
UnitEye: Introducing a User-Friendly Plugin to Democratize Eye Tracking
Technology in Unity Environments

TOBIAS WAGNER
∗
, Institute of Media Informatics, Ulm University, Germany

MARK COLLEY
∗
, Institute of Media Informatics, Ulm University, Germany

DANIEL BRECKEL, Institute of Media Informatics, Ulm University, Germany

MICHAEL KÖSEL, Institute of Media Informatics, Ulm University, Germany

ENRICO RUKZIO, Institute of Media Informatics, Ulm University, Germany

Eye tracking is a powerful tool for analyzing visual attention, as an input technique, or for diagnosing disorders. However, eye tracking

hardware is expensive and not accessible to everyone, thus, considerably limiting real-world usage or at-home evaluations. Although

webcam-based eye tracking is feasible due to advances in computer vision, its open-source implementation as an easy-to-use tool is

lacking. We implemented UnitEye, a Unity plugin enabling eye tracking on desktop and laptop computers. In a technical evaluation

(N=12), we tested the precision and accuracy of our system compared to a state-of-the-art eye tracker. We also evaluated the usability

of UnitEye with N=5 developers. The results confirm that our system provides reliable eye tracking performance for a webcam-based

system and well-integrated features contributing to ease of use.

CCS Concepts: • Computing methodologies → Machine learning; • Human-centered computing → Accessibility; Empirical

studies in HCI ; Interaction techniques.

Additional Key Words and Phrases: eye tracking; open-source; technical evaluation

ACM Reference Format:
Tobias Wagner, Mark Colley, Daniel Breckel, Michael Kösel, and Enrico Rukzio. 2024. UnitEye: Introducing a User-Friendly Plugin to

Democratize Eye Tracking Technology in Unity Environments. In Proceedings of Mensch und Computer 2024 (MuC ’24), September 1–4,

2024, Karlsruhe, Germany. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3670653.3670655

1 INTRODUCTION

Eye tracking is a vital instrument within Human-Computer Interaction (HCI) [34] employed as an input method [12,

14, 22, 28, 35, 43], for activity recognition [6], as a tool for usability testing [38], eye tracking is also instrumental in

various research areas for the examination of visual attention [5, 13, 16, 23, 31, 42], or to predict illnesses [19].

However, the need for specialized equipment, such as traditional infrared-based eye trackers, increases the cost

and complexity of including eye tracking as a ubiquitous interaction and evaluation tool. While advancements in

computer vision have led to the development of appearance-based gaze estimation methods [32, 57], these innovations

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Tobias Wagner, tobias.wagner@uni-ulm.de, Institute of Media Informatics, Ulm University, Ulm, Germany; Mark Colley,

mark.colley@uni-ulm.de, Institute of Media Informatics, Ulm University, Ulm, Germany; Daniel Breckel, daniel.breckel@uni-ulm.de, Institute of Media

Informatics, Ulm University, Ulm, Germany; Michael Kösel, michael.koesel@uni-ulm.de, Institute of Media Informatics, Ulm University, Ulm, Germany;

Enrico Rukzio, enrico.rukzio@uni-ulm.de, Institute of Media Informatics, Ulm University, Ulm, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-5907-5248
HTTPS://ORCID.ORG/0000-0001-5207-5029
HTTPS://ORCID.ORG/0000-0002-7500-8870
HTTPS://ORCID.ORG/0000-0003-2834-3729
HTTPS://ORCID.ORG/0000-0002-4213-2226
https://doi.org/10.1145/3670653.3670655
https://orcid.org/0000-0002-5907-5248
https://orcid.org/0000-0001-5207-5029
https://orcid.org/0000-0002-7500-8870
https://orcid.org/0000-0003-2834-3729
https://orcid.org/0000-0002-4213-2226


2 Wagner, Colley et al.

are still not yet ready for widespread adoption. To be useful, they require significant time and resources for integration,

necessitating the expertise of developers with specialized knowledge in machine learning.

In this context, the Unity game engine, which is utilized by approximately 230,000 developers in 2022 to create and

operate over 750,000 games [45], is highly important. Its popularity extends to the academic sphere, making it one of the

most commonly used game engines for research purposes. To date, the commercial platform of Tobii, Pupil Labs or, the

integration of eye tracking in Meta’s Quest, Pico, and Varjo products are the de facto only Unity-compatible eye tracking

solutions. However, these solutions primarily address eye tracking within head-mounted displays for augmented and

virtual reality, neglecting the aspect of eye tracking for desktop, mobile phone, or tablet applications. While open-source

variants exist for websites [37], and smartphones [4, 28], a solution for Unity is missing. The introduction of a freely

available "plug-and-play" Unity plugin for webcam-based eye tracking, therefore, signifies an important step forward.

Therefore, we introduce UnitEye, a tool for a widely accessible engine that has the potential to impact beyond expert

developers, embodying the democratization of eye-based interactions. Such democratization can broaden the application

of eye tracking, harnessing the creativity and efforts of many to introduce eye-based interactions into new contexts

and applications. UnitEye offers an open-source solution for Unity that eliminates the need for additional hardware. It

represents an inclusive tool based on affordable and readily available hardware, especially designed to be user-friendly.

By providing an easy-to-implement, low-cost eye tracking option, UnitEye lowers the entry barrier, facilitating the

incorporation of eye tracking technology into new systems.

In a technical evaluation with N=12 participants and 528 data points, we compared the performance of UnitEye to a

state-of-the-art eye tracker using video-based pupil and corneal reflection. While UnitEye understandably performs

worse, we show its current capabilities and performance. Further, we report a survey with N=5 developers, which

employed UnitEye in five case studies.

Contribution Statement: (1) With UnitEye, we provide an open-source Unity plugin for camera-based eye tracking along

essential tools for eye tracking methodology. (2) We confirm UnitEye’s performance via a technical evaluation (N=12)

and its ease of use via qualitative feedback from N=5 developers. (3) We present five case studies where UnitEye were

used to enable gaze-based interaction and evaluation.

2 RELATEDWORK — GAZE ESTIMATION

The study of gaze estimation has been extensive, crossing various fields such as computer vision [1], graphics [54], and

human-computer interaction [4, 28]. There are two primary types of gaze-tracking devices: wearable eye trackers [2]

and external cameras [51]. With the progression of deep learning and the accessibility of high-quality cameras, methods

using image-based gaze estimation are gaining traction.

Various camera technologies are employed for gaze tracking, including infrared (IR) eye-trackers (e.g., Tobii), depth

cameras [4, 18], and standard RGB cameras [28, 48, 51, 56]. Heuristic [17] and machine learning [28] methods that use

these cameras generally fall into either model-based [44, 55] or appearance-based [32, 57] categories. Model-based

methods construct geometric models of the eye’s structure, like tracking the iris’s shape, whereas appearance-based

techniques use supervised learning with raw eye images. Appearance-based methods have seen wider success, partly

thanks to large datasets like the GazeCapture dataset [29] and the MPIIGaze [58] together with the progress of

CNN-based approaches [3] that enable for example iTracker [29].

Continuous improvements were made to enhance the accuracy of these systems, with recent advancements achieving

high precision, especially with user-specific calibration [57]. Valliappan et al. [48] present a significant achievement in

smartphone eye tracking, achieving state-of-the-art results (uncalibrated accuracy of 1.92 cm; 0.5 cm with a per-user

Manuscript submitted to ACM



UnitEye 3

calibration). Kong et al. [28] built on this by integrating user head orientation data, aiming to develop a model that is

both generalizable and does not require user-specific calibration. A comparison of webcam and remote and integrated

eye trackers [52] showed higher measurement errors for webcam-based eye tracking. Still, the authors conclude that

webcams are viable for eye tracking [52].

While there have been significant advancements across various areas in eye tracking, the goal of Krafka et al. [29]

“Eye Tracking for Everyone” has not been reached. Current approaches such as EyeMU [28] target mobile platforms

but hinder direct integration into the OS or a game engine. Furthermore, previous open-source implementations of

appearance-based gaze estimation, such as the OpenGaze toolkit [57]
1
or Gaze-Unity, a project available on GitHub

2
,

are outdated, unmaintained for years, and therefore difficult to install for users with low programming skills. As a

remedy, we present UnitEye, which builds on EyeMU [28], to bring eye tracking to Unity and to provide an open-source

project for further integration of state-of-the-art appearance-based gaze estimation models.

3 UNITEYE IMPLEMENTATION AND FEATURES

We createdUnitEye, a Unity package that facilitates eye tracking using a single webcam, extending the EyeMU framework

introduced by Kong et al. [28]. Utilizing Google’s MediaPipe via the MediaPipeUnityPlugin for head and eye detection,

UnitEye leverages the normalized eye corner coordinates and head orientation to determine head movements including

yaw, pitch, and roll [28]. Thus, the high-level pipeline processes RGB images by first cropping the eyes and concurrently

estimating the head pose. Then, the gaze point is inferred. EyeMU’s foundation is a CNN trained on the GazeCapture

dataset, as noted by Krafka et al. [29], which allows for the prediction of gaze positions on a screen (for details about

the model see [28]). These predictions are then aligned with corresponding game objects. We have converted the

EyeMU model into the .onnx format (which is, unfortunately, hard, and does not support deep learning (yet)) and

supplemented it with various calibration methods: raw output (None), Ridge Regression-based refinement [24], and a

machine learning approach (ML Calibration) employing a multilayer perceptron. Additionally, we have implemented

filtering techniques (Kalman filter as per Welch et al. [50], Easing, and 1=C filter as described by Casiez et al. [11]), along

with an "area of interest" feature that identifies gaze targets either as game objects with a "Gazeable" attribute or screen

regions (see Figure 1). Our API is designed to mirror the Tobii API, enabling developers to switch from Tobii to UnitEye

with minimal code changes. A class diagram is available in the accompanying repository under Documentation/Class

Diagrams/. UnitEye features are:

• Webcam Integration: UnitEye offers seamless integration with webcams, enabling eye tracking within Unity projects

without the need for any specialized hardware—just a standard webcam.

• Gaze Filtering: Incorporates advanced algorithms to filter gaze data for smoother and more stable tracking results.

• Custom Calibration: Provides a calibration tool tailored to individual setups, enhancing accuracy and personalizing

the user experience.

• Accuracy Evaluation: Includes a comprehensive evaluation module to test and verify the precision of eye tracking

within the user’s specific environment.

• Area of Interest (AOI) Tracking: Features an AOI system that allows users to define specific areas or objects on the

screen for focused tracking. We currently offer 7 different shapes: AOIBox, AOICircle, AOICapsule, AOICapsuleBox,

AOIPolygon,

AOICombined, and AOITagList. The AOITagList is a shape that allows you to interact with GameObjects in Unity. It

1
https://git.hcics.simtech.uni-stuttgart.de/public-projects/opengaze, accessed 03.06.2024

2
https://github.com/souravrs999/Gaze-Unity, accessed 03.06.2024

Manuscript submitted to ACM

https://developers.google.com/mediapipe
https://github.com/homuler/MediaPipeUnityPlugin/releases/tag/v0.12.0
https://git.hcics.simtech.uni-stuttgart.de/public-projects/opengaze
https://github.com/souravrs999/Gaze-Unity


4 Wagner, Colley et al.

Fig. 1. UnitEye UI. This window allows relocation by dragging the top bar and includes a Webcam controls section for selecting from

available webcams in Unity. There’s a feature for calibrating the distance to the camera, which is a one-time setup that saves the

settings in “PlayerPrefs”, ensuring persistence across sessions. Additionally, the UI offers calibration for the Blinking and Drowsiness

detection system, and sections for adjusting Calibration and Filtering types, and initiating Calibration and Evaluation sequences that

can be exited anytime with a right-click.

throws a RayCast into the scene at the gaze location and return hit objects that match predefined tags from a defined

list.

• Data Logging: Equipped with CSV logging functionality, making it effortless to record and analyze eye tracking

data for research and development purposes.

Manuscript submitted to ACM



UnitEye 5

• AttentionMetrics: Detects user’s distance from the camera, blinks, and signs of drowsiness. Blink detection has been

utilized for various purposes, including measuring drowsiness to enhance driver safety [27], as a control mechanism

in assistive technology [30], and to assess engagement [41] and activity levels [26].

• Runtime Configuration GUI: Comes with a built-in graphical UI for convenient runtime configuration, allowing

for on-the-fly adjustments without coding.

• Developer-Friendly API: Offers an easy-to-use API, enabling developers to implement and customize eye tracking

features within their Unity projects quickly.

4 TECHNICAL EVALUATION

To test the precision and accuracy of UnitEye together with smoothing filters compared to a state-of-the-art eye tracker

using video-based pupil and corneal reflection, we conducted a technical evaluation. In the following, we report the

evaluation procedure, the data processing and analysis of our eye tracking study.

4.1 Apparatus

We designed a standalone application using Unity 2022.3.7. Regarding hardware, we used an MSI GP66 Leopard 11UG

laptop with a FullHD 15.6-inch monitor (141 ppi). For UnitEye, we employed the built-in camera with 720p/30 Hz. As a

baseline eye-tracker, we used the state-of-the-art commercial Tobii Pro Spark eye tracker mounted below the monitor

with the Tobii Pro SDK Unity API (v1.11). The Tobii Pro Spark is screen-based and captures gaze and pupil data with

a precision of 0.26° RMS (using built-in filtering) and an accuracy of 0.45° in optimal conditions. The head pose was

unconstrained.

4.2 Participants

12 participants (Mean age = 27.40, SD = 2.30, range: [25, 32]; Gender: 25.0% women, 75.0% men, 0.00% non-binary;

Education: University degree, 100.00%) took part in the technical evaluation. Seven are employees, and five are university

students. Regarding physical properties of the eye region, 10 wore no makeup, while two wore little makeup (scale:

no, little, yes). Five had brown, four black, and three blond hair. After Mackey et al. [33], four participants had dark

brown, four light brown, two green with a brown peripupilary ring, and two light blue eyes. Figure 3 shows outlines

of participants’ left eye shapes. Regarding ethnicity, which also affects tracking performance [8], 10 participants

were White, one Asian, and one chose “multiple”. No participants wore glasses, one wore contact lenses. While we

did not control for these variables, we report collected participant characteristics, as these may influence both face

recognition [46] and eye tracking performance [10].

4.3 Procedure

Each participant experienced four conditions with each 11 validation points (see Figure 4). Each session started with a

brief introduction, signing of the consent form, and a demographic questionnaire. Participants were seated in front of

the laptop at an eye-screen distance of 60 cm (see Figure 2). First, they had to calibrate the eye tracker of the current

condition and then fixate 11 validation points in sequence. Each validation point was shown for 4 seconds in which the

point got smaller. We conducted the calibration with the following validation twice per eye tracker to have more robust

data and to alter the sequence in which validation points were shown. After the validation started, the experimenter

measured the brightness in the room in lux (M=493.21, SD=34.52). Both the conditions and the order of the validation

points were presented in counterbalanced order.

Manuscript submitted to ACM

https://unity.com/
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spark
https://developer.tobiipro.com/unity/unity-sdk-reference-guide.html


6 Wagner, Colley et al.

60 cm eye to screen distance

720p in-built webcam

screen-based eye tracker

validation target

Fig. 2. Exemplary participant sitting 60 cm in front of the laptop.

Fig. 3. Outline sketches of participants’ visible left eye shape. One participant did not agree to share their eye shape.

The introduction for the UnitEye smooth pursuit calibration was: First, you will see yourself on the screen. Check that

your head is centered. You will then be guided through a calibration process. Follow the black, moving circle with your eyes.

This first zigzags from bottom to top, from left to right. In the next step, it zigzags from top to bottom, from left to right.

The introduction to Tobii’s 5-point calibration was: You will be guided through a 5-point calibration process. Please

fixate on the red dots as soon as they appear. Fixate each point for the entire duration.

After the calibration, the introduction to the validation in all conditions was: You will then be asked to fix eleven

points in sequence. These initially appear in full size and then become smaller. Fixate these points for the entire duration.

The study took 15 min. Participants were remunerated with 3€.

4.4 Privacy and Ethics Statement

This study employs eye tracking technology to evaluate UnitEye technically. Participant consent was obtained through

signing, ensuring awareness of data use. Data security is upheld with adherence to our university’s guidelines. To

mitigate risks, no raw camera data was logged. Local regulations did not require a formal ethics review.

Manuscript submitted to ACM



UnitEye 7

innercenter corner

(110, 90)

(110, 990)

(0, 0)
x

y (1810, 90)

(1810, 990)

(960, 540)

(510, 340)

(960, 140)

(1410, 340)

(1410, 540)

(960, 940)

(510, 540)

1 2 3

5

8

1110

7

4

6

9

Fig. 4. The 11-point validation pattern. Only the black dots were visible during the validation process.

4.5 Objective Measurements

We collected the x and y coordinates of gaze points on the display with timestamps to later calculate the precision

and accuracy. During each validation phase, gaze data were logged by either UnitEye or the Tobii system. UnitEye

logged the gaze data at 30 Hz and the Tobii system logged at 60 Hz. While UnitEye supports higher framerates, it

was limited through the in-built camera framerate of 30 fps. For our experiments and use cases, 30 Hz proved to be

reliable and adequate for fixation-based eye tracking. UnitEye estimates the location of the gaze point on the display

with normalized x and y coordinates ranging from 0.0 to 1.0. Additionally, UnitEye provides smoothed data. For this

evaluation, we selected the 1€ filter (𝛽 = 0.001, 𝑓𝑐𝑚𝑖𝑛 = 0.001, 𝑓𝑐𝑢𝑡𝑜 𝑓 𝑓 = 1). The raw and smoothed data is written in a

comma-separated file together with an associated timestamp. Similarly, Tobii provides normalized x and y coordinates

of the gaze location on the display, but individually for the left and right eye with a timestamp and a field that marks

the data entry as valid or invalid. The data for Tobii is written in an XML file. In addition to the gaze data, we collected

the brightness in the room measured in lux for each validation phase using the light meter Uni-T Mini Light Meter

UT383 (accuracy 0-999 Lux ±4%+8) [47].

4.6 Data Analysis

The gaze data collected through Tobii were preprocessed by converting it into a comma-separated file and averaging

left and right eye coordinates to obtain a single gaze point. Then, the collected and normalized gaze points through

UnitEye and Tobii were multiplied by the display size (i.e., FullHD). To ensure that we only use data to measure accuracy

and precision where we are confident that participants are already fixating on the validation point, we averaged data

Manuscript submitted to ACM



8 Wagner, Colley et al.

in the time segment between 1.5 seconds and 3.5 seconds of the validation point being visible. No invalid data points

were found in the data collected by Tobii or UnitEye for this time segment. This resulted in overall 264 data points per

eye tracker which were used for the performance evaluation. Performance was measured by precision and accuracy.

The precision was calculated using the Root Mean Square sample-to-sample deviation (RMS-S2S) and the standard

deviation (SD) in x and y direction [36]. The accuracy was measured by calculating the x and y distance and Euclidean

distance between the gaze and the validation point.

𝑅𝑀𝑆 − 𝑆2𝑆 =

√√√
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1 )2 + (𝑦𝑖 − 𝑦𝑖+1 )2 (1)

Before every statistical test, we checked the required assumptions (e.g., normality distribution). All measures were

analyzed in pixels and converted for the plots to cm and degrees of visual angle (°) for comparability with prior work.

We used the ARTool package by Wobbrock et al. [53] for non-parametric data, as the typical ANOVA is inappropriate

with non-normally distributed data. The procedure is abbreviated, as in the original publication, with ART. R in version

4.4.0 and RStudio in version 2024.04.1 were employed. All packages were up-to-date in June 2024. Effect sizes were

calculated using Rosenthal’s formula [40].

4.7 Results

1

2

3

4

5

1

2

3

4

5

Tobii UnitEye UnitEye Smoothed

E
uc

lid
ea

n 
di

st
an

ce
 (

in
 c

m
)

E
uclidean distance (in visual °)

Validation Points
center
inner
corner

(a) Euclidean distance per validation area.

0

5

10

15

20

0

5

10

15

20

Tobii UnitEye UnitEye Smoothed

R
M

S
-S

2S
 (

in
 c

m
)

R
M

S
-S

2S
 (in visual °)

Validation Areas
center
inner
corner

(b) RMS-S2S value per validation area.

Fig. 5. Euclidean distance and RMS-S2S value in cm (left y-axis) and degrees of visual angle (right y-axis).

4.7.1 Precision. Precision was calculated using RMS-S2S and SD in x and y direction. Regarding RMS-S2S, the ART

found a significant main effect of eye tracker (𝐹 (2, 22) = 213.48, p<0.001, r=-0.279, Z=-7.86) and of validation area

(𝐹 (2, 22) = 74.17, p<0.001, r=-0.227, Z=-6.39). In addition, the ART found a significant interaction effect of eye tracker ×
validation area (𝐹 (4, 44) = 83.25, p<0.001; see Figure 5b). With the 1€ filter enabled, UnitEye performs better than Tobii

for the RMS-S2S value. The highest improvement is visible in the center area.

On SD in x direction, ART found a significant main effect of eye tracker (𝐹 (2, 22) = 96.90, p<0.001, r=-0.241, Z=-6.78)

and of validation area (𝐹 (2, 22) = 44.07, p<0.001, r=-0.199, Z=-5.61). Additionally, Art found a significant interaction

effect of eye tracker × validation area (𝐹 (4, 44) = 54.52, p<0.001; see Figure 6a). The raw UnitEye values perform worst.

Manuscript submitted to ACM



UnitEye 9

0.5

1.0

1.5

0.5

1.0

1.5

Tobii UnitEye UnitEye Smoothed

S
D

 x
 d

ire
ct

io
n 

(in
 c

m
)

S
D

 x direction (in visual °)

Validation Areas
center
inner
corner

(a) SD in the x direction per validation area.

0.5

1.0

1.5

0.5

1.0

Tobii UnitEye UnitEye Smoothed

S
D

 y
 d

ire
ct

io
n 

(in
 c

m
)

S
D

 y direction (in visual °)

Validation Areas
center
inner
corner

(b) SD in the y direction per validation area.

Fig. 6. SD in cm (left y-axis) and degrees of visual angle (right y-axis) for x and y direction.

However, the corner values for Tobii perform the worst, while this is the best-performing area for UnitEye (raw and

smoothed).

On SD in y direction, the ART found a significant main effect of eye tracker (𝐹 (2, 22) = 126.29, p<0.001, r=-0.254,

Z=-7.15) and of validation area (𝐹 (2, 22) = 11.47, p<0.001, r=-0.126, Z=-3.55). Further, ART found a significant interaction

effect of eye tracker × validation area on SD in y direction (𝐹 (4, 44) = 15.74, p<0.001; see Figure 6b). The raw UnitEye

values perform worst. However, the corner values for Tobii perform the worst, while this is the best-performing area

for UnitEye (raw and smoothed). Generally, the values for SD in the x and y directions show the same characteristics.

4.7.2 Accuracy. Accuracy was calculated using the Euclidean distance between target and gaze position. Here, the

conducted ART found a significant main effect of eye tracker (𝐹 (2, 22) = 200.93, p<0.001, r=-0.276, Z=-7.78) and of eye

tracker × validation area (𝐹 (4, 44) = 6.94, p<0.001; see Figure 5a). While Tobii performs best for all validation areas, the

difference becomes smaller when the 1€ filter is added. However, for the corners, the filter does not improve accuracy.

4.7.3 AOI Size. Based on the precision given as the SD in x and y direction, and the accuracy given as the distance to

the target, we calculated the minimum AOI size on a 34.5 cm wide and 19.5 cm high 15’6 inch display. To account for

deviations in both directions, the minimum area size is equal to 2𝑥 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛). As shown in Table 1, the

minimum AOI size is the smallest for the Tobii system (1.3 x 1.5 cm), followed by the UnitEye system with smoothing

(6.2 x 5.8 cm), and the UnitEye system without smoothing (7.7 x 7.4 cm).

5 CASE STUDIES

In line with usability testing and in the spirit of “eating one’s own dogfood” [20], UnitEye was integrated in various

Unity projects by students and members of our group to use eye tracking for explicit input or as a research method for

eye movement analysis. This resulted in five case studies that contributed to further development. The case studies

included a gaze-controlled game (“Shed Some Fear”) [15] (see subsection 5.1), two lab studies (see subsection 5.2 and

subsection 5.3), a simulation with a remote local installation (see subsection 5.4), and a web-based simulation (see

subsection 5.5). We interviewed the developers of these projects to evaluate the usability of UnitEye. As no eye tracking

Manuscript submitted to ACM



10 Wagner, Colley et al.

E
y
e
T
r
a
c
k
in
g
S
y
s
te
m

A
c
c
u
r
a
c
y
(c
m
)

P
r
e
c
is
io
n
(c
m
)

A
r
e
a
S
iz
e
(c
m
)

N
u
m
b
e
r
o
f
A
r
e
a
s

x y x y x y x y

Tobii 0.41 0.51 0.24 0.23 1.3 1.5 27 13

UnitEye 2.66 2.55 1.18 1.17 7.7 7.4 4 3

UnitEye Smoothed 2.55 2.40 0.53 0.50 6.2 5.8 6 3

Table 1. Number and size of smallest possible areas of interest (AOIs) on a 15’6 inch display with the dimensions of (w) 34.5 x (h) 19.5

cm.

was used in this developer survey, we refrain from an additional privacy and ethics statement. We first introduce the

use cases and then report the findings from the interviews.

4

1

53

2

2

Fig. 7. This figure shows an overview of the five case studies. In (1), a level of “Shed Some Fear” is shown where UnitEye was used to

control a companion bat. (2) shows the UI for the remote operation of an automated vehicle where UnitEye was used for eye tracking

analysis, which was also done for the longitudinal study in (3), the human-in-the-loop system OptiCarVis (4), and for the cultural

comparison of external communication (5). Figures are reprinted with permission.

5.1 Use Case 1: Eye Gaze-based Game

The study [15] introduces “Shed Some Fear”, a 2D platform game that incorporates gaze-based interactions (via UnitEye)

and traditional keyboard input (see Figure 7.1). The game explores the trade-offs between enjoyment and digital eye

strain through a five-day longitudinal study involving 17 participants. The findings indicate that while gaze-based

interaction led to higher perceived competence, it also resulted in increased internal eye strain.

Manuscript submitted to ACM



UnitEye 11

Usage of UnitEye. UnitEye is used as an input for “Shed Some Fear” to enable gaze-based mechanisms as a core

interaction method. The players’ gaze position is shown as a bat, acting as a companion. It enables six types of gaze-based

interactions: "Move/Hold on Gaze" for block manipulation, "Reveal on Gaze" for lighting areas, "Repel on Gaze" to ward

off enemies, "Damage on Gaze" for harming opponents, "Indirect Damage/Heal on Gaze" for affecting game objects,

and two "Follow with Gaze" variants requiring rapid gaze changes or smooth tracking. Players who didn’t own an eye

tracker, used UnitEye as a cost-effective eye tracking method to be able to play the game at home.

5.2 Use Case 2: Remote Operation

The study designs, implements, and evaluates three interaction interfaces (path planning, trajectory guidance, and

waypoint guidance) for human operators intervening in automated vehicles (AVs), finding that path planning was the

most preferred and usable, while trajectory guidance performed the poorest in resolving requests, thus contributing to

the development of human-machine interfaces for remote assistance in AVs.

Usage of UnitEye. In this lab-based study, UnitEye was employed to evaluate the interface by recording participants’

gaze behavior while they interacted with interaction concepts for remote operation (the task of two parallel requests

can be seen in Figure 7.2).

5.3 Use Case 3: Longitudinal Effects of Automotive User Interfaces

In this study, the effect of different information reduction strategies for UIs in vehicles (see Figure 7.3) was evaluated.

This work is still ongoing.

Usage of UnitEye. UnitEye is used to evaluate the gaze behavior of participants when assessing the UIs.

5.4 Use Case 4: Bayesian Optimization Study

The paper introduces OptiCarVis, a human-in-the-loop system that uses multi-objective Bayesian optimization to fine-

tune AV feedback visualizations (see Figure 7.4), demonstrating through an online study that this approach significantly

improves key factors like trust and perceived safety while reducing cognitive load.

Usage of UnitEye. UnitEye was leveraged to assess participants’ eye movements while they were inspecting visualiza-

tions, which were optimized using the multi-objective Bayesian optimization. They had to install the simulation on

their personal computers.

5.5 Use Case 5: Cultural Effects of External Communication of Automated Vehicles

The study investigates the impact of external Human-Machine Interfaces (eHMI) on pedestrian safety and behavior

around AVs, utilizing LED strips for communication. Two experimental designs were used: a Virtual Reality study in

Germany and an online study involving North American and European subjects. The findings suggest that frequent

interaction with eHMIs improves pedestrian trust, understanding, and perceived safety while reducing mental workload,

with North Americans taking higher crossing risks and experiencing lower workloads.

Usage of UnitEye. A web-based simulation was built, including UnitEye, to log the eye gaze during the crossing

scenarios (see Figure 7.5). These measurements were then sent to the server.

Manuscript submitted to ACM



12 Wagner, Colley et al.

5.6 Participants

The five developers (Mean age = 25.80, SD = 1.90, range: [23, 28]; Gender: 40.0% women, 60.0% men, 0.00% non-binary;

Education: high school, 20.00%; university degree, 80.00%) of the case studies took part in the survey as participants.

They had medium experience in software projects (M=5.60 years, SD=1.52) and little experience with eye tracking

(M=1.40 projects finished, SD=1.14). At the time of the questionnaire, four participants were students and one was

employed.

5.7 Measurements and Procedure

We asked participants to rate the Task Load Index via the NASA-TLX [21] on a 20-point scale. We omitted the subscale

physical demand due to its inapplicability in this context. Participants also rated the usability via the system usability

scale (SUS) [9]. Finally, we evaluated acceptance using the van der Laan acceptance scale [49], whichmeasures acceptance

on the two subscales Usefulness and Satisfying. Afterward, participants were able to give open qualitative feedback:

• What did you find particularly negative about using UnitEye? Please be detailed.

• What did you notice most positive about UnitEye? Please be detailed.

• What other functionality should UnitEye offer?

• What is your opinion about the performance of UnitEye?

• If you have experience with other eye tracking software for development (i.e., SDKs) - how do you rate UnitEye?

Please mention concrete manufacturers. If you have no other experience, please write NA.

• You can write more about UnitEye here.

5.8 Results

Variable Min q1 x̃ x̄ q3 Max s IQR
Mental Demand [21] 6.00 7.00 13.00 10.60 13.00 14.00 3.78 6.00

Temporal Demand [21] 2.00 4.00 9.00 7.60 10.00 13.00 4.51 6.00

Performance [21] 4.00 5.00 12.00 9.60 13.00 14.00 4.72 8.00

Effort [21] 6.00 8.00 12.00 10.60 13.00 14.00 3.44 5.00

Frustration [21] 8.00 10.00 12.00 13.00 17.00 18.00 4.36 7.00

Usability [9] 17.50 50.00 57.50 54.00 67.50 77.50 22.89 17.50

Usefulness [49] 0.00 1.00 1.00 1.08 1.60 1.80 0.70 0.60

Satisfying [49] -1.25 -0.50 0.00 -0.05 0.50 1.00 0.87 1.00

Table 2. Descriptive statistics for the numeric dependent variables. The number in brackets represents the used questionnaire (see

Section 5.7).

5.8.1 Questionnaires. Table 2 shows the descriptive results regarding task load, usability, usefulness, and satisfaction

of UnitEye. For the NASA-TLX scores, which can range from 1–20, we find that all values were medium. Usability was

satisfactory. The acceptance scales Usefulness and Satisfying, which range from -3 to +3 were on the positive side.

5.8.2 Negative Aspects About UnitEye. Key challenges are identified across different themes: UI, Calibration and

Accuracy, Documentation, Debugging, Error Handling, and System Integration.

UI: Users mentioned challenges in accessing functions through the provided UI, suggesting that an easier-to-reach

interface or additional documentation might be beneficial.

Manuscript submitted to ACM



UnitEye 13

Calibration and Accuracy: Calibration was found to be cumbersome, time-consuming, and tiring for the eyes. Post-

calibration, the system’s accuracy was still questioned, particularly in the Y-direction, despite seemingly good evaluation

metrics. Additionally, there were inconsistencies in drowsiness detection based on eye-opening degrees compared to

calibration settings.

Debugging and Error Handling: Users noted inconsistencies in displaying areas of interest (AOIs) for debugging and

mentioned difficulties with error handling, particularly in webcam detection and activity status, especially with multiple

webcams.

System Integration: There were issues with object tracking, notably of smaller objects and untagged objects being

erroneously tracked. Moreover, the system was reported to be sensitive to the user’s proximity to the camera.

Miscellaneous: The settings were described as quite confusing for those unfamiliar, and the CSV log was cited as unclear

when alterations were needed. There were also specific problems mentioned with multiple Unity layers overlapping,

and the system’s performance was impaired when a second webcam (virtual or not) was connected.

5.8.3 Positive Aspects About UnitEye. The following aspects were highlighted as positive in the text fields.

Ease of Deployment and Integration: The system is acknowledged for its simplicity in deployment and integration into

existing or finished projects. Users found it straightforward to install and utilize once familiarized with the setup

process. The quick integration and a good example provided were appreciated.

Tracking Performance: Horizontal tracking was found to perform surprisingly well, considering technical limitations

associated with webcam-based systems. The system’s performance in pose, hand, face recognition, and joint accuracy,

even during head rotation, was commended, alongside effective blinking detection.

UI and Documentation: The runtime UI was noted as very helpful for initial familiarization with the system. The ReadMe

file is appreciated for its clarity and thoroughness, contributing to an easier integration into a project. The clarity in

field names displayed in the inspector was also mentioned positively.

Cost-effective Alternative: The system is considered a good, budget-friendly alternative to more expensive eye tracking

solutions. The feature allowing the display of the user’s eyes was appreciated, enhancing user interaction.

Miscellaneous: Users value the clear and non-confusing naming conventions in the inspector, which, together with

effective recognition functionalities in the Visualization.cs script, contribute to a positive user experience.

5.8.4 Functionality Requests and Performance. Users desire improvements in the system’s interface and accuracy,

particularly around camera selection and eye position tracking. They wish for a simplified interface to switch cameras

during runtime, addressing issues faced with virtual cameras. They also seek more accurate eye position tracking,

visible feedback when no CSV-log file is created, a better indication of which webcam is in use, and a feature for layer

prioritization (as available in Tobii) to enhance precision.

The performance feedback centers around calibration success, system speed, and tracking accuracy. Users found

horizontal tracking satisfactory but faced challenges with vertical tracking and, on older or possibly less powerful

hardware, experiencing slow responses or non-functionality. The calibration process was often viewed as lengthy

and exhausting, more so on slower machines. They observed the system to be error-prone, especially with slight user

movements, affecting tracking accuracy. Nonetheless, some found the program to run smoothly on any laptop without

persistent low frame rates, indicating a level of flexibility in system requirements. Despite these positives, the point of

inaccuracy post-calibration, particularly regarding the crosshair’s position, was a common concern, hinting at a desire

for more effective and perhaps varied calibration options to enhance tracking precision. Based on this feedback, we

added Pursuit calibration as described by Pfeuffer et al. [39].

Manuscript submitted to ACM



14 Wagner, Colley et al.

6 DISCUSSION, LIMITATIONS, AND FUTUREWORK

This work presented UnitEye, a user-friendly plugin to democratize eye tracking in Unity environments. We presented

UnitEye’s features and implementation, and we report the technical evaluation in comparison to a current state-of-the-art

eye tracker with a video-based pupil and corneal reflection eye tracking technique. Future work could enhance our work

into a benchmark study with an evaluation using the Bland-Altman analysis [7]. Finally, we report five case studies that

have used UnitEye successfully. The case studies showed that UnitEye is easily integrable, useful, and accurate enough

when using smoothing algorithms. This notion is also supported by our technical evaluation (see Figure 5 and Figure 6)

and the determined minimum AOI size (see Table 1). Despite its capabilities, there are still limitations and improvement

possibilities. Currently, the use of UnitEye is limited to scenarios where a lower degree of accuracy is sufficient, such as

passive eye monitoring with large AOIs, or attentive user interfaces [34, 57].

Enhancing UnitEye includes several advancements. Improvements in vision algorithms can increase performance,

which currently does not match the sub-centimeter accuracy of state-of-the-art eye trackers. This is supported by

UnitEye’s modular structure, which allows for further integration of additional estimation models, calibration methods,

and filters. Regarding hardware, webcams with a higher frame rate and resolution can further increase estimation

performance [25, p. 66]. Moreover, although UnitEye operates using only a single webcam, it requires broader testing

across various devices. Future iterations might also explore sensor fusion, integrating RGB and depth camera data for

enhanced gaze tracking (e.g., see [4]). We currently avoid the necessity for depth cameras to allow a more widespread

adoption. As Unity allows porting to Android and iOS, future work should also evaluate the performance of UnitEye on

smartphones and tablets.

7 CONCLUSION

In this work, UnitEye, a Unity plugin designed to make eye tracking technology more accessible, has been introduced.

Our framework employs cutting-edge methods to match the performance found in previous works when applying

smoothing. Our technical evaluation indicates an average accuracy of UnitEye, measured in Euclidean distance, of about

3.8 cm (3.67°) and a comparable precision, measured in RMS-S2S, to a state-of-the-art eye tracker, which is accurate

enough for users to engage with large interface elements on laptops and monitors, as shown in five case studies. We

anticipate that with further refinements, our approach could operate inconspicuously in the background, paving the

way for innovative gaze-based opportunities where dedicated eye trackers are missing.

OPEN SCIENCE

UnitEye and all evaluation scripts and data are openly available under https://github.com/wgnrto/uniteye. This also

includes a preliminary Bland-Altman analysis.

ACKNOWLEDGMENTS

We thank all study participants. This project was partially funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation, 425867974, to Anke Huckauf and Enrico Rukzio) and is part of Priority Program SPP2199

Scalable Interaction Paradigms for Pervasive Computing Environments.

REFERENCES
[1] Karan Ahuja, Ruchika Banerjee, Seema Nagar, Kuntal Dey, and Ferdous Barbhuiya. 2016. Eye center localization and detection using radial mapping.

In 2016 IEEE International Conference on image processing (ICIP). IEEE, New York, NY, USA, 3121–3125.

Manuscript submitted to ACM

https://github.com/wgnrto/uniteye


UnitEye 15

[2] Karan Ahuja, Rahul Islam, Varun Parashar, Kuntal Dey, Chris Harrison, and Mayank Goel. 2018. Eyespyvr: Interactive eye sensing using off-the-shelf,

smartphone-based vr headsets. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 2 (2018), 1–10.
[3] Andronicus A. Akinyelu and Pieter Blignaut. 2020. Convolutional Neural Network-Based Methods for Eye Gaze Estimation: A Survey. IEEE access :

practical innovations, open solutions 8 (2020), 142581–142605. https://doi.org/10.1109/ACCESS.2020.3013540

[4] Riku Arakawa, Mayank Goel, Chris Harrison, and Karan Ahuja. 2022. RGBDGaze: Gaze Tracking on Smartphones with RGB and Depth Data. In

Proceedings of the 2022 International Conference on Multimodal Interaction (Bengaluru, India) (ICMI ’22). Association for Computing Machinery, New

York, NY, USA, 329–336. https://doi.org/10.1145/3536221.3556568

[5] Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling Human Attention from Eye Movements for Neural Source Code

Summarization. Proc. ACM Hum.-Comput. Interact. 7, ETRA, Article 167 (may 2023), 19 pages. https://doi.org/10.1145/3591136

[6] Kenan Bektaş, Jannis Strecker, Simon Mayer, Dr. Kimberly Garcia, Jonas Hermann, Kay Erik Jenß, Yasmine Sheila Antille, and Marc Solèr. 2023.

GEAR: Gaze-Enabled Augmented Reality For Human Activity Recognition. In Proceedings of the 2023 Symposium on Eye Tracking Research and
Applications (Tubingen, Germany) (ETRA ’23). Association for Computing Machinery, New York, NY, USA, Article 9, 9 pages. https://doi.org/10.

1145/3588015.3588402

[7] J Martin Bland and DouglasG Altman. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. The lancet
327, 8476 (1986), 307–310.

[8] Pieter Blignaut and Daniël Wium. 2014. Eye-Tracking Data Quality as Affected by Ethnicity and Experimental Design. Behavior Research Methods
46, 1 (March 2014), 67–80. https://doi.org/10.3758/s13428-013-0343-0

[9] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation in industry 189, 194 (1996), 4–7.

[10] Benjamin T. Carter and Steven G. Luke. 2020. Best Practices in Eye Tracking Research. International Journal of Psychophysiology 155 (Sept. 2020),

49–62. https://doi.org/10.1016/j.ijpsycho.2020.05.010

[11] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012. 1 € Filter: A Simple Speed-Based Low-Pass Filter for Noisy Input in Interactive Systems. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing Machinery,

New York, NY, USA, 2527–2530. https://doi.org/10.1145/2207676.2208639

[12] Mark Colley, Pascal Jansen, Enrico Rukzio, and Jan Gugenheimer. 2022. SwiVR-Car-Seat: Exploring Vehicle Motion Effects on Interaction Quality in

Virtual Reality Automated Driving Using a Motorized Swivel Seat. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4, Article 150 (dec 2022),
26 pages. https://doi.org/10.1145/3494968

[13] Mark Colley, Luca-Maxim Meinhardt, Alexander Fassbender, Michael Rietzler, and Enrico Rukzio. 2023. Come Fly With Me: Investigating the Effects

of Path Visualizations in Automated Urban Air Mobility. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 2, Article 52 (jun 2023), 23 pages.

https://doi.org/10.1145/3596249

[14] Mark Colley, Bastian Wankmüller, and Enrico Rukzio. 2022. A Systematic Evaluation of Solutions for the Final 100m Challenge of Highly Automated

Vehicles. Proc. ACM Hum.-Comput. Interact. 6, MHCI, Article 178 (sep 2022), 19 pages. https://doi.org/10.1145/3546713

[15] Mark Colley, Beate Wanner, Max Rädler, Marcel Rötzer, Julian Frommel, Teresa Hirzle, Pascal Jansen, and Enrico Rukzio. 2024. Effects of a Gaze-Based

2D Platform Game on User Enjoyment, Perceived Competence, and Digital Eye Strain. In Proceedings of the CHI Conference on Human Factors in
Computing Systems (CHI ’24) (Honolulu, HI, USA, May 11–16). ACM, New York, NY, USA, 14. https://doi.org/10.1145/3613904.3641909

[16] Shuwen Deng, David R. Reich, Paul Prasse, Patrick Haller, Tobias Scheffer, and Lena A. Jäger. 2023. Eyettention: An Attention-Based Dual-

Sequence Model for Predicting Human Scanpaths during Reading. Proc. ACM Hum.-Comput. Interact. 7, ETRA, Article 162 (may 2023), 24 pages.

https://doi.org/10.1145/3591131

[17] Yoshinobu Ebisawa. 1998. Improved video-based eye-gaze detection method. IEEE Transactions on instrumentation and measurement 47, 4 (1998),
948–955.

[18] Kenneth Alberto Funes Mora, Florent Monay, and Jean-Marc Odobez. 2014. EYEDIAP: A Database for the Development and Evaluation of Gaze

Estimation Algorithms from RGB and RGB-D Cameras. In Proceedings of the Symposium on Eye Tracking Research and Applications (Safety Harbor,

Florida) (ETRA ’14). Association for Computing Machinery, New York, NY, USA, 255–258. https://doi.org/10.1145/2578153.2578190

[19] Anuj Harisinghani, Harshinee Sriram, Cristina Conati, Giuseppe Carenini, Thalia Field, Hyeju Jang, and Gabriel Murray. 2023. Classification of

Alzheimer’s Using Deep-learning Methods on Webcam-based Gaze Data. Proceedings of the ACM on Human-Computer Interaction 7, ETRA (May

2023), 157:1–157:17. https://doi.org/10.1145/3591126

[20] Warren Harrison. 2006. Eating your own dog food. IEEE Software 23, 3 (2006), 5–7.
[21] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In

Advances in psychology. Vol. 52. Elsevier, Amsterdam, The Netherlands, 139–183.

[22] Teresa Hirzle, Jan Gugenheimer, Florian Geiselhart, Andreas Bulling, and Enrico Rukzio. 2019. A Design Space for Gaze Interaction on Head-Mounted

Displays. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for

Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300855

[23] Teresa Hirzle, Marian Sauter, Tobias Wagner, Susanne Hummel, Enrico Rukzio, and Anke Huckauf. 2022. Attention of Many Observers Visualized by

Eye Movements. In 2022 Symposium on Eye Tracking Research and Applications (Seattle, WA, USA) (ETRA ’22). Association for Computing Machinery,

New York, NY, USA, Article 65, 7 pages. https://doi.org/10.1145/3517031.3529235

[24] Arthur E Hoerl and Robert W Kennard. 1970. Ridge regression: applications to nonorthogonal problems. Technometrics 12, 1 (1970), 69–82.

Manuscript submitted to ACM

https://doi.org/10.1109/ACCESS.2020.3013540
https://doi.org/10.1145/3536221.3556568
https://doi.org/10.1145/3591136
https://doi.org/10.1145/3588015.3588402
https://doi.org/10.1145/3588015.3588402
https://doi.org/10.3758/s13428-013-0343-0
https://doi.org/10.1016/j.ijpsycho.2020.05.010
https://doi.org/10.1145/2207676.2208639
https://doi.org/10.1145/3494968
https://doi.org/10.1145/3596249
https://doi.org/10.1145/3546713
https://doi.org/10.1145/3613904.3641909
https://doi.org/10.1145/3591131
https://doi.org/10.1145/2578153.2578190
https://doi.org/10.1145/3591126
https://doi.org/10.1145/3290605.3300855
https://doi.org/10.1145/3517031.3529235


16 Wagner, Colley et al.

[25] Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka Jarodzka, and Joost van de Weijer. 2011. Eye Tracking: A
Comprehensive Guide to Methods and Measures. OUP Oxford.

[26] Shoya Ishimaru, Kai Kunze, Koichi Kise, Jens Weppner, Andreas Dengel, Paul Lukowicz, and Andreas Bulling. 2014. In the Blink of an Eye: Combining

HeadMotion and Eye Blink Frequency for Activity Recognitionwith Google Glass. In Proceedings of the 5th Augmented Human International Conference
(Kobe, Japan) (AH ’14). Association for Computing Machinery, New York, NY, USA, Article 15, 4 pages. https://doi.org/10.1145/2582051.2582066

[27] Takehiro Ito, Shinji Mita, Kazuhiro Kozuka, Tomoaki Nakano, and Shin Yamamoto. 2002. Driver blink measurement by the motion picture processing

and its application to drowsiness detection. In Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems. IEEE, New
York, NY, USA, 168–173.

[28] Andy Kong, Karan Ahuja, Mayank Goel, and Chris Harrison. 2021. EyeMU Interactions: Gaze + IMU Gestures on Mobile Devices. In Proceedings of
the 2021 International Conference on Multimodal Interaction (Montréal, QC, Canada) (ICMI ’21). Association for Computing Machinery, New York,

NY, USA, 577–585. https://doi.org/10.1145/3462244.3479938

[29] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech Matusik, and Antonio Torralba. 2016. Eye Tracking

for Everyone. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, New York, NY, USA, 2176–2184.

[30] Aleksandra Królak and Paweł Strumiłło. 2012. Eye-blink detection system for human–computer interaction. Universal Access in the Information
Society 11 (2012), 409–419.

[31] Gustav Kuhn, Benjamin W Tatler, John M Findlay, and Geoff G Cole. 2008. Misdirection in magic: Implications for the relationship between eye gaze

and attention. Visual Cognition 16, 2-3 (2008), 391–405.

[32] Chih-Chuan Lai, Yu-Ting Chen, Kuan-Wen Chen, Shen-Chi Chen, Sheng-Wen Shih, and Yi-Ping Hung. 2014. Appearance-based gaze tracking with

free head movement. In 2014 22nd International Conference on Pattern Recognition. IEEE, New York, NY, USA, 1869–1873.

[33] David A Mackey, Colleen HWilkinson, Lisa S Kearns, and Alex W Hewitt. 2011. Classification of iris colour: review and refinement of a classification

schema. Clinical & experimental ophthalmology 39, 5 (2011), 462–471.

[34] Päivi Majaranta and Andreas Bulling. 2014. Eye Tracking and Eye-Based Human–Computer Interaction. In Advances in Physiological Computing,
Stephen H. Fairclough and Kiel Gilleade (Eds.). Springer, London, 39–65. https://doi.org/10.1007/978-1-4471-6392-3_3

[35] Omar Namnakani, Penpicha Sinrattanavong, Yasmeen Abdrabou, Andreas Bulling, Florian Alt, and Mohamed Khamis. 2023. GazeCast: Using Mobile

Devices to AllowGaze-Based Interaction on Public Displays. In Proceedings of the 2023 Symposium on Eye Tracking Research and Applications (Tubingen,
Germany) (ETRA ’23). Association for Computing Machinery, New York, NY, USA, Article 92, 8 pages. https://doi.org/10.1145/3588015.3589663

[36] Diederick C. Niehorster, Raimondas Zemblys, Tanya Beelders, and Kenneth Holmqvist. 2020. Characterizing Gaze Position Signals and Synthesizing

Noise during Fixations in Eye-Tracking Data. Behavior Research Methods 52, 6 (Dec. 2020), 2515–2534. https://doi.org/10.3758/s13428-020-01400-9

[37] Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana Daskalova, Jeff Huang, and James Hays. 2016. WebGazer: Scalable Webcam Eye

Tracking Using User Interactions. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI). AAAI, 3839–3845.
[38] Yesaya Tommy Paulus and Gerard Bastiaan Remijn. 2021. Usability of various dwell times for eye-gaze-based object selection with eye tracking.

Displays 67 (2021), 101997.
[39] Ken Pfeuffer, Melodie Vidal, Jayson Turner, Andreas Bulling, and Hans Gellersen. 2013. Pursuit Calibration: Making Gaze Calibration Less Tedious

and More Flexible. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United

Kingdom) (UIST ’13). Association for Computing Machinery, New York, NY, USA, 261–270. https://doi.org/10.1145/2501988.2501998

[40] Robert Rosenthal, Harris Cooper, and L Hedges. 1994. Parametric measures of effect size. The handbook of research synthesis 621, 2 (1994), 231–244.
[41] Tsugunosuke Sakai, Harunya Tamaki, Yosuke Ota, Ryohei Egusa, Shigenori Imagaki, Fusako Kusunoki, Masanori Sugimoto, and Hiroshi Mizoguchi.

2017. Eda-based estimation of visual attention by observation of eye blink frequency. International Journal on Smart Sensing and Intelligent Systems
10, 2 (2017), 1–12.

[42] Marian Sauter, Tobias Wagner, Teresa Hirzle, Bao Xin Lin, Enrico Rukzio, and Anke Huckauf. 2023. Behind the Screens: Exploring Eye Movement

Visualization to Optimize Online Teaching and Learning. In Proceedings of Mensch Und Computer 2023 (Rapperswil, Switzerland) (MuC ’23).
Association for Computing Machinery, New York, NY, USA, 67–80. https://doi.org/10.1145/3603555.3603560

[43] Rongkai Shi, Yushi Wei, Xueying Qin, Pan Hui, and Hai-Ning Liang. 2023. Exploring Gaze-Assisted and Hand-Based Region Selection in Augmented

Reality. Proc. ACM Hum.-Comput. Interact. 7, ETRA, Article 160 (may 2023), 19 pages. https://doi.org/10.1145/3591129

[44] Rainer Stiefelhagen, Jie Yang, and Alex Waibel. 1997. A model-based gaze tracking system. International Journal on Artificial Intelligence Tools 6, 02
(1997), 193–209.

[45] Dean Takahashi. 2022. Unity report: Number of games made with Unity grew 93% in 2021. https://venturebeat.com/games/unity-report-number-of-

games-made-with-unity-grew-93-in-2021/. [Online; accessed 12-DECEMBER-2023].

[46] Philipp Terhörst, Jan Niklas Kolf, Marco Huber, Florian Kirchbuchner, Naser Damer, Aythami Morales Moreno, Julian Fierrez, and Arjan Kuijper.

2022. A Comprehensive Study on Face Recognition Biases Beyond Demographics. IEEE Transactions on Technology and Society 3, 1 (March 2022),

16–30. https://doi.org/10.1109/TTS.2021.3111823

[47] UNI-T. 2023. UT383/UT383BT Mini Light Meters. https://meters.uni-trend.com/product/ut383-ut383bt/. [Online; accessed 12-DECEMBER-2023].

[48] Nachiappan Valliappan, Na Dai, Ethan Steinberg, Junfeng He, Kantwon Rogers, Venky Ramachandran, Pingmei Xu, Mina Shojaeizadeh, Li Guo, Kai

Kohlhoff, et al. 2020. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nature communications 11, 1 (2020),
4553.

Manuscript submitted to ACM

https://doi.org/10.1145/2582051.2582066
https://doi.org/10.1145/3462244.3479938
https://doi.org/10.1007/978-1-4471-6392-3_3
https://doi.org/10.1145/3588015.3589663
https://doi.org/10.3758/s13428-020-01400-9
https://doi.org/10.1145/2501988.2501998
https://doi.org/10.1145/3603555.3603560
https://doi.org/10.1145/3591129
https://venturebeat.com/games/unity-report-number-of-games-made-with-unity-grew-93-in-2021/
https://venturebeat.com/games/unity-report-number-of-games-made-with-unity-grew-93-in-2021/
https://doi.org/10.1109/TTS.2021.3111823
https://meters.uni-trend.com/product/ut383-ut383bt/


UnitEye 17

[49] Jinke D. Van Der Laan, Adriaan Heino, and Dick De Waard. 1997. A simple procedure for the assessment of acceptance of advanced transport

telematics. Transportation Research Part C: Emerging Technologies 5, 1 (1997), 1–10. https://doi.org/10.1016/S0968-090X(96)00025-3

[50] Greg Welch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. SIGGRAPH course.

[51] KatarzynaWisiecka, Krzysztof Krejtz, Izabela Krejtz, Damian Sromek, AdamCellary, Beata Lewandowska, and AndrewDuchowski. 2022. Comparison

of Webcam and Remote Eye Tracking. In 2022 Symposium on Eye Tracking Research and Applications (Seattle, WA, USA) (ETRA ’22). Association for

Computing Machinery, New York, NY, USA, Article 32, 7 pages. https://doi.org/10.1145/3517031.3529615

[52] KatarzynaWisiecka, Krzysztof Krejtz, Izabela Krejtz, Damian Sromek, AdamCellary, Beata Lewandowska, and AndrewDuchowski. 2022. Comparison

of Webcam and Remote Eye Tracking. In 2022 Symposium on Eye Tracking Research and Applications. ACM, Seattle WA USA, 1–7. https:

//doi.org/10.1145/3517031.3529615

[53] Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins. 2011. The Aligned Rank Transform for Nonparametric Factorial Analyses

Using Only Anova Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11).
Association for Computing Machinery, New York, NY, USA, 143–146. https://doi.org/10.1145/1978942.1978963

[54] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling. 2016. Learning an Appearance-Based Gaze Estimator

from One Million Synthesised Images. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (Charleston,
South Carolina) (ETRA ’16). Association for Computing Machinery, New York, NY, USA, 131–138. https://doi.org/10.1145/2857491.2857492

[55] Erroll Wood and Andreas Bulling. 2014. EyeTab: Model-Based Gaze Estimation on Unmodified Tablet Computers. In Proceedings of the Symposium
on Eye Tracking Research and Applications (ETRA ’14). Association for Computing Machinery, New York, NY, USA, 207–210. https://doi.org/10.1145/

2578153.2578185

[56] Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and Jianxiong Xiao. 2015. Turkergaze: Crowdsourcing saliency

with webcam based eye tracking.

[57] Xucong Zhang, Yusuke Sugano, and Andreas Bulling. 2019. Evaluation of Appearance-Based Methods and Implications for Gaze-Based Applications.

In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). Association for Computing Machinery, New York, NY,

USA, 1–13. https://doi.org/10.1145/3290605.3300646

[58] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2019. MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation.

IEEE transactions on pattern analysis and machine intelligence 41, 1 (Jan. 2019), 162–175. https://doi.org/10.1109/TPAMI.2017.2778103

Manuscript submitted to ACM

https://doi.org/10.1016/S0968-090X(96)00025-3
https://doi.org/10.1145/3517031.3529615
https://doi.org/10.1145/3517031.3529615
https://doi.org/10.1145/3517031.3529615
https://doi.org/10.1145/1978942.1978963
https://doi.org/10.1145/2857491.2857492
https://doi.org/10.1145/2578153.2578185
https://doi.org/10.1145/2578153.2578185
https://doi.org/10.1145/3290605.3300646
https://doi.org/10.1109/TPAMI.2017.2778103

	Abstract
	1 Introduction
	2 Related Work — Gaze Estimation
	3 UnitEye Implementation and Features
	4 Technical Evaluation
	4.1 Apparatus
	4.2 Participants
	4.3 Procedure
	4.4 Privacy and Ethics Statement
	4.5 Objective Measurements
	4.6 Data Analysis
	4.7 Results

	5 Case Studies
	5.1 Use Case 1: Eye Gaze-based Game
	5.2 Use Case 2: Remote Operation
	5.3 Use Case 3: Longitudinal Effects of Automotive User Interfaces
	5.4 Use Case 4: Bayesian Optimization Study
	5.5 Use Case 5: Cultural Effects of External Communication of Automated Vehicles
	5.6 Participants
	5.7 Measurements and Procedure
	5.8 Results

	6 Discussion, Limitations, and Future Work
	7 Conclusion
	Acknowledgments
	References

