3 b) for better visibility across the AV’s
curved surface if standing directly left/right from the AV. For in-
stance, in Figure 2 a, the AV (partly) obstructs a small eHMI mesh
on the left side of the hood.

4 Experiment
To answer RQ1 and RQ2, we conducted an experiment using HITL
MOBO (see Figure 1) to optimize eHMI design in a pedestrian
crossing scenario.

4.1 Bayesian Optimization: Parameterizing the
eHMI and the Objective Functions

In the following, we describe the eHMI design parameters and
outline our HITL MOBO setup, which iteratively adjusts these
toward improving objective function values across iterations.

4.1.1 Design Parameters. eHMI design parameters were derived
from the respective publications [17, 22, 24, 29, 32]. While RGB
coloring of eHMIs should avoid unintended meaning (e.g., orange
being a warning signal), we included it as a parameter to answer
our RQ of the optimal eHMI. The alpha level was chosen to allow
for the absence of an eHMI (i.e., if the alpha is 0.1, the eHMI is
not visible). Some work has evaluated blink frequency [29], but the
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Figure 2: The Unity implementation of the crossing scenario from the participant’s starting point of view (a) and from above (b).

Figure 3: The white AV without an eHMI. A cyan light signal near the rearview mirror indicates that it is an AV. In (a), dashed
lines show the available width and height for the eHMI mesh generation, including its lower/upper and left/right bounds. (b)
Examples of possible mesh positions in allowed regions. The mesh (i.e., its width) is always centered horizontally along the
green dashed axis to ensure visibility from both sides. The vertical position can be set along this axis. The eHMI does not cover
the front lights (restricted zones; in purple).

evidence is minimal. The formula for blink frequency is:

Blink frequency (Hz) =
1

1
blinkFrequencyMOBO × 0.25

(1)

For example, a value of 0.8 equals 3.2 Hz. Finally, the size and posi-
tion of the visual eHMI have to be determined. We allow any given
rectangular shape along the outline of the front of the AV. Regard-
ing auditory design, we opted for the textual, auditory message
“Stopping” and varied its loudness. Aminimal loudnessmeans no au-
ditory component. All design parameters (𝑝1 to 𝑝9) are summarized
in Table 1.

Other design elements, such as text-based messages, symbols,
projections [17], eye-metaphors [41], biology-inspired designs [67],
or hands [40, 60] are possible. However, recent works converged
toward an LED stripe, and we assume that manufacturers will focus
on such an aesthetic, easy-to-implement, and versatile solution.

4.1.2 Objective Functions. An objective function 𝑓 maps a specific
eHMI design 𝑥 to a metric the optimizer aims to maximize. We
focus on maximizing six subjective metrics: perceived safety, trust,
predictability, usefulness, satisfaction, and visual appeal. Conversely,
we aim to minimize mental demand as our sole subjective metric,
along with one objective metric: time to start crossing.

Based on previous eHMI work [17], we employed the following
questionnaires after every optimization run in the HITL process:

We assessedmental demand via the mental demand subscale of
the raw NASA-TLX [43] on a 20-point scale (“How much mental
and perceptual activity was required? Was the task easy or demand-
ing, simple or complex?”; 1=Very Low to 20=Very High; lower is
better). Regarding predictability and trust, we used the subscales
Predictability/Understandability (Predictability) and Trust of the
Trust in Automation questionnaire by Körber [49]. Predictability
is determined via agreement on four statements (two direct: “The
system state was always clear to me.”, “I was able to understand
why things happened.”; two inverse: “The system reacts unpre-
dictably.”, “It’s difficult to identify what the system will do next.”)
using 5-point Likert scales (1=Strongly disagree to 5=Strongly agree).
Trust is measured via agreement on the same 5-point Likert scale
on two statements (“I trust the system.” and “I can rely on the
system.”; both times, higher is better). Participants rated their per-
ceived safety using four 7-point semantic differentials from -3
(anxious/agitated/unsafe/timid) to +3 (relaxed/calm/safe/confident;
higher is better) [37]. Finally, we added three single items. Twowere
defined with the van der Laan acceptance scale [77] in mind (“I
find the visualizations of the automated vehicle useful”, “I find the
visualizations of the automated vehicle satisfying”). These were
combined into a single “acceptance” objective. We also adapted the
question regarding visual appeal from Colley et al. [21] (“I found
the visualizations visually appealing”; on a 5-point Likert scale).
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Figure 4: eHMI design parameter value ranges. At the bottom of each column, the default values for the other parameters are
shown. Cyan is used as the default color to demonstrate other parameter values.

Table 1: The 9 design parameters for the eHMI design, with ranges. All design parameters are modeled continuously. Example
visualizations of parameter values are shown in Figure 4.

Design Parameter Description Reference Range

𝑝1 : R Red color channel. [23] [0, 1]
𝑝2 : G Green color channel. [23] [0, 1]
𝑝3 : B Blue color channel. [23] [0, 1]
𝑝4 : eHMI Alpha, 𝛼 Alpha color channel value. [23] [0, 1]
𝑝5 : Blink frequency Blink frequency when activated. Maximum: 4Hz. [29] [0, 1]
𝑝6 : Width,𝑊 Width. Maximum: entire width of the AV. [23] [0, 1]
𝑝7 : Height,𝐻 Height. Maximum: entire height of the AV. [23] [0, 1]
𝑝8 : Vertical Position,𝑉𝑃 Position along the center AV axis (viewed from the front). [23] [0, 1]
𝑝9 : Auditory Message Loudness, 𝑙 Loudness of auditory message “Stopping”. [24] [0, 1]

Time to start crossing is the duration after walking very close to
the road since the simulation started. We used a Unity collider to
mark the spot where the participant was counted as on the road.
(see Figure 2 b).

Normalization into the [−1, 1] range is required because the
subjective metrics values have ranges based on 20-, 5-, or 7-point
Likert scales. After transformation, the mental demand and time to
start crossing objectives are to be maximized (a higher value means
less load and earlier crossing).

4.1.3 Hyperparameter Setup for Bayesian Optimization. We used
BoTorch [6] version 0.11.3 with a multi-output Gaussian Process
and applied qEHVI as the acquisition function. This function rep-
resents the expected hypervolume increase, where we set 𝑞 = 1

(see Chan et al. [10]) to ensure that after each iteration, a batch of
size one is selected for evaluation. The optimization process started
with a sampling phase of five iterations, during which we employed
Sobol sampling [73] to generate initial eHMI designs. Sobol sam-
pling systematically divides the design space into evenly distributed
regions and picks a representative design from each, ensuring broad
coverage. At this early stage, the MOBO algorithm has no prior
user-specific data, so it needs these initial ratings to build a first un-
derstanding of the design space from each individual’s perspective.
To prevent bias from different starting conditions, we used the same
set of five sampled designs for every participant. After gathering
initial ratings, the MOBO used a 15-iteration optimization phase,
where the optimizer iteratively balanced "exploitation" (refining
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promising known designs) and "exploration" (probing new regions)
for each user. To approximate the acquisition function, we used
2024 restart candidates and 512 Monte Carlo samples (see Chan
et al. [10]).

4.1.4 Optimization Stopping Criterion. In internal tests, we found
convergence to an optimal rating of objectives was reached rela-
tively quickly. Therefore, we added a stopping criterion checked
after every measurement: Was the perfect rating for every subjec-
tive metric (i.e., the highest rating for trust, predictability, safety,
visual appeal, usefulness, satisfaction, and the lowest rating for
mental demand; see Section 4.1.2) given for the last round? Partici-
pants could otherwise not opt out of optimization.

The stopping criterion never applied.

4.2 Additional Measurements
Besides objectives, we logged position with 50Hz, number of colli-
sions with cars, time on the sidewalk and on the street, and total
duration.

Finally, participants assessed the communication (intention to
stop, intention not to stop, and timer) regarding necessity and
reasonability on individual 7-point Likert scales and gave open
feedback.

User Expectation Conformity: "The final design matches my imag-
ination.", Satisfaction: "I’m pleased with the final design.", Confidence:
"I believe the design is optimal for me.", Agency: "I felt in control
of the design process." Ownership: "I feel the final design is mine."
Regarding Interactivity, participants also provided feedback on de-
sired design control levels ("... Consider aspects where you desired
more or less control over the design.")

4.3 Procedure
First, participants were introduced to the study procedure and VR
scene. They then signed informed consent. The introduction to the
setting is in Appendix A.

They then signed informed consent and could adjust the headset.
In each trial, participants crossed the same street with the same
setting to guarantee no external effects altering the perception of
the eHMI. An AV would stop after ≈25 seconds. With crossing the
street, each trial took ≈1min. After each trial, participants answered
the questionnaires described in subsection 4.2 in the VR scene.
The study took ≈55min. Participants received 10€. The study was
conducted in German and English.

The experimental procedure followed the guidelines of our uni-
versity’s ethics committee and adhered to regulations regarding
handling sensitive and private data, anonymization, compensation,
and risk aversion. Compliant with our university‘s local regulations,
no additional formal ethics approval was required.

5 Results
5.1 Data Analysis
The goal of MOBO is to identify the Pareto front, which contains all
Pareto optimal points in the design space. Each point represents a
design that balances trade-offs between conflicting objectives [61].
Using the EMOA R package [62], we determined Pareto optimal
values for each participant and focused our analysis solely on these

efficient designs. The female group yielded 76 Pareto designs, and
the male group 90. R 4.4.2 and RStudio 2024.09.1 were employed.
All packages were up-to-date in December 2024.

5.2 Participants
37 participants (Mean age = 25.6, SD = 3.5, range: [19, 34]; Gender:
45.9% women, 51.4% men, 2.70% non-binary;) took part in the study,
recruited locally. 35 participants are college students, two are work-
ing, indicating that high school is their highest degree. On 5-point
Likert scales (1=Strongly Disagree — 5=Strongly Agree), participants
showed interest in AVs (M=4.51, SD=.77), were positive whether AVs
would ease their lives (M=4.40, SD=.80), and were skeptical about
whether they become reality by 2034 (M=4.30, SD=1.02). For gender
comparison, we only used data from female and male participants
due to the low number of participants with non-binary gender.

5.3 Questionnaire Ratings
We analyzed the mean ratings from the questionnaires of all partic-
ipants whose design parameters were on the Pareto front. Figure 6
shows a comparison overview. Additionally, we show the value
progression in Figure 12a, Figure 12b, Figure 13b, Figure 11b, Fig-
ure 13a, Figure 11a, and Figure 14, showing that the approach could
optimize for the objective values over the iterations. In particular,
perceived safety was increased, while mental demand and time to
cross decreased. The increase in trust, predictability, and accep-
tance was weaker. Aesthetics remained roughly constant over the
iterations.

Trust in Automation. The Bayesian analysis of Trust resulted
in a 𝐵𝐹 = 0.37 ± 0.00%, suggesting inconclusive evidence for no
difference between females (M=4.03, SD=1.05) and males (M=3.81,
SD=1.12; see Figure 6a).

Predictability. For Predictability, the analysis yielded a 𝐵𝐹 = 0.91
± 0.00%, providing inconclusive evidence for no differences be-
tween the two groups. Females rated Predictability higher (M=3.56,
SD=0.88) than males (M=3.30, SD=0.86; see Figure 6b).

Mental Demand. Mental Demand showed a 𝐵𝐹 = 0.23 ± 0.02%, in-
dicating moderate evidence for equality between the groups. Hence,
female ratings (M=7.18, SD=2.65) than male ones (M=7.43, SD=2.08;
see Figure 6c) for the designs were equal.

Perceived Safety. Perceived Safety showed a 𝐵𝐹 = 6.00 ± 0.00%,
with moderate evidence favoring difference between the groups.
The designs were rated lower for females (M=1.53, SD=1.50) than
males (M=2.10, SD=1.14; Figure 6d).

Acceptance. Acceptance had a 𝐵𝐹 = 0.17 ± 0.05%, suggesting
moderate evidence in favor of no difference between females (M=5.98,
SD=1.00) and males (M=5.93, SD=1.25; see Figure 6e).

Aesthetics. The Bayesian analysis yielded a 𝐵𝐹 = 0.27 ± 0.04%
for the Aesthetics measure, indicating moderate evidence for no
difference. The designs yielded a higher rating for females (M=6.09,
SD=0.84) than males (M=5.92, SD=1.27; see Figure 6f).

Time To Start Crossing. The Bayesian analysis yielded a𝐵𝐹 = 3.50
± 0.01% for Time to start crossing, indicating moderate evidence
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Figure 5: Study procedure using HITL MOBO for eHMI design. There were 20 (5 sampling and 15 optimization) iterations.
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Figure 6: Rating for the subjective questionnaires comparing female andmale of Pareto-optimal values. The Bayes factor shows
trends towards equality (<1) and difference (>1).

favoring a difference. The designs yielded a faster start for females
(M=10.2, SD=3.55) than males (M=11.4, SD=2.52; see Figure 6g).

5.4 Pareto Front Parameter Set
The results for each design parameter are detailed in Table 2. Inter-
estingly, we found no evidence for difference for any parameter.
Figure 7 shows this visually.

Figure 8 visualizes the final mean parameter set on the Pareto
front in the scene. We use the commonly used color cyan [29] as a
reference. The values between minimum, mean, and maximum do
not vary widely.

Because averaging RGB values would obscure meaningful dif-
ferences, we plot all resulting color values on the Pareto-front per
participant across the 20 iterations in Figure 9. Each column shows
a single participant’s Pareto-true color designs over time. Each
colored box represents one iteration where a given design was
Pareto-optimal (i.e., non-dominated), and empty spaces indicate

dominated designs and, thus, not on the Pareto front. While vari-
ous colors emerged, hues close to cyan were consistently present.
This recurrence suggests that ”standard” cyan hues remain a robust
choice even in a process driven by iterative optimization. During
sampling (iterations 1–5), in which all users saw the same initial five
designs, 34 out of 37 participants had at least one Pareto-optimal
color, suggesting that the initial sampling effectively spanned the
design space. However, fewer participants achieved Pareto-optimal
colors during optimization (iterations 1–15), where MOBO focused
on refining promising regions. Some participants even had more
than five Pareto-optimal colors in this phase, highlighting individ-
ual preferences and indicating that more iterations may be needed
to identify optimal colors for certain users reliably.

5.5 Correlation between the Objectives
MOBO identifies optimal design parameters that balance multiple
objectives along the Pareto front, ensuring that no single objec-
tive can be improved without compromising others [61]. To assess
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Figure 7: Comparison of the design parameters for both groups, using a Bayesian t-test. The annotations are as defined by
Lee and Wagenmakers [53]: "<<<" for extreme evidence for equality (BF < 0.01), "<<" for strong or very strong evidence for
equality (BF < 0.1), "<" for moderate evidence for equality (BF < 0.3), "=" for inconclusive (also called anecdotal) evidence (BF
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Table 2: Results of Bayesian Analysis for Each Design Parameter including the IQR ranges

Design Parameter BF (± %) Female IQR Male IQR Evidence
Alpha 0.71 ± 0.02% 0.75-0.98 0.81-0.99 inconclusive evid. for equality
Blue 0.17 ± 0.05% 0.75-0.88 0.75-0.88 moderate evid. for equality
Green 0.39 ± 0.03% 0.71-0.88 0.73-0.94 inconclusive evid. for equality
Red 1.40 ± 0.01% 0.62-0.93 0.62-0.99 inconclusive evid. for difference
Blink frequency 0.19 ± 0.05% 0.71-0.96 0.71-0.95 moderate evid. for equality
Width 0.22 ± 0.05% 0.74-0.94 0.80-0.95 moderate evid. for equality
Vertical position 0.19 ± 0.05% 0.58-0.86 0.58-0.86 moderate evid. for equality
Height 0.37 ± 0.03% 0.68-0.95 0.68-0.96 inconclusive evid. for equality
Volume 0.21 ± 0.05% 0.69-0.95 0.69-0.94 moderate evid. for equality

whether there are trade-offs between these objectives, we calculated
the correlations among all objectives (see Figure 10). This analysis
helps us understand how changes in one objective might influence
others.

The results show that almost all correlations were statistically
significant when using all data (see Figure 10a). In particular, Trust
and Predictability had a strong positive correlation (𝑟 = 0.65), as
did acceptance and aesthetics (𝑟 = 0.71), meaning improvements in
one were associated with improvements in the other. In contrast,
the correlations between Mental Demand and the other objectives

were negative. There were no correlations between Time to start
crossing with Predictability and Perceived Safety.

When only taking Pareto front values into account (see Fig-
ure 10b), much fewer significant correlations exist. However, Trust
still had a strong positive correlation with Predictability (𝑟 = 0.54)
and Perceived Safety (𝑟 = 0.43), for example. Compared to when all
data was used, all correlations became less strong and no correlation
inverted.
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Figure 8: Visualizations of the resulting design parameter value ranges on the Pareto front. Cyanwas used as a default color (RGB)
to demonstrate the non-color-related values: vertical position (VP), height (H), width (W), and alpha (A). Minimum/Maximum
shows the lowest/highest values across participants where the design received Pareto-optimal ratings.
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5.6 Design Satisfaction and Engagement
Participants evaluated several design process aspects using Likert
scales ranging from 1 (Strongly Disagree) to 7 (Strongly Agree).
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Figure 10: Correlation heatmaps of study objectives. (a) in-
cludes all data points (𝑛 = 720 = 20∗37, i.e., 20 iterations for 37
participants), and (b) includes only Pareto-true data points.
”𝑥” indicates non-significant at 𝑝 < 0.05 (Adjustment: Holm).

Firstly, participants reported that the final design matched their
expectations (“The final design matches my expectation.”; M=5.70,
SD=1.58). This suggests that most users felt the outcome aligned
with their anticipated expectations. Similarly, satisfaction (“I’m
pleased with the final design.”) with the final design was high
(M=6.00, SD=1.41).

Control over the design process (“I felt in control of the design
process.”) was another positive aspect (M=5.81, SD=1.35). Confi-
dence in the optimality of the design (“I believe the design is optimal
for me.”) for their needs was also high (M=5.97, SD=1.30).

However, ownership of the final design (“I feel the final design is
mine.”), while still positive, showed a slightly lower mean ofM=5.30
(SD=1.61).

Overall, the data suggests that participantswere generally pleased
with the design and felt a strong sense of control and confidence
in the process, but the degree of ownership felt towards the final
design may warrant further exploration to ensure greater personal
investment in the outcomes.

5.7 Open Feedback
Participants provided detailed feedback regarding their experience
with the design and interaction during the study. Several key themes
emerged, including interactivity, general impressions, and areas for
improvement.

Interactivity and Control: While many participants felt the de-
sign was effective, some expressed uncertainty about their level
of control over the process. One participant mentioned, "I did not
realise I was controlling the design process," highlighting a disconnect
between the design and user awareness of control. Another echoed
a similar sentiment, "I would like more control over how the HMI
looked in general. The range of adjustments was too small and easy
to miss sometimes."

General Impressions: Overall, feedback was positive, with several
participants praising the design. One stated, "Overall, the study and
the design of the eHMI was effective. It was well paced, and organised."
Another appreciated the clarity of the vehicle’s communication, say-
ing, "The announcement of stop/go was useful alongside the concept
of colors. It made it easier for pedestrians to understand when to and
not to cross the road." The audio and visual cues were particularly
well-received, with a participant noting, "The sound ’stopping’ is
really a good reminder for me to cross the road, let me feel safe."

Areas for Improvement: Despite positive feedback, several sug-
gestions for improvement were made. One participant mentioned
the unpredictability of the vehicle’s stopping behavior: "Not sure
when the automated car decides it wants to stop. The eHMI seems to
come out suddenly." Another recommended more gradual cues, sug-
gesting, "A gradual light/indicator that the car is going to slow down
for me—recognizes and conveys that intent." Some participants also
noted that the interaction could benefit from additional elements,
such as "more interaction elements in the scenario, or building more
than one."

A few participants commented on the unpredictability of the
vehicles, stating, "In the beginning, it was not clear for me where
exactly I have to stand and wait for the vehicles to stop." Others felt
that different colors or light effects would enhance communication,
with one suggesting, "The lights were adequate. However, a bright
light in the day and night would be better, like a bright green or red
color."

6 Discussion
While numerous works evaluated different designs of eHMIs [22,
29, 75], there is the open question of how an optimal eHMI should
be designed.

We conducted a between-subject study to investigate these RQs
with 37 participants. We employed MOBO to iteratively optimize
the eHMI designs based on participant ratings of trust, perceived
safety, understanding, mental demand, acceptance, aesthetics, and
time to start crossing. This method enabled us to compare designs
on the Pareto, where enhancing one objective would necessitate
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trade-offs with others [61]. In the following, we discuss our findings
regarding the optimal eHMI and the design process.

6.1 Optimized Design Choices in External
Communication of Automated Vehicles

The comparison of optimized eHMI design parameters between
females and males revealed no evidence for differences. Regarding
RQ2, however, this does not necessarily imply a generally coherent
Pareto front for all users. Gender is only one demographic factor,
and its absence of effect in our study does not necessarily mean
that a single ”universal” eHMI design would work equally well for
all. User characteristics are complex, influenced by factors such
as age, cultural background [19], cognitive abilities, and personal
experiences (e.g., see Edelmann et al. [36]).

Yet, looking more qualitatively at the final design parameters (see
Figure 7), we conclude that the Pareto front incorporates a similar
design. Therefore, we posit that a certain set of parameters—e.g.,
cyan hue, flashing animation around 3Hz, and a large illuminated
area on the vehicle’s front—might be appropriate for most users,
at least as an initial starting design from which personalization is
more efficient. We argue in line with previous work [17, 29] that
cyan is an appropriate color. We modeled the preferred flashing
animation [29] and found that ≈3Hz was optimal, compared to 1Hz
used by Dey et al. [29]. Compared to previous designs that used
LED strips [17, 29, 76], we enabled the entire AV front to be an
eHMI (also see Schlackl et al. [71] or Dey et al. [30]).

Interestingly, Figure 7 shows that on the Pareto front, the volume
of the auditorymessagewas relatively high (approximately 0.8, with
no value on the Pareto front below 0.5) both for female and male
participants. Moderate evidence for similarity was also found here
for female and male participants. This is important for accessibility
considerations [24] and also replicates findings that support the
positive effect of multimodality (e.g., visual and auditory signals) of
eHMIs [32]. This furthermore highlights the possibility of having a
"one-fits-all" eHMI [57] for some design parameters.

This work also advocates for an eHMI as with (at least) 20 rounds
of interaction, an eHMIwas still rated highly.While perceived safety
most likely also increased due to increased exposure time [15], this
is still a finding supporting explicit eHMIs and is in contrast to
work considering explicit eHMIs not necessary [63].

6.2 Individual Optimization and the Notion of
Universality

General approaches exist to focus on group level optimization. For
example, one can use the causal tree analysis by Athey and Imbens
[5] and then the derived groups as a homogenous group for opti-
mization. However, it is unclear which variables should be used for
the grouping in the context of eHMIs. We have, therefore, used gen-
der as a known characteristic affecting the crossing decision [25].
Interestingly, we found no significant differences in the objectives
or the design parameters. However, this does not mean that genuine
individual differences are absent; rather, it indicates that our chosen
demographic factor and current sample might not have captured
meaningful variability.

6.3 Trade-off in the Objectives
MOBO seeks to identify optimal design parameters that balance
multiple objectives along the Pareto front, ensuring that enhancing
one objective does not disproportionately compromise another [61].
This approach is particularly valuable when trade-offs exist between
objectives, such as spatial error versus completion time [10]. How-
ever, our analysis uncovered strong correlations among objectives,
suggesting minimal conflict between some.

This observation implies potential redundancy within the cur-
rent set of objectives. Although these were selected based on previ-
ous eHMI studies [24, 26, 29, 30], future research could streamline
the objectives by prioritizing those that are most distinct and im-
pactful. For example, trust and predictability or acceptance and
aesthetics show strong correlations (see Figure 10), indicating that
selecting one from each pair could simplify future studies. Con-
versely, mental demand, which exhibits only a weak correlation
with Perceived safety when looking at Pareto optimal values (see
Figure 10b), should be preserved as it captures a unique user expe-
rience.

Although these are preliminary insights, future research should
further investigate and validate the potential for reducing objectives
in eHMI studies.

6.4 Practical Guidelines for eHMI Designs
Our study’s findings provide valuable practical insights for future
research on eHMIs. Here are the two key guidelines:

• Multimodality is Key: When designing eHMIs, accessibil-
ity of traffic is improved when employing multimodality [24]
and also wanted by people without disabilities.

• Starting Points for Efficient Personalization: While per-
sonalization and continuous optimization remain necessary
to account for individual differences (apart from gender), our
findings suggest certain parameter ranges as effective start-
ing points. These could enable the optimization to focus on
fewer other parameters to yield eHMI designs that quickly
align with diverse user needs.

6.5 Limitations and Future Work
We prioritized subjective ratings as main objectives for optimiz-
ing the UI design parameters. However, we included one objective
value: Time to start crossing. It remains to be discussed whether
more objective data, such as objective physiological responses, is
useful. Nonetheless, the subjective ratings were collected using val-
idated questionnaires or inspired by related research. While valid,
future research should investigate the relationship between these
dimensions and more specific subcomponents of trust. Additionally,
it is crucial to consider the potential redundancy of some question-
naire items due to high correlations between certain measures (see
Section 6.3).

Our analysis provided inconclusive evidence on gender differ-
ences, limiting the strength of our claims.

Future work should expand the age range and incorporate more
diverse participant pools. Although we included German and In-
dian participants, future investigations should broaden cultural
contexts [36]. Future work would also benefit from testing the
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eHMI designs under various environmental conditions, such as day-
time versus nighttime or weather scenarios (see Colley and Rukzio
[22]), to better assess their effectiveness in real-world applications.
Additionally, the scope of the eHMI designs could be expanded by
incorporating other design elements, such as text-based messages,
symbols, or dynamic animations. Prior work has, however, shown
a high potential for LED stripes in eHMI designs due to their easy
integration and aesthetically pleasing design. Text, for example, is
inaccessible to children or foreigners, and symbols can be unclear.
We used the flashing animation as prior work showed a preference
for this pattern [29].

7 Conclusion
This study explored the eHMI design preferences using the MOBO
approach. We conducted a study with N=37 participants in VR.
Our findings indicate no differences between female and male par-
ticipants. While this does not yet claim that a universal design
for all users exists, assessing the design parameters on the Pareto
front, found that some design parameter value ranges seem feasi-
ble for future work to focus on. Therefore, this work supports the
standardization efforts necessary in the automotive domain.

Open Science
We make the Bayesian optimizer (see https://github.com/Pascal-
Jansen/Bayesian-Optimization-for-Unity), the Unity application
upon request, and the collected (anonymized) data available (see
https://github.com/M-Colley/ehmi-optimization-chi25-data).
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A Procedure — Introduction
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ronment. You will encounter automated and manually
driven vehicles. Automated vehicles are identified by a
strip on the upper part of the windshield. If you feel un-
comfortable at any time, you can stop the study without
giving any reasons and without any disadvantages. In
this case, simply remove the VR goggles and inform the
study leader.
You will be shown different scenarios, one after the other.
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on the opposite side of the road. If an automated vehi-
cle recognizes that you want to cross the road, it will
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(b) Progression of predictability values over MOBO iterations.

Figure 11: Value progression of trust and predictability.
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Figure 12: Value progression of acceptance and aesthetics.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Colley, Jansen et al.

Sampling Optimization

y = 1.92 + 0.0436 x , R
2 = 0.05

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

P
er

ce
iv

ed
 S

af
et

y

(a) Progression of perceived safety over MOBO iterations.
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Figure 13: Value progression of perceived safety and mental demand.
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Figure 14: Progression of Time to start crossing over MOBO iterations.
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