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Abstract

Prediction intervals can be used to better understand uncertainty of forecasts,
especially when using modern data science methods. We present and extend a
model-independent and hence widely applicable approach for the estimation of
prediction intervals. It is particularly suitable for the extension of established and
productive models. Without much effort, prediction intervals can be estimated
to better evaluate the quality of their forecasts. We apply the method to a real
health insurance data set. Here, we use a random forest for the estimation of
the target variable and subsequently also for the estimation of the prediction
intervals. In addition, we compare the results to an alternative but random forest
specific method and observe highly competitive results.
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1 Introduction

Modern data science approaches are used for many actuarial tasks in insurance busi-
ness today. Compared to well established actuarial methods, the application is often
motivated by a higher accuracy, which is measured by simple point estimators, see
e.g. [1]. An unbiased and accurate estimator is beyond any doubt important. How-
ever, uncertainty is also a crucial quantity in actuarial considerations. Essentially, the
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uncertainty is insured by the insurance company. Therefore, an appropriate assess-
ment of this quantity is required, e.g. for risk management or the determination of
adequate safety margins in pricing.

In this letter, we discuss interpretable prediction intervals taking both noise and
estimation uncertainty into account and illustrate the application for a realistic sce-
nario. Thereby, we further improve an existing bootstrap approach based on [12].
In the latter, neural networks and prediction intervals are used to assess the quality
of mortality forecasts, where only point estimates have been considered so far, see
e.g. [9, 10]. In this letter instead, we use random forests offering advantages like less
tuning parameters and easy applicability to different scales [2]. For a comparison and
validation of our modification, we use a random forest specific method with quantile
regression forests [8]. The independence of the underlying model is a main advantage
of the bootstrap approach as established and productive applications with a focus on
point estimates can be straightforwardly extended to achieve a better understand-
ing of the inherent uncertainty. Extensive reviews of techniques regarding prediction
intervals can be found in [7] for neural networks and in [13] or [11] for random forests.

Throughout the letter, X := (X1, . . . , Xn), Y and ϵ denote real random vectors
or variables on a probability space (Ω,F ,P) with n ∈ N and (X,Y ) following a
distribution D. The general training data set is defined as

T := {(Xi, Yi) := (Xi1, . . . , Xin, Yi)
i.i.d.∼ D|i ∈ {1, . . . ,m}}

with m ∈ N, and for convenience, we use Y (x) := Y |X = x as the conditional response
with x ∈ Rn.

The remainder is structured as follows: In Section 2, we first give a definition of
prediction intervals and then introduce the new adapted bootstrap approach as an
extension of [12]. Also, the quantile regression forest method and metrics for comparing
different techniques are summarized. Section 3 describes the data set and results of
the different procedures are presented. Finally, Section 4 concludes.

2 Prediction intervals

2.1 Definition

The following definition is based on the so-called type III interval in [13].
Definition 1. We define a prediction interval as

Iα(X,T ) :=
[
I−α (X,T ), I+α (X,T )

]
with P (Y ∈ Iα(X,T )|X = x) ≥ α for x ∈ Rn and α ∈ (0, 1).

The prediction interval contains the response with a probability of α, which leads to
an intuitive assessment of the prediction uncertainty of a specific model. This concept
is also better interpretable and more informative than a mere conditional variance
estimation, which neglects probabilistic statements and more heavily depends on the
underlying scale, in particular on extreme, but rare outcomes of the target variable.
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2.2 Adapted bootstrap approach

The underlying approach for estimating prediction intervals was first introduced in [6]
and has been applied in various fields since then, including insurance related data
sets like in [12]. Due to parts of its structure, the procedure is often referred to as a
bootstrap approach. We pick up this technique based on the named publications but
slightly modify it in order to improve its consistency and unlike most implementations
use random forests as basis to show model independency as well as to take advantage
of their favorable properties. Hence, we call this adapted bootstrap approach (AB).

The approach requires rather common assumptions like Y = f(X) + ϵ for a func-

tion f : Rn → R (model), E(ϵ|X = x) = 0 (unbiased errors), f(x) − f̂(x) ⊥ ϵ(x)
(independence) as well as ϵ(x) ∼ N(µϵ(x), σ

2
ϵ (x)) (normal errors) for a fixed x ∈ Rn

and an estimator f̂(x) derived from T (e.g. a random forest). Further assumptions are

E(f̂(x) − f(x)) = 0 (unbiased estimator) and f(x) − f̂(x) ∼ N(µ(x), σ2(x)) (normal
estimator).

The unbiasedness is critical, though following [6] bias is assumed to be neglectable
in comparison to variance. The assumption with regard to the distribution is based
on the application in [12], but note that different versions are possible, see [6].

Based on these assumptions, a straightforward calculation leads to the formula

I±α (x) = f̂(x)± Φ−1

(
1 + α

2

)
·
√

σ2(x) + σ2
ϵ (x) (1)

for symmetric prediction intervals, where Φ−1 denotes the quantile function of the
standard normal distribution and x ∈ Rn corresponds to a realization of the explana-
tory variables for which the prediction interval of the response should be retrieved.
Therefore, it remains to estimate the model variance σ2(x) and noise variance σ2

ϵ (x),
which are in general unknown.

The model variance σ2(x) = Var(f̂(x)) is approximated using N ∈ N bootstrap
samples derived from T and the corresponding random forests on these sets. Specif-
ically, each of the N resamples is of the same size as the training set T and drawn
according to the standard approach introduced in [5], in particular with replacement.
The final estimator σ̂2(x) equates to the empirical variance calculated with the pre-
dictions for x from the models each trained on one of the N bootstrap samples. Hence,
we approximate the variance of the base random forest f̂(x) (ensemble of decision
trees) with N additional random forests (ensemble of random forests). This approach
differs slightly from [12] or [6] as in these papers the variance of a single member of
the ensemble (of neural networks) is estimated.1 This does not correspond to the actu-
ally desired value. Theoretically, our modification should result in a coherent theory
and in a higher accuracy by avoiding unnecessarily wide intervals. In practice, the dif-
ferences depend on the variance reduction achieved by using an ensemble instead of
a single member. In [12], there is apparently only a slight deviation from the desired
values, but this can only be observed ex post and therefore not be assumed in general.
A similar modification of the method is also motivated in [4].

1This is similar to estimating the variance of a random forest based on the variance of a single decision
tree.
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For the noise variance σ2
ϵ (x) = Var(ϵ(x)), we implicitly assume that a noisy

functional dependency

(Y (X)− f̂(X))2 − σ2(X) = g(X) + δ(X)

with E(δ|X = x) = 0 exists, where g can be estimated consistently. Hence, σ2
ϵ (x) =

g(x) holds, and we approximate g using a separate random forest estimator ĝ on the
modified learning data set

T̃ := {(Xi, Ri)|Ri := ((Yi − f̂(Xi))
2 − σ̂2(Xi))

+, (Xi, Yi) ∈ T, i ∈ {1, . . . ,m}}.

Here, we follow [12]. Moreover, f̂(Xi) in Ri refers to the out of bag prediction [3] in
order to gain a better estimate. Plugging in both approximations of the variances in
Formula 1, we obtain an estimator for a symmetric prediction interval that should
approximately fulfil the condition of Definition 1 for a large training data set. The
precise steps of the presented approach can be found concisely in Procedure 1.

Procedure 1 Adapted bootstrap approach

Required: training data set T := {(Xi, Yi) := (Xi1, . . . , Xin, Yi)
i.i.d.∼ D|i ∈

{1, . . . ,m}}, realization x ∈ Rn of X, coverage probability α ∈ (0, 1).

1: Train an estimator f̂ on T (e.g. a random forest).

2: Generate N ∈ N bootstrap samples of size m from T and train an estimator f̂i
(i ∈ {1, . . . , N}) on each of them.

3: Set σ̂2(x) := 1
N−1

∑N
i=1

(
f̂i(x)− f̂(x)

)2

with f̂(x) := 1
N

∑N
i=1 f̂i(x).

4: Set T̃ := {(Xi, Ri)|Ri := ((Yi− f̂(Xi))
2− σ̂2(Xi))

+, (Xi, Yi) ∈ T, i ∈ {1, . . . ,m}}
and train an estimator ĝ on this set.

5: Set σ̂ϵ(x) := ĝ(x).

6: Set Î±α (x, T ) := f̂(x)± Φ−1
(
1+α
2

)
·
√

σ̂2(x) + σ̂2
ϵ (x).

Result: estimated prediction interval Îα(x, T ) := [Î−α (x, T ), Î+α (x, T )] at point x.

2.3 Quantile regression forest

As a comparison to a model-specific procedure, we briefly summarize a method based
on quantile regression forests (QRF) [8]. Here, a prediction interval is defined as

Iα(x) :=
[
Q0.5−α

2
(x), Q0.5+α

2
(x)

]
withQ0.5±α

2
(x) := inf{y ∈ R|F(y|X = x) ≥ 0.5±α

2 } as the quantiles of the conditional
distribution of Y . To obtain an estimator, F(y|X = x) is first approximated with
quantile regression forests and then used to gain empirical quantiles Q̂0.5±α

2
(x). For

an in-depth introduction, we refer to [8].
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This method relies on the explicit structure of a random forest and therefore is not
model-independent. Also, the intervals are possibly not symmetric around a prediction
as there is not a point prediction in this context, which also means that the variance
of the point estimate is not taken into account. On the other hand, the procedure
only needs one instance of a random forest and does not have any distributional
assumptions since the distribution itself is approximated. Hence, this approach can
be seen as non-parametric, whereas the method presented in the preceding section is
parametric.

2.4 Performance measures

In order to assess the quality of prediction intervals, we use two measures that reflect
the coverage probability and the informativeness. Both are also used in [12] and
described in [7]. As usual, these measures are evaluated on a separate testing data set
V that is equally structured as the learning data set T and consists of m ∈ N elements
in our case.

The first measure is called prediction interval coverage probability (PICP) and
defined as

PICP :=
1

m

m∑
i=1

1{Yi∈[Î−
α (Xi,T ),Î+

α (Xi,T )]}.

It can be seen as an approximation of P(Y (X) ∈ [Î−α (X,T ), Î+α (X,T )]) and hence
should be close to the desired α.

The second measure is the so-called mean prediction interval width (MPIW) and
described as

MPIW :=
1

m

m∑
i=1

(Î+α (Xi, T )− Î−α (Xi, T )).

Therefore, it estimates E(Î+α (X,T )− Î−α (X,T )) and should be preferably small under
the condition that the PICP is still close to α.

In their original form, both measures do not reflect the conditionality on X. This
inaccuracy can be reduced by applying the measures to subsets of the testing data
set, which is done hereafter.

3 Application to insurance data

3.1 Data description

In this section, we analyse and compare the approaches exemplary for a health insur-
ance portfolio. The data set contains 13,203 substitutive private health insurance
claims for insured persons over one year. The data mainly contains information about
the insured person, contract characteristics, premiums and refunds over historic years.
In total, there are 19 explanatory variables and one response, the sum of claims in one
year, similar to a severity model in P & C insurance. As the claims are right-tailed,
we choose to model the log response variable. However, the results hereafter are on
the original scale.

5



Fig. 1 Average predicted claims (boundaries of prediction interval, point estimate and observed
average) by age for the adapted bootstrap approach and the quantile regression forest method with
additional information about the number of observations

The data is split into a training and testing set at the ratio of 3:1 under strati-
fication of the response. The random forest models of the corresponding method are
estimated using 500 decision trees in one ensemble. Moreover, the minimum number of
observations in a single leaf is 5, and the value for the randomly selected variables at
each split is sustained through a tuning procedure. Specifically for the adapted boot-
strap approach, we choose 100 bootstrap samples for estimating the model variance.
In general, we select α = 90 % for the prediction intervals and evaluate them on the
testing data.

3.2 Results

We compare the approaches with respect to the metrics PICP and MPIW. First, we
investigate the absolute values of the prediction intervals, where we split the testing
data with respect to age. Especially in areas with only few observations, the uncer-
tainty is high, see Figure 1. In particular, above 60 the upper bounds of the prediction
intervals take values with up to 50,000 EUR. Also, the mean forecasts deviate from
the observed averages for ages with only a few observations. Notably, both approaches
show comparable prediction intervals, which are slightly larger for the adapted boot-
strap method, which could be a result of incorporating the deviation of the point
prediction into the estimation of the intervals. The MPIW corresponds to 9,235 EUR
for the adapted bootstrap approach and 7,542 EUR for the quantile regression for-
est method. Both techniques result in presumably large intervals. However, this only
reflects the high uncertainty in prediction, which is not surprising for an experienced
actuary. Therefore, a limited view on the mean prediction could be dangerous and
potentially results in the conclusion that uncertainty is only huge for highest ages.
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Both methods meet the desired value of 90 % for their PICP, which implies validity
of the intervals on average (0.9001 for the adapted bootstrap approach and 0.9013
for the quantile regression forest technique). We also analyzed the PICP for a similar
age partition as in Figure 1. The PICP for ages with a large number of observations
was close to 0.9 in any case. For highest ages, the uncertainty is higher due to small
sample size, and hence, the PICP values sometimes deviate.

4 Conclusion

The adapted bootstrap method is a consistent modification of the bootstrap approach
for estimating prediction intervals. It is especially useful for an extension of established
and productive applications due to its model independence. Here, prediction intervals
can give a better understanding of the quality of a model, and almost solely, more
computational resources are required. The results are competitive to a tailored model-
specific procedure like the quantile regression forest method in our example. The
prediction intervals can be intuitively used for assessing the uncertainty of a target
variable and are more informative than single point estimates. Therefore, the concept
of prediction intervals should be of particular interest for actuaries that want to better
understand predictions of applied data science methods.
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