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Abstract. Heuristic Search is still the most successful approach to
hierarchical planning, both for finding any and for finding an opti-
mal solution. Yet, there exist only a very small handful of heuristics
for HTN planning – so there is still huge potential for improvements.
It is especially noteworthy that there does not exist a single heuris-
tic that’s tailored towards special cases. In this work we propose the
very first specialized HTN heuristic, tailored towards totally ordered
HTN problems. Our heuristic builds on an existing NP-complete and
admissible delete-and-ordering relaxation ILP heuristic, but partially
incorporates ordering constraints while reducing the number of ILP
constraints. It exploits inferred preconditions and effects of com-
pound tasks and is also admissible thus allowing to find optimal so-
lutions. Our heuristic demonstrates improved performance (ILP) or
comparable performance (LP) to the previous heuristic, suggesting
the success of the model reduction. Compared to the current state-
of-the art heuristic for optimal HTN planning, our heuristic is less
efficient on average, but more informed and dominates it in roughly
as many cases as it gets dominated by the other, making it a more
efficient alternative in several domains.

1 Introduction

As witnessed by already having the second track on Hierarchical
Task Network (HTN) Planning in the International Planning Compe-
tition (IPC), solving HTN problems quickly or optimally is a promi-
nent research field. Collectively, ten HTN planners participated at the
IPCs (not counting various configurations per planner), and further
planners exist as well. Among all the various approaches, heuristic
progression search [15, 19] is still the most efficient approach, both
for optimal and for suboptimal planning – as witnessed by the most
recent IPC [8, 9, 21].

The success of these search methods is tied directly to the quality
of the heuristics deployed. Despite the success of heuristic search,
only a very small number of HTN heuristics exist. One of the first
was a TDG-based heuristic that estimates the minimal number of
tasks that can be obtained by decomposing the compound tasks in
the current search node [5], one finds refinements to delete- and
ordering-relaxed problems encoded by an Integer Linear Program
(ILP) [14], another bases on landmarks [11], and the last – but most
successful – heuristic is the relaxed composition heuristic [12, 15],
which encodes each search node into a classical problem allowing to
deploy classical heuristics.
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All of these heuristics are designed to cope with the most general
case of an arbitrary partial order. However, there are significantly
more specialized total-order (TO) planners than planners for general
partial order planning, yet no heuristic for this important special case
exists. It is however notable that there exists a pruning technique for
total-order HTN problems [19], which further shows the potential of
this special case as its exploitation further improved the total-order
planner on top of which the pruning was implemented for the extend
that it won the total-order HTN track of the IPC 2023 [21].

In this paper we propose the – to the best of our knowledge – first
HTN planning heuristic tailored towards totally ordered problems. It
exploits inferred preconditions and effects of compound tasks [20]
(which also serve as the basis for the TO pruning technique men-
tioned before [19, 21]) and deploys them in a simplified variant of
the ILP-based (NP-complete) delete- and ordering relaxation heuris-
tic (DOR) by Höller et al. [14]. Like the original heuristic, our variant
is admissible. Similarly, it can also be computed in polytime (by re-
laxing the integer variables to real-valued ones), but it naturally loses
some of its informedness and hence pruning power if that is done.

We compare our new heuristic against the original (I)LP heuris-
tic [14] and the currently best-performing admissible one, the RC
heuristic [12, 15] with the (admissible) LM-cut [7] as inner classical
heuristic.

2 Theoretical Background
We start with providing the necessary definitions for total-order HTN
planning and inferred effects of compound tasks.

2.1 HTN Planning Formalism

Our heuristic for totally ordered HTN planning is grounded in
the formalisms introduced by Geier and Bercher [6] and Behnke
et al. [3]. A total-order HTN planning domain is defined as a tu-
ple D = (F,A,C,M), which includes a finite set of facts F , finite
sets of primitive tasks A (also called actions) and compound tasks
C (also referred to as abstract tasks), and (decomposition) methods
M ⊆ C × T ∗.1 The collective set of tasks, both primitive and com-
pound, is denoted by T = A∪C. Actions a = (prec, add , del) ∈ A
are characterized by their preconditions prec(a) ⊆ F and their ef-
fects add(a), del(a) ⊆ F (namely, the add and delete effects). An
action a ∈ A is applicable in a state s ∈ 2F if prec(a) ⊆ s. Upon

1 The Kleene star notation T ∗ represents the set that includes the empty se-
quence and all finite sequences of tasks from T .



application, it transitions the state s to a successor state δ(s, a) =
(s \ del(a)) ∪ add(a). This concept extends to action sequences
ā = ⟨a0 . . . an⟩ with each ai ∈ A, deemed applicable in an initial
state s0 if a0 is applicable in s0 and sequentially for each 1 ≤ i ≤ n,
ai is applicable in the resultant state si = δ(si−1, ai−1). Com-
pound tasks within HTN planning, denoted by c ∈ C, represent
a higher-level abstraction of primitive and/or compound tasks, fur-
ther specified by (decomposition) methods m = (c, t̄) ∈ M . These
methods decompose a compound task c within a given task network
tn1 = ⟨t̄1 c t̄2⟩ ∈ T ∗ into another task network tn2 = ⟨t̄1 t̄ t̄2⟩,
denoted as tn1 →c,m tn2, where task networks are finite (possibly
empty) sequences of tasks. A sequence of methods that transforms tn
into tn ′ is represented as tn → tn ′, with tn ′ being called a refine-
ment of tn . For a compound task c ∈ C we also write c → tn ′ if we
refer to ⟨c⟩ → tn ′. A TOHTN planning problem Π = (D, sI , cI , g)
is defined by the domain D, an initial state sI ∈ 2F , an initial task
cI ∈ C, and a goal description g ⊆ F . A solution is a sequence of
actions tn = ⟨a0 . . . an⟩ ∈ A∗ if cI → tn holds, tn is applicable in
sI , and it leads to a goal state s ⊇ g.

2.2 Preconditions and Effects of Compound Tasks

In our version of the ILP heuristic we incorporate the concept of in-
ferred negative effects of compound tasks as introduced by Olz et al.
[20]. Compound tasks, both according to the formalism we base upon
[6, 3], and as described by HDDL [13], lack direct effects and serve
primarily as placeholders for task networks to which they decompose
into during the planning process. A detailed examination of the po-
tential decompositions of compound tasks allows for the inference
of state features required prior to any task refinement execution and
the state features that result from all possible refinements. Olz et al.
[20] categorize such effects into several types, including possible and
guaranteed effects, as well as positive and negative ones, in addition
to preconditions. Our focus here is specifically on guaranteed nega-
tive effects, hence we limit our recap to them.

The set of executability-enabling states for a compound task
c ∈ C is defined as E(c) = {s ∈ 2F | ∃ ā ∈ A∗ : c →
ā and ā is applicable in s}. Moreover, the set of states that could re-
sult from executing task c in state s ∈ 2F is Rs(c) = {s′ ∈ 2F |
∃ ā ∈ A∗ : c → ā, ā is applicable in s and leads to s′}.

Now, facts that are deleted after every successful execution of a re-
finement of a compound task c are called state-independent negative
effects (cf. Def. 4, [20]) and are defined as follows:

eff −
∗ (c) := ∩s∈E(c)(F \∩s′∈Rs(c)s

′)

if E(c) ̸= ∅, otherwise eff −
∗ (c) := undef .

Computing these “precise” effects for compound tasks is often
too computationally expensive for the exploitation in heuristics, as
it essentially requires solving certain planning problems [20]. How-
ever, a more computationally feasible approach exists, based on
precondition-relaxation. The precondition-relaxed effects, denoted
as eff ∅−

∗ (c), are defined similarly to the original effects but rely on
a precondition-relaxed version of the domain D′ = (F,A′, C,M),
where A′ = {(∅, add , del) | (prec, add , del) ∈ A}. This approach
considers only the presence and sequence of primitive tasks in the
computation. Procedures for computing these effects in polynomial
time have been provided by Olz et al. [20] and are also implemented
in the PANDADealer planning system [19, 21], which we employ for
our evaluation.

• {CAt | t ∈ T} (int) – value indicating how often a certain primi-
tive or abstract task is in the solution.

• {Mm | m ∈ M} (int) – value indicating how often a certain
method is in the solution.

• {TNIt | t ∈ T} (bool) – flag indicating whether a certain task is
the initial task.

Figure 1. The variable set used in our ILP model. It is a subset of the ones
by Höller et al. [14]. The first variable is renamed, the last adapted to initial

task instead of task network.

3 ILP Encoding for Delete-relaxed TO-HTN
Search Nodes

Höller et al. [14] introduced the first HTN planning heuristic based
on an ILP. They encode a delete- and ordering-relaxed (DOR) HTN
planning problem, for which the plan existence problem is NP-
complete to decide. The encoding can be divided into two parts:
Constraints that ensure the successful execution of a sequence of ac-
tions (or a relaxed version of it) and constraints to ensure the proper
decomposition leading to it. For the first part, Höller et al. use the
encoding by Imai and Fukunaga [16] (for classical planning) rep-
resenting a delete-relaxed planning graph. However, we introduce a
different approach, which we outline further below. The latter part,
we take from the work by Höller et al. without changes, which we
recap next.

Figure 1 outlines the set of ILP variables. The model by Höller
et al. requires five types of variables to encode the executability of
actions, while we reduce this to just one – the first one. (In both
models, the second and third types are only used for encoding the
decomposition).

One can consider two objective functions. We focus on the first
one (O1), which minimizes the number of primitive actions in the
solution. This function estimates the length of the resulting plan and
should be used in combination with an appropriate search strategy if
the goal is to find plans of minimal length. More details and expla-
nations regarding admissibility are provided in Section 4.1.

In the context of satisficing planning, where the aim is to find any
solution as quickly as possible, the second objective function (O2)
has proven to yield better results in combination with GBFS, among
others. It minimizes the number of primitive actions that need to be
applied and the number of method applications leading to those ac-
tions. This function estimates the goal distance in the modification
space but can not be used with A∗ to find optimal plans. We men-
tioned (O2) for completeness but do not evaluate it later.

min
∑
a∈A

CAa (O1)

min
∑
a∈A

CAa +
∑
m∈M

Mm (O2)

In order to simplify our constraints, we encode the current state s
and goal description as actions, known from partial-order causal link
(POCL) planning [4, 17]. Specifically, we introduce aI = (∅, s, ∅)
and ag = (g, ∅, ∅). Since they need to be ordered before and after,
respectively, all other tasks, we additionally add a new compound
task cI with one method mI = (cI , ⟨aI , tnI , ag⟩), which replaces
the current task network of the search node.

3.1 Task Decomposition Constraints

A solution to an HTN planning problem needs to be a refinement
of the initial task. The following two constraints by Höller et al. [14]



encode this criterion, which we also add to our ILP model. If a (prim-
itive) task is contained in the solution, then it is the initial task and/or
a method has been applied, which introduced the task into the plan:

Definition 1 (mst). Let mst(t) be the multiset of methods where the
task t ∈ T is contained as a subtask. A method m ∈ M is as often
in mst(t) as t is a subtask in m.

∀t ∈ T : CAt = TNIt +
∑

m∈mst(t)

Mm (C7)

However, methods can not be applied arbitrarily, there also needs
to be a suitable abstract task for every applied method.

Definition 2 (mdec). Let mdec(c) be the set of methods decompos-
ing the abstract task c ∈ C.

∀c ∈ C : CAc =
∑

m∈mdec(c)

Mm (C8)

According to Höller et al. [14] the two constraints are sufficient
to encode the proper decomposition (more precisely, encoding a so-
called decomposition tree) leading to a sequence of tasks for acyclic
problems. For cyclic domains further constraints are necessary to
handle strongly connected components (SCCs). This means that the
encoding without those additional constraints can also be used for
cyclic domains but the solutions can encode (shorter) plans that can
not be obtained by a proper sequence of decompositions. To simplify
the presentation of this paper, we do not repeat these additional con-
straints here or include them in our theoretical considerations, as our
evaluation results show weaker performance when they are included.

3.2 Achiever Constraints

The ILP model by Höller et al. [14] uses the constraints by Imai and
Fukunaga [16] to simulate a delete-relaxed planning graph. There-
fore, for every time point there exist ILP variables for every action
and fact, stating whether an action is executed at that time point and
the facts being true or false. If an action is applied at some time point,
its preconditions need to be true beforehand. If a fact needs to be true
at some time point, there must be an action adding it if it is not al-
ready true in the initial state. The ILP solver tries to find an order of
the actions so that preconditions and goal facts are satisfied (under
delete relaxation). The resulting order might not meet the ordering
constraints of tasks within methods. Thus, especially in total-order
domains a lot of information gets lost.

Our intention was to improve the existing ILP heuristic in terms
of accuracy by incorporating (at least some of) the ordering con-
straints imposed by the methods. We observed that adding additional
constraints could improve the heuristic value but the additional time
needed to solve the ILP did not pay off (this was done in a pre-
evaluation, not reported here). To encode the planning graph, already
quite a lot of variables and constraints are necessary. Therefore, in
our proposed approach, we made the model more simple by calcu-
lating necessary information outside of the ILP upfront. Instead of
using the constraints by Imai and Fukunaga [16], we ended up with
only one (new) constraint (cl is a large constant):

∀a ∈ A,∀f ∈ prec(a) : cl ·
∑

p∈achiever(a,f )

CAp ≥ CAa (C1)

Algorithm 1 Calculating Predecessor Actions
Input: A problem Π = (D, sI , cI , g)
Output: Sets of possible predecessors pred(a) ∀ a ∈ A

1: pred(a) = ∅ for all a ∈ A
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for j = i− 1 to 0 do
6: pred(a) = pred(a) ∪ reachable(tj)

This constraint ensures that for every action a ∈ A in the plan
and every of its preconditions there is an action “achieving” the pre-
condition. So, the influence of this constraint heavily depends on the
definition of the set achiever(a, f ). A naive approach might be the
following: Let a ∈ A be a primitive task and f ∈ F a precondition,
then the set of possible achievers is achiever(a, f ) = {a′ ∈ A |
f ∈ add(a′)}. However, in this case the solutions of the ILP are not
very restricted. Neither are the methods’ ordering constraints taken
into account nor does it guarantee that there is an executable order-
ing of the actions (even under delete relaxation). In the next section
we present algorithms to restrict the set of achievers for an action a
further so that it only contains actions that appear before a according
to the method’s total order. Moreover, by exploiting the inferred ef-
fects, we can even partially consider delete effects. Thus, we do not
present further changes to the ILP model, we only discuss several
options of how to calculate the set of possible achievers and their im-
pact on the set of ILP solutions. To summarize, the ILP model of our
new heuristic is composed of the objective function (O1), subject to
the constraints (C1), (C7), and (C8).

4 Determining Achiever Actions
Given a total-order HTN planning problem, we can determine for a
given action the set of actions that can be ordered before that action
in a possible refinement of the initial task. We will see that we can
calculate this with different levels of accuracy.

To start, we define the set of reachable actions reachable(c) =
{a ∈ A | ∃ t̄ ∈ T ∗ : c → t̄ and a ∈ t̄} of a compound tasks c ∈ C,
which are the actions reachable via decomposition. For primitive ac-
tions a ∈ A, we define reachable(a) = {a}. The sets can be calcu-
lated in polynomial time, e.g., by a depth-first search with a closed
list of already visited compound tasks to prevent infinite cycles. The
RC heuristic does this in a preprocessing step; it’s a one-time com-
putation. If we are given these sets for each compound task, we can
compute, for every primitive action, the set of actions that can pos-
sibly appear as predecessors in a refinement of the initial compound
task (and are thus candidates for achiever actions) as shown in Algo-
rithm 1.

The algorithm considers every method once. So let m =
(c, ⟨t0, . . . , tn⟩) ∈ M be a method. For each task ti (i > 1) in
the method, all of its reachable actions are considered. All reachable
actions of preceding tasks tj , j < i are added to their sets of prede-
cessors.

Proposition 1. Let Π = (D, sI , cI , g) be a total-order HTN plan-
ning problem, a ∈ A, and pred(a) be computed by Algorithm 1.
Then it holds a′ ∈ pred(a) if and only if there exists a refinement ā
of cI (not necessarily executable) so that a, a′ ∈ ā and a′ ≺ a.

Proof Sketch. We assume that all methods are reachable by decom-
position from the initial task, otherwise the unconnected methods
should not be considered in the algorithm.



Algorithm 2 Calculating Achiever Actions
Input: A problem Π = (D, sI , cI , g)
Output: achiever(a, f ) for all a ∈ A, f ∈ prec(a)

1: achiever(a, f ) = ∅ for all a ∈ A, f ∈ prec(a)
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for all f ∈ prec(a) do
6: for j = i− 1 to 0 do
7: if f ∈ eff −

∗ (tj)/del(tj) then
8: break
9: achiever(a, f ) = achiever(a, f ) ∪

{a′ ∈ reachable(tj) | f ∈ add(a′)}

“⇒” Let a, a′ ∈ A and a′ ∈ pred(a). Consider the method
m = (c, ⟨t0, . . . , tn⟩) ∈ M in line 2 for which a′ was added to
pred(a) in line 6. Since there there are 0 ≤ j, i ≤ n with j < i,
a ∈ reachable(ti), and a′ ∈ reachable(tj) there must be a refine-
ment of ⟨t0, . . . , tn⟩ in which a′ is ordered before a. Moreover, by
assumption, there must be a refinement of cI that contains c which
can be decomposed using m, which proves the first direction.

“⇐” Let ā be a refinement of cI and a, a′ ∈ ā two primitive
tasks with a′ ≺ a. If we consider the two sequences of decompo-
sitions (more specifically, the used methods) leading from cI to a
and from cI to a′ in ā, then the two sequences have the same pre-
fix of methods. The suffix may differ. However, the last common
method m = (c, ⟨t0, . . . , tn⟩) ∈ M must have two tasks tj ≺ ti
with a′ ∈ reachable(tj) and a ∈ reachable(ti) so that a′ will get
added to pred(a) in line 6.

Algorithm 1 can be extended to restrict the set of possible achiev-
ers for the preconditions of an action achiever(a, f ) based on the
total-order of the method set and inferred negative effects, given in
Algorithm 2.

Again, every method m = (c, ⟨t0, . . . , tn⟩) ∈ M is considered
once. Now, for each task ti (i > 1), all of its reachable actions
and their preconditions are considered. Preceding tasks tj , j < i
are checked for reachable actions that can add these preconditions,
updating the achiever sets. If any of these preceding task tj , j <
i deletes a precondition (according to its inferred delete effects
eff −

∗ (tj) if tj is abstract or its delete effects del(tj) if it is primitive),
we do not consider its reachable actions nor the reachable actions of
its predecessors (line 8).

Algorithm 2 runs in polynomial time, namely in O(|M | · n2 ·
(reachmax )

2 · precmax ), where n is the size of the largest task
network within methods, reachmax = maxt∈T |reachable(t)| and
precmax = maxa∈A |prec(a)|.

Proposition 2. Let Π = (D, sI , cI , g) be a problem, a ∈ A a prim-
itive task, and achiever(a, f ), pred(a) be calculated according to
Algorithms 1 and 2. Then it holds

•
⋃

f∈prec(a) achiever(a, f ) ⊆ pred(a) and
• for all refinements ā of cI it holds if a, a′ ∈ ā, a′ ≺ a, f ∈

prec(a) ∩ add(a′) and f is not deleted in between then a′ ∈
achiever(a, f ).

Proof Sketch. Since Algorithm 2 collects only actions that add one
of the preconditions, the set of achievers is a subset of the predeces-
sors calculated by Algorithm 1. Since for the achievers some of the

delete effects are taken into account in line 8 even less actions are
added to that set.

For the second point, let us consider a refinement ā of cI with
a, a′ ∈ ā, a′ ≺ a, f ∈ prec(a) ∩ add(a′), where no other ac-
tion deletes f in between. According to Proposition 1 we know that
a′ ∈ pred(a). Since no action in between deletes f , the condition
for line 8 is not satisfied. So, a′ is also added to achiever(a, f ) since
f ∈ prec(a) and f ∈ add(a′).

So, we define our heuristic based on the ILP presented in the last
section, with the set of possible achievers achiever(a, f ) calculated
by Algorithm 2. The last proposition essentially shows that we re-
stricted the set of possible achievers without losing any solutions:

Theorem 3. For every solution of a TOHTN planning problem there
exists a valid assignment of the ILP model.

Proof. Höller et al. [14] already showed that for every solution of a
DOR HTN planning problem, there is a valid assignment of their ILP
model. Since every solution of a TOHTN planning problem is also a
solution under delete and ordering relaxation, we know that there is
a valid assignment of our model that satisfies the task decomposition
constraints C7 and C8. So we only need to check C1. For all primitive
tasks t ∈ A the variables CAt are set according to how often the task
is in the solution. Consider a primitive task a with CAa > 0 and
precondition f . Since the plan is executable there must be an action
a′ in the plan adding f and no action deletes f in between. According
to Proposition 2 it holds a′ ∈ achiever(a, f ) and therefore C1 is
satisfied since also CAa′ > 0.

The next question is whether the heuristic performs relaxations or
if all valid assignments of the ILP model correspond to some solu-
tion of a TOHTN problem. From a theoretical point of view this is
“unlikely” (or even impossible, depending on the exact relationship
of complexity classes, which are still unknown) since TOHTN plan-
ning is EXPTIME-complete in general and still PSPACE-complete
for acyclic domains [2], while ILPs can only solve problems in NP.
Essentially, two relaxations are performed: Since we only check for
achievers of preconditions and ignore most of the delete effects, we
perform some delete-relaxation. Moreover, the total-order of tasks is
partially relaxed. For example, consider a method containing a com-
pound task c twice. Assume that c has two methods m1 = (c, ⟨a1⟩)
and m2 = (c, ⟨a2⟩), where a1 can support a precondition of a2 and
vice versa. Then the two primitive actions are in the achiever sets of
each other and in a solution of a corresponding ILP the two actions
could support each other. However, actually only one of the precon-
ditions is satisfied because one action is applied before the other,
so the first one needs another action adding its precondition. There-
fore, we denote our heuristic as P-TODR (partial total-order, partially
delete-relaxed).

To overcome the limitation of not fully adhering to the total or-
der, one could duplicate primitive and compound tasks, ensuring that
each task occurs only once across all methods’ task networks. So, in
the example above, we then have two compound tasks c and c′, m1

and m2 unchanged, but two additional methods m′
1 = (c′, ⟨a′

1⟩) and
m′

2 = (c′, ⟨a′
2⟩), where a′

1 and a′
2 have the same preconditions and

effects as a1 and a2, respectively. In the worst case such a transfor-
mation introduces exponential many new tasks. If a transformation is
possible with polynomially many new tasks, we can actually encode
an acyclic, delete-relaxed TOHTN problem. Therefore, we call a TO-
HTN planning problem Π = (D, sI , cI , g) a unique tasks problem if
for all tasks t ∈ A∪C there is at most one method m = (c, t̄) ∈ M
with t ∈ t̄ and additionally t is contained only once in t̄.



Theorem 4. Consider an acyclic, delete-relaxed, total-order HTN
planning problem with unique tasks. Then, for every valid assign-
ment of the ILP model, there exists a corresponding solution to the
underlying delete-relaxed, total-order HTN problem.

Proof Sketch. Consider an acyclic, delete-relaxed, unique tasks TO-
HTN problem and a valid assignment of the corresponding ILP
model. According to Höller et al. [14] the constraints C7 and C8
ensure that there is a refinement of the initial task that contains ex-
actly the number of primitive tasks as indicated by the variables CAt .
Since the constraints C1 are satisfied, for all actions in the plan and
their preconditions there is an action adding it. So we only need to
verify that the actions appear in the correct order so that all precondi-
tions are satisfied. Since every task (primitive or compound) appears
exactly once in all methods there is only one sequence of decompo-
sitions leading to that task. This implies that if for two actions a, a′

it holds a′ ∈ pred(a), then a /∈ pred(a ′). This does also hold for
the achiever sets since they are subsets of the predecessors. So, the
achievers already encode some total-order over all tasks and the re-
finement of the initial task is executable under delete-relaxation.

Since we take some of the (inferred) delete effects into account
when we calculate the achievers (line 8, Alg. 2), not every solution
of an acyclic, delete-relaxed, unique tasks TOHTN problem has a
valid assignment of the ILP model. Some of the non-executable ones
(when considering delete effects) are missing, which is beneficial for
the heuristic since they are recognized as not being correct solutions.

If we remove line 8 (what we should not do in practice) the ILP can
exactly encode acyclic, delete-relaxed, unique tasks TOHTN prob-
lems, which is the first encoding for this class so far. This is also
in line with the result by Alford et al. [1] that acyclic and delete-
relaxed (total-order) HTN planning is NP-complete. The result by
Alford et al. actually tells us that there must be an encoding in gen-
eral without relying on the unique tasks property. The hardness proof
by Alford et al. does not rely on unique tasks but we can adapt a re-
duction by Olz and Bercher [18] to show NP-hardness of acyclic and
regular, delete- and precondition-relaxed problems to unique tasks so
that we can conclude that:

Theorem 5. The plan existence problem of acyclic, delete-relaxed,
and total-order HTNs with unique tasks is NP-complete.

Proof. The problem is in NP because acyclic and delete-relaxed
HTN planning is NP-complete [1].

For hardness we adapt the reduction from 3SAT by Olz and
Bercher [18, Proof of Thm. 1] to unique tasks: Consider a 3SAT for-
mula ϕ in conjunctive normal form consisting of the propositional
variables x1 . . . xn and clauses C1 . . . Ck. We construct the follow-
ing planning problem Π: For every clause Cj (1 ≤ j ≤ k) there
is a fact fj . For every variable xi (1 ≤ i ≤ n) there is one com-
pound tasks ui and two primitive tasks x⊤

i , x⊥
i with add effects

add(x⊤
i ) = {fl | xi ∈ Cl} and add(x⊥

i ) = {fl | ¬xi ∈ Cl},
respectively. The preconditions and delete effects are empty. Each
compound task ui (1 ≤ i ≤ n) has two decomposition methods
m1

i = (ui, ⟨x⊤
i ⟩) and m2

i = (ui, ⟨x⊥
i ⟩). At last there is the initial

compound task cI with one method mI = (cI , ⟨u1 . . . un⟩). Since
the methods of the compound tasks ui all contain different tasks
that are additionally primitive, the problem is acyclic and fulfills the
unique task property. The goal condition is g = {f1, . . . , fk}.

The choice of decomposing ui to either x⊤
i or x⊥

i corresponds
to setting the SAT variable xi to true or false, respectively. The add
effects of these primitive actions represent the satisfaction of the re-
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a2f3
f1
f2

a3 f1 a4 f2

a1
f1
f2

f3 a2f3
f1
f2

m1 m2

m3

Figure 2. An example demonstrating dominance properties.

spective clauses. Thus, we can claim that ϕ is satisfiable if and only
if Π is solvable.

4.1 Admissibility and Dominance

We examine the typical theoretical properties: admissibility, safety,
and goal-awareness (h(n) = 0 for every goal search node n).

Theorem 6. The heuristic is admissible, goal-aware, and safe with
the objective function O1: min

∑
a∈A CAa .

Proof. As demonstrated in Theorem 3, for every solution of a TO-
HTN planning problem, there exists a valid assignment of the ILP
model, ensuring that the heuristic is safe.

The objective function (O1) minimizes the number of primitive
tasks, so the heuristic value is bounded above by the length of an
optimal plan, making it admissible. The artificial actions encoding
the initial state and goal should be excluded from that function. Note
that admissibility does not hold for the second function (O2), which
minimizes the number of primitive actions plus methods that need
to be applied. Thus, it estimates the distance to the goal rather than
the length of a minimal plan, making it inadmissible but often more
efficient for quickly finding any plan.

For goal-awareness, note that in a progression search, a search
node is a goal node if and only if its task network is empty. In this
case, the objective function trivially evaluates to 0.

We assume unit action costs throughout this paper. However, it
is easy to adapt the objective function to arbitrary action costs:
min

∑
a∈A cost(a) · CAa , where cost(a) ∈ R≥0 are the costs as-

sociated with an action. In this case, the heuristic value is bounded
above by the cost of a cost optimal plan.

According to Theorem 4 we know that P-TODR calculates the
length of an optimal plan if the TOHTN planning problem is acyclic
and delete-relaxed with unique tasks. The DOR heuristic addition-
ally relaxes ordering constraints so that the underlying encoded plan
could be shorter, i.e., the heuristic value can be smaller. This means
that P-TODR dominates DOR in such cases.

Corollary 7. For acyclic, delete-relaxed total-order HTN planning
problems with unique tasks P-TODR dominates DOR.

For the general case of TOHTN planning, however, none of the
two heuristics dominates the other. Consider the example in Figure 2,
showing a search node n consisting of the task network ⟨c1, a1⟩ and
the decomposition methods of the compound task c1. The actions
a1, . . . , a4 are primitive with their preconditions depicted on the left,
effects on the right. Assume that the current state is s = ∅. Then,



the solution of the DOR heuristic would encode the only correct plan
⟨a3, a4, a1⟩ using m2 to decompose c1 leading to a heuristic value of
DOR(n) = 3+1 = 4 with objective function O2. On the other hand,
the solution of the P-TODR uses m1 and only the actions a2 and a1

leading to P-TODR(n) = 2 + 1 = 3 (the two actions are possible
achievers of each other because of their occurrence in m3 and the
current task network). So the DOR heuristic dominates P-TODR in
this particular search node.

5 Evaluation
We evaluated our proposed heuristic for optimal planning. We in-
tegrated the heuristic into the progression-based version of the
PANDAπ system [15].2,3 We used the currently best-performing con-
figuration according to the last IPC in 2023 (total-order track), which
is A⋆ with loop detection [10] and dead-end analysis with look-
aheads and early refinements (Dealer) [19, 21]. For completeness
reasons we also included some results without the latter. The source
code is available in the repository [22], which also contains the gen-
erated data and additional evaluations, including results from addi-
tional configurations and the time required for the preprocessing step
of calculating achiever actions (1.18% of total time on avg.).

We run the evaluation on a machine with a Xeon E5-2660 v3 with
2.60GHz and 40 CPUs. As a benchmark set, we used all problems
of the 24 domains of the IPC 2020 and the two additional ones from
2023.4 Each planning problem was granted one core, a maximum of
8 GiB RAM, and a time limit of 1800 seconds.

We compared our heuristic P-TODR against the ILP-based heuris-
tic DOR by Höller et al. [14]. Since we aim to find optimal plans,
we used objective function O1. For each search node, both heuris-
tics perform a reachability analysis to determine which tasks are still
reachable, and then construct a new ILP model; hence, there are no
incremental computations. The ILPs are solved by CPLEX using its
standard parameters, but with the number of parallel threads set to
one. In addition to solving the NP-complete ILP problems exactly,
we also evaluated the performance when relaxing the ILP variables
to real numbers, resulting in a Linear Program (LP), which is known
to be solvable in P. To summarize, we evaluated (similar for DOR):

• P-TODRilp – The NP-complete ILP model solved exactly
• P-TODRlp – The ILP model relaxed to an LP
• P-TODR

lp/ilp
scc – Additional constraints for handling SCCs

• P-TODR
lp/ilp
noD – Without using the Dealer technique

Additionally, we included the currently best-performing admissi-
ble HTN heuristic, which is the Relaxed Composition (RC) heuris-
tic [15] in combination with the admissible classical LM-cut heuris-
tic [7], denoted as RC(lmc).

In Table 1 we report the number of solved instances within the
time and memory limits (coverage); normalized coverage, where
equal significance is assigned to all domains, ensuring that domains
with a multitude of instances do not overshadow those with fewer
instances; and the IPC score, which is computed by min{1, 1 −
log(t)/log(1800)}, where t is the time required to solve the prob-
lem in seconds. It rewards solving problems quickly.

P-TODR vs. DOR We first compare the P-TODR and DOR heuris-
tics. Based on Table 1, we observe that both heuristics perform best
when the (I)LP model is allowed to take real numbers. P-TODRlp has

2 http://panda.hierarchical-task.net
3 https://github.com/ipc2023-htn/PandaDealer
4 https://ipc2020.hierarchical-task.net/, https://ipc2023-htn.github.io/
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Figure 3. Number of generated search nodes using P-TODRilp versus
DORilp . Be aware of the log scale. Shows only domains 1 to 12.

a slightly higher IPC score while DORlp solves two instances more
(337 vs. 339). When the NP-hard ILP model is solved (P-TODRilp

vs. DORilp), P-TODR could solve 15% more problems in total. The
IPC score was improved by approx. 16%. Looking at individual do-
mains, we can see that P-TODRilp dominates DORilp in every sin-
gle domain, both in terms of coverage as well as in terms of IPC
score, though not always strictly. Looking at some specific domains,
we see the largest difference in performance in the Elevator, Hiking,
and Towers domains. Using the additional SCC constraints lead to a
lower performance in all cases. The same holds for not using Dealer.

Despite having considerably fewer variables and constraints,
P-TODRilp’s performance, in terms of calculated search nodes, is
comparable to that of DORilp , as illustrated in Figures 3 and 4.
We can see that only a few problems produce more search nodes.
This suggests that P-TODR’s unique constraint ensuring executabil-
ity, coupled with the precalculated task ordering, delivers results of
similar quality to those of the DOR constraints but with faster com-
putation, due the elimination of ILP variables. This elimination of
constraints naturally shows the biggest impact in the ILP variant of
the heuristic, as their evaluation is here more expensive than in the
poly-computable LP variant.

P-TODR vs. RC(lmc) When comparing the P-TODR heuristic
against the currently best-performing admissible HTN heuristic, re-
sults are not that clear. When looking at the total number of solved
instances and the sum of IPC scores, then the RC(lmc) heuristic
outperforms P-TODRlp/ilp . RC(lmc) solved 384 problems, whereas
P-TODRlp solved only 337. RC(lmc) has a sum of IPC scores of 7.77,
whereas P-TODRlp has 6.40. However, when looking at individual
domains, we can see that no heuristic dominates the other. More
precisely, in 6 of 26 domains, both heuristics have the same cov-
erage. In 13 domains RC(lmc) has higher coverage than P-TODRlp ,
so consequently P-TODRlp has higher coverage than RC(lmc) on 7
domains. The Childsnack domain stands out, where the RC heuristic
failed to solve any problems, whereas P-TODRlp was able to solve
6. Looking at IPC scores, values were identical in three case. Oth-
erwise, RC(lmc) has higher scores in 15 cases, and, consequently,



Table 1. Coverage and IPC score for optimal planning, sorted by IPC score
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Domain Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC Cov IPC

Assembly 30 4 0.11 3 0.07 3 0.07 3 0.07 5 0.12 3 0.07 3 0.07 4 0.10 3 0.07 5 0.10 4 0.09
Barman-BDI 20 10 0.32 8 0.20 8 0.17 8 0.20 6 0.14 8 0.15 8 0.18 6 0.14 6 0.14 5 0.11 6 0.11
Blocksw.-GTOHP 30 26 0.68 25 0.75 26 0.75 22 0.60 25 0.73 25 0.70 22 0.60 22 0.58 25 0.67 24 0.71 22 0.58
Blocksw.-HPDDL 30 5 0.12 6 0.12 5 0.11 6 0.12 5 0.10 5 0.11 5 0.11 5 0.11 5 0.10 5 0.10 5 0.10
Childsnack 30 0 0.00 6 0.06 5 0.05 7 0.07 5 0.05 4 0.03 5 0.05 5 0.05 3 0.01 5 0.03 5 0.03
Depots 30 18 0.55 18 0.53 18 0.49 18 0.53 19 0.51 18 0.50 18 0.48 19 0.51 18 0.45 18 0.38 18 0.38
Elevator-Learned 147 92 0.33 73 0.27 72 0.26 77 0.27 67 0.24 64 0.22 73 0.26 70 0.25 53 0.19 55 0.20 61 0.21
Entertainment 12 5 0.42 5 0.42 5 0.42 5 0.42 9 0.57 9 0.57 5 0.42 9 0.51 8 0.52 8 0.53 8 0.50
Factories 20 6 0.23 6 0.21 6 0.20 6 0.21 5 0.20 5 0.18 6 0.20 5 0.20 5 0.17 5 0.18 5 0.18
Freecell-Learned 60 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Hiking 30 6 0.05 11 0.09 9 0.08 10 0.10 12 0.14 10 0.10 9 0.08 13 0.21 9 0.08 3 0.03 9 0.07
Lamps 30 15 0.46 14 0.42 14 0.42 14 0.42 14 0.41 13 0.41 14 0.42 15 0.42 13 0.41 14 0.41 14 0.41
Logistics-Learned 80 27 0.25 22 0.23 22 0.22 24 0.23 22 0.20 22 0.21 22 0.22 22 0.20 22 0.20 22 0.20 22 0.20
Minecraft Pl. 20 2 0.03 1 0.01 1 0.01 1 0.00 1 0.01 1 0.01 0 0.00 0 0.00 1 0.01 1 0.00 0 0.00
Minecraft Reg. 59 33 0.33 38 0.36 37 0.32 38 0.36 38 0.34 38 0.36 37 0.32 38 0.34 37 0.32 33 0.27 33 0.27
Monroe FO 20 19 0.39 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Monroe PO 20 10 0.16 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Multiarm-Blocksw. 74 12 0.13 17 0.14 17 0.13 17 0.14 13 0.11 14 0.12 17 0.13 13 0.10 13 0.11 9 0.08 9 0.08
Robot 20 11 0.55 11 0.53 11 0.52 11 0.53 11 0.51 11 0.52 11 0.52 11 0.52 11 0.51 11 0.51 11 0.51
Rover 30 8 0.22 8 0.22 8 0.22 8 0.21 8 0.21 8 0.22 8 0.21 8 0.20 8 0.21 8 0.20 8 0.19
Satellite 20 6 0.21 10 0.28 10 0.28 10 0.28 10 0.34 10 0.27 10 0.27 10 0.32 9 0.26 10 0.29 10 0.27
Sharp Sat 21 9 0.34 8 0.29 8 0.28 8 0.29 6 0.20 8 0.25 8 0.28 6 0.21 8 0.24 6 0.18 6 0.18
Snake 20 20 0.76 7 0.18 13 0.28 6 0.16 4 0.13 5 0.12 11 0.24 4 0.12 9 0.20 3 0.07 3 0.07
Towers 20 13 0.48 9 0.28 10 0.32 9 0.28 6 0.19 8 0.26 10 0.32 5 0.19 9 0.29 3 0.10 3 0.12
Transport 40 10 0.15 16 0.30 15 0.29 14 0.29 15 0.28 15 0.30 14 0.28 14 0.26 15 0.28 13 0.24 12 0.23
Woodworking 30 17 0.51 15 0.43 16 0.43 15 0.43 16 0.40 16 0.42 16 0.43 16 0.40 16 0.43 15 0.37 15 0.37

Overall 943 384 7.77 337 6.40 339 6.34 337 6.20 322 6.17 320 6.10 332 6.08 320 5.93 306 5.86 281 5.30 289 5.17
Normalized Coverage 10.93 8.98 9.21 8.83 8.74 8.85 8.91 8.57 8.69 7.74 7.86
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Figure 4. Number of generated search nodes using P-TODRilp versus
DORilp . Be aware of the log scale. Shows only domains 13 to 24.

P-TODRlp had higher scores in 8 cases.
When looking at the informedness of the heuristics, Figures 5

and 6 reveal that P-TODRilp generally requires fewer search nodes
than RC(lmc) for most problems, with significant differences ob-
served in several cases (be aware of the log scale). This indicates that
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Figure 5. Number of generated search nodes using P-TODRilp versus
RC (lmc). Be aware of the log scale. Shows only domains 1 to 12.

the P-TODRilp heuristic is more informed at the cost of increased
computation time as expected given that the RC(lmc) heuristic runs
in polynomial time, while the ILP-based heuristics are capable of
encoding and solving NP-hard problems resulting in more precise
heuristic values.
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6 Conclusion and Discussion

We proposed a novel (I)LP-based HTN planning heuristic tailored
to total-order domains. The ordering information is calculated in
advance and integrated into the (I)LP model, significantly reduc-
ing the number of constraints compared to an existing (I)LP heuris-
tic, which ignores ordering. Empirical results indicate that the new
heuristic outperforms the original one when the ILP is solved, dom-
inating it in terms of solved instances (coverage) and IPC score on
every existing total-order domain. If the ILP is relaxed to a linear
programming (LP) model, the performance results are comparable
with no heuristic clearly dominating the other. When comparing our
NP-complete heuristic against the currently best-performing admis-
sible HTN heuristic, RC(lmc), which can be computed in polynomial
time, the results are mixed: While RC(lmc) performs better overall in
terms of the sum of solved instances and IPC score, neither heuristic
clearly dominates the other. There are approximately as many do-
mains where RC(lmc) performs better as there are domains where
our proposed heuristic is superior. This indicates that the higher in-
formedness of our heuristic pays off in several domains but is too
costly in others. This might pay off when deploying portfolio plan-
ners or choosing heuristics based on specific domains. It will also be
interesting to see how the proposed heuristic performs with further
progress on the research question on how to compute inferred pre-
conditions and effects of compound tasks. The informedness of the
heuristic depends on the amount of effects computed, so the heuris-
tic will automatically become more informed when more negative
effects can be identified in the preprocessing step that this heuristic
and the Dealer technique depend upon.
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