
Completion Graph Caching Extensions and
Applications for Expressive Description Logics

Technical Report

Andreas Steigmiller1, Birte Glimm1, and Thorsten Liebig2

1 University of Ulm, Ulm, Germany, <first name>.<last name>@uni-ulm.de
2 derivo GmbH, Ulm, Germany, liebig@derivo.de

Abstract. Tableau-based reasoning systems are primarily used for reasoning with
knowledge bases that are based on very expressive Description Logics such as
SROIQ since they enable a straightforward handling of non-deterministic lan-
guage features such as disjunctions and cardinality restrictions. However, these
tableau-based reasoners are often not very efficient for large ABoxes, i.e., knowl-
edge bases with many facts, because they have to repeatedly re-consider the con-
sequences of the ABoxes for many reasoning tasks. In this paper, we present a
refined completion graph caching technique, where the (non-deterministically)
derived consequences in the consistency test of the ABox are cached such that
the subsequent reasoning effort w.r.t. the ABox can be reduced. In addition, we
present several extensions and applications of the caching technique, which, for
example, enable incremental reasoning for changing ABoxes. The presented tech-
niques are implemented in our reasoning system Konclude and our evaluation
shows that they significantly improve the reasoning performance.

1 Introduction

The current version of the Web Ontology Language (OWL 2) [29], standardised by the
World Wide Web Consortium (W3C), is based on the Description Logic (DL) SROIQ,
which supports very expressive language features such as qualified cardinality restric-
tions, inverse roles, role chains, and nominals [13]. The latter one allow for referring
individuals directly within concept expressions to, for example, define a concept as a
singleton with only the specified individual as member.

Whereas DL-based knowledge bases have often been differentiated in a terminolog-
ical part (TBox), where the vocabulary and the relationships between terms are spec-
ified, and an assertional part (ABox), containing the facts about concrete individuals,
such a strict separation is not longer possible with nominals. In particular, due to the
nominals, both parts depend on each other, which makes reasoning in practice often
more difficult. For example, classification is the well-known reasoning task where we
are interested in the subsumption hierarchy of the atomic concepts of a knowledge base,
which could originally be calculated for nominal-free knowledge bases by only consid-
ering the axioms in the TBox (besides of an inconsistent ABox, for which all (atomic)
concepts are equivalent to bottom). With nominals, also the ABox has to be considered
for classification, whereby the reasoning time often increases dramatically.

In addition, knowledge bases that use language features of more expressive DLs
often contain non-determinism, e.g., due to disjunctions or cardinality restrictions. As
a consequence, often more sophisticated reasoning procedures are required, which are
able to do case-by-case analyses. The current state-of-the-art reasoners for very ex-
pressive DLs such as SROIQ are typically based on variants of tableau algorithms,
refutation-based model construction calculi, where higher level reasoning tasks are re-
duced to possibly many consistency tests. Obviously, if it is necessary to consider the
ABox for each of these consistency tests, then the reasoning easily becomes infeasi-
ble in practice for knowledge bases that have large ABoxes and use more expressive
language features.

For less expressive DLs, already several optimisations have been proposed that en-
able a reduction of the ABox reasoning effort especially for the instance checking prob-
lem [30,31], i.e., these optimisations allow for considering only parts of the ABox for
checking whether an individual is an instance of a specific concept. However, it is not
clear how these optimisations can be extended to SROIQ and they often bear several
disadvantages. For example, optimisation approaches based on partitioning and mod-
ularisation techniques require a syntactic pre-analysis of the concepts, roles, and indi-
viduals in a knowledge base, which can be, particularly for more expressive DLs, quite
costly, and, due to the static analysis, only queries with specific concepts are supported.
If axioms of the knowledge base are extended and modified such that the ABox reason-
ing is improved, then there exists the risk that this negatively influences other reasoning
tasks for which ABox reasoning is potentially less relevant.

Another possibility to avoid the redundant re-processing of the ABox is the caching
of the data from the initial consistency check. Tableau algorithms usually construct a
so-called completion graph for a consistency check, which can be re-used in subsequent
tests to reduce the number of consequences that have to be re-derived for the individ-
uals of the ABox. Existing approaches based on this idea (e.g., [22]) are, however,
not very suitable in handling non-determinism. In particular, the caching and re-use of
non-deterministically derived facts can easily cause unsound consequences and, there-
fore, the non-deterministically derived facts of the cached completion graph are usually
simply discarded and, if necessary, re-derived as soon as they could potentially be prob-
lematic. We address this by presenting a refinement of caching idea, where we check
with a set of conditions which non-deterministic parts of a cached completion graph
can safely be re-used. The caching conditions can be locally checked and, thus, they
allow for efficiently identifying individuals step by step for which non-deterministic
consequences have to be re-considered in subsequent tests. The presented technique
can be directly integrated into existing tableau-based reasoning systems without signif-
icant adaptations and reduces ABox reasoning automatically for all reasoning tasks for
which consequences from the ABox are potentially relevant. Moreover, it can be di-
rectly used for the DL SROIQ, does not produce a significant overhead, and can easily
be extended, for example, to improve incremental ABox reasoning.

The reminder of the paper is organised as follows: We first introduce some prelim-
inaries in Section 2, then we present the basic completion graph caching technique in
Section 3. After that, we present several extensions and applications of the caching
approach in Section 4, which allow for supporting nominals in ordinary satisfiabil-

2

ity caching techniques (Section 4.1), improving incremental reasoning for changing
ABoxes (Section 4.2), and handling very large ABoxes by storing data in a representa-
tive way (Section 4.3). In Section 5, we discuss similarities and differences to related
work in more detail. Finally, we present a detailed evaluation in Section 6 before we
conclude in Section 7.

2 Preliminaries

Since our technique is designed to support all language features of the DL SROIQ,
we first give a brief introduction into SROIQ (see [1] for a detailed introduction into
DLs), and then we present a tableau algorithm for SROIQ to which the technique can
be directly integrated (see [13] for details).

2.1 The Description Logic SROIQ

We first define the syntax of roles, concepts, and individuals, and then we go on to
axioms and ontologies/knowledge bases. Additionally, we define typically used restric-
tions for the combination of the different axioms, which are necessary to ensure the
decidability for many inference problems of SROIQ. Subsequently, we define the se-
mantics of these components.

Definition 1 (Syntax of SROIQ). Let NC, NR, and NI be countable, infinite, and pair-
wise disjoint sets of concept names, role names, and individual names, respectively. We
call Σ = (NC,NR,NI) a signature. The set Rols(Σ) of SROIQ-roles over Σ (or roles
for short) is NR ∪ {r− | r ∈ NR}, where a role of the form r− is called the inverse role of
r. Since the inverse relation on roles is symmetric, we can define a function inv, which
returns the inverse of a role and, therefore, we do not have to consider roles of the from
r−−. For r ∈ NR, let be inv(r) = r− and inv(r−) = r.

The set of SROIQ-concepts (or concepts for short) over Σ is the smallest set built
inductively over symbols from Σ using the following grammar, where a ∈ NI , n ∈
IN0, A ∈ NC, and r ∈ Rols(Σ):

C ::= > | ⊥ | A | {a} | ¬C | C1 uC2 | C1 tC2 | ∀r.C | ∃r.C | ∃r.Self | >n r.C | 6n r.C.

We use roles, concepts and individuals to build axioms of ontologies as follows:

Definition 2 (Syntax of Axioms and Ontologies). For C,D concepts, a general con-
cept inclusion (GCI) axiom is an expression C v D. A finite set of GCIs is called a
TBox. A role inclusion (RI) axiom is an expression of the form u v r, where r is a role
and u is a composition of roles, i.e., u = s1 ◦ . . . ◦ sn with the roles s1, . . . , sn and n ≥ 1.
For r, s roles, a role assertion (RA) axiom is of the form Disj(r, s) or Refl(r). An RBox
is a finite set of RIs and RAs. An (ABox) assertion is an expression of the form C(a) or
r(a, b), where C is a concept, r is a role, and a, b ∈ NI are individual names. An ABox
is a finite set of assertions. A knowledge base K is a tuple (T , R,A) with T a TBox, R
an RBox, andA an ABox.

3

Note, it is also possible to allow other types of RAs for the RBox, e.g., axioms
that specify roles as transitive, symmetric, or irreflexive. However, such axioms can be
indirectly expressed in other ways and, therefore, we omit their presentation here. Anal-
ogously, we only allow the most frequently used ABox assertions since, in the presence
of nominals, all ABox assertion can also be expressed with GCIs, which we will also
utilise below to eliminate all ABox assertions. Furthermore, SROIQ usually allows the
usage of the universal role U, but U can also be simulated by a fresh transitive, reflexive,
and symmetric super role, i.e., this role is implied by all other roles. In the following,
we will use K also as an abbreviation for the collection of all axioms in the knowledge
base. For example, we write C v D ∈ K instead of C v D ∈ T and T ∈ K .

As mentioned, if we arbitrarily combine the axioms of Definition 2, then we easily
run into decidability issues. In order to ensure termination for standard reasoning tasks
such as satisfiability testing for concepts, we have to restrict the role inclusion axioms
to be regular and, in addition, we allow some concept expressions only in combination
with simple roles, as described below in more detail.

Definition 3 (Regularity of Role Inclusion Axioms). A set of RIs is regular if the used
role names can be sorted in a strict partial order and all RIs are regular. Let ≺ be a
strict partial order on role names, then for the role names r, s1, . . . , sn, the RI axiom
u v r is regular if

1. u = r ◦ r, or
2. u = r−, or
3. u = s1 ◦ . . . ◦ sn and si ≺ r for all 1 ≤ i ≤ n, or
4. u = r ◦ s1 ◦ . . . ◦ sn and si ≺ r for all 1 ≤ i ≤ n, or
5. u = s1 ◦ . . . ◦ sn ◦ r and si ≺ r for all 1 ≤ i ≤ n.

Now, we can define simple and complex roles and, in order to ensure decidability,
we only allow simple roles in concepts of the form > n r.C, 6 n r.C, and ∃r.Self. In
addition, we require that all Disj(r, s) axioms are only using simple roles.

Definition 4 (Simple and Complex Roles). For a set of RI axioms, we call a role
simple if it is not complex. A role r is called complex w.r.t. a set of RIs if

1. its inverse role is complex, or
2. it occurs on the right-hand side of a RI axiom of the form s1 ◦ . . . ◦ sn v r and si is

complex for 1 ≤ i ≤ n or n > 1.

In the remainder of the paper, we assume that all knowledge bases comply the pre-
sented restrictions on regularity and simple roles.

Given a set of role inclusion axioms (e.g., in form of an RBox), we use v∗ as the
transitive-reflexive closure over all r v s and inv(r) v inv(s) axioms in the RBox. We
call a role r a sub-role of s and s a super-role of r if r v∗ s.

Next, we define the semantic of concepts and then we go on to the semantics of
axioms and ontologies/knowledge bases.

Definition 5 (Semantics of SROIQ-concepts). An interpretation I = (∆I, ·I) consists
of a non-empty set ∆I, the domain of I, and a function ·I, which maps every concept

4

name A ∈ NC to a subset AI ⊆ ∆I, every role name r ∈ NR to a binary relation rI ⊆
∆I × ∆I, and every individual name a ∈ NI to an element aI ∈ ∆I. For each role name
r ∈ NR, the interpretation of its inverse role (r−)I consists of all pairs 〈δ, δ′〉 ∈ ∆I × ∆I

for which 〈δ′, δ〉 ∈ rI.
For any interpretation I, the semantics of SROIQ-concepts over a signature Σ is

defined by the function ·I as follows:

>I = ∆I ⊥I = ∅ ({a})I = {aI}
(¬C)I = ∆I \CI (C u D)I = CI ∩ DI (C t D)I = CI ∪ DI

(∃r.Self)I = {δ ∈ ∆I | 〈δ, δ〉 ∈ rI}
(∀r.C)I = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI, then δ′ ∈ CI}
(∃r.C)I = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI}

(6n r.C)I = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≤ n}
(>n r.C)I = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≥ n},

where]M denotes the cardinality of the set M.

Finally, we can define the semantics of ontologies/knowledge bases.

Definition 6 (Semantics of Axioms and Ontologies). Let I = (∆I, ·I) be an interpre-
tation, then I satisfies a TBox/RBox axiom or ABox assertion α, written I |= α if

1. α is a GCI C v D and CI ⊆ DI, or
2. α is a RI s1 ◦ . . . ◦ sn v r and sI1 ◦ . . . ◦ sIn ⊆ rI, where ◦ denotes the composition

of binary relations for sI1 ◦ . . . ◦ sIn , or
3. α is a RA of the form Disj(r, s) and all rI ∩ sI = ∅, or
4. α is a RA of the form Refl(r) and 〈δ, δ〉 ∈ rI for all δ ∈ ∆I, or
5. α is an ABox assertion C(a) and aI ∈ CI, or
6. α is an ABox assertion r(a, b) and 〈aI, bI〉 ∈ rI.

I satisfies a TBox T (RBox R, ABoxA) if it satisfies each GCI in T (each RI/RA axiom
in R, each assertion inA). We say that I satisfies K if I satisfies T , R, andA. In this
case, we say that I is a model of K and we write I |= K . We say that K is consistent if
K has a model.

2.2 Normalisation

For ease of presentation, we assume in the remainder of the paper that all concepts are in
negation normal form (NNF). Each concept can be transformed into an equivalent one in
NNF by pushing negation inwards, making use of de Morgan’s laws and the following
equivalences that exploit the duality between existential and universal restrictions, and
between at-most and at-least cardinality restrictions [16]:

¬(∀r.C) ≡ ∃r.¬C ¬(∃r.C) ≡ ∀r.¬C

¬(6n r.C) ≡> (n + 1) r.C ¬(>0 r.C) ≡ ⊥
¬(>k r.C) ≡6 (k − 1) r.C,

5

where k ∈ IN and n ∈ IN0. For C a concept possibly not in NNF, let nnf(C) be the
equivalent concept to C in NNF.

In the following, we also assume that all ABox axioms are “internalised” into the
TBox of a knowledge base, which can be easily realised in the presence of nominals,
e.g., by expressing a concept assertion C(a) (role assertion r(a, b)) as {a} v C ({a} v
∃r.{b}). Moreover, since the tableau algorithm only supports TBox axioms of the form
(A1 u A2) v C and H v C with H = A, H = {a}, or H = >, all GCIs that do not
match these forms have to be “internalised”. A not supported GCI C v D ∈ T can be
internalised by adding the axiom > v nnf(¬C t D) to T , which can then be handled
by the tableau algorithm. Obviously, such an internalisation creates (possibly many)
disjunctions of the form C tD, which causes non-determinism in the tableau algorithm
and easily decreases the reasoning performance. To counteract this, a preprocessing
step called absorption is often used (see Section 2.4), which significantly reduces the
number of concepts that have to be internalised.

Moreover, we assume that all universal restrictions that occur in a knowledge base
K are normalised such that complex role inclusion axioms of the form s1 ◦ . . . ◦ sn v r
with n > 1 are implicitly handled by additional axioms. Hence, we do not require further
adjustments in the tableau algorithm to handle propagations over complex roles.

Definition 7 (Normalisation of Universal Restrictions). Let K be a knowledge base
that contains the set of RIs R. For A, B, F1, . . . , Fn, F′1, . . . , F

′
n atomic concepts, we say

a knowledge baseK contains all propagation axioms for an axiom of the form A v ∀r.B
w.r.t. the role name r if for every RI u v r ∈ R the following conditions holds:

1. if u = r ◦ r, then B v A ∈ K;
2. if u = r−, then K contains all propagation axioms for A v ∀r−.B;
3. if u = s1 ◦ . . .◦ sn, thenK contains axioms of the form A v F1, F′1 v F2, . . . , F′n−1 v

Fn, F′n v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for which also all
propagation axioms are contained by K;

4. if u = r ◦ s1 ◦ . . . ◦ sn, then K contains axioms of the form B v F1, F′1 v
F2, . . . , F′n−1 v Fn, F′n v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K;

5. if u = s1 ◦ . . . ◦ sn ◦ r, then K contains axioms of the form A v F1, F′1 v
F2, . . . , F′n−1 v Fn, F′n v A, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K .

Analogously for inverse roles, we say that K contains all propagation axioms for
an axiom of the form A v ∀r−.B w.r.t. the role name r if for every RI u v r ∈ R the
following conditions holds:

1. if u = r ◦ r, then B v A ∈ K;
2. if u = r−, then K contains all propagation axioms for A v ∀r.B;
3. if u = s1 ◦ . . .◦ sn, thenK contains axioms of the form A v Fn, F′n v Fn−1, . . . , F′2 v

F1, F′1 v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for which also all
propagation axioms are contained by K;

4. if u = r ◦ s1 ◦ . . . ◦ sn, then K contains axioms of the form A v Fn, F′n v
Fn−1, . . . , F′2 v F1, F′1 v A, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K;

6

5. if u = s1 ◦ . . . ◦ sn ◦ r, then K contains axioms of the form B v Fn, F′n v
Fn−1, . . . , F′2 v F1, F′1 v B, and, for all 1 ≤ i ≤ n, the axiom Fi v ∀si.F′i for
which also all propagation axioms are contained by K .

For a possibly inverse role r and a concept C, let ∀r.C be an universal restriction
that occurs in a knowledge base K . We say that ∀r.C is normalised w.r.t. K if

• C is an atomic concept, ∀r.C occurs only in axioms of the form A v ∀r.C, and K
contains all propagation axioms for A v ∀r.C , or

• K contains axioms of the form ∀r.C v A, A v ∀r.B, B v C , where A, B are atomic
concepts, and K contains all propagation axioms for A v ∀r.B.

Obviously, the normalisation of a knowledge base K with respect to the universal
restrictions that occur inK (possibly in negated form) can be generated with a recursive
algorithm that introduces the propagation axioms with fresh atomic concepts over com-
plex roles as defined above (under the assumption that the role inclusion axioms of K
are regular). Note, the normalisation of universal restrictions might blow up the knowl-
edge base exponentially. Although such a blow up cannot be avoided in the worst-case
[18], it is usually not a problem for real-world ontologies. Nevertheless, many reason-
ing systems create the required concepts and axioms only on demand, i.e., only if these
concepts are used by the tableau algorithm, which is for example possible by using an
automata approach [13]. In practice, the normalisation of universal restrictions is of-
ten further optimised. For example, it is obviously not necessary to normalise universal
restrictions for simple roles.

In the remainder of the paper, we assume that all knowledge bases are normalised,
i.e., all concepts occurring in the knowledge base are in NNF, all universal restrictions in
these concepts are normalised and not supported axioms are internalised. For a concept
C, which is possibly not normalised, we use norm(C) to get the normalised concept
of C. Note, the normalisation of universal restrictions possibly introduces new axioms,
but the knowledge base can be easily fixed by creating this normalisation for all concept
that possibly occur in the tableau algorithm in a preprocessing step.

2.3 Tableau Algorithm for SROIQ

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”.

Definition 8 (Completion Graph). For a concept C, we use sub(C) to denote the set
of all sub-concepts of C (including C). LetK be a normalised SROIQ knowledge base
and let consK be the set of concepts occurring in the TBoxT ofK , i.e., consK = {C,D |
C v D ∈ T }. We define the closure clos(K) of K as:

clos(K) = {sub(C) | C ∈ consK } ∪ {norm(¬C) | C ∈ sub(D),D ∈ consK }.

A completion graph forK is a directed graph G = (V, E,L, ,̇,M). Each node v ∈ V
is labelled with a set L(v) ⊆ fclos(K), where

fclos(K) = clos(K) ∪ {6m r.C |6n r.C ∈ clos(K) and m ≤ n}.

7

Each edge 〈v, v′〉 ∈ E is labelled with the set L(〈v, v′〉) ⊆ Rols(K), where Rols(K)
are the roles occurring in K . The symmetric binary relation ,̇ is used to keep track of
inequalities between nodes in V and the mappingM is used to store the merging history
for nodes.

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈ E and
r ∈ L(〈v1, v2〉).

Definition 9 (Successor, Predecessor, Neighbour). If 〈v1, v2〉 ∈ E, then v2 is called a
successor of v1 and v1 is called a predecessor of v2. Ancestor is the transitive closure of
predecessor, and descendant is the transitive closure of successor. A node v2 is called
an s-successor of a node v1 if r ∈ L(〈v1, v2〉) and r is a sub-role of s; v2 is called an
s-predecessor of v1 if v1 is an s-successor of v2. A node v2 is called a neighbour (s-
neighbour) of a node v1 if v2 is a successor (s-successor) of v1 or if v1 is a successor
(inv(s)- successor) of v2.

For a role r and a node v ∈ V, we define the set of v’s r-neighbours with the concept
C in their label, mneighbsG(v, r,C) as {v′ ∈ V | v′ is an r-neighbour of v and C ∈
L(v′)}.

To test the consistency of a knowledge base, the completion graph is initialised for
the tableau algorithm by creating one node for each individual/nominal in the input
knowledge base. If v1, . . . , v` are the nodes for the individuals a1, . . . , a` of K , then we
create an initial completion graph G = ({v1, . . . , v`}, E,L, ∅) and add for each individual
ai the nominal {ai} and the concept > to the label of vi, i.e., L(vi) = {{ai},>} for all
1 ≤ i ≤ `.

Note, many inference problems for the DL SROIQ can be easily reduced to con-
sistency checking. For example, in order to test the satisfiability of a concept C, we
introduce a fresh individual a for which we assert the concept C by an axiom of the
form {a} v C.

The tableau algorithm works by decomposing concepts in the completion graph
with a set of expansion rules (see Table 1). Each rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicating
the structure of a model for the input knowledge base. The rules are repeatedly applied
until either the graph is fully expanded (no more rules are applicable), in which case
the graph can be used to construct a model that is a witness to the consistency of K , or
an obvious contradiction (called a clash) is discovered (e.g., both C and ¬C in a node
label), proving that the completion graph does not correspond to a model. The input
knowledge base K is consistent if the rules (some of which are non-deterministic) can
be applied such that they build a fully expanded and clash-free completion Graph.

Definition 10 (Clash). A completion graph G = (V, E,L, ,̇,M) for a knowledge base
K contains a clash if there are the nodes v and w such that

1. ⊥ ∈ L(v), or
2. {C, norm(¬C)} ⊆ L(v) for some concept C, or
3. v is an r-neighbour of v and ¬∃r.Self ∈ L(v), or
4. Disj(r, s) ∈ K and w is an r- and an s-neighbour of v, or

8

5. there is some concept 6n r.C ∈ L(v) and {w1, . . . ,wn+1} ⊆ mneighbsG(v, r,C) with
wi,̇w j for all 1 ≤ i < j ≤ n + 1, or

6. there is some {a} ∈ L(v) ∩ L(w) and v,̇w.

Unrestricted application of the ∃-rule and >-rule can lead to the introduction of
infinitely many new tableau nodes and, thus, prevent the calculus from terminating.
To counteract that, a cycle detection technique called (pairwise) blocking [14] is used
that restricts the application of these rules. To apply blocking, we distinguish blockable
nodes from nominal nodes, which have either an original nominal from the knowledge
base or a new nominal introduced by the calculus in their label.

Definition 11 (Pairwise Blocking). A node is blocked if either it is directly or indi-
rectly blocked. A node v is indirectly blocked if an ancestor of v is blocked; and v with
predecessor v′ is directly blocked if there exists an ancestor node w of v with predeces-
sor w′ such that

1. v, v′,w,w′ are all blockable,
2. w,w′ are not blocked,
3. L(v) = L(w) and L(v′) = L(w′),
4. L(〈v′, v〉) = L(〈w′,w〉).

In this case, we say that w directly blocks v and w is the blocker of v.

During the expansion it is sometimes necessary to merge two nodes or to delete
(prune) a part of the completion graph. When a node w is merged into a node v (e.g., by
an application of the 6-rule), we extendM by {w 7→ v} and we “prune” the completion
graph by removing w as well as, recursively, all blockable successors of w to prevent a
further rule application on these nodes.

Intuitively, when we merge a node w into a node v, we add L(w) to L(v), “move”
all the edges leading to w so that they lead to v and “move” all the edges leading from w
to nominal nodes so that they lead from v to the same nominal nodes; we then remove
w (and blockable sub-trees below w) from the completion graph.

Definition 12 (Pruning, Merging). Pruning a node w in the completion graph G =

(V, E,L, ,̇,M), written prune(w), yields a graph that is obtained from G as follows:

1. remove all w,̇v′ for all v′; and
2. for all successors v′ of w, remove 〈w, v′〉 from E and, if v′ is blockable, prune(v′);
3. remove w from V.

Merging a node w into a node v in G = (V, E,L, ,̇,M), written merge(w, v), yields a
graph that is obtained from G as follows:

1. add {w 7→ v} toM
2. for all nodes v′ such that 〈v′,w〉 ∈ E

(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v′, v〉 to E and set L(〈v′, v〉) = L(〈v′,w〉),
(b) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ L(〈v′,w〉),
(c) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ {inv(r) | r ∈ L(〈v′,w〉)}, and
(d) remove 〈v′,w〉 from E;

9

Table 1. Tableau expansion rules for normalised SROIQ knowledge bases

v1-rule if H ∈ L(v), H v C ∈ K with H = A, or H = {a}, or H = >, C < L(v), and
v is not indirectly blocked

then L(v) = L(v) ∪ {C}
v2-rule if {A1, A2} ⊆ L(v), (A1 u A2) v C ∈ K , C < L(v), and v is not indirectly blocked

then L(v) = L(v) ∪ {C}
u-rule if C1 uC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} * L(v)

then L(v) = L(v) ∪ {C1,C2}

t-rule if C1 tC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} ∩ L(v) = ∅

then L(v′) = L(v′) ∪ {H} for some H ∈ {C1,C2}

∃-rule if ∃r.C ∈ L(v), v is not blocked, and v has no r-neighbour v′ with C ∈ L(v′)
then create a new node v′ and an edge 〈v, v′〉 with L(v′) = {>,C} and L(〈v, v′〉) = {r}

Self-rule if ∃r.Self ∈ L(v) or Refl(r) ∈ K , v is not blocked, and v is no r-neighbour of v
then create a new edge 〈v, v〉 with L(〈v, v〉) = {r}

∀-rule if ∀r.C ∈ L(v), v is not indirectly blocked, and
there is an r-neighbour v′ of v with C < L(v′)

then L(v′) = L(v′) ∪ {C}
ch-rule if 6n r.C ∈ L(v), v is not indirectly blocked, and

there is an r-neighbour v′ of v with {C, norm(¬C)} ∩ L(v′) = ∅

then L(v′) = L(v′) ∪ {H} for some H ∈ {C, norm(¬C)}
>-rule if 1. >n r.C ∈ L(v), v is not blocked, and

2. there are not n r-neighbours v1, . . . , vn of v with C ∈ L(vi) and vi,̇v j

for 1 ≤ i < j ≤ n
then create n new nodes v1, . . . , vn with L(〈v, vi)〉 = {r}, L(vi) = {>,C} and vi,̇v j

for 1 ≤ i < j ≤ n.
6-rule if 1. 6n r.C ∈ L(v), v is not indirectly blocked,

2.]mneighbsG(v, r,C) > n and there are two r-neighbours v1, v2 of v with
C ∈ (L(v1) ∩ L(v2)) and not v1,̇v2

then a. if v1 is a nominal node, then merge(v2, v1)
b. else if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

o-rule if there are two nodes v, v′ with {a} ∈ (L(v) ∩ L(v′)) and not v,̇v′

then merge(v, v′)
NN-rule if 1. 6n r.C ∈ L(v), v is a nominal node, and there is a blockable

r-neighbour v′ of v such that C ∈ L(v′) and v is a successor of v′,
2. there is no m such that 1 ≤ m ≤ n, (6m r.C) ∈ L(v),

and there exist m nominal r-neighbours v1, . . . , vm of v
with C ∈ L(vi) and vi,̇v j for all 1 ≤ i < j ≤ m

then 1. guess m with 1 ≤ m ≤ n and L(v) = L(v) ∪ {6m r.C}
2. create m new nodes v′1, . . . , v

′
m with L(〈v, v′i〉) = {r},

L(v′i) = {>,C, {ai}} with each ai ∈ NI new in G and K , and
v′i ,̇v′j for 1 ≤ i < j ≤ m.

10

3. for all nominal nodes v′ such that 〈w, v′〉 ∈ E
(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v, v′〉 to E and set L(〈v, v′〉) = L(〈w, v′〉),
(b) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ L(〈w, v′〉),
(c) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ {inv(r) | r ∈ L(〈w, v′〉)}, and
(d) remove 〈w, v′〉 from E;

4. L(v) = L(v) ∪ L(w);
5. add v,̇v′ for all v′ such that w,̇v′;
6. prune(w).

For a node v and a node mappingM, we use mergedToM(v) to denote the function
that returns the node into which v has been merged as follows:

mergedToM(v) =

mergedToM(w) if v 7→ w ∈ M,

v else.

Note, in order to ensure termination of the tableau algorithm, it is in principle nec-
essary to apply certain “crucial” rules with a higher priority. For example, the o-rule is
applied with the highest priority and the NN-rule has to be applied before the 6-rule.
The priority of other rules is not relevant as long as they are applied with a lower prior-
ity than for these crucial rules. In addition, it is necessary to associate a level with those
nominal nodes that are newly created by the NN-rule and to apply the crucial rules
first to nominal nodes with lower levels. Basically, we define the level of a nominal
node as the length of the shortest path to a node that contains a nominal for an original
individual in its label.

Definition 13 (Level of Nominal Nodes). Let a1, . . . , an be all individuals of a knowl-
edge base K . The level of a nominal node v in a completion graph G for K is defined
as

• 0 if {ai} ∈ L(v) with 1 ≤ i ≤ n, or
• i + 1 if v has a neighbour node v′ that has the level i and there is no neighbour node

with a level below i.

2.4 (Binary) Absorption

Absorption is used as a preprocessing step in order to reduce the non-determinism in the
tableau algorithm. Basically, axioms are rewritten in possibly several simpler concept
inclusion axioms for which the lazy unfolding rules v1 and v2 can be used in the tableau
algorithm and, therefore, internalisation is not required. Algorithms based on binary
absorption [17] allow and create axioms of the form (A1 u A2) v C, whereby also
more complex axioms can be absorbed. A binary absorption axiom (A1 u A2) v C can
be efficiently handled by adding C only to node labels if A1 and A2 are already present,
which is realised by the v2-rule of our tableau algorithm. More sophisticated absorption
algorithms, such as partial absorption [24,25], are further improving the handling of
knowledge bases for more expressive DLs since the non-determinism that is caused
by disjunctions on the right-hand side of axioms is further reduced. Roughly speaking,
the non-absorbable disjuncts are partially used as conditions on the left-hand side of

11

additional inclusion axioms such that the processing of the disjunctions can further be
delayed.

Many state-of-the-art reasoning systems are at least using some kind of binary ab-
sorption, which makes the processing of simple ontologies (e.g., EL ontologies) also
with the tableau algorithm deterministic. In the following, we assume that knowledge
bases are at least preprocessed with such a variant of binary absorption and we also use
the syntax of binary absorption axioms to illustrate the algorithms and examples. How-
ever, for our optimisations, a detailed understanding of a (binary) absorption algorithm
is not necessary and, therefore, we only present its idea with the following example.

Example 1. For the TBox T1 = {A1 v A2 u ∃r.A3, A3 v A1, A2 u ∃r.A1 v B}, all of
the axioms except the GCI A2 u ∃r.A1 v B are of the form A v C and, therefore, they
can be efficiently handled in the tableau algorithm by the v1-rule. In contrast, the GCI
A2 u ∃r.A1 v B would, without absorption, be handled as > v ¬A2 t ∀r.¬A1 t B and,
as a consequence, the tableau algorithm would have to process the obtained disjunction
for every node in the completion graph. The absorption rewrites A2 u ∃r.A1 v B into
the axioms A1 v ∀r−.F1 and (A2 u F1) v B, where F1 is a fresh atomic concept that is
used to preserve the semantics of the original axiom. In principle, the absorption recur-
sively generates simple concept inclusion axioms that imply a fresh atomic concept if a
(sub-)concept of the left-hand side of an axiom is satisfied. For example, F1 is implied
if ∃r.A1 is satisfied. This is continued until the complete left-hand side is absorbed and
the right-hand side of the axiom can be implied by the last axiom generated with the
absorption algorithm. Hence, from the absorption of T1, we obtain a new TBox T ′1 con-
sisting of the axioms A1 v A2 u∃r.A3, A3 v A1, A1 v ∀r−.F1 and (A2 u F1) v B, which
can now be deterministically handled in the tableau algorithm with lazy unfolding rules.

3 Completion Graph Caching and Reusing

Higher level reasoning tasks are usually reduced to consistency checking for tableau-
based reasoning systems. For instance, checking a subsumption between two atomic
concepts A and B, as required during classification, i.e., the reasoning task to determine
the subsumption hierarchy of all atomic concepts in a knowledge base, can simply be
reduced to checking whether Aunorm(¬B) is satisfiable. For this, it is checked whether
the knowledge base, extended with a new individual for which Aunorm(¬B) is asserted,
is consistent. In principle, all individuals in the knowledge base have to be considered
in these consistency tests and if a knowledge base contains many individuals, then the
tableau algorithm could be forced to repeatedly apply the expansion rules for them, thus
doing very similar work very often. Clearly, if there is no interaction between the orig-
inal individuals in the knowledge base and the new ones that are temporarily created
for checking the satisfiability of certain constructs, then it is not necessary to create and
process the nodes for the original individuals in a corresponding completion graph since
the tableau algorithm could expand them in the same way as for the initial consistency
test of the knowledge base. However, for knowledge bases that use more expressive
language features such as nominals and/or restrictions w.r.t. the universal role, such an
interaction cannot easily be excluded. Moreover, some reasoning tasks such as instance

12

checking require the direct modification of the original individuals. For instance, to
check whether the individual a is an instance of the concept A, we have to test the con-
sistency of a knowledge base that is extended by the assertion norm(¬C)(a). Hence, a
technique that reduces redundant work for not affected individuals in subsequent con-
sistency tests is useful or even necessary to handle expressive and large ontologies with
many individuals.

One possible technique to avoid the redundant re-processing of individuals is the
caching and re-use of data from the completion graph of the initial consistency check.
Existing approaches based on this idea (e.g., [22]) are, however, not very suitable in
handling non-determinism. We address this by presenting a refinement of this caching
technique in the following, which also allows for re-using non-deterministic parts of
the cached completion graph such that only the nodes for those individuals have to
re-processed that are indeed affected by new consequences in subsequent consistency
tests.

To present our completion graph caching technique in the following, we distinguish
different versions of completion graphs with superscripts, e.g., by the application of an
expansion rule to an initial completion graph G0, we obtain a completion graph G1 that
is a modification of G0 according to the rule. If the rule is non-deterministic, then we
obtain for each alternative a separate completion graph.

In the following, we denote with Gd = (Vd, Ed,Ld, ,̇d,Md) the last completion
graph of the initial consistency test that is obtained with only deterministic rule appli-
cations, and with Gn = (Vn, En,Ln, ,̇n,Mn) the fully expanded (and clash-free) com-
pletion graph that possibly also contains non-deterministic choices. Obviously, instead
of starting with G0, we can use Gd to initialise a completion graph G for subsequent
consistency tests which are, for example, required to prove or refute assumptions of
higher level reasoning tasks. To be more precise, we extend Gd to G by the new indi-
viduals or by additional assertions to original individuals as required for a subsequent
test and then we can apply the tableau expansion rules to G. Note, in order to be able
to distinguish the nodes/nominals in the different completion graphs, we assume that
all nodes/nominals that are newly created for G do not occur in existing completion
graphs, such as Gd, . . . ,Gn.

This re-use of Gd is an obvious and straightforward optimisation and, therefore, it is
already used by many state-of-the-art reasoning systems to successfully reduce the work
that has to be repeated in subsequent consistency tests [22]. Especially if the knowledge
base is deterministic, then the tableau expansion rules only have to be applied for the
newly added assertions in G. In principle, also Gn can be re-used instead of Gd [22], but
this causes problems if non-deterministically derived facts of Gn are involved in new
clashes. In particular, it is required to do backtracking in such cases, i.e., we have to
jump back to the last version of the initial completion graph that does not contain the
consequences of the last non-deterministic decision that is involved in the clash. Then,
we have to continue the processing by choosing another alternative. Obviously, if we
have to jump back to a very early version of the completion graph, then potentially
many non-deterministic decisions must be re-processed. Moreover, after jumping back,
we also have to add and re-process the newly added individuals and/or assertions.

13

To improve the handling of non-deterministic knowledge bases, our approach uses
criteria to check whether nodes in G (or the nodes in a completion graph G′ obtained
from G by further rule applications) are “cached”, i.e., there exist corresponding nodes
in the cached completion graph of the initial consistency test and, therefore, it is not re-
quired to process them again. To be more precise, these caching criteria check whether
the expansion of nodes is possible as in the cached completion graph Gn without influ-
encing modified nodes in G′, thus only the processing of new and modified individuals
is required.

Definition 14 (Caching Criteria). Let Gd = (Vd, Ed,Ld, ,̇d,Md) be a completion
graph with only deterministically derived consequences and Gn = (Vn, En,Ln, ,̇n,Mn)
a completion graph that contains the consequences of a fully expanded and clash-free
expansion of Gd. Moreover, let G be an extension of Gd that is obtained by adding nodes
and/or concepts to node labels and let G′ = (V ′, E′,L′, ,̇′,M′) be a completion graph
that is obtained from G by rule applications.

A node v′ ∈ V ′ is cached in G′ w.r.t. Gd and Gn if caching of the node is not invalid,
where the caching is invalid (we then also refer to the node as non-cached) if

C1 v′ < Vd or mergedToM
n
(v′) < Vn;

C2 L′(v′) * Ln(mergedToM
n
(v′));

C3 ∀r.C ∈ Ln(mergedToM
n
(v′)) and there is an r-neighbour node w′ of v′ such that w′

is not cached and C < L(w′);
C4 6m r.C ∈ Ln(mergedToM

n
(v′)) and there is a non-cached r-neighbour node w′ of

v′ with {C, nnf(¬C)} * L′(w′);
C5 6m r.C ∈ Ln(mergedToM

n
(v′)) and the number of the non-cached r-neighbours of

v′ with C in their labels together with the r-neighbours in Gn of mergedToM
n
(v′)

with C in their labels is greater than m;
C6 ∃r.C ∈ Ln(mergedToM

n
(v′)) and there is no r-neighbour w′ of v′ with C ∈ L(w′)

and every r-neighbour w′ of v′ with C ∈ Ln(mergedToM
n
(w′)) is not cached;

C7 > m r.C ∈ Ln(mergedToM
n
(v′)) and the number of r-neighbour nodes wn

1, . . . ,w
n
k

of mergedToM
n
(v′), for which it holds, for 1 ≤ i < j ≤ k, that C ∈ Ln(wn

i),
Ln(wn

i),̇n
Ln(wn

j), and there is no node w′i ∈ V ′ with mergedToM
n
(w′i) = wn

i or w′i
with mergedToM

n
(w′i) = wn

i and C < L(w′i) is not cached, is less than m;
C8 mergedToM

n
(v′) is a nominal node with 6 m r.C in its label and there exists a

blockable and non-cached predecessor node w′ of v′ that is inv(r)-neighbour of v′

and does not have the concept nnf(¬C) in its label;
C9 mergedToM

n
(wd) is an r-neighbour of mergedToM

n
(v′) such that mergedToM

′

(wd)
is not cached and mergedToM

′

(wd) is not an r-neighbour node of v′;
C10 mergedToM

n
(v′) has a neighbour un

1 such that there is a path of neighboured nodes
un

1, . . . u
n
k with k ≥ 1, for which there is no node u′i ∈ V ′ with mergedToM

n
(u′i) =

un
i for 1 ≤ i ≤ k, where un

k has a neighbour node mergedToM
n
(wd) for which

mergedToM
′

(wd) ∈ V ′ and mergedToM
′

(wd) is not cached;
C11 mergedToM

n
(v′) is blocked by mergedToM

n
(wd) and mergedToM

′

(wd) ∈ V ′ is
non-cached;

C12 there is a non-cached node mergedToM
′

(wd) ∈ V ′ such that mergedToM
n
(wd) =

mergedToM
n
(v′); or

14

C13 there is a node w′ ∈ V ′ such that v′,̇′w′ and mergedToM
n
(v′) = mergedToM

n
(w′).

Please note that we allow Gn to be an extension of a fully expanded and clash-
free completion graph, i.e., Gn must contain the consequences of a fully expanded,
clash-free completion graph, but, beyond that, we allow Gn to also contain additional
consequences that potentially would even result in clashes. This is useful to simplify
extensions of the caching technique (cf. Section 4) and is not problematic for the con-
struction of subsequent completion graphs since the caching criteria ensure that the
cached parts, which contain at least the consequences of fully expanded and clash-free
completion graph, can be re-used without causing new clashes. Also note that we only
allow G to be an extension of Gd where new nodes are added or node labels are extended
by new concepts since the completion graph caching requires changes in node labels to
identify parts that have to be processed. In particular, if we want to test whether two
individuals are the same, then we cannot simply create a satisfiability test where ,̇d is
extended, but we have to add the negated nominal of one individual to the node label of
the other individual.

Conditions C1 and C2 ensure that a node also exists in the cached completion graph
Gn and that its label is a subset of the corresponding label in Gn such that the same ex-
pansion is possible. C3 checks whether the expansion of a node would add a concept
of the form ∀r.C such that it could propagate C to a non-cached neighbour node. Anal-
ogously, C4 and C5 check for potentially violated at-most cardinality restrictions by
counting the new or modified neighbours in G′ and the neighbours in Gn. C6 and C7
verify that existential and at-least cardinality restrictions are still satisfied if the cached
nodes are expanded identically. C8 checks whether the NN-rule of the tableau algo-
rithm would be applicable after the expansion, i.e., we check whether all potentially
relevant neighbours in G′ are nominal nodes. C9 checks whether the expansion would
add additional roles to edge labels between cached and non-cached nodes, which could
be problematic for disjoint roles. For C10: If a node w′, for which caching is invalid,
is connected to nodes in Gn that are only available in Gn (e.g., non-deterministically
created ones), then we have to identify caching as invalid for those ancestors of these
nodes that are also in G′ such that these connections to w′ can be re-built. Otherwise,
we would potentially miss new consequences that could be propagated from w′. C11
is used to reactivate the processing of nodes for which the caching of the blocker node
is invalid. C12 and C13 ensure that merging is possible as in Gn: C12 checks whether
the node into which the node is merged is also cached and C13 ensures that there is no
additional entry for ,̇′ that would cause a clash if the nodes were merged as in Gn.

Note that some of the conditions are more restrictive than necessary in order to keep
the caching tests simple and efficient. For instance, instead of C10, we could check
more precisely whether the new concepts in w′ could influence the connected nodes in
Gn. We assume, however, that refinements of C10 or C9 do usually not lead to signifi-
cant improvements since it can often achieved in practice (through adequate absorption
techniques) that the processing of ontologies is primarily deterministic. Analogously,
we could also simply use a condition for at most cardinality restrictions of the form
6m r.C, where we only count how many of the new or modified non-cached neighbour
nodes do not have nnf(¬C) in their label (instead of using C4 and C5), since either ¬C
or C is satisfiable, and then also the cardinality restriction is trivially satisfied if the

15

Fig. 1 Constructed and cached completion graph for Example 2 with deterministically
(coloured black) and non-deterministically (coloured grey) derived facts

va vb vc

v1

r s

r r

L(va) =
{
>, {a},∃r.{b}, B t A1, A1

}
L(vb) =

{
>, {b}, B t ∃r.∃r.({c} u A2), B t ∀s−.A3,

∃r.∃r.({c} u A2),∀s−.A3

}

L(v1) =
{
>,∃r.({c} u A2)

}
L(vc) =

{
>, {c},∃s.{b},
{c} u A2,A2,A3

}

number of such neighbour nodes together with the relevant neighbours from the cached
completion graph is less than m. However, this would complicate the correctness proof
(cf. Section 3.1 significantly since it would not be directly possible to construct a fully
expanded and clash-free completion graph from the G′, where one could show that the
tableau expansion rules are not further applicable (in particular, the applicability of the
ch-rule could be problematic).

Please also note that the cached nodes cannot be used for blocking. In particular, the
cached nodes are incompletely processed and if we use them to block the expansion of
other nodes, then we potentially miss some consequences. Also the nodes in Gn cannot
be used for blocking since new consequences in G′, e.g., concepts propagated over
nominals, are not considered in Gn.

In order to maximise the caching, it is important to first process the completion
graph deterministically as much as possible. In particular, only those nodes can be
cached which are also available in the “deterministic” completion graph Gd. On one
hand, this can, for example, be achieved by processing the completion graph with deter-
ministic rules only until the generation of new nodes is subset blocked. Subset blocking
is not sufficient for more expressive DLs (inverse roles and cardinality restrictions re-
quire pairwise blocking), but it prevents the expansion of too many successor nodes in
case non-deterministic rule applications merge and prune some parts of the completion
graph. On the other hand, absorption techniques (e.g., [17,25,27]) are essential since
they reduce the overall non-determinism in the knowledge base.

Example 2. Let us assume that the tableau algorithm builds a completion graph as de-
picted in Figure 1 for testing the consistency of a knowledge base K containing the
axioms

{a} v B t A1 {b} v B t ∃r.∃r.({c} u A2) {c} v ∃s.{b}

{a} v ∃r.{b} {b} v B t ∀s−.A3

We refer to the deterministic version of the completion graph as Gd (represented by
those elements in Figure 1 that are coloured in black) and with Gn to the non-deterministic
version (consisting of the elements coloured in black as well as grey in Figure 1).

If we now want to determine which individuals are instances of the concept ∃r.>,
then we have to check, for each individual i in K , the consistency of K extended by

16

norm(¬∃r.>)(i), which is equivalent to adding the axiom {i} v ∀r.⊥. The individual a
is obviously an instance of this concept, which can also be observed by the fact that
expanding the completion graph adds ∀r.⊥ to Ld(va), which immediately results in a
clash. In contrast, if we extend Ld(vb) by ∀r.⊥, we have to process the disjunctions
Bt∃r.∃r.({c}uA2) and Bt∀s−.A3. The disjunct ∃r.∃r.({c}uA2) would result in a clash
and, therefore, we choose B, which also satisfies the second disjunction. Note that va

and vc do not have to be processed since va is cached, i.e., its expansion is possible in the
same way as in Gn, and vc does not have any concepts for which processing is required.
Last but not least, we have to test whether Ld(vc) extended by ∀r.⊥ is satisfiable. Now,
the caching of vc is obviously invalid (due to C2) and, therefore, also the caching of
vb is invalid: C3 can be applied for ∀s−.A3 and C10 for the successor node v1 of vb in
Gn which also has the non-cached successor node vc. Since va is still cached, we only
have to process vb again, which does, however, not result in a clash. Hence, only a is an
instance of ∃r.>.

It is worth pointing out that the majority of all conditions can be checked locally. If
the caching of a node is identified as invalid, then we simply follow the edges w.r.t. G′

and Gn to those (potential indirect) neighbour nodes that are also available in Gd. Minor
exceptions are Conditions C11, C12, and C13, for which we can, however, simply trace
back established blocking relations orMn to find nodes for which the caching criteria
have to be checked. Instead of directly checking the caching criteria, the relevant nodes
can also be stored in a set to check the conditions when it is (more) convenient.

It is clear that the satisfaction of some conditions can change after the applica-
tions of rules. For example, if we have cached a completion graph where v has the
non-deterministically derived concept ∀r.C in its label and we now process a new com-
pletion graph with a node w that is an r-neighbour of v and has C t D in its label,
then we also have to test whether the caching of v is invalid for the new completion
graph. If the disjunction is processed first by adding C to the label of w, then none of
the conditions can be applied to v. In contrast, if we first were to check the caching
criteria for v, then Condition C3 would be satisfied due to the concept ∀r.C that could
propagate C to w. As a consequence, the caching of v would be invalid and we would
have to schedule v for processing. Hence, if the caching criteria are checked later, then
potentially fewer nodes have to be processed. However, delaying the checks for nodes
that can potentially be cached can also have significant disadvantages. In particular,
if non-deterministic choices for the potentially cached individuals are often involved in
clashes, then the caching criteria should be checked as soon as possible. Even if a wrong
non-deterministic alternative is chosen first, then the clash can often be discovered be-
fore processing many other nodes and we can immediately jump back and change a
relevant choice (e.g., with dependency directed backtracking [1,28]). In contrast, if we
were to process as many nodes as possible before checking the caching criteria, then
we would potentially do a lot of work before the processing of the potentially cached
nodes would be activated, and by jumping back to an early non-deterministic decision,
it could be necessary to repeat this work (or very similar work) quite often. Thus, if the
caching criteria are checked early, then the tableau algorithm can schedule the process-
ing of nodes as usual, which also allows for prioritising the processing of those nodes
and/or concepts for which there is a high likelihood that they are involved in clashes.

17

Clearly, an optimal strategy for the determination of the point of time where the
caching criteria have to be checked depends on the ontology. However, it can often be
observed that many ontologies are primarily deterministic and that non-deterministic
consequences have only a locally limited influence and, for such ontologies, both strate-
gies should work reasonably well. Alternatively, one could use a strategy that learns for
the entire knowledge base or for single nodes whether the criteria should be checked
earlier or later. Unfortunately, this cannot easily be realised in many reasoning systems
since dependencies between derived facts in the completion graph are often not tracked
very precisely and, therefore, it cannot be detected which nodes are often involved in
the creation of clashes such that the strategy could be updated to prioritise the checking
of the caching criteria for these nodes.

It is also possible to non-deterministically re-use the derived consequences from
Gn, i.e., if the caching is invalid for a node v and mergedToM

n
(v) is in Gn, then we can

non-deterministically add the missing concepts from Ln(mergedToM
n
(v)) to L(v). This

can be used to build a completion graph that is very similar to the cached one and, as
a consequence, caching can often quickly be established for many nodes. Of course,
if some of the non-deterministically added concepts are involved in clashes, then we
potentially have to backtrack and process the alternative where this node is ordinarily
processed. One can further learn statistics for the re-use of nodes in order to avoid too
much backtracking, which can be caused by non-deterministically re-used concepts that
are often involved in clashes.

The presented completion graph caching obviously requires that Gd as well as Gn

are both kept in memory, which can be a significant overhead for knowledge bases that
contain many individuals. However, state-of-the-art reasoning systems already store Gd

and they typically use an approach to share data between completion graphs if only
some parts are modified. Hence, Gn does usually not significantly increase the memory
consumption compared to Gd as long as there are not too many non-deterministic con-
sequences. Moreover, with the completion graph caching it is often sufficient to only
re-process smaller parts of the initially cached completion graph and, therefore, subse-
quent consistency tests do usually not increase the overall memory consumption of the
reasoning system significantly.

A nice side effect of storing Gn is that we can use the non-deterministic decisions
from Gn as an orientation in subsequent consistency tests. In fact, if we prioritise the
processing of the same non-deterministic alternatives as for Gn, then we can potentially
find a solution that is very similar to Gn without exploring much of the search space.

3.1 Correctness

It is obvious that the presented completion graph caching technique does not influence
termination of the tableau algorithm. Moreover, it is not possible that a wrong clash can
be discovered since only the processing of existing nodes is blocked. Therefore, we can
focus on proving completeness, i.e., we have to show that a fully processed completion
graph with cached nodes (G′) can be expanded to a model. For this, it is also sufficient
to show that the cached nodes can be expanded as in the cached completion graph such
that we obtain a fully expanded and clash-free completion graph. In order to show this

18

in the following, we first define how a fully expanded and clash-free completion graph,
say G, can be build from G′ by expanding the cached nodes of G′ as for Gn.

Definition 15 (Completion Graph Expansion). Let Gd = (Vd, Ed,Ld, ,̇d,Md) be a
completion graph with only deterministically derived consequences and Gn = (Vn, En,
Ln, ,̇n,Mn) a completion graph that contains the consequences of a fully expanded
and clash-free expansion of Gd. Moreover, let G′ = (V ′, E′,L′, ,̇′,M′) be a clash-free
extension of Gd that is obtained by adding new nodes to the completion graph and/or
new concepts to node labels and by applying tableau expansion rules such that all non-
cached nodes are fully expanded, i.e., tableau expansion rules cannot further be applied
to non-cached nodes. The expanded completion graph G = (V, E,L, ,̇,M) is obtained
from G′ by setting:

• V = Vp ∪ Ve, where Vp denotes the set of processed nodes, i.e.,
Vp = {v ∈ V ′ | v is not cached },

and Ve denotes the set of expanded nodes, i.e.,
Ve = {vn ∈ Vn | there is no node mergedToM

′

(vd) ∈ V ′ such that
vn = mergedToM

n
(vd) or mergedToM

′

(vd) is cached }.
• E = {〈v,w〉 ∈ E′ | {v,w} ⊆ Vp} ∪

{〈mergedToM
n
(v),w〉 | 〈v,w〉 ∈ E′ ∧mergedToM

n
(v) ∈ Ve ∧ w ∈ Vp} ∪

{〈v,mergedToM
n
(w)〉 | 〈v,w〉 ∈ E′ ∧ v ∈ Vp ∧mergedToM

n
(w) ∈ Ve} ∪

{〈v,w〉 ∈ En | {v,w} ∩ Vp = ∅}.
• L = {` ∈ L′(v) | v ∈ Vp} ∪

{` ∈ Ln(v) | v ∈ Ve} ∪

{` ∈ L′(〈v,w〉) | {v,w} ⊆ Vp} ∪

{〈mergedToM
n
(v),w〉 7→ R | 〈v,w〉 7→ R ∈ L′∧

mergedToM
n
(v) ∈ Ve ∧ w ∈ Vp} ∪

{〈v,mergedToM
n
(w)〉 7→ R | 〈v,w〉 7→ R ∈ L′∧

v ∈ Vp ∧mergedToM
n
(w) ∈ Ve} ∪

{` ∈ Ln(〈v,w〉) | {v,w} ∩ Vp = ∅}.
• ,̇ = {〈v,w〉 ∈ ,̇′ | {v,w} ⊆ Vp} ∪

{〈mergedToM
n
(v),w〉 | 〈v,w〉 ∈ ,̇′ ∧mergedToM

n
(v) ∈ Ve ∧ w ∈ Vp} ∪

{〈mergedToM
n
(v),w〉 | 〈mergedToM

n
(v),mergedToM

n
(w)〉 ∈ ,̇n

∧

mergedToM
n
(v) ∈ Ve ∧ w ∈ Vp} ∪

{〈v,mergedToM
n
(w)〉 | 〈v,w〉 ∈ ,̇′ ∧ v ∈ Vp ∧mergedToM

n
(w) ∈ Ve} ∪

{〈v,mergedToM
n
(w)〉 | 〈mergedToM

n
(v),mergedToM

n
(w)〉 ∈ ,̇n

∧

v ∈ Vp ∧mergedToM
n
(w) ∈ Ve} ∪

{〈mergedToM
n
(v),mergedToM

n
(w)〉 | 〈v,w〉 ∈ ,̇′ ∧ {v,w} ∩ Vp = ∅}.

{〈v,w〉 ∈ ,̇n
| {v,w} ∩ Vp = ∅}.

• M = ∅.

Finally, we prune all nodes in G that are not (indirectly) connected (via the neigh-
bour relation) to a root or a nominal node representing an individual of the knowledge
base.

19

We can assume w.l.o.g. that Gn is clash-free and fully expanded, otherwise we could
identify/extract an appropriate subset of Gn for which this assumption is satisfied since
Gn contains the consequences of a fully expanded and clash-free completion graph. In
addition, we also use the assumption that all edges between cached nodes in G′ are
labelled with the same roles as in Gn. Again, if this is not the case, then we simply
remove those edges and roles that do not occur in Gn. We can now show that G is fully
expanded and clash-free:

Lemma 1 (Completeness) Let Gd, Gn, G′, and G be completion graphs as in Defini-
tion 15, then the expanded completion graph G is clash-free and fully expanded.

Proof 1 Let Gd = (Vd, Ed,Ld, ,̇d,Md), Gn = (Vn, En,Ln, ,̇n,Mn), G′ = (V ′, E′,L′,
,̇′,M′), and G = (V, E,L, ,̇,M) be completion graphs as defined in Definition 15. We
first show that G is clash-free. In particular, the clash conditions of Definition 10 are
not satisfied, which can be observed from Definitions 14 and 15 as follows:

• Clash Conditions 1, 2, and 3 are trivially not satisfied since they only apply on
single nodes and they only refer to V, E, and L, for which the data either stems
from G′ (if a processed node is involved) or from Gn, and both completion graphs
are clash-free by assumption.

• Clash Condition 4 can only be satisfied for an axiom Disj(r, s) if one processed
node, say v, as well as one expanded node, say wn, is involved. We can also ob-
serve that wn stems from a cached node w′, i.e., wn = mergedToM

n
(w′), since for

other expanded nodes, Condition C10 would have invalidated the caching of those
ancestors that cause the generation of these expanded nodes and, therefore, they
would have been pruned in G. However, Condition C9 would identify the caching
of w′ as invalid if the expansion were to make v an r-neighbour node of wn and v
were not already an r-neighbour node of w′ in G′. Hence, the expansion does not
add additional roles to edge labels and/or edges between processed and expanded
nodes and, therefore, Clash Condition 4 can only be satisfied if v is already an r-
and s-neighbour of w′ in G′, which contradicts our assumption that G′ is clash-free.

• For Clash Condition 5, we observe that the node vn with 6n r.C in its label must be
an expanded node, otherwise the clash would also be in G′ (which is contradictory
to our assumption) since the definition of E and L as well as Condition C9 guar-
antee that the expansion does not add/remove roles to edge labels and/or edges
between processed and expanded nodes and since it is ensured by Condition C2
and the definition of V and ,̇ that the expansion of cached neighbour nodes does
neither remove C from their labels nor entries for ,̇. Moreover, vn must stem from a
cached node v′, i.e., vn = mergedToM

n
(v′), since all other expanded nodes get the

same neighbours as in Gn for which the clash condition is not satisfied by assump-
tion. Analogously to Clash Condition 4, we can, however, argue that Condition C5
would identify the caching of v′ as invalid if the addition of the same r-neighbours
to v′ as in Gn could violate the cardinality restriction. Hence, Clash Condition 5 is
not satisfied.

• For Clash Condition 6, we observe that each nominal can only be in the label of
one nominal node due to the initialisation of the completion graph, the expansion
rules, the definition of V, and due to Condition C12. In particular, the latter one

20

guarantees that we do not add an expanded node, say vn, labelled with a nomi-
nal that is also in the label of a processed node, say w′, since the caching of w′

would, by definition of Vp, be invalid and, then, Condition C12 would have inval-
idated the caching of v′ with vn = mergedToM

n
(v′) such that we would not have

added vn. Furthermore, since G′ and Gn are not clashed, there also cannot be the
cached nodes v′ and w′ in G′ with v′,̇′w′ which are merged for the expansion, i.e.,
mergedToM

n
(v′) = mergedToM

n
(w′). In particular, Condition C13 ensures that

the caching would then have been invalidated for v′ and w′, hence Clash Condi-
tion 6 is not satisfied.

Also, the tableau expansion rules (cf. Table 1) cannot be applied to G. In particular,
blocking of nodes in G can be established as in G′ and Gn. This can trivially be ob-
served for the processed nodes, i.e., for non-cached nodes from G′, since they are only
blocked by other nodes from G′, i.e., by nodes that are also available in G. Analogously,
the expanded nodes can be blocked as in Gn since it is ensured with Condition C11 that
the corresponding blocker nodes are also transferred into G. To be more precise, Con-
dition C11 would invalidate the caching of blocked nodes if the caching of the blocker
nodes became invalid. Note that if the blocker node does not stem from a cached node
and gets pruned because it is no longer connected to a root or nominal node that rep-
resents an individual from the knowledge base, then also the blocked node gets pruned
since it is a descendant of the blocker node and can also not be connected to such a
root or nominal node.

From Definitions 14 and 15, we can further observe that the tableau expansion rules
are not applicable:

• For the v1-, v2-, u-, t-, and Self-rules, we can argue as for Clash Conditions 1,
2, and 3. These rules are only applicable on single nodes, but since these rules are
neither applicable for the non-cached nodes in G′, i.e., the processed nodes in G,
nor for the nodes in Gn, i.e., the expanded nodes in G, they are also not applicable
for G, otherwise our assumption that Gn is fully expanded and all non-cached nodes
in G′ are fully expanded would be contradicted. In particular, the data w.r.t. V, E,
andL for these nodes stems either entirely from G′ (if a processed node is involved)
or from Gn. Hence, the v1-, v2-, u-, t-, and Self-rules cannot be applicable for G.

• For the ∃-rule, we observe that it cannot be applicable for processed nodes since
the non-cached nodes in G′ are fully expanded and the expansion only replaces the
neighbouring cached nodes with nodes that have at least the same concepts in their
labels. For expanded nodes, we have two cases.
First, we consider an expanded node vn that does not stem from a node in Gd, i.e.,
there is no vd ∈ V ′ such that vn = mergedToM

n
(vd). Let us assume that the ex-

panded completion graph G does not contain an r-neighbour node with C in its
label for a concept ∃r.C ∈ L(vn). Since the completion graph Gn is fully expanded
and all neighbours that do not stem from non-cached nodes have been copied to
G, the r-neighbour node wn of vn in Gn with C in its label must stem from a node
wd ∈ Vd, i.e., vn = mergedToM

n
(vd) where mergedToM

′

(vd) is not cached. How-
ever, Condition C10 would have invalidated the caching of every ancestor node in
G′ that is causing the creation of vn. Hence, vn would have been pruned for the
expansion and, therefore, our assumption is incorrect.

21

Let us now consider the other case where the expanded node vn does stem from
a node in Gd, i.e., vn = mergedToM

n
(vd). Clearly, vd must be a cached node in

V ′, otherwise we would not have vn as an expanded node in G. We can now argue
analogously to the previous case by using Condition C6. In particular, if we assume
that we have an expanded node vn that does not have an r-neighbour node with
C in its label for a concept ∃r.C ∈ L(vn), then we analogously observe that the
missing/incomplete r-neighbour node wn of vn in Gn with C in its label must stem
from a node wd ∈ Vd, i.e., vn = mergedToM

n
(vd) where mergedToM

′

(vd) is not
cached. However, Condition C6 would have invalidated the caching of vd if it were
necessary to add concepts to non-cached node labels to satisfy ∃r.C for vn. Hence,
our assumption is incorrect and, as a result, the ∃-rule is not applicable.

• The ∀-rule is trivially not applicable for processed nodes, otherwise the non-cached
nodes would not be fully expanded in G′. Moreover, the ∀-rule is also not applica-
ble for an expanded node vn with ∀r.C ∈ L(vn) since the definition of E guarantees
that only the edges and their role labels to and from processed nodes are different
for such an expanded node vn, where Condition C10 ensures that vn stems from
a cached node v′, i.e., vn = mergedToM

n
(v′), (otherwise the caching of ances-

tors that would cause the generation of vn in Gn would be identified as invalid),
Condition C9 ensures that there is no processed r-neighbour node w′ of vn in the
expanded completion graph G if w′ is not already in G′ an r-neighbour of the node
v′, and Condition C3 guarantees that every processed r-neighbour node w′ has C
in its label (otherwise the caching of v′ would be invalid). Note that C can obvi-
ously also not be propagated to another expanded node since no additional edges
are added or edge labels are extended in G in comparison to Gn between expanded
nodes and since Gn is fully expanded.

• For the ch-rule, we can argue analogously as for the ∀-rule by using Condition C4.
• For the >-rule, we argue analogously as for the ∃-rule. In particular, the >-rule

is not applicable for processed nodes since they are fully expanded and since the
expansion only adds and/or extends nodes, node labels, and the ,̇ relation. More-
over, for the application on an expanded node vn, at least one neighbour node must
have been removed/changed by the expansion since Gn is fully expanded, i.e., we
have a non-cached node mergedToM

′

(wd) in G′ for which wd is not expanded as
for Gn such that mergedToM

n
(wd) would be an r-neighbour of vn, would have C in

its label, and would be disjoint with the other neighbours (by ,̇n). In addition, we
again observe that vn must stem from a cached node v′, i.e., vn = mergedToM

n
(v′),

otherwise the Condition C10 would have invalidated the caching of every ancestor
that would cause the generation of vn. However, Condition C7 ensures that also the
caching of v′ would have been invalidated if the existence of enough correspond-
ing neighbour nodes cannot be guaranteed for the expansion, i.e., if too many of
those nodes get non-cached that are necessary for the satisfaction of the at least
cardinality restriction on vn.

• For the 6-rule, we can argue analogously to Clash Condition 5. For a processed
node, the 6-rule is clearly not applicable (otherwise our assumption that the non-
cached nodes in G′ are fully expanded would be contradicted) and for an expanded
node with 6 m r.C in its label (where only additional r-neighbour connections to
processed nodes with the concept C in their label could be problematic), the Condi-

22

tions C10 and C5 ensure that the caching of the corresponding nodes would have
been invalidated if the cardinality could be problematic and we had to apply the
6-rule.

• For the o-rule, we observe analogously to Clash Condition 6 that each nominal can
only be in one nominal node and, therefore, the o-rule is trivially not applicable.

• For the NN-rule, we consider two cases. If the concept 6 m r.C is in the label of
a processed nominal node v and the expansion were to add a new blockable node
wn as predecessor of v that is inv(r)-neighbour of v and has C in its label, then
Condition C10 would have invalidated the caching of those predecessors/ancestors
that causing the generation of wn. Note that there cannot be a processed node that
is blockable and a corresponding predecessor of v with C in its label since then the
NN- or the 6-rule would be applicable for v, which contradicts our assumption that
the non-cached nodes are fully expanded. For the other case, we assume that the
NN-rule is applicable for a concept 6 m r.C in the label of an expanded nominal
node vn and that the expansion connects a blockable processed node w with C in
its label as a predecessor of vn such that w is r-neighbour of vn. Since vn must stem
from a cached node v′, i.e., vn = mergedToM

n
(v′) (otherwise vn would not be a

direct neighbour of w), we observe that our assumption must be wrong since the
Condition C8 would have invalidated the caching of v′. Also note that vn cannot
have corresponding expanded nodes as predecessor for which the NN-rule could
be applicable since Gn is fully expanded. Hence, the NN-rule is not applicable.

Since the tableau expansion rules are not applicable for G and no clash condition
is satisfied for G, G is fully expanded and clash-free. ut

4 Caching Applications and Extensions

In this section, we present additional applications of the completion graph caching tech-
nique, which allow for extending the satisfiability caching of node labels such that nom-
inals are supported (Section 4.1) and for reducing the reasoning effort for incremental
ABoxes changes (Section 4.2). Furthermore, we describe an extension that allows for
caching the completion graph in a representative way (Section 4.3), thus reducing the
memory consumption for large knowledge bases with many similar individuals.

4.1 Satisfiability Caching with Nominals

Caching the satisfiability status of labels of (blockable) nodes in completion graphs is
an important optimisation technique for tableau-based reasoning systems [5,6]. If one
obtains a fully expanded and clash-free completion graph, then the contained node la-
bels can be cached and, if identical labels occur in other completion graphs, then their
expansion (i.e., the creation of required successor nodes) is not necessary since their
satisfiability has already been proven. Of course, for more expressive DLs that include,
for example, inverse roles and cardinality restrictions, we have to consider pairs of node
labels as well as the edge labels between these nodes, to be able to ensure that the pro-
cessing of successor nodes can be blocked (similar to the pairwise blocking condition),

23

i.e., we have to cache a tuple of the form (L(v),L(w),L(〈v,w〉),L(〈w, v〉). Unfortu-
nately, this kind of satisfiability caching does not work for DLs with nominals. In par-
ticular, connections to nominal nodes can be used to propagate new concepts from one
blockable node in the completion graph to any other blockable node, whereas for DLs
without nominals, the consequences can only be propagated from or to successor nodes.
Hence, the caching of node labels is not easily possible and state-of-the-art reasoning
systems usually deactivate this kind of caching for knowledge bases with nominals.

However, in combination with completion graph caching, we re-gain the possibility
to cache some labels of nodes for knowledge bases with nominals. Roughly speaking,
we first identify whether nodes “depend on” nominals as defined next. The labels of
such nodes can be cached if all nodes for the dependent nominals, i.e., the nodes those
nominals on which the nodes depend, are cached w.r.t. the initial completion graph. As
a consequence, we can then block the processing of nodes with identical labels in other
completion graphs if the caching of their dependent nominals is not invalid. In order
to describe this technique in more detail, we first define nominal dependency in the
following.

Definition 16 (Nominal Dependency). Let G = (V, E,L, ,̇,M) be a completion graph,
then a node v ∈ V depends on a nominal {a} if

• {a} ∈ L(v),
• v is blockable and has a successor which depends on {a},
• v is blockable, there exists a concept ∃r.C ∈ L(v) (> m r.C ∈ L(v)), v has an

inv(r)-predecessor w with C ∈ L(w), v has no r-successor (not m r-successors)
with C ∈ L(v), and w depends on {a}, or

• v is blocked by w and w depends on {a}.

We say that a node v is nominal dependent if there is a nominal {a} in the knowledge
base on which v depends and, analogously, we say that v depends on generated nominals
if there exists a new nominal {o} introduced by the NN-rule of the tableau algorithm on
which v depends.

Since the tableau algorithm does only construct a successor node for an existential
restriction of the form ∃r.C (or a cardinality restriction of the form > 1 r.C) if there
does not already exist a corresponding neighbour node, we need the third condition
of Definition 16 to consider the predecessor of a node for the nominal dependency if
the predecessor is the only node that satisfies this restriction. The third condition is
also required to ensures that the predecessor is considered if the tableau algorithm has
merged a successor with the predecessor.

It would also be possible to define nominal dependency by the (sub-)concepts in
the label of a node, e.g., we could say that a node v depends on a nominal {a} if {a} ∈
sub(C) and C ∈ L(v). Although it is possible to extend this definition to lazy unfolding
axioms [1,2], which is, for example, necessary if absorption is used, it is likely that this
definition would identify much more nominals as dependent since all non-deterministic
alternatives of a concept are considered.

If the tableau algorithm has constructed a fully expanded and clash-free completion
graph, we can save the label of a node that is blockable but not blocked together with the

24

label of its blockable predecessor, the labels of the edges between both nodes, and the
dependent nominals for both nodes in a (satisfiability) cache as long as both nodes do
not depend on newly generated nominals and the nodes for the dependent nominals are
cached w.r.t. the initial completion graph. If the labels occur in the same way in another
completion graph, then we have to check whether the nodes for the dependent nominals,
as stored in the satisfiability cache, are still cached w.r.t. to the initial completion graph.
If this is the case, then the processing of the node for which the cache entry matches
can be blocked. Of course, if the caching of a node for a dependent nominal becomes
invalid, then the processing of the blocked node has to be reactivated. Moreover, if the
expansion of a node is blocked since there exists a matching cache entry, we have to
use the dependent nominals from the cache entry for this node such that the subsequent
caching of other nodes can be correctly continued.

The caching of node labels that depend on newly generated nominal can cause prob-
lems. For example, in order to test the satisfiability of a concept ∃r.∃r.(A u ∃s.{a}) for
a knowledge base that only contains the axiom {a} v6 1 s−.>, we have to initialise a
completion graph G with a new node v0 for which this concept is asserted. We assume
that Gd and Gn are cached from the consistency test of the knowledge base, but they
are trivial in this example since both contain only the node va representing the nomi-
nal {a}, i.e., Ld(va) = Ln(va) = {{a},6 1 s−.>}. The tableau algorithm can now simply
build a fully expanded and clash-free completion graph for testing the satisfiability of
∃r.∃r.(A u ∃s.{a}) by creating an r-successor v1 of v0 with L(v1) = {∃r.(A u ∃s.{a})}
and another r-successor v2 of v1 with L(v2) = {{o}, A u ∃s.{a}, A,∃s.{a}}, where {o}
is a new nominal and va is an s-neighbour of v2. Obviously, v0 and v1 depend on the
nominal {o} which does not exist in Gd and, therefore, it cannot be detected whether
new consequences are propagated over nominal nodes. To show this with the example,
let us assume that we nevertheless create a cache entry for v1 together with v0, i.e.,
({∃r.(A u ∃s.{a})}, {∃r.∃r.(A u ∃s.{a})}, ∅, {r}, {{o}}), where {{o}} contains the dependent
nominals. If we analogously also cache the labels of the first nodes of a completion
graph that shows the satisfiability of a concept ∃r.∃r.(¬A u ∃s.{a}), then a we cannot
detect a clash in a completion graph where we tests whether ∃r.∃r.(A u ∃s.{a}) and
∃r.∃r.(¬Au∃s.{a}) are simultaneously satisfiable on different individuals. In particular,
both successors of both nodes would match the cache entries and, therefore, any further
expansion would be blocked. However, a further expansion would force both the con-
cepts Au∃s.{a} and ¬Au∃s.{a} into the label of one new nominal node and, therefore,
both tested concepts cannot be satisfied simultaneously. Such problems can be simply
avoided by caching only labels that do not depend on newly generated nominals. Again,
this restriction is more restrictive than necessary, but since many ontologies do not force
many newly generated nominals, this is usually not a problematic limitation.

Analogously to more precise blocking conditions [15], it is also possible to refine
the satisfiability caching in such a way that only the concepts of one node label have to
be saved. However, this would make it necessary to check for all concepts whether there
could be some interaction with the predecessor (e.g., whether there exists a concept of
the form ∀r.C that could propagate C to the predecessor) and special care require cardi-
nality restrictions for which successors must potentially be merged with predecessors.

25

4.2 Incremental Reasoning for Changed ABoxes

Many reasoning systems restart reasoning from scratch if a few axioms in the knowl-
edge base have changed. However, it is not very likely that a few changes in the ABox
of a knowledge base have a large impact on reasoning. In particular, many ABox asser-
tions only influence the local neighbourhood of the modified individuals and, therefore,
the results of reasoning tasks such as classification are often not affected, even if nomi-
nals are used in the knowledge base. The presented completion graph caching provides
a technique to detect the size of the impact that is caused by changes in the ABox of
a knowledge base. This can be used to reduce the reasoning effort for many reasoning
tasks. In particular, for the new initial consistency test that is required for the changed
ABox assertions, we only have to re-build those parts of the completion graph that
are influenced by the changes and cannot be expanded as in the previous completion
graph. For higher level reasoning tasks, tracking which nodes of the cached comple-
tion graph are potentially used to show the (un-)satisfiability of consistency queries for
tested constructs (e.g., subsumption between atomic concepts), allows for identifying
whether and which parts of the reasoning tasks have to be repeated. The idea of tracking
those parts of a completion graph that are potentially relevant/used for the calculation
of higher level reasoning tasks and comparing them with the changed parts in the new
completion graph has already been proposed for answering conjunctive queries under
incremental ABox updates [11], but the completion graph caching simplifies the real-
isation of this technique and significantly reduces the overhead for identifying those
parts of higher level reasoning tasks that have to be re-computed. Moreover, with the
completion graph caching, also very expressive DLs such as SROIQ can be supported.

In order to describe the approach based on completion graph caching in more detail,
we next define modifications for knowledge bases.

Definition 17 (Modification). Let K be a knowledge base and ∆−, ∆+ disjoint sets of
ABox assertions, then the pair ∆ = (∆−, ∆+) is a modification w.r.t.K . Applying ∆ toK
yields the knowledge base K∓∆ = (K \ ∆−) ∪ ∆+.

Note, the assumption that ∆− and ∆+ are disjoint is without loss of generality. For con-
venience, we further assume that all ABox assertions are represented as axioms of the
form {a} v C such that no adaptation of the tableau expansion rules is required. Fur-
thermore, we assume that we have cached Gd

K
(Gn
K

) as the last deterministic (fully
expanded and clash-free) version of the completion graph that shows the satisfiability
of K . In the remainder, we also just say that ∆ is a modification when we mean that ∆
is a modification w.r.t. K .

Obviously, after applying a modification, we first have to check whether the changes
influence the consistency, i.e., whether K∓∆ is consistent. In order to facilitate the han-
dling of the modifications, we define directly changed individuals and nodes as follows.

Definition 18 (Direct Changes). Let K be a knowledge base and ∆ = (∆−, ∆+) a mod-
ification, then the set of directly changed individuals w.r.t. ∆ is {a | {a} v C ∈ ∆− ∪ ∆+}.
Analogously, the set of directly changed nodes w.r.t. ∆ and a completion graph G =

(V, E,L, ,̇,M) for K is {v ∈ V | {a} ∈ L(v) ∧ a is a directly changed individual}.

26

Note, in practice it is usually the case that the sizes of ∆− and ∆+ are relatively small
compared to the number of assertions that are already inK . This is not a requirement for
the incremental reasoning approach based on completion graph caching (in the worst
case, we simply have to re-built the entire graph), but it is very beneficial since this
usually also means that fewer parts of the completion graph are affected by the changes.

4.2.1 Incremental Consistency Checking for Changed ABoxes Since there could
be some assertions in ∆− that are removed from K , we cannot simply re-use Gd

K
or

Gn
K

. In particular, we cannot initialise a new completion graph GK∓∆ for K∓∆ from Gd
K

since the consequences of the removed assertions cannot directly be identified. Thus, we
have to initialise GK∓∆ from scratch, but we use the same nodes to represent individuals
as for Gd

K
. We then start to deterministically process the directly changed nodes in

GK∓∆ and we continue with the processing of neighbours w.r.t. GK∓∆ and Gd
K

until the
nodes of GK∓∆ are “compatible” to the corresponding nodes in Gd

K
. Roughly speaking,

compatibility ensures that the nodes have the same deterministic consequences as the
corresponding nodes in Gd

K
and, as a consequence, we can simply “copy” the parts

for the remaining nodes from Gd
K

as soon as compatibility is achieved. After obtaining
the new deterministic completion graph, we can continue the expansion also with non-
deterministic rule applications until the nodes are cached w.r.t. Gn

K
or fully expanded.

Definition 19 (Compatibility). Let G = (V, E,L, ,̇,M) and Gd = (Vd, Ed,Ld, ,̇d,Md)
be completion graphs, then a node v ∈ V is compatible with Gd if v ∈ Vd and L(v) =

Ld(v).

Please note that only the nodes for individuals are shared in both completion graphs
and, therefore, only such nodes can be compatible. Also note that it is not necessary to
consider inequality information for the compatibility since inequalities can only be non-
deterministically added to nodes that represent individuals. Likewise, relevant changes
through merging are directly represented in the labels (e.g., the merging of nodes for
the individuals a and b unites the nominal concepts {a} and {b} in the same label) and,
therefore, it is also not necessary to consider the merging history for compatibility.

In order to achieve compatibility, first the directly changed nodes are deterministi-
cally processed and then the deterministic processing is extended step by step to other
related nodes. This is continued until enough compatible nodes are obtained such that
the deterministic expansion in GK∓∆ of the remaining nodes is possible as in Gd

K
with-

out having consequences of removed assertions. In other words, we process those nodes
that are related or connected to directly changed nodes without crossing a compatible
node, i.e., those nodes are processed that are not “protected” by compatible nodes from
the changes. We refer to the nodes that are updated in the deterministic completion
graph as ”compatibility changed nodes”, which are defined as follows.

Definition 20 (Compatibility Changes). Let K be a knowledge base, ∆ = (∆−, ∆+)
a modification, and K∓∆ the result of applying ∆. Furthermore, let Gd

K
and GK∓∆ be

completion graphs for K and K∓∆, respectively. We say that a node v is compatibility
changed if v is not compatible w.r.t. Gd

K
, and for which

27

• v has a directly or compatibility changed neighbour node w w.r.t. Gd
K

or GK∓∆ ,
• there exists a directly or compatibility changed node w and mergedToM(v) = w or

mergedToM
d
(v) = w or mergedToM(w) = v or mergedToM

d
(w) = v.

Note, in order to keep the definition simple, the compatibility changed nodes can be
from Gd

K
and GK∓∆ and they can also consist of those nodes from these completion

graphs that were pruned.
In principle, it would also be possible to deterministically process all nodes in GK∓∆

and then simply check which nodes are not compatible. However, we are obviously in-
terested in processing as few nodes as possible and, therefore, we have to achieve a form
of compatibility by processing nodes step by step. This can be realised by selecting the
nodes that have to be processed next according to the candidates that could match the
conditions for the compatibility changed nodes. Of course, we try to keep the process-
ing local, i.e., we first process the closer neighbourhood of directly changed nodes that
are potentially relevant for the compatibility. For this, we can also analyse which con-
sequences of Gd

K
are still missing and from which nodes they were propagated in order

to determine the node that should be processed next. In addition, we only process role
assertions if both individuals are already presented in the completion graph.

If compatibility is achieved, we can build a new deterministic completion graph
Gd
K∓∆

by combining GK∓∆ and Gd
K

. In the worst case, compatible nodes do not exist (e.g.,
if assertion are removed from K for which consequences are propagated to all nodes in
Gd
K

) and, as a consequence, all nodes have to be processed to obtain Gd
K∓∆

. For many
ontologies, however, the consequences are only propagated to a few neighbour nodes
and, therefore, also only a few neighbours have to be processed until compatibility
is achieved. Please note that the reasoner is often able to re-derive the consequences
for (blockable) nodes very quickly since they often cache how certain node labels are
expanded by the tableau algorithm. Hence, the effort for the deterministic re-processing
of a few nodes and their blockable successors can usually be neglected.

Combining GK∓∆ and Gd
K

to obtain Gd
K∓∆

is straightforward, we simply prune the
compatibility changed as well as the compatible nodes in Gd

K
and add the nodes of GK∓∆ .

Note that it might be necessary to merge some of the nodes after the combination of both
completion graphs, which is, however, not problematic. In particular, we potentially
also have to process non-deterministic rule applications for the compatibility changed
nodes in order to generate a new fully expanded and clash-free completion graph Gn

K∓∆
.

For this, we can simply continue the processing of Gd
K∓∆

by using the completion graph
caching for all nodes that are not compatibility changed, i.e., we directly set the caching
for the compatibility changed nodes to invalid and continue/reactivate the processing of
the remaining nodes as described in Section 3. Gn

K∓∆
is then obtained by extending the

expanded version of Gd
K∓∆

by data for the cached nodes from Gn
K

. Since our completion
graph caching only requires a graph that contains the consequences of a fully expanded
and clash-free completion graph, the combination with the data from Gn

K
for the cached

nodes is simply possible by “copying” those consequences that are potentially related
to these nodes. In practice, of course, actual copying is avoided for the majority of the
nodes by simply referring to the corresponding nodes in Gn

K
.

We can now identify the nodes that are also indirectly affected by the ABox changes
as follows.

28

Definition 21 (Indirect Changes). LetK be a knowledge base, ∆ a modification, GK∓∆
as well as Gd

K
be completion graphs as in Definition 20, and Gn

K
a completion graph for

K that contains the consequences of a fully expanded and clash-free completion graph.
Furthermore, let G′ = (V ′, E′,L′, ,̇′,M′) be the completion graph obtained from GK∓∆
such that each node of G′ is

• fully expanded, or
• not compatibility changed w.r.t. Gd

K
and cached w.r.t. Gd

K
and Gn

K
.

We say that a node v in G′ is indirectly changed if

• v is directly or compatibility changed,
• v is not cached, or
• v is a nominal node, v has a concept 6m r.C in its label, and v has a compatibility

changed inv(r)-predecessor w with C ∈ L′(w).

Note that the last condition is necessary to detect changes that are relevant w.r.t. the
application of the NN-rule on nominal nodes. In particular, if such nominal nodes were
not identified as “changed”, then we could potentially miss that new consequences are
enforced by merging newly generated nominal nodes.

Example 3. Let us assume that we remove the ABox assertion {c} v ∃s.{b} from the
knowledge base K of Example 2 and add the axiom {c} v ∃r.A4 instead. Thus,

∆ = ({{c} v ∃s.{b}}, {{c} v ∃r.A4})

and K∓∆ = {{a} v B t A1, {b} v B t ∃r.∃r.({c} u A2),
{b} v B t ∀s−.A3, {c} v ∃r.A4}.

Obviously, only the individual c has been changed directly.
In order to test the consistency of K∓∆, we initialise a new completion graph GK∓∆ ,

where we use the same nodes for individuals as for G, i.e., va, vb, and vc for a, b, and
c, respectively. We start the deterministic processing of the directly changed node vc

and continue with the deterministic processing of its neighbour vb w.r.t. G for which we
archive compatibility, i.e., we do not have to process va since we know that va has the
same deterministic consequences. By adding these consequences to GK∓∆ , we obtain
Gd
K∓∆

, which only differs from Gd by having the concept ∃r.A4 instead of ∃s.{b} in the
label of vc. Now, we also process the completion graph non-deterministically and since
the caching for vc is invalid, also the caching of vb is invalid. Finally, we obtain Gn

K∓∆

by adding the non-deterministic consequences of Gn for va and we have vc and vb as
indirectly changed nodes.

The indirectly changed nodes can now be used for higher level reasoning tasks to
determine which parts have to be recalculated, which we describe in more detail next.

4.2.2 Incremental Classification for Changed ABoxes Tableau-based reasoning
systems usually classify a knowledge base by performing a satisfiability test for every
atomic concept in the knowledge base and by testing the pairwise subsumption relations

29

for all atomic concepts. These tests are reduced to consistency checks and the results
can then be used to build the subsumption hierarchy of atomic concepts. If a knowledge
base uses nominals, then changes in the ABox can influence the satisfiability of these
concepts and also whether the subsumptions hold. Thus, it is in principle necessary to
verify all computations for the classification after the ABox has changed.

However, if we track, for all completion graphs generated during classification,
which nodes of the cached completion graph are modified, then we can compare them
with the indirectly changed nodes from the incremental consistency test of the changed
ABox. In other words, we collect for all generated completion graphs the “change de-
pendent nodes” and check whether they are influenced by the changes of the ABox. If
a change dependent node is missing in the new deterministic completion graph Gd

K∓∆
or

there is an overlap with the indirectly changed nodes, then we know that the changes in
the ABox could potentially influence a consistency check for the classification and we
have to re-compute the corresponding satisfiability and subsumption tests.

Definition 22 (Change Dependency). Let Gd = (Vd, Ed,Ld, ,̇d,Md) be a completion
graph with only deterministically derived consequences and Gn = (Vn, En,Ln, ,̇n,Mn)
a completion graph that contains the consequences of a fully expanded and clash-free
expansion of Gd. Moreover, let G be an extension of Gd and G′ = (V ′, E′,L′, ,̇′,M′) a
completion graph obtained from G by rule applications. We say that a node v ∈ V ′ is
change dependent if v ∈ Vd and

• v is not cached w.r.t. Gd and Gn, or
• there exists L′(〈v,w〉) (L′(〈w, v〉)) such that there is no Ld(〈v,w〉) (Ld(〈w, v〉)).

Note that it is required to analyse and save the change dependent nodes for all generated
completion graphs, i.e., also for those that contain clashes.

The technique can obviously be refined by managing for each atomic concept a
separate set of change dependent nodes. After the indirectly changed nodes have been
determined for a changed ABox, we can compare them with all sets of change depen-
dent nodes and re-compute the satisfiability and subsumptions only for the potentially
affected concepts. However, we assume that the the classification result is not often in-
fluenced by ABox changes and, therefore, it can also be assumed that this additional
overhead does usually not pay off.

4.2.3 Incremental Realisation for Changed ABoxes The realisation reasoning task
is typically realised with instance tests reduced to consistency checks for each individ-
ual and atomic concept in a knowledge base. Analogously to classification, we can keep
track of the change dependent nodes and re-compute only those instance tests that could
be affected by the ABox changes. Since a knowledge base might have many individu-
als and atomic concepts, the separate tracking of the change dependent nodes for each
instance test easily becomes impractical. However, we can simply make an appropriate
trade-off. In particular, we can collect the change dependent nodes for the individuals
only or we can cluster the individuals by some form of neighbourhood and collect a
set of change dependent nodes only once for each cluster. Thus, if the changes in the
ABox have only a locally limited influence, then many instance tests do not have to be
repeated.

30

Example 4. The sets of change dependent nodes for the individuals a, b, and c w.r.t. the
instance tests of the concept ∃r.> in Example 2 are {va, vb}, {vb}, and {vc, vb}, respec-
tively. If the knowledge base K of Example 2 is modified by ∆ = ({{c} v ∃s.{b}}, {{c} v
∃r.A4}), then we obtain vb and vc as indirectly changed nodes (cf. Example 3). Thus, we
have to recalculate the instance tests for all individuals and, as a result, we obtain that
now also c is an instance of ∃r.>. In contrast, the sets of change dependent nodes for
the individuals a, b, and c w.r.t. the instance tests of the concept ∃s.> are {va}, {vb}, and
{vc, vb}, respectively. Hence, after the ABox changes, we only have to re-compute the
instance tests for b and c and they would reveal that c is no longer an instance of ∃s.>.

4.3 Representative Caching

Clearly, caching an entire completion graph can require a lot of memory, especially
if an ABox contains many individuals and the tableau algorithm has to generate many
successors for these individuals for the construction of a completion graph. Hence, if the
ABox is very large, then it easily becomes impractical to handle such knowledge bases
with state-of-the-art tableau-based reasoners on standard computer systems. There exist
several approaches that try to ease the work for reasoners by reducing the size of the
ABox (e.g., by summarisation and refinement [4], abstraction [7], or modularisation
[30]), but for more expressive DLs with non-determinism (e.g., SROIQ), it is often not
possible to completely avoid the handling of such ABoxes with fully-fledged and highly
optimised reasoning systems, which are usually based on tableau algorithms. However,
tableau-based reasoning systems are usually not able to dynamically store and load
parts of completion graphs to and from secondary memory storages (e.g., hard drives)
and, therefore, the size of the ABox that can be handled by such reasoners is limited
by the main memory. Thus, knowledge bases with large ABoxes that use expressive
language features often cause problems in practise and can potentially not be handled
satisfactorily.

In the following, we adapt the presented completion graph caching such that rele-
vant data can be stored in a representative way, which allows for building “local” com-
pletion graphs for small subsets of the entire ABox until the existence of a complete
completion graph considering all individuals can be guaranteed. To be more precise,
if a fully expanded and clash-free completion graph is constructed for a subset of the
ABox (e.g., a subset of all individuals and their assertions), then we extract and gen-
eralise information from the processed individuals and store them in a representative
cache. If we then try to build a completion graph for another subset of the ABox that
has some overlapping with a previously handled subset (e.g., role assertions for which
edges to previous handled individuals have to be created), then we load the available
data from the cache and continue the processing of the overlapping part until it is “com-
patible”, i.e., the expansion of the remaining individuals in the cache can be guaranteed
as in the previously constructed completion graphs. Of course, this only works well for
knowledge bases for which there is not too much non-deterministic interaction between
the separately handled ABox parts. Moreover, compared to the ordinary completion
graph caching, we are clearly trading less memory consumption against an increased
runtime since more work potentially has to be repeated to establish compatibility. In
practice, it is obviously also possible to combine both techniques, i.e., we can use the

31

representative caching only for those individuals of an ontology that can be primarily
deterministically handled and, for the remaining individuals, we can build an ordinary
completion graph and use the caching as presented in Section 3.

In the following, we first define the “representative cache” which is used to store
the derived consequences of already processed parts/individuals of the ABox.

Definition 23 (Representative Cache). Let K be a knowledge base and fclos(K),
Rols(K), and Inds(K) the set of concepts, roles, and individuals that can occur in
K or in a completion graph for K , respectively. The representative cacheH w.r.t. K is
a tuple of the form (I,Ck,Cp, S k,Dk,Rp,N p), where

• I ⊆ Inds(K) denotes the set of those individuals that are represented in the cache,
• Ck : Inds(K)→ 2fclos(K) is the mapping of individuals to sets of known concepts,
• Cp : Inds(K) → 2fclos(K) denotes the mapping of individuals to possibly instanti-

ated concepts,
• S k : Inds(K)→ 2Inds(K) is the mapping of individuals to known same individuals,
• Dk : Inds(K) → 2Inds(K) denotes the mapping of individuals to known disjoint

individuals,
• Rp : Inds(K) × Rols(K)→ IN0 denotes the mapping of individual role pairs to the

number of potentially existing neighbour nodes, and
• N p : Inds(K)→ 2Inds(K) is the mapping of individuals to those individuals that are

(potentially indirectly) connected via nominals.

We say that an individual a ∈ I is related to an individual b ∈ Inds(K) w.r.t.H if

• {a} v ∃r.{b} ∈ K or {b} v ∃r.{a} ∈ K;
• {a} ∈ Cp(b) or ¬{a} ∈ Cp(b);
• a ∈ S k(b) or a ∈ Dk(b); or
• a ∈ N p(b) or b ∈ N p(a).

The known and possible information represented in the cache obviously correspond
to the deterministically and non-deterministically derived facts in completion graphs,
respectively. Hence, known consequences from the cache can be used to speed up the
re-construction of already processed and cached parts in a completion graph since the
corresponding facts can deterministically be added to initialise the corresponding nodes,
wherefore we do not have to apply rules to re-derive this information. The possible in-
formation is in addition required since we have to check whether the re-constructed
parts are compatible with the cache or whether we have to further expand related indi-
viduals.

Please note that we only store some “generalised” information in the cache, other-
wise the data can often not be stored in a representative way. For example, each node
label for an individual contains the nominal concept (e.g., {a}) and the role assertion
concepts (e.g., ∃r.{b}) for such an individual, which is usually very specific for such an
individual and not shared by many other nodes. Since such data can, however, easily
be re-constructed with the axioms of the knowledge base, we remove them from the
labels before writing them to the cache. In the best case, such a “generalised” label
is then shared by many individuals and the representative storing significantly reduces

32

the memory consumption. For the same reason, we also use separated mappings for
the same and disjoint individuals in the cache although this information is usually also
represented within the node labels of a completion graph. In particular, the merging of
nodes for individuals unites the nominal concepts for both individuals in the same label.
For simplicity, however, we only separate the same and disjoint individuals that can be
deterministically derived, i.e., if we non-deterministically add the nominal concept {b}
to a label of a node va that represents the individual a, then b and a are possibly the
same individuals, but we map Cp(a) to L(va) \ {{a}}, S k(a) to {a}, Cp(b) to L(va), and
S k(b) to ∅, i.e., we only remove the deterministic same/disjoint individual information
from the perspective of the individual that is cached. Of course, the stored sets of con-
cepts still contain {b} and, thus, these sets can probably not be re-used by many other
cache entries. However, we assume that the knowledge base can mostly be handled de-
terministically and, therefore, this should not be a significant restriction. Besides that,
the cache could also simply be extended with mappings that handle “possibly same”
and “possibly disjoint” individuals.

The mapping Rp is required to check whether additional neighbour nodes poten-
tially violate cardinality restrictions for a specific role and N p is used to remember
connections (possibly over blockable nodes via nominals) between individuals that are
not directly caused by role assertions. Of course, the storage of this information in the
cache can also be refined and it depends on the ontology whether and how useful such
a refinement is. Note that we only have to store the number of neighbour nodes if there
is a problematic at-most cardinality restriction for an individual.

The extraction of required information for the representative caching from the gen-
erated completion graphs is straightforward. Non-deterministically derived consequen-
ces can usually be distinguished with the branching tags that are associated with all
facts in order to support backjumping [1,28]. The indirectly connected individuals can
be determined by analysing whether edges to neighbour nodes are labelled with roles
that are not direct consequences of role assertions and by tracking the nominal depen-
dency for all blockable nodes (cf. Definition 16). In order to describe the interaction
between a representative cacheH = (I,Ck,Cp, S k,Dk,Rp,N p) and a completion graph
G = (V, E,L, ,̇,M) for a knowledge base K in more detail, we use several auxiliary
functions that are defined as follows. For a node va ∈ V that represents an individual
a ∈ Inds(K) in G, i.e., {a} ∈ L(va), let

• Ldet(va) = {C ∈ L(va) | C is deterministically added to L(va)}, i.e., the function
that returns that subset of the label of va for which all concepts are deterministically
derived;

• sameInds(va) = {b | {b} ∈ Ldet(va) ∧ b ∈ Inds(K)}, i.e., the function that returns
the set of individuals represented by this node;

• disjInds(va) = {b | ¬{b} ∈ Ldet(v) ∨ va,̇vb is deterministically added and {b} ∈
L(vb)}, i.e., the function that returns the set of disjoint individuals;

• rassCons(va) = {∃r.{b} | {c} v ∃r.{b} ∈ K ∧ c ∈ sameInds(va)}, i.e., the function
that returns the set of role assertion concepts that are related to va;

33

• possCons be the function that returns the set of generalised concepts that are pos-
sibly instantiated by va, i.e.,

possCons(va) = (L(va) ∪ {¬{b} | va,̇vb ∧ {b} ∈ L(vb) ∧ b ∈ Inds(K)}) \
(rassCons(va) ∪ {¬{b} | b ∈ disjInds(va)} ∪ {{b} | b ∈ sameInds(va)});

• knownCons(va) = possCons(va)∩Ldet(va), i.e., the function that returns the set of
general concepts that are deterministically derived for va, i.e., for which it is known
that they are indeed instantiated by va;

• usedCard(va, r) = #mneighbsG(v, r,C), i.e., the function that returns the number
of va’s r-neighbour nodes; and

• nocoInds(va) = {b | {b} ∈ L(vb)∧vb has a blockable successor that depends on {a}}
∪ {b | {b} ∈ L(vb)∧ vb is an r-neighbour of va ∧ there is no ∃s.{b} ∈ rassCons(va)
for all s with s v∗ r}}, i.e., the function that returns the set of individuals that are

(possibly indirectly) connected to va by using nominals.

Of course, we initially have an empty representative cache. In order to start the
consistency checking process, we select a subset of the individuals of the knowledge
base, say ai, . . . , ak, and build a fully expanded and clash-free completion graph for
these individuals and their associated ABox assertions of the form {ai} v C for 1 ≤
i ≤ k. Due to role assertions and nominals, it is possible that the completion graph also
refers to individuals that are not in the selected subset. The information for all processed
or referred individuals must then be stored in the cache. In particular, if a node va

represents an individual a such that {a} ∈ Ldet(va), then we add a to I and set Ck(a) to
knownCons(va), Cp(a) to possCons(va), S k(a) to sameInds(va), Dk(a) to disjInds(va),
N p(a) to nocoInds(va), and Rp(a, r) to usedCard(va, r) for every (possibly inverse) role
r in the knowledge base. If {a} < Ldet(va) but {a} ∈ L(va), then we have to interpret all
information non-deterministically, i.e., we add a to I and set Ck(a) to {>}, Cp(a) to
L(va), S k(a) to ∅, Dk(a) to ∅, N p(a) to nocoInds(va), and Rp(a, r) to usedCard(va, r)
for every (possibly inverse) role r in the knowledge base. For simplicity, we keep the
information in the cache symmetric, i.e., we also extend Dk(a) to b if we add a to Dk(b).
Please note that also information about not selected individuals has to be cached.

Now, let us assume that the representative cache contains the information about the
previously processed individuals a1, . . . , ak. We continue by selecting the next subset
of individuals and their ABox assertions, say b1, . . . bl, and by building a completion
graph for these individuals and assertions. In case we refer to a cached individual ai,
e.g., by adding the nominal {ai} to a node label, we can load the deterministically de-
rived consequences for ai from the cache and add them also to the label. Note that
the role assertion concepts are not automatically added in order to avoid the repeated
processing of all cached individuals in the new completion graph. However, for the
overlapping individuals, i.e., the individuals that are represented in the cache and are
also used/referred to in the completion graph, we have to establish “compatibility” such
that the expansion of the completion graph to the remaining individuals in the cache can
be guaranteed as in the previously constructed completion graphs. Analogously to the
caching criteria in Definition 14, we define conditions that identify nodes as potentially
incompatible with the data of the representative cache, for which we then know that a

34

further expansion of the completion graph is required. In particular, we have to extend
the completion graph by related individuals of incompatible nodes w.r.t. the represen-
tative cache until the remaining individuals in the cache are protected by a border of
compatible nodes. By instantiating related individuals in the completion graph, we also
add the corresponding role assertions such that all individuals in the completion graph
are correctly connected. Please note that, in contrast to the ordinary completion graph
caching, we do not block the processing of nodes, i.e., we fully process all nodes in the
completion graph (besides the role assertions to individuals that are not represented in
the completion graph) and, if it is necessary, then we add and process nodes also for
previously handled individuals such that incompatibility can be resolved.

Definition 24 (Representative Caching). Let G = (V, E,L, ,̇,M) be a completion
graph for a knowledge base K and H = (I,Ck,Cp, S k,Dk,Rp,N p) the representative
cache. Furthermore, let va ∈ V be a node that represents an individual a ∈ Inds(K) in
G, i.e., {a} ∈ L(va). We say that va is incompatible w.r.t.H if

R1 a < I(a);
R2 knownCons(va) * Ck(a);
R3 possCons(va) * Cp(a);
R4 sameInds(va) * S k(a);
R5 disjInds(va) * Dk(a);
R6 6m r.C ∈ Cp(a), va has n incompatible r-neighbours, Rp(a, r) + n > m, and there

exists a related individual b of a w.r.t. H such that there is no node vb ∈ V with
{b} ∈ L(vb) or possCons(vb) , Cp(b);

R7 possCons(va) , Cp(a) and va has an incompatible neighbour node vb with {b} ∈
L(vb) and b ∈ Inds(K);

R8 possCons(va) , Cp(a) and va has a predecessor node that is blockable or contains
a newly generated nominal;

R9 possCons(va) , Cp(a), there exists a node vb ∈ V with {b} ∈ L(vb) such that
a ∈ N p(b), and vb is incompatible or possCons(vb) , Cp(b);

Although there does not exist an exact correspondence, the conditions for the repre-
sentative caching are in principle very similar to the criteria for the ordinary completion
graph caching. However, since we only cache data for nodes that represent individuals
now, the new conditions are often less accurate and, as a consequence, it is often neces-
sary to re-construct more parts of already processed individuals. In particular, if there is
a cached at-most restriction for an individual and not all of the previously constructed
neighbour nodes are in the completion graph such that they can be correctly counted,
then we can only analyse whether the number of potential new neighbour nodes together
with the previous neighbours could violate the at-most restriction (cf. Condition R6).
If all related individuals of a node with a cached at-most restriction are represented in
the completion graph and all these nodes are expanded as in the cache, then we know
that the tableau algorithm considers all of the previously constructed neighbours and,
in case it can build a fully expanded and clash-free completion graph, then the cardi-
nality restriction is also compatible with the representative cache. Condition R7 is used
to enforce that propagations of non-deterministic consequences from cached neighbour

35

nodes are considered. Analogously, Conditions R8 and R9 ensure that nodes are ex-
panded as in the cache if there are indirect connections via nominals over blockable
nodes such that the propagation of new consequences over these blockable nodes can
be excluded.

As already mentioned, if there is an incompatible node in the completion graph,
then we check in the representative cache whether there are related individuals that also
have to be instantiated and processed. Again, we can analyse the cached concepts of
related individuals in order to prioritise the handling of those individuals in the com-
pletion graph for which it is likely that they allow for establishing compatibility for
many other nodes as soon as possible. For example, if we build a completion graph for
a newly selected and previously not processed individual b for which a neighbour node
va exists that represents a cached individual a and va is incompatible w.r.t. Condition R7
due to a missing concept A in it’s label, then we can prioritise the instantiation and pro-
cessing of a related neighbour individual c for which a (non-deterministically derived)
concept of the form ∀r.A is associated. If it is possible to establish the compatibility of
va in this way, then we potentially do not have to instantiate and process many other
related individuals of a. In principle, we can also try to non-deterministically re-use
cached non-deterministic information, e.g., by non-deterministically adding A for va.
If we can still find a fully expanded and clash-free completion graph with this non-
deterministically added information, then we can often establish compatibility without
repeatedly processing many previously cached individuals. In the worst case, of course,
one has to consider and re-process all individuals that contribute some non-deterministic
consequences to clashes until a fully expanded and clash-free completion graph can be
found.

After the construction of the completion graph for the newly selected individuals,
we have to update the data in the cache. In principle, this is straightforward: for all
incompatible nodes, we can simply replace the data in the cache with the (potentially
new) information from the completion graph, and for the compatible nodes that repre-
sent individuals, we have to update Rp and N p by the additional neighbour nodes and
the new individuals that are indirectly connected via nominals over blockable nodes,
respectively.

Example 5. The completion graph constructed for Example 2 can be cached withH =

(I,Ck,Cp, S k,Dk,Rp,N p) by adding a, b, c to I, by mapping

• Ck(a) to {>, B t A1}, Cp(a) to {>, B t A1, A1}, S k(a) to {a},
• Ck(b) to {>, Bt∃r.∃r.({c} u A2), Bt∀s−.A3}, Cp(b) to {>, Bt∃r.∃r.({c} u A2), Bt
∀s−.A3,∃r.∃r.({c} u A2)}, S k(b) to {b},

• Ck(c) to {>}, Cp(c) to {>, {c} u A2, A2, A3}, S k(c) to {c}, N p(c) to {a}, and

by setting all other mappings for a, b, c to ∅ (since we do not have at-most cardinality
restrictions, Rp is not relevant).

Let us now assume that we have an additional individual d with {d} v ∃s.{a} in
the knowledge base and we select d for building the next “local” completion graph
compatible with H such that the overall consistency of the knowledge base can be
shown. Since we have the role assertion concept ∃s.{a} for d, we extend the completion
graph consisting of node vd with L(vd) = {>, {d},∃s.{a}} by a node va whose label is

36

initialised from the cache, i.e., L(va) = {>, {va}, B t A1}. By completing the processing
for va by choosing the disjunct A1, we obtain a fully expanded and clash-free completion
graph for which compatibility withH is achieved.H can now be updated by adding d
to I and by mapping Ck(d) and Cp(d) both to {>}.

If we also have another individual e with {e} v B t ∃s.({c} u A4) and we choose
the non-deterministic alternative ∃s.({c} u A4) for the node that represents e, then we
also have to initialise and process a node vc for c. Obviously, c is incompatible due to
Condition R3 and, therefore, we have to extend the completion graph by a node for b
that is related to c by N p(c) and by the role assertion concept ∃s.{b}. Again, we can
achieve compatibility by processing the node for b as in the original completion graph.
Note that Condition R9 does not apply since the label of the node for b still matches
Cp(b).

5 Related Work

Especially optimisations for the instance checking problem are closely related to the
presented caching approach. For more expressive DLs, it is often required to system-
atically try to build (counter-)models in order to decide whether an individual is an
instance of a concept. Of course, there are many optimisations, such as summarisation
[4], abstraction and refinement [7], bulk processing and binary retrieval [9], (pseudo)
model merging [10], extraction of known/possible instances from model abstractions
[20], which try to keep the number of cases, where (counter-)models have to be con-
structed, as small as possible, however, the model construction can, in general, not be
completely avoided. Since tableau algorithms are dominantly used for reasoning with
expressive DLs, it is necessary to have optimisations that improve their handling for
such instance tests which are usually also reduced to consistency checks. Although
such optimisations have been presented and realised, e.g., by extending absorption to
ABoxes [31] or by partitioning the ABox into small islands [30], there is no approach
that can be generally applied for SROIQ, the DL underlying OWL 2.

In particular, it is not clear how to extend the partitioning approach such that in-
stance checking w.r.t. arbitrary concepts is supported. So far, the island partitions are
statically calculated upfront and then only that island is used for further calculation to
which the individual from the query/instance test belongs to. In order to be able to re-
strict the calculations to such an island, all interactions with other islands have to be
excluded, which is, however, not easily possible if arbitrary concepts must be handled.
For example, by querying for instances of concepts of the form ∃r. . . .∃s.C, where r, s
are possibly inverse or even complex roles, we can enforce that all connected indi-
viduals have to be considered. Moreover, for DLs that include the universal role U or
nominals, we can query for instances of concepts of the form ∀r.({a} u C) and ∃U.C,
which could even require the consideration of all individuals in the knowledge base.
Hence, a dynamic partitioning approach would be required, which can, however, not
easily and probably also not efficiently be realised. Moreover, it is not clear how one
can determine the island partitions upfront if the knowledge bases use very expres-
sive language features such as nominals. For instance, if there is an axiom of the form
> v {a} t A, then it can be necessary to merge the node that represents a with any other

37

node that does not satisfy A in a completion graph and, thus, a cannot simply be split
into a separate island before the calculations are completed, i.e., not before we exactly
know which nodes must potentially be merged.

The ABox absorption approach extends ABox assertions by “guards” represented
as atomic auxiliary concepts in order to construct only those parts of the ABox in com-
pletion graphs for which the guards are triggered. For this, the axioms/concepts of the
knowledge base are normalised, extended, and absorbed in such a way that the tableau
algorithm automatically triggers, while processing these axioms/concept, those guards
(i.e., adds the corresponding atomic auxiliary concepts) that ensure the expansion to
other individuals in the ABox, wherewith then possible interactions can be detected.
The approach has been presented for the DL SHIQ, but it is not clear how it can be ex-
tended to SROIQ. In addition, the adaptations w.r.t. normalisation and absorption can
significantly influence other optimisations and reasoning task. For example, the classi-
fication of consistent SHIQ knowledge bases can be performed independently from
the ABox, but the normalisation and absorption of the axioms in the knowledge bases
can introduce additional non-determinism, which can have a significant impact on the
performance of satisfiable and subsumption tests. Furthermore, this approach requires
that it is analysed upfront, before any reasoning, for which concepts the guards have
to be triggered. This is obviously much more vague as a technique that directly uses
reasoning data, such as the presented completion graph caching, and, as a consequence,
potentially more individuals have to be considered to check whether an individual is an
instance of a concept.

Of course, also incremental reasoning has already been considered in several related
works for which we briefly point out the differences and similarities to our approach in
the following. The presented incremental consistency checking for changed ABoxes
is based on the observation that re-building parts of a completion graph is potentially
cheaper than tracing exactly on which ABox assertions a derived facts depends. The
facts that depend on a removed ABox assertion can then be deleted from the existing
graph and, then, the tableau rules can be applied again to obtain a new clash-free and
fully expanded completion graph. Although such tracing techniques can be realised
also for more expressive DLs (such as SHIQ and SHOQ) [12], it requires a signif-
icant adaptation of expansion rules and increases reasoning time as well as memory
consumption. Moreover, non-determinism causes several technical difficulties for the
tracing approach. For instance, if removed ABox assertions were involved in the cre-
ation of clashes for the consistency test of the original ABox, then it could be necessary
to re-evaluate the corresponding non-deterministic alternatives to find a new clash-free
and fully expanded completion graph after new ABox assertions are added. Hence, a
significant overhead is required to manage the potential impact of such assertions. In
contrast, the idea of re-constructing parts from scratch after changes (until “compati-
bility” is achieved) is already successfully deployed for less expressive DLs [19] and
the presented completion graph caching allows for using this approach also for very
expressive DLs such as SROIQ.

In some cases it is also possible to check with a syntactical analysis of the knowl-
edge base whether ABox changes could cause new clashes. If this can be excluded, then
the construction of a new/updated completion can in principle be spared. For example, if

38

a role assertion of the form r(a, b) is added to a SHIQ knowledge base, then we know
that consistency is trivially preserved if there exist no universal or cardinality restric-
tion in the knowledge base that can have an interaction with the added role instantiation
[32]. Of course, especially for knowledge bases that intensively use language features
of more expressive DLs, this approach cannot completely avoid the re-computation of
the consistency since the syntactic analysis must often be overcautious.

As presented, the completion graph caching also allows for simply detecting whether
parts of higher level reasoning tasks have to be re-computed for changed ABoxes by
comparing the impact of the changes in the initial completion graph with those parts
that were relevant for the calculation of the higher level reasoning tasks. In princi-
ple, the same approach has also been proposed for query answering with incremen-
tally changed ABoxes ofSHI knowledge bases [11]. However, without the completion
graph caching (or a similar technique), it is required to extend the generated comple-
tion graph to an overestimation considering all non-deterministic alternatives and to
extract and store a substantial amount of information. Although many improvements
are achieved for the evaluated scenarios, the required overhead for deciding whether
(parts of) queries have to be re-evaluated can still be substantial. Please note that we
have only discussed reasoning improvements for classification and realisation of in-
cremental changed ABoxes with the completion graph caching, but improvements for
other higher level reasoning tasks (such as query answering) are analogously possible.

Last but not least, we briefly compare the presented incremental reasoning based on
completion graph caching with modularisation-based approaches [3], which compute,
for each axiom, the subset of the knowledge base, called module, that is “relevant” to
determine whether certain entailments hold. Clearly, an entailment must only be re-
computed if an axiom of its module has been changed. Although this allows for han-
dling all types of changes in a knowledge base (i.e., also arbitrarily added or removed
GCIs), it is often a very difficult task to calculate precise modules and, therefore, it is of-
ten not very suitable for very expressive DLs. In particular, the overhead of calculating
and managing the modules can easily be more expensive than a re-computation from
scratch. Moreover, in order to calculate the modules, it is, analogously to partitioning
approaches, required to know upfront which types of entailments must be considered
(e.g., subsumptions between atomic concepts or instances of atomic concepts), which
can be problematic for some reasoning tasks such as (conjunctive) query answering.

6 Implementation and Evaluation

The presented completion graph caching is integrated in our reasoning system Konclude
[26], which is a tableau based reasoner for the DL SROIQV, i.e., SROIQ extended
by nominal schemas. Besides many state-of-the-art optimisations, such as lazy unfold-
ing, absorption, dependency directed backtracking, satisfiability caching, etc., Konclude
also incorporates a saturation procedure to assist the tableau algorithm, whereby a large
amount of relatively simple ontologies/simple parts of ontologies can be handled very
easily. However, for ontologies that use (non-deterministic) language features of more
expressive DLs such as disjunctions and nominals, the saturation easily becomes in-
complete and it is required to perform consistency/satisfiability tests with the tableau

39

Table 2. Ontology metrics for selected benchmark ontologies (A stands for Axioms, C for
Classes, P for Properties, I for Individuals, CA for Class Assertions, OPA for Object Property
Assertions, and DPA for Data Property Assertions)

Ontology Expressivity #A #C #P #I #CA #OPA #DPA

OGSF SROIQ(D) 1, 235 386 179 57 45 58 20
Wine SHOIN(D) 1, 546 214 31 367 409 492 2
DOLCE SHOIN 1, 667 209 317 42 101 36 0
OBI SROIQ(D) 28, 770 3, 549 152 161 273 19 1
USDA-5 ALCIF (D) 1, 401 30 147 1, 214 1, 214 12 0
COSMO SHOIN(D) 29, 655 7, 790 941 7, 817 8, 675 3, 240 665
DPC1 ALCIF (D) 55, 020 1, 920 94 28, 023 15, 445 39, 453 0
Oly ALCIF (D) 35, 988 1, 223 94 18, 360 10, 161 25, 705 0
UOBM-1 SHOIN(D) 260, 728 69 44 25, 453 46, 403 143, 549 70, 628
CobCav92 SROIF (D) 659, 653 719 110 128, 888 419, 871 273, 620 624
LUBM-1 ALEHI+(D) 100, 636 43 32 17, 174 18, 128 49, 336 33, 079

algorithm in order to fulfil reasoning tasks (e.g., classification, realisation). Hence, we
selected a range of ontologies (cf. in Table 2) for our evaluation, for which indeed
some significant processing with the tableau algorithm is required, i.e., ontologies with
large and/or non-trivial ABoxes that also use non-deterministic language features. Well-
known examples of such ontologies are Wine, DOLCE,3 OBI,4 and UOBM [21], but our
evaluation dataset also comprises DPC1, Oly, and USDA-5, which are benchmark on-
tologies about digital cameras and food items that have been used for the evaluation of
the ABox absorption technique [31], as well as the Ontology for Genetic Susceptibility
Factor (OGSF),5 the Common Semantic Model6 (COSMO) ontology, and the relatively
large, biological Coburn_Cavender_19927 (CobCav92) ontology from the phenoscape
project. In addition, we use the well-known LUBM-1 [8] ontology to demonstrate ef-
fects for deterministic ontologies.

The evaluation was carried out on a Dell PowerEdge R420 server running with two
Intel Xeon E5-2440 hexa core processors at 2.4 GHz with Hyper-Threading and 144 GB
RAM under a 64bit Ubuntu 12.04.2 LTS. In order to make the evaluation independent
of the number of CPU cores, we used only one worker thread for Konclude. We used 5
minutes as time limit and ignored the time spent for parsing the ontologies as well as
writing the results.

Table 3 shows the reasoning times for consistency checking (including preprocess-
ing), classification, and realisation (in seconds) with different completion graph caching
techniques integrated in Konclude. Please note that the class hierarchy is required to re-
alise an ontology, i.e., classification is a prerequisite of realisation, and, analogously,

3 http://www.loa.istc.cnr.it/old/DOLCE.html
4 http://obi-ontology.org/
5 https://code.google.com/p/ogsf/
6 http://ontolog.cim3.net/cgi-bin/wiki.pl?COSMO
7 https://github.com/phenoscape/phenoscape-data/blob/master/Curation%
20Files/completed-phenex-files/Cypriniformes/Coburn_Cavender_1992.xml

40

http://www.loa.istc.cnr.it/old/DOLCE.html
http://obi-ontology.org/
https://code.google.com/p/ogsf/
http://ontolog.cim3.net/cgi-bin/wiki.pl?COSMO
https://github.com/phenoscape/phenoscape-data/blob/master/Curation%20Files/completed-phenex-files/Cypriniformes/Coburn_Cavender_1992.xml
https://github.com/phenoscape/phenoscape-data/blob/master/Curation%20Files/completed-phenex-files/Cypriniformes/Coburn_Cavender_1992.xml

Table 3. Reasoning times for different completion graph caching techniques (in seconds)

Ontology
Prep.+ Classification Realisation
Cons. No-C Det-C ET-C LT-C No-C Det-C ET-C LT-C

OGSF 0.0 3.8 1.0 0.2 0.2 0.1 0.0 0.0 0.0
Wine 0.0 49.5 29.6 0.8 0.8 49.1 25.8 0.2 0.1
OBI 0.2 65.9 19.2 1.5 1.5 2.2 2.0 0.0 0.1
DOLCE 0.0 6.7 1.1 0.2 0.2 ≥ 300.0 5.2 0.1 0.1
USDA-5 4.1 0.8 1.0 1.0 0.8 ≥ 300.0 38.7 20.5 20.2
COSMO 0.6 ≥ 300.0 ≥ 300.0 42.2 11.2 n/a n/a 11.2 19.9
DPC1 6.5 0.1 0.2 0.1 0.1 ≥ 300.0 53.3 19.4 20.5
Oly 4.0 0.2 0.1 0.0 0.1 ≥ 300.0 15.6 8.0 8.8
UOBM-1 6.7 240.6 4.8 1.3 1.1 ≥ 300.0 ≥ 300.0 ≥ 300.0 ≥ 300.0
CobCav92 18.5 58.0 11.5 11.5 11.5 101.9 1.7 0.8 0.8
LUBM-1 0.7 0.0 0.0 0.0 0.0 0.6 0.2 0.2 0.2

consistency checking as well as preprocessing are prerequisites of classification. Thus,
realisation cannot be performed if the time limit is already reached for classification.

If no completion graph caching is activated (No-C), then the realisation and classi-
fication can often require a large amount of time since Konclude has to re-process the
entire ABox for all instance and subsumption tests (if the ontology uses nominals). For
several ontologies, such as Wine and DOLCE, the caching and re-use of the determi-
nistic completion graph from the consistency check (Det-C) already leads to significant
improvements. Nevertheless, with the two variants ET-C and LT-C of the presented
completion graph caching technique, where ET-C uses an “early testing” and LT-C a
“late testing” of the defined caching criteria, Konclude can further reduce the reasoning
times. In particular, with both completion graph caching techniques, all evaluated on-
tologies can easily be classified and also the realisation can be realised efficiently for all
but UOBM-1. For the realisation of UOBM-1, Konclude would require 951.2 s, which is
primarily caused by axioms of the form PeopleWithManyHobbies ≡ > 3like.>, where
it is required to merge the heavily connected nominal nodes that represent hobbies in
order to test whether an individual is an instance of the class PeopleWithManyHobbies.
Since the hobbies are not stated as different (and there are also no other restrictions that
prevent the merging of these nodes), the individuals in UOBM-1 cannot be instances of
PeopleWithManyHobbies, but, for the construction of each counter-model, many edges
from individuals must be updated to the merged nominal nodes and, therefore, large
parts of the cached completion graph become modified. Thus, the effectiveness of the
completion graph caching is limited for UOBM-1. Table 3 also reveals that there is only
for COMSO a remarkable difference between ET-C and LT-C, where this difference can
be explained by the fact that there is often more interaction with the individuals from
the ABox for instance tests than for satisfiability and subsumption tests and, therefore,
ET-C can be better for realisation due to the reduced effort in combination with back-
tracking.

The effects of the different completion graph caching techniques can also be ob-
served for the OWL DL Realisation dataset of the ORE 2014 competition,8 which

8 http://www.easychair.org/smart-program/VSL2014/ORE-index.html

41

http://www.easychair.org/smart-program/VSL2014/ORE-index.html

contains several ontologies with non-deterministic language features and non-trivial
ABoxes. By excluding 1, 331 s spent for preprocessing and consistency checking, the
accumulated classification times over the contained 200 ontologies are 3, 996 s for the
version No-C, 2, 503 s for Det-C, 1, 801 s for ET-C, and 1, 606 s for LT-C. Clearly,
the dataset also contains many ontologies for which completion graph caching does not
seem to have a significant impact, for example, if the ontologies can be processed de-
terministically or the ontologies are too difficult to even perform consistency checking
(which is the case for 3 ontologies). Nevertheless, our completion graph caching im-
proves the classification time with similar performances for LT-C and ET-C. By using
the satisfiability caching extension for nominals, as presented in Section 4.1, the accu-
mulated classification time can be further improved to 725 s. Similar results are also
achieved for the realisation of these ontologies. By excluding the times for all prereq-
uisites, the accumulated realisation times over all 200 ontologies are 1, 740 s for No-C,
1, 498 s for Det-C, 1, 061 s for ET-C, 1, 256 s for LT-C, and 923 s for the version where
the satisfiability caching extension for nominals is additionally activated.

Unfortunately, a direct comparison with previously developed completion graph
caching techniques or other approaches that reduce the ABox reasoning effort is not
easily possible. For example, the original completion graph caching technique [22]
that is integrated in the reasoning system Pellet [23] cannot be realised in Konclude
since this would require that modifications for subsequent tests are added to the non-
deterministic version of the cached completion graph from the initial consistency check,
but such modifications would be lost after the backtracking from possible clashes. Also
a comparison between Pellet and Konclude has only a limited validity since the reason-
ers have many different optimisations. However, for the ontologies depicted in Table 2,
Pellet 2.3.1 reaches the time limit for the classification of all ontologies with nominals
except Wine, for which Pellet requires 23.1 s. This can be seen as indication that the
completion graph caching in Pellet does potentially not work as good as the presented
technique that we realised in Konclude. In contrast, the recently proposed ABox ab-
sorption approach is implemented in the reasoner CARE,9 but it does not provide a
reasoning task that is also supported by Konclude.

6.1 Incremental Reasoning Experiments

To test the incremental reasoning based on the presented completion graph caching, we
used those ontologies of Table 2 that have a large amount of ABox assertions and for
which Konclude still has a clearly measurable reasoning time, i.e., COSMO, DPC1,
USDA-5, Oly, CobCav92, UOBM-1, and (in order to demonstrate the effects for de-
terministic ontologies) LUBM-1. We simulated a changed ABox for these ontologies
by randomly removing a certain amount of assertions from the ontology (denoted by
K) and by re-adding the removed assertions and removing new assertions (denoted by
K∓∆). For each ontology, we evaluated 10 random modifications that have 0.25, 0.5,
1, 2, 4, and 8 % of the size of the ontology’s ABox. For simplicity, we only simulated
modifications where the set of removed assertions and the set of added assertion have

9 http://code.google.com/p/care-engine/

42

http://code.google.com/p/care-engine/

the same size. The obtained results for the presented incremental reasoning approach
are shown in Table 4.

For consistency, the first two columns show the (incremental) consistency check-
ing time (in seconds) for K and K∓∆, respectively, and the last two columns show the
percentage of the nodes in the completion graph for K that were directly and indirectly
changed for the application of the modification ∆. Please note that the reasoner must be
able to efficiently access a object property assertion r(a, b) from both individuals, which
means that also the data structure for b is updated if r(a, b) has been added/removed and,
therefore, the number of nodes that are perceived as directly changed is usually higher
than the number of changed assertions. It can be observed that, especially for smaller
modifications, the incremental consistency check often requires much less time than
the initial consistency check. In particular, the individuals of USDA-5 are sparsely con-
nected via object properties and, therefore, often only the modified individuals have to
be re-built, which results in very low reasoning times for the incremental consistency
check. For larger modifications, the incremental consistency checking time increases
significantly for some ontologies, e.g., UOBM-1, and does almost catch up to the con-
sistency checking time of the initial ontology. On the one hand, our incremental con-
sistency checking approach has clearly some additional overhead for propagating the
compatibility status and for expanding affected neighbour nodes step by step, but, on the
other hand, our prototypical implementation has still a lot of room for improvements.
For example, we currently choose the next neighbour node for required expansions ran-
domly, but this can be improved by choosing a node to which new consequences are
propagated or from which consequences are missing. This would significantly reduce
the number of nodes that have to be re-built for the incremental consistency check.
Moreover, we currently also re-build nodes for individuals for which only new asser-
tions are added although it would be sufficient to simply extend the nodes of the previ-
ous deterministic completion graph by the new consequences.

For classification, the first two columns show analogously the (incremental) classi-
fication time for K and K∓∆, respectively, the third column represents the percentage
of the number of tested modifications for which re-classification was necessary, and
the last column represents the percentage of the classes for which satisfiability and
subsumption tests were re-calculated. At the moment, the change dependent nodes are
tracked together for all satisfiability and subsumption tests and we additionally mark
those classes for which nodes have been tracked. As a consequence, we have to re-
compute the satisfiability and subsumers of the marked classes if the tracked nodes
have an overlapping with the (indirectly) changed nodes. This can, however, also be
improved for smaller TBoxes by tracking the change dependent nodes for each class
separately. Clearly, if the ontologies do not contain nominals, then re-classification is
not required. But even some ontologies with nominals (e.g., UOBM-1), only a few
classes have to be re-classified and, in several cases, re-classification is not required at
all.

Also for realisation, the first two columns show the (incremental) realisation time
for K and K∓∆, respectively. The last two columns show the percentage of the number
of re-computed individuals and possible instances that are potentially affected through
the changes. In contrast to classification, we separately track for each individual the

43

change dependent nodes. Therefore, we often have to re-compute only the possible
instances for a part of the individuals, which often leads to a corresponding reduction
in reasoning time.

Please note that, in practice, the ABox changes are often small. In particular, modi-
fications that change 1 % of an ABox can, for several ontologies, already be considered
as large since they can consist of several hundreds or even of thousands of axioms, e.g.,
a modification of 1 % of the size of the ABox of UOBM-1 already contains 2, 605 ax-
ioms. For many practical applications, however, only a few axioms are changed between
the reasoning is invoked and our incremental reasoning approach (as well as many other
incremental reasoning techniques) are designed for such cases.

44

Table 4. Incremental reasoning effort for different reasoning tasks on changed ABoxes (Re-
clas. stands for Reclassification, Recomp. for Recomputation, DCN stands for Directly Changed
Nodes, ICN for Indirectly Changed Nodes, H for Hierarchy, C for Classes, I for Individuals, and
PI for Possible Instances)

Ontology |∆|·100
|K|

Consistency Classification Realisation
Time [s] Changes [%] Time [s] Reclas. [%] Time [s] Recomp. [%]
K K∓∆ DCN ICN K K∓∆ H C K K∓∆ I PI

USDA-5 0.25 3.1 0.0 0.0 0.0 0.9 − − − 18.2 0.0 1.0 1.0
USDA-5 0.50 3.3 0.0 0.0 0.0 0.8 − − − 18.1 0.0 0.5 0.5
USDA-5 1.00 3.1 0.0 0.0 0.0 0.9 − − − 18.2 0.0 1.0 1.0
USDA-5 2.00 3.2 0.0 0.0 0.0 0.8 − − − 14.9 0.0 2.0 2.0
USDA-5 4.00 3.2 0.1 0.0 0.0 0.8 − − − 17.0 0.0 3.9 3.9
USDA-5 8.00 3.2 0.1 0.1 0.1 0.9 − − − 15.6 0.1 7.9 7.9
COSMO 0.25 0.4 0.0 0.4 1.7 16.9 10.8 100.0 73.0 0.4 0.2 1.7 22.2
COSMO 0.50 0.4 0.0 0.8 1.5 26.1 16.1 100.0 73.3 0.5 0.3 1.6 22.0
COSMO 1.00 0.4 0.0 1.6 3.1 24.4 17.4 100.0 73.0 0.4 0.2 3.1 33.8
COSMO 2.00 0.4 0.1 3.1 5.5 25.9 18.0 100.0 73.0 0.5 0.3 5.6 44.9
COSMO 4.00 0.4 0.1 6.0 9.9 25.2 18.6 100.0 72.8 0.6 0.4 10.0 54.9
COSMO 8.00 0.4 0.2 11.4 16.6 20.6 17.1 100.0 73.0 0.5 0.6 17.1 88.5
DPC1 0.25 4.9 0.2 0.1 0.5 0.1 − − − 27.0 4.6 3.5 5.7
DPC1 0.50 5.1 0.4 0.3 0.8 0.1 − − − 28.7 7.2 5.2 8.3
DPC1 1.00 5.0 0.6 0.5 1.5 0.1 − − − 29.1 14.0 10.0 15.6
DPC1 2.00 4.9 1.1 1.0 2.6 0.1 − − − 27.7 19.9 16.9 25.4
DPC1 4.00 5.0 2.0 1.9 4.4 0.1 − − − 29.3 26.7 26.5 38.0
DPC1 8.00 5.0 3.1 3.4 7.3 0.1 − − − 34.2 36.7 51.8 54.6
Oly 0.25 3.1 0.1 0.1 0.5 0.1 − − − 8.3 1.6 3.6 6.0
Oly 0.50 3.2 0.2 0.3 0.8 0.1 − − − 10.9 2.7 5.2 8.4
Oly 1.00 3.2 0.4 0.5 1.4 0.1 − − − 10.4 4.5 9.3 14.9
Oly 2.00 3.1 0.7 1.0 2.8 0.1 − − − 10.1 7.4 17.4 26.8
Oly 4.00 3.2 1.3 1.9 4.8 0.1 − − − 12.2 11.4 28.0 40.2
Oly 8.00 3.1 1.9 3.6 7.7 0.1 − − − 11.6 14.2 43.5 56.5
UOBM-1 0.25 3.5 1.6 1.9 6.7 1.2 0.4 10.0 2.6 ≥ 300.0 n/a n/a
UOBM-1 0.50 3.6 1.9 2.7 8.4 1.4 0.6 20.0 3.6 ≥ 300.0 n/a n/a
UOBM-1 1.00 3.6 2.3 3.3 10.0 1.3 0.8 30.0 5.9 ≥ 300.0 n/a n/a
UOBM-1 2.00 3.7 2.9 5.8 14.0 1.4 1.1 40.0 7.9 ≥ 300.0 n/a n/a
UOBM-1 4.00 3.7 3.5 9.6 18.2 1.4 1.7 60.0 11.3 ≥ 300.0 n/a n/a
UOBM-1 8.00 3.7 3.8 14.1 21.6 1.5 2.0 70.0 13.4 ≥ 300.0 n/a n/a
CobCav92 0.25 10.8 0.8 1.3 4.9 0.0 0.0 0.0 0.0 1.6 1.2 4.2 0.0
CobCav92 0.50 11.3 1.4 2.5 8.6 0.0 0.0 10.0 0.0 1.5 1.2 7.9 0.0
CobCav92 1.00 11.1 2.7 4.6 15.4 0.0 0.0 10.0 0.0 1.7 1.3 14.8 0.0
CobCav92 2.00 10.5 4.4 8.1 25.8 0.0 0.0 10.0 0.0 1.5 1.4 25.9 0.0
CobCav92 4.00 11.6 7.3 12.9 38.6 0.0 0.3 20.0 0.1 1.7 1.6 40.7 0.0
CobCav92 8.00 11.6 9.7 18.1 50.4 0.0 0.8 50.0 0.1 1.7 1.7 54.9 0.0
LUBM-1 0.25 1.4 0.1 0.7 7.0 0.0 − − − 0.1 0.1 4.0 0.0
LUBM-1 0.50 1.4 0.2 1.4 1.5 0.0 − − − 0.1 0.1 6.9 0.0
LUBM-1 1.00 1.4 0.3 2.6 4.9 0.0 − − − 0.1 0.1 12.5 0.0
LUBM-1 2.00 1.3 0.5 4.9 8.1 0.0 − − − 0.1 0.1 21.0 0.0
LUBM-1 4.00 1.4 0.9 8.8 13.1 0.0 − − − 0.2 0.1 34.6 0.0
LUBM-1 8.00 1.4 1.2 14.5 19.7 0.0 − − − 0.2 0.2 53.7 0.0

45

6.2 Representative Caching Experiments

We integrated a first prototypical version of the presented representative caching in
our reasoning system Konclude, which is, however, not yet compatible with all other
integrated features and optimisations. As of now, the integrated representative caching
is primarily used for “simple individuals” that do not have too much interaction with
other individuals in the ABox. In cases where representative caching could easily cause
performance deficits (e.g., through the intensive use of nominals), Konclude caches the
relevant parts of such completion graphs by using the ordinary technique. Moreover,
data property assertions are, at the moment, internally transformed into class assertions
and, as a consequence, nodes for individuals with data property assertions can currently
not be cached in a representative way.

However, first experiments are very encouraging. For example, consistency check-
ing of LUBM-1 without data property assertions requires only 16 MB by using the
representative caching, whereas a fully expanded completion graph constructed by the
tableau algorithm requires 481 MB in Konclude. As comparison, the internal represen-
tation of LUBM-1 requires 44 MB and 46 MB are additionally used for the parsed OWL
objects, which are kept in memory to facilitate the handling of added/removed axioms
and to efficiently answer queries about told axioms since the preprocessing (e.g., ab-
sorption, lexical normalisation) often changes the internal representations significantly
for ontologies that use more expressive language features. The doubled representation
could, however, easily be avoided for ABox assertions since they have a very simple
structure and, as a consequence, the overall memory consumption for ontologies with
large ABoxes could be further improved. Since the representative caching is only used
for the simple individuals, the reasoning performance is hardly affected.

Similar improvements can also be achieved for ontologies with more expressive lan-
guage features. In particular, Homo_sapiens10 is a very large SROIQ ontology from
the Oxford ontology library with 244, 232 classes, 255 object properties, and 289, 236
individuals for which Konclude requires 10, 211 MB in total to check the consistency
by using the representative caching, whereas 19, 721 MB are required by Konclude
for consistency checking with a fully expanded completion graph. With the representa-
tive caching, the majority of the memory consumption is again caused by the internal
representation and the data from the preprocessing (9, 875 MB). Nevertheless, the clas-
sification of Homo_sapiens still requires approximately 707.0 s for Konclude. This can
potentially be improved by further extending the presented satisfiability caching with
nominal support. For example, one could also allow the caching of node labels even if
the dependent nominal nodes in the cached completion graph are modified by addition-
ally storing in the cache which entries are compatible with each other, i.e., which cached
labels have occurred in the same completion graph. Hence, different cache entries that
would influence nominal nodes can safely be re-used if the dependent nominal nodes
do not overlap or the cache entries are compatible with each other.

10 http://www.cs.ox.ac.uk/isg/ontologies/lib/OMEO/Homo_sapiens.owl/

46

http://www.cs.ox.ac.uk/isg/ontologies/lib/OMEO/Homo_sapiens.owl/

7 Conclusions and Future Work

We have presented a new technique to improve ABox reasoning with expressive De-
scription Logics. This is achieved by caching the completion graph of the initial ABox
consistency test and re-using this data in subsequent tests. In particular, we only have
to re-process parts of the ABox until an expansion as for the initial consistency check
can be guaranteed for the remaining parts of the ABox.

This caching technique was essential for the good realisation performance of our
reasoning system Konclude at the ORE 2014 competition, where Konclude was able to
outperform other reasoners in the OWL EL as well as in the OWL DL discipline. As
also confirmed by the presented evaluation, the technique reduces the ABox reasoning
effort for all reasoning tasks for which consequences of the ABox have potentially to
be considered. Moreover, the technique is well-suited for integration into other tableau-
based reasoning systems since it does not require significant adaptations to the reasoner
and also does not produce a significant overhead. For example, if a knowledge base
does not contain any individuals, then reasoning is not affected at all.

We also presented and evaluated extensions and applications of the caching tech-
nique, which allow for supporting nominals for the satisfiability caching of node labels,
for reducing reasoning effort for incrementally changed ABoxes, and for handling very
large ABoxes by storing partially processed parts of the completion graph in a repre-
sentative way.

Acknowledgements

The first author acknowledges the support of the doctoral scholarship under the Post-
graduate Scholarships Act of the Land of Baden-Wuerttemberg (LGFG).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

2. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical analysis of
optimization techniques for terminological representation systems. J. of Applied Intelligence
4(2), 109–132 (1994)

3. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental clas-
sification of description logics ontologies. J. of Automated Reasoning 44(4), 337–369 (2010)

4. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly expressive
reasoner (SHER). J. of of Web Semantics 7(4), 357–361 (2009)

5. Donini, F.M., Massacci, F.: EXPTIME tableaux forALC. J. of Artificial Intelligence 124(1),
87–138 (2000)

6. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2 reasoner. J. of
Automated Reasoning 53(3), 1–25 (2014)

7. Glimm, B., Kazakov, Y., Liebig, T., Tran, T.K., Vialard, V.: Abstraction refinement for ontol-
ogy materialization. In: Proc. 13th Int. Semantic Web Conf. (ISWC’14). LNCS, vol. 8797,
pp. 180–195. Springer (2014)

47

8. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for OWL knowledge base systems. J. of
Web Semantics 3(2-3), 158–182 (2005)

9. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. of Auto-
mated Reasoning 41(2), 99–142 (2008)

10. Haarslev, V., Möller, R., Turhan, A.Y.: Exploiting pseudo models for TBox and ABox reason-
ing in expressive description logics. In: Proc. 1st Int. Joint Conf. on Automated Reasoning
(IJCAR’01). LNCS, vol. 2083, pp. 61–75. Springer (2001)

11. Halaschek-Wiener, C., Hendler, J.: Toward expressive syndication on the web. In: Proc. 16th
Int. Conf. on World Wide Web (WWW’07). ACM (2007)

12. Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic up-
dates. In: Proc. 4th Confederated Int. Conf. On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE(OTM’06), LNCS, vol. 4275, pp. 722–737.
Springer (2006)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’06). pp. 57–67. AAAI
Press (2006)

14. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. J. of Logic and Computation 9(3), 385–410 (1999)

15. Horrocks, I., Sattler, U.: Optimised reasoning for SHIQ. In: Proc. 15th European Conf. on
Artificial Intelligence (ECAI’02). pp. 277–281. IOS Press (2001)

16. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic
SHIQ. In: Proc. 17th Int. Conf. on Automated Deduction (CADE’00). Lecture Notes in
Computer Science, vol. 1831, pp. 482–496. Springer (2000)

17. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. 19th Int. Workshop on Description Logics (DL’06). vol. 189. CEUR (2006)

18. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. 11th Int. Conf. on Princi-
ples of Knowledge Representation and Reasoning (KR’08). pp. 274–284. AAAI Press (2008)

19. Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: Proc.
12th Int. Semantic Web Conf. (ISWC’13). LNCS, vol. 8218, pp. 232–247. Springer (2013)

20. Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. of
Artificial Intelligence Research 48, 253–303 (2013)

21. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Proc. 3rd European Semantic Web Conf. (ESWC’06). LNCS, vol. 4011, pp.
125–139. Springer (2006)

22. Sirin, E., Cuenca Grau, B., Parsia, B.: From wine to water: Optimizing description logic
reasoning for nominals. In: Proc. 10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06). pp. 90–99. AAAI Press (2006)

23. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. of Web Semantics 5(2), 51–53 (2007)

24. Steigmiller, A., Glimm, B., Liebig, T.: Nominal schema absorption. In: Proc. 23rd Int. Joint
Conf. on Artificial Intelligence (IJCAI’13). pp. 1104–1110. AAAI Press (2013)

25. Steigmiller, A., Glimm, B., Liebig, T.: Optimised absorption for expressive description log-
ics. In: Proc. 27th Int. Workshop on Description Logics (DL’14). vol. 1193. CEUR (2014)

26. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. of Web Semantics
27(1) (2014)

27. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints. In: Proc.
17th Int. Workshop on Description Logics (DL’04). vol. 104. CEUR (2004)

28. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. of Automated Reasoning 39, 277–316 (2007)

48

29. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/
owl2-overview/

30. Wandelt, S., Möller, R.: Towards ABox modularization of semi-expressive description log-
ics. Applied Ontology 7(2), 133–167 (2012)

31. Wu, J., Hudek, A.K., Toman, D., Weddell, G.E.: Absorption for ABoxes. J. of Automated
Reasoning 53(3), 215–243 (2014)

32. Wu, J., Lecue, F.: Towards consistency checking over evolving ontologies. In: Proc. 23rd
ACM Int. Conf. on Information and Knowledge Management (CIKM’14). pp. 909–918.
ACM (2014)

49

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

	Completion Graph Caching Extensions and Applications for Expressive Description Logics
	Introduction
	Preliminaries
	The Description Logic SROIQ
	Normalisation
	Tableau Algorithm for SROIQ
	(Binary) Absorption

	Completion Graph Caching and Reusing
	Correctness

	Caching Applications and Extensions
	Satisfiability Caching with Nominals
	Incremental Reasoning for Changed ABoxes
	Representative Caching

	Related Work
	Implementation and Evaluation
	Incremental Reasoning Experiments
	Representative Caching Experiments

	Conclusions and Future Work

