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ABSTRACT
Thermal attributes in the environment impact well-being, but their
inclusion in standard well-being monitoring is challenging due
to complex measurement requirements. Industry standards like
the Predicted Mean Vote (PMV) index need numerous measures
and specialized setups, making large-scale applications impractical.
This study investigates predicting thermal perception ratings using
only contextual factors. We conducted an ablation study using the
Chinese Thermal Comfort Dataset (CTCD) and a Random Forest
(RF) classifier to evaluate prediction performance with different
contextual feature combinations on five labeling scales. Results
showed that omitting measures required for PMV index calculation
and relying on contextual features exclusively achieved 𝐹1 scores
similar to those when including PMV measures. Key predictive
factors included daily outdoor temperature and a person’s cloth-
ing, weight, and age. These findings suggest that leveraging more
accessible contextual data to estimate thermal perception ratings
is promising, and further research should explore more contex-
tual factors to enhance prediction accuracy and support well-being
assessments.

CCS CONCEPTS
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1 INTRODUCTION
The evaluation of thermal environments has been a long-standing
research focus in the field of building ergonomics [23]. A common
topic within these fields is the prediction of subjective ratings sur-
rounding individuals’ perceptions of thermal environments. Ther-
mal environmental conditions and subjective perceptions of them
greatly impact physical well-being [21] and regulatory cognitive
processes, such as emotion regulation [26]. The rating scales that
are commonly used measure concepts such as thermal sensation,
thermal comfort, or thermal acceptability [28]. Due to their impact
on physical and mental well-being, individuals’ subjective percep-
tions of the thermal attributes in their environments represent a
relevant source of information for well-being monitoring, yet it is
currently impractical to incorporate subjective thermal perception
ratings (STPRs) as parameters in standard well-being monitoring
scenarios [24]. This is primarily because established methods for
predicting STPSs, such as Fanger’s Predicted Mean Vote (PMV)
index [9, 10], require numerous measures, which in turn require
specialized sensors that are likely unavailable in field scenarios.
Concerning this issue, prior research has investigated how the ad-
dition of contextual factors, such as personal attributes, building
type, building ventilation, and outdoor contextual information (e.g.,
outdoor temperature, relative humidity, climate zone, and season),
can support STPR prediction (e.g., [4, 18]). While prior studies have
found that the inclusion of such contextual information can im-
prove prediction performance [7, 14], research investigating to what
extent contextual information can serve as sufficient input to pre-
dict STPRs without PMV index measures (i.e., indoor temperature,
relative indoor humidity, clothing insulation, mean radiant temper-
ature and metabolic rate) has been underaddressed. The growing
availability of publicly accessible thermal comfort datasets, which
include personal, location-based, and outdoor contextual features
(e.g., [6, 11, 22, 27]), presents an opportunity to explore how com-
binations of contextual information features can be leveraged to
infer users’ STPRs without relying on PMV features as a basis. A
deeper understanding of the role contextual features can play in
STPR prediction may facilitate the inclusion of thermal sensation,
comfort, and acceptability measures as monitoring variables in
future research, allowing for a more exhaustive analysis of users’
well-being. In this paper, we conduct an exploratory examination of
an existing thermal comfort dataset [27], which includes subjective
thermal comfort ratings across three scales: Thermal Sensation Vote -
TSV ([-3,-2,-1,0,1,2,3]), Thermal Comfort Vote - TCV ([0,1,2,3,4,5]), and
Thermal Acceptability Vote - TAV ([-1, -0.01, 0.01, 1]). This dataset
also includes thermal comfort states estimated using the PMV in-
dex and contextual factors such as building information, personal
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information, and outdoor environmental parameters. Our main
goal is to investigate to what extent more easily accessible input
features represent a feasible basis for thermal comfort prediction in
future research. We explore the achievable performance of different
feature combinations using a Random Forest (RF) classifier and
compare them to two baselines. The first is the null model, which
always predicts the majority class, and the second is the PMV index,
which is the primary metric in the ASHRAE55 [15] standard. We
further conducted a feature importance analysis across 16 features.
Using only contextual factors, we achieved a higher 𝐹1 score than
the one achieved using PMV measures. Additionally, we were able
to achieve 𝐹1 scores comparable to using a full feature set. We dis-
cuss the broader implications of these results and identify open
questions that should be investigated further in upcoming research.

2 RELATEDWORK
2.1 Thermal Comfort and Well-being
Thermal conditions such as outdoor or indoor temperature affect
one’s well-being as physiological processes in the human body
regulate themselves in response to changes in temperature and
humidity [8, 13, 25]. This has relevant implications for research in
the fields of building ergonomics and well-being monitoring. For
instance, numerous studies have shown that the perceived level
of thermal comfort impacts employees’ overall satisfaction and
productivity in office buildings [3, 17]. Further, cognitive processes
such as emotion regulation have been shown in previous work to
affect how individuals perceive the thermal environment to be ac-
ceptable [26]. Because of this, perceiving the thermal environment
as far too warm or cool can lead individuals to experience amplified
emotions due to thermal stress. Moreover, thermal comfort is in-
tricately linked to thermal sensation and thermal acceptability. As
these concepts depict different levels of granularity (see Section 1)
of subjective thermal perception, each of them is evaluated using
distinct rating scales (i.e., thermal sensation, thermal comfort, and
thermal acceptability scale [30]).

2.2 Thermal Comfort Estimation
Given the substantial impact of thermal comfort on various aspects
of health, mental well-being, productivity, and energy efficiency, a
large body of work focuses on deriving algorithms and models to
estimate individuals’ STPRs, most prominently thermal comfort. In
their work, Fanger et al. [10] proposed the PMV index, which pre-
dicts the mean value of thermal sensation votes of a large group [15].
The factors involved in the calculation of the PMV index are the air
temperature, relative humidity, metabolic rate, air velocity, mean
radiant temperature, and clothing insulation [10]. The PMV index
is considered the standard metric for estimating thermal sensation
in mechanically ventilated buildings and therefore included in the
ASHRAE Standard 55 [19] as well as the ISO 7730 [20], however,
prior work has been critical of the PMV method as it has led to
over or underestimation of perceived thermal sensations in past
studies (i.e., [2, 16]). Recent research more frequently leverages
machine learning methods to explore alternative methods of ther-
mal comfort modeling (e.g., [4, 24, 29]). In particular, supervised
learning methods that use either the measures as the PMV index
or physiological signals as input to classify individuals’ thermal

comfort make up a considerable portion of previous work. For in-
stance, Somu et al. [24] were able to predict the thermal comfort
states of study participants in a laboratory setup with an accuracy
of over 55%. In addition to six measures for PMV calculation, per-
sonal context information (e.g., age, gender, weight, and height)
and outdoor environmental factors (e.g., mean outdoor tempera-
ture, relative outdoor humidity, and air velocity) were found to
affect thermal comfort prediction performance [14]. Prior work
investigating machine learning architectures for thermal comfort
prediction oftentimes uses contextual information in addition to
the PMV features and compares the baseline PMV performance
against feature combinations that leverage contextual information
alongside PMV features to demonstrate a prediction performance in-
crease (e.g. [14]). While this has produced improvements in thermal
comfort prediction models, leveraging PMV features for estimation
presents constraints for continuous thermal comfort monitoring in
buildings not equipped with the required sensory components. This
reduces the feasibility of including thermal comfort as a monitoring
variable in studies investigating physical and mental well-being.
Contrarily, contextual factors such as personal attributes, outdoor
environmental measures, and building information are more easily
accessible without prior instrumentalization of study sites. For in-
stance, outdoor environmental measures are accessible via online
weather APIs, while information about the building type can be
accessed via mapping and navigation APIs or through self-reports.
Nevertheless, as previously described, such contextual factors have
traditionally been used as additional features to predict thermal
comfort. Yet, investigations of the prediction performance that can
be achieved using these contextual factors alone have thus far been
sparse. In this paper, we, therefore, conduct an exploratory feature
combination experiment to explore the feasibility of predicting
STPRs across five different labeling scales.

2.3 Datasets
Various thermal comfort datasets have been made public in the past,
such as the ASHRAE Global Thermal Comfort Database II [11],
which includes extensive data on thermal comfort from different
climatic regions worldwide, and the SCATs dataset [22], which
focuses on thermal comfort in naturally ventilated buildings in Eu-
rope. Our investigation used the Chinese Thermal Comfort Dataset
(CTCD) [27] due to its coverage of personal, location, building,
and outdoor input features over a large sample size, provides more
robust and diverse information across multiple contexts, and is well-
aligned with the study goal of investigating the feasibility of various
feature combinations to predict STPRs. The CTCD consists of 41,977
data sets collected from numerous field studies across diverse cli-
mate zones, building types, and occupant profiles [27, 28]. While
similar feature combination studies have recently been conducted
on the CTCD (e.g., [28]), to the best of the authors’ knowledge,
no work has investigated combinations that do not include the
features necessary for PMV calculation. The subjective thermal per-
ception self-reports included in the dataset were measured using
three scales (TSV, TCV, and TAV).
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Group Features
Location Features Building Type, Building OperationMode,

City
Outdoor Features Season, Climate Zone, Mean Daily Out-

door Temperature (°C)
Personal Features Gender, Age, Height (cm), Weight (kg)
PMV Features Indoor Air Temperature (°C), Indoor Rel-

ative Humidity (%), Indoor Air Velocity
(m/s), Globe Temperature (°C), Clothing
Insulation (clo), Metabolic Rate (met)

Table 1: This table shows the features included in the ex-
periment. We grouped the features into four parent groups,
which we used to derive the possible combinations for the
experiment.

3 METHOD
3.1 Data Preparation
As a first step, we identified relevant contextual input features for
inclusion in our analysis and derived overarching groups. In our
analysis, we used 16 features in total, which were grouped into
four categories. Table 1 shows the defined groups and included
features, along with a short description explaining the meaning of
each feature. The features included in the first group provide gen-
eral information about the location and building type. The features
in the second group describe the outdoor environment via features
such as mean outdoor air temperature, climate zone, and the current
season. The third group describes personal factors such as gender,
age, height, and weight. The last group includes all the features
relevant to calculating the PMV index. After defining the required
feature set, we screened the data for missing entries and employed
outlier detection for each numerical input feature. We filtered lines
with missing entries or outliers, defining outliers as values three
standard deviations greater or smaller than the feature’s mean value.
After filtering, we normalized all numerical features and encoded

Label Type Distribution
TSV Comfortable: 43.60%, Sligthly Warm: 17.96%,

Slightly Cool: 16.22%, Warm: 8.38%, Hot:
8.31%, Cool: 4.41%, Cold: 1.11%

TCV Very Comfortable: 52.67%, Comfortable:
34.71%, Just Comfortable: 10.24%, Just Un-
comfortable: 2.20%, Uncomfortable: 0.19%

TAV4 Acceptable: 48.05%, Just Acceptable: 42.38%,
Just Unacceptable: 5.78%, Unacceptable:
3.79%

TSV3 Comfortable: 40.71%, TooWarm: 35.49%, Too
Cold: 23.81%

TAV2 Acceptable: 90.43%, Unacceptable: 9.57%
Table 2: Label distributions for each scale included in the anal-
ysis. It can be observed that labels for thermal perceptions
at the extremes of the chosen scales are generally underrep-
resented, leading to imbalanced class labels.

categorical features such as gender or building type using one-hot
encoding. Numerical feature normalization was performed using
min-max normalization. As discussed in Section 2.3, the CTCD
includes subjective ratings for thermal sensation, comfort, and
acceptability, which serve as labels in our classification tasks. Fol-
lowing related work (e.g., [5]), we transformed the original 7-level
TSV ratings into a simplified 3-level scale (Too Cold, Comfortable,
Too Warm). This transformation, referred to as TSV3, was achieved
by mapping TSv labels as follows: 𝑇𝑆𝑉 < −0.5 → −1 (Too Cold);
−0.5 ≤ 𝑇𝑆𝑉 ≤ 0.5 → 0 (Comfortable);𝑇𝑆𝑉 > 0.5 → 1 (TooWarm).
Similarly, TAV ratings in the CTCD were initially recorded using a
4-point scale (see Section 1) ranging from perceived acceptability
levels: acceptable, just acceptable, just unacceptable, and unaccept-
able. This scale was simplified to a binary format denoted as TAV2,
representing either acceptable or unacceptable conditions. The ini-
tial 4-point TAV scale was denoted TAV4 for clarity. TSV3 and TAV2
are additional ratings in our analysis, potentially useful for future
well-being research. As a final step in our data preparation, we
examined the class distributions for each included labeling scale. As
Table 2 depicts, ratings were primarily distributed around neutral
thermal perception states, leading to an underrepresentation of
states at the extremes of the labeling scales.

3.2 Models and Procedure
We conducted a combinatorial analysis between the four feature
groups to investigate the performance of various contextual feature
combinations in the CTCD. We derived all possible combinations,
excluding duplicates, resulting in 15 combinations. We decided to
group similar features before deriving combinations. This allows
us to capture the interactions and dependencies between related
features, providing a more holistic understanding of their collec-
tive impact on thermal comfort prediction. For model selection,
we initially included Support Vector Machine (SVM), KNNeigh-
bors (KNN), Decision Tree (DT), and Extreme Gradient Boosting
(XGBoost) in addition to RF as possible candidates, all with their
default hyperparameters. The listed models were chosen based on
prior work on STPRs [14]. We then conducted a 10-fold grid search
cross-validation on the full input feature set with all five labeling
scales. Given the imbalances in our dataset, we used the 𝐹1 score
as our evaluation metric. Our data processing and model evalua-
tion pipeline was built using the Scikit-learn python library [1].
RF achieved the highest 𝐹1 score and was consequently selected
for further evaluation. We evaluated the RF model using 10-fold
cross-validation across all previously derived input feature com-
binations and the labeling scales described in Section 2.3. After
fitting the model for each configuration, we extracted the relative
feature importance for later evaluation. Feature importances were
calculated based on the mean decrease in Gini-impurity. To further
contextualize the achieved 𝐹1 scores and provide an estimate for
the expected 𝐹1 scores if a model always predicted the majority
class, we included a majority class predictor in our evaluation.

4 RESULTS
4.1 Prediction Performance
We evaluated the performance of various feature combinations on
five labeling scales. For configurations involving a single feature
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group, the PMV features alone achieved the highest 𝐹1 scores across
most scales, with scores of 0.27 for TSV, 0.42 for TCV, and 0.6 for
TAV4, indicating the robust predictive power of the PMV features
in isolation. In contrast, the location and building features alone
had the lowest scores, with 0.18 for TSV, 0.27 for TCV, and 0.5
for TAV4. For TSV ratings, the best overall configuration based
on the achieved 𝐹1 scores was using the full feature set. Similar
to using the PMV index calculation, this configuration achieved
𝐹1 scores of 0.34 for TSV, 0.44 for TCV, and 0.58 for TAV4. The
best configuration for the prediction of labels on the TSV scale
that did not include PMV features was the combination of outdoor
and personal features, with 𝐹1 scores of 0.31 for TSV, 0.39 for TCV,
and 0.52 for TAV4. For the prediction of TSV3 and TAV2 labels,
it can be seen that all configurations performed similarly in most
cases, regardless of the feature combination, although using only
features surrounding building and location information again led
to the lowest 𝐹1 scores. While PMV features alone are effective, the
inclusion of outdoor and personal features considerably enhances
predictive performance, especially when PMV data is not used. The
most accurate predictions are achieved with a comprehensive fea-
ture set that includes PMV, outdoor, building, and personal features.
The null model, represented by the majority class predictor, con-
sistently yielded the lowest 𝐹1 scores across all labeling tasks. For
instance, the majority class predictor scores 0.09 for TSV, while the
best feature combination achieves 0.34. However, for the 2-point
TAV2 tasks, the majority class predictor achieved an 𝐹1 score of
0.49, similar to the RF model using only location features, likely
due to the large class imbalance in TAV2 ratings.

Feature Groups Classification
PMV O L P TSV TCV TAV4 TSV3 TAV2

X 0.18 0.27 0.5 0.44 0.48
X 0.23 0.29 0.5 0.5 0.59

X 0.23 0.3 0.5 0.48 0.57
X 0.27 0.42 0.6 0.55 0.61

X X 0.29 0.35 0.5 0.54 0.61
X X 0.26 0.33 0.55 0.52 0.6

X X 0.28 0.42 0.59 0.56 0.62
X X 0.31 0.39 0.52 0.54 0.6

X X 0.3 0.4 0.59 0.56 0.63
X X 0.31 0.41 0.58 0.59 0.62

X X X 0.34 0.4 0.55 0.58 0.62
X X X 0.29 0.4 0.62 0.57 0.63
X X X 0.32 0.43 0.58 0.6 0.61
X X X 0.32 0.42 0.58 0.6 0.63
X X X X 0.34 0.44 0.58 0.61 0.63

PMV Index 0.34 - - - -
Majority Class Predictor 0.09 0.14 0.16 0.19 0.46

Table 3: 𝐹1 scores for various feature group combinations
on five different labeling tasks (TSV=7-point, TCV=6-point,
TAV4=4-point, TSV3=3-point, TAV2=2-point).

4.2 Feature Importances
Using the mean decrease in Gini impurity, we extracted the rel-
ative feature importances of all features included in our feature
groups. Figure 1 shows that the feature with the most relative im-
portance in predictions, including all feature groups as input, was
the mean daily outdoor temperature, followed by individuals’ cloth-
ing, weight, and age. While not all PMV features were among the
most important features, they still contributed considerably to the
prediction. Further, some PMV features, such as indoor tempera-
ture, globe temperature, and relative humidity, are correlated. This
high degree of correlation implies that these features provide over-
lapping information. As a result, their individual importance scores
may be lower, but their collective contribution to the model’s pre-
dictive power remains significant. Features surrounding location
and building attributes such as the city of measurement, building
type, and building operation mode achieved a lower relative im-
portance score using the RF classifier. This indicates that while
these attributes provide some relevant information, they are less
critical to the model’s performance compared to environmental and
personal features.

5 DISCUSSION
5.1 Performance and Practical Implications of

Feature Combinations
Our analysis demonstrates that various combinations of contextual
features can predict STPRs across various subjective rating scales.
In line with prior work (e.g., [14, 24]), our results indicate that
the performance of different feature combinations varies largely
depending on whether PMV features are used or not. However,
the combination of PMV, outdoor, building, and personal features
yielded the highest prediction performance across all five labeling
scales. Interestingly, even when PMV features were excluded, the
combination of outdoor, personal, and location features performed
comparably well, even in comparison to the ratings calculated using
the PMV index. Looking at the performance scores for TSV3 and
TAV2 ratings, it becomes apparent that the performance across all
combinations was higher due to the reduced classification com-
plexity. Here, relying exclusively on contextual factors without
PMV features also achieved comparable results. For well-being re-
search, preferences, as captured on the TSV3 scale or perceptions of
thermal acceptability (TAV2), may represent feasible metrics based
on our results. The feature importance analysis further reinforces
these findings. The mean daily outdoor temperature emerged as
the most important feature, followed by individuals’ clothing and
weight. While individual PMV features like globe temperature and
relative humidity were not among the most relevant features, their
collective contribution was still substantial. In line with prior work
that already suggests that PMV features should be supported with
additional contextual information (e.g., [7, 14, 23]), our findings
further indicate that relying more heavily on contextual factors
achieves prediction performance comparable to the standard PMV
index and using a full feature set. Especially for less complex STPR
prediction tasks such as the binary thermal acceptability prediction,
estimation of STPRs without PMV features may represent a feasi-
ble approach. Further, we encourage the exploration of alternative
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Figure 1: The calculatedmean feature importance across all combinations. It can be seen that factors relevant to PMV calculation
generally achieved high importance scores. Likewise, outdoor temperature and individuals’ clothing, weight, and age were
shown to be the most important features.

methods for STPR estimation, such as camera-based approaches
that infer thermal comfort from facial expressions [29] or body
movements [12].

5.2 Limitations and Future Work
While our study demonstrates the feasibility of using easily acces-
sible contextual features for thermal comfort estimation, several
limitations should be noted. First, the reliance on the CTCD may
limit the generalizability of our findings to other geographic regions
and climates. Future research should validate these results using
diverse datasets from different locations and environmental con-
ditions. Another limitation is the exclusion of potential real-time
data sources, such as wearable sensors or smart building technolo-
gies, which could provide more dynamic and precise measurements.
Integrating these technologies could enhance prediction accuracy
and offer insights into thermal comfort variations with increased
granularity. Finally, while our study focused on an RF classifier, ex-
ploring deep learning models and hybrid approaches could further
optimize performance, as related research has shown (e.g., [24]).
Future research should also investigate the long-term deployment
of these models in real-world settings, assessing their robustness
and adaptability over time.

6 CONCLUSION
This study investigated the feasibility of predicting STPRs using
readily accessible contextual features from the existing CTCDdataset.
We evaluated the performance of various feature combinations
across five labeling scales. Using an RF classifier as our model for
evaluation, we found that combining outdoor and personal features
can achieve 𝐹1 scores comparable to including features necessary

for PMV index calculation. We conducted a feature importance
analysis that underlined the importance of outdoor and personal
factors, with mean daily outdoor temperature, weight, and age
emerging as key predictors. Our work thus supports more inclusive
and scalable subjective thermal perception monitoring methods for
future well-being research.
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