Elektromagnetische Felder und Wellen: Klausur 2009-2

Name:			
Vorname :			
Matrikelnummer :			
Aufgabe 1:	Aufgabe 2:	Aufgabe 3:	\sum
Aufgabe 4:	Aufgabe 5:	Aufgabe 6:	\sum
Aufgabe 7:	Aufgabe 8:	Aufgabe 9:	\sum
Aufgabe 10:	Aufgabe 11:	Aufgabe 12:	\sum
Aufgabe 13:	Aufgabe 14:		\sum
			Gesamtpunktzahl:
		Ergebnis:	
Bemerkungen:			

$Aufgabe \ 1 \ (\ 3 \ Punkte)$

Im Raumbereich z>0existiert die elektrische Feldstärke

$$\vec{E} = E_0(1.5\cos\{nk_0z\} + i0.5\sin\{nk_0z\})\exp\{i\omega t\}\vec{e_y}$$
.

Welche Brechzahl n hat das unmagnetische Medium in diesem Bereich, wenn es bei z=0 an den freien Raum grenzt?

$Aufgabe \ 2 \ (\ 3 \ Punkte)$

Eine positive Punktladung Q sitzt an der Stelle $\vec{r}_1=a\vec{e}_y$ und eine negative Punktladung -Q an der Stelle $\vec{r}_2=-a\vec{e}_y$.

Berechnen Sie das elektrische Feld in der Ebene y=0.

$Aufgabe \ 3 \ (\ 6 \ Punkte)$

In einem Vulkan steigt eine 1 m³ große Gasblase mit 1 m/s aus dem Magma auf. Die Gasblase ist mit 10^{-6} As/m³ geladen. Der Vulkan sitzt am Äquator wo ein Erdmagnetfeld von $\vec{B} = B_0 \vec{e}_{\theta}$ mit $B_0 = 3 \cdot 10^{-5}$ Vs/m² herrscht. Wie groß ist die Kraft (Betrag und Richtung), welche die Blase ablenkt?

Hinweis: Der Winkel θ wird gegen die Drehachse gemessen.

$Aufgabe \ 4 \ (\ 3\ \mathrm{Punkte})$

Die ungeladene Grenzfläche zwischen zwei Medien mit $\varepsilon_1 = \varepsilon$ und $\varepsilon_2 = -\varepsilon$ ist bei z = 0. Welche Größe hat die elektrische Feldstärke \vec{E}_2 an der ungeladenen Grenzfläche, wenn das erzeugende elektrische Feld im angrenzenden Medium $\vec{E}_1 = E_0(\vec{e}_x + \vec{e}_z)$ lautet?

$Aufgabe \ 5 \ (\ 4 \ Punkte)$

Eine Stange mit vernachlässigbaren Querschnitt und dem Widerstand R schließt den rechteckigen Stromkreis, wie in Abbildung 1 dargestellt. Der Widerstand der anderen drei Seiten des Stromkreises ist vernachlässigbar. Ein statisches, homogenes Magnetfeld \vec{B} ist senkrecht zur Stromkreisebene ausgerichtet.

Berechnen Sie den Spannungsabfall über den Stab, wenn dieser sich mit einer konstanten Geschwindigkeit \vec{v} bewegt.

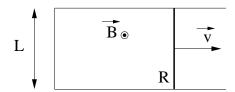


Abbildung 1: Schematische Darstellung.

$Aufgabe \ 6 \ (\ 7 \ Punkte)$

Ein Medium besitzt die Plasmafrequenz ω_c und die genäherte relative Dielektrizitätskonstante $\varepsilon = 1 - (\omega_c/\omega)^2$. Eine ebene Welle mit $\vec{E}\{\vec{r}\} = E_0 \exp\{i(\omega t - k_x x)\}\vec{e}_y$ breitet sich im Medium aus. Wie lautet das zugehörige Feld $\vec{H}\{\vec{r}\}$? Wie muss ω gewählt werden, damit Energie durch das Medium transportiert wird?

Aufgabe 7 (5 Punkte)

Welchen Polarisationszustand hat die Welle mit der magnetischen Feldstärke

$$\vec{H} = H_0(2\vec{e}_x + (1+i\sqrt{3})\vec{e}_y) \exp\{i(\omega t + 3k_0 z)\}$$
?

$Aufgabe \ 8 \ (\ 6 \ \mathrm{Punkte})$

Eine Ladungsverteilung kann beschrieben werden durch eine unendliche Menge von Punktladungen mit dem Index n $(n = 0, 1, 2, 3, ..., +\infty)$, die sich auf der x-Achse befinden. Die Ladung und Position ist für jedes n als

$$q_n = \left(\frac{1}{8}\right)^n Q$$
 und $x_n = \left(\frac{1}{2}\right)^n a$

mit den Konstanten a und Q gegeben. Berechnen Sie das elektrische Feld \vec{E} im Ursprung des Koordinatesystems.

$Aufgabe \ 9 \ (\ 8 \ \mathrm{Punkte})$

Eine ebene Welle trifft im Medium mit μ_1 senkrecht auf eine Grenzfläche bei z=a. Die Wellenzahl der einfallenden Welle ist k_1 , die Wellenzahl der transmittierten Welle ist $k_2 > k_1$. Das an der Grenzfläche reflektierte Feld H ist betragsmäßig halb so groß, wie das einfallende Feld. Wie groß ist $\mu_2 < \mu_1$ im Bereich der transmittierten Welle?

$Aufgabe~10~({\rm 8~Punkte})$

Eine Welle mit elektrischem Feld

$$\vec{E} = E_0(2\vec{e}_x + \sqrt{2}\vec{e}_y - \sqrt{2}\vec{e}_z) \exp\{i(\omega t - \vec{k}_{\text{in}} \circ \vec{r})\}$$

breitet sich mit dem Wellenzahlvektor $\vec{k}_{\rm in}=(\vec{e}_y+\vec{e}_z)n_1k_0/\sqrt{2}$ im Medium 1 mit $\mu_1=12,\,\varepsilon_1=3$ aus. Wie lautet das Feld der reflektierten Welle, wenn bei z=0 ein Medium mit $\mu_2=3,\,\varepsilon_2=12$ angrenzt?

Aufgabe 11 (8 Punkte)

In der isolierenden Wandung eines unendlichen langen Hohlzylinders, mit dem Radius R und der Wanddicke δ , befindet sich eine homogen verteilte Ladung der Dichte ϱ_v . Der Hohlzylinder rotiert mit der Winkelgeschwindigkeit ω um die Zylinderachse. Bestimmen Sie das magnetische Feld \vec{H} als Funktion von ω im Bereich 1 unter Berücksichtigung, dass $\delta << R$ ist.

Hinweis: Im Bereich 2 existiert kein magnetisches Feld.

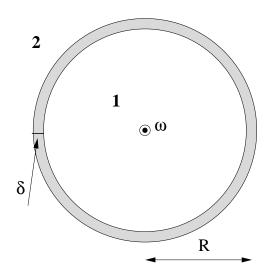


Abbildung 2: Schematische Darstellung.

Aufgabe 12 (10 Punkte)

Eine Drahtschleife in Form eines gleichschenkligen Dreiecks wird von einen Strom I durchflossen. Die Länge der Schenkel ist s. Für den Abstand a zwischen Zentrum und einem Schenkel gilt $a = s \cdot \sqrt{3}/3$. Bestimmen Sie die magnetische Feldstärke im Zentrum des Dreiecks.

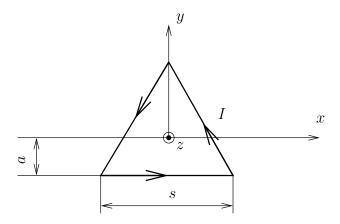


Abbildung 3: Schematische Darstellung des gleichschenkligen Dreiecks.

Aufgabe 13 (9 Punkte)

Die Welle

$$\vec{H} = H_0 \exp\{i(\omega t - (3x - 4y)k_0)\}(4\vec{e}_x + 3\vec{e}_y)$$

fällt bei $y=-2\pi/k_0$ auf die ebene Grenzfläche zu einem Medium mit Brechzahl 2.4. Beide Medien sind unmagnetisch. In welchem Verhältnis stehen die zur Grenzfläche tangentialen Komponenten des \vec{H} Feldes der reflektierten zur einfallenden Welle an der Grenzfläche?

Aufgabe 14 (10 Punkte)

Eine Ladungsverteilung ist gegeben durch

$$\varrho_{\mathbf{v}}(\vec{r}') = \left(\frac{x'y' + az'}{a^5}\right)Q \quad \text{mit} \begin{cases} -a < x' < a \\ -a < y' < a \\ -a < z' < a \end{cases}$$

und sonst
$$\varrho_{\mathbf{v}}(\vec{r}') = 0$$
.

Berechnen Sie die gesamte Ladung.

Berechnen Sie das elektrische Dipolmoment der Ladungsverteilung, das als

$$\vec{p}(\vec{r}) = \int (\vec{r}' - \vec{r}) \varrho_{\mathbf{v}}(\vec{r}') d^3r'$$

definiert ist.