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Abstract

In practical applications, effectively segmenting cracks in large-scale computed to-
mography (CT) images holds significant importance for understanding the structural
integrity of materials. However, classical methods and Machine Learning algorithms
often incur high computational costs when dealing with the substantial size of input
images. Hence, a robust algorithm is needed to pre-detect crack regions, enabling
focused analysis and reducing computational overhead. The proposed approach
addresses this challenge by offering a streamlined method for identifying crack re-
gions in CT images with high probability. By efficiently identifying areas of interest,
our algorithm allows for a more focused examination of potential anomalies within
the material structure. Through comprehensive testing on both semi-synthetic and
real 3D CT images, we validate the efficiency of our approach in enhancing crack
segmentation while reducing computational resource requirements.

Keywords:
CUSUM, multiple hypotheses testing, Hessian-based filter, crack detection,
classification.

1. Introduction

Concrete serves as the foundational material for various structures, including
buildings and bridges, underscoring the importance of ensuring its quality, durability,
and mechanical stability. To gain a better understanding of the mechanisms and
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causes of cracks, it is essential to subject concrete specimens to stress tests, which
is valuable to prevent the occurrence of emergency conditions. For instance, the
damage and fracture evolution in concrete were studied in [19] under cyclic loading.
An overview study about this type of material was also introduced in [18].

Nevertheless, analyzing the CT image of concrete samples after a stress test can
facilitate the study of crack propagation. Typically, a 3D CT image comprises two
components: cracks and background. Cracks exhibit lower gray values compared
to the background. This characteristic suggests the use of segmentation methods,
involving the application of a global threshold or a pixel/voxel-wise analysis. Various
methods for image segmentation and crack detection fall into distinct categories,
including thresholding segmentation based on assumptions about the distribution of
gray values [35, 28], edge-detection techniques [13, 1] that consider local structures,
and region-growing approaches like percolation-based methods [33]. However, dealing
with 3-dimensional images introduces significant challenges due to the high noise levels
and the intricate nature of crack structures. Detecting cracks in 3D images introduces
challenges due to computational costs and a higher risk of misclassification. Filters like
the Frangi filter and Sheet filter [17, 32] prove to be effective in identifying flat-like or
vessel-like structures within the material under appropriate settings. Leveraging the
results from the Frangi filter or Sheet filter, the Hessian-based percolation method [15]
is then applied, enhancing crack detection performance. In a study on semi-synthetic
images [5], it was demonstrated that, among classical methods, the Frangi filter, Sheet
filter, and Hessian-based percolation filter yield optimal results when their parameters
are tuned appropriately.

Obviously, to tackle such challenges, machine learning and deep learning algorithms
have been recently considered. Methodologies such as convolutional neural networks,
random forests, 3D-Unet can be applied for crack segmentation. However, with the
lack of training data, the accuracy of those methods might not be sufficient. As an
alternative, semi-synthetic data can be generated (based on minimum-weight surfaces
in bounded Voronoi diagrams [24, 26]), exhibiting similar geometry to real-world
input. However, when dealing with extremely large input images (e.g., 100002× 2000)
which modern scanners produce, efficient storage and computational power become
crucial. Hence, it is necessary to pre-localize the cracks to reduce the size of the
input data to be used in artificial intelligence methods. This issue imposes a natural
restriction to use only methods with linear complexity. For that, it is advisable to
partition the input image into smaller subregions, subsequently inspecting each region
in this partition for cracks. The ultimate crack detection may then by performed
by a deep learning model proposed in [6]. Based on the partition, we construct a
realization of a geometric random field such that cracks in the input image are treated
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as anomaly regions within this field.
The change-point problem for stationary random fields {ξk, k ∈ W},W ⊂ Zn, as

discussed in [11], involves defining changes in parameters such as mean, variance,
spectral density, etc., within {ξk, k ∈ W},W ⊂ Zn. The Cumulative Sum (CUSUM)
statistic is a crucial tool for detecting clusters in this context. As anomaly detection,
the change-point analysis has been extended in [2, 3] to 3D CT images to identify
changes in the mean and entropy of the local directional distribution of fibers.
Assuming the random field {ξk, k ∈ W},W ⊂ Zn to be stationary and m-dependent,
the tail probability of CUSUM statistics is upper-bounded [14], enabling to control
the Type-I errors during scan statistic tests.

An alternative strategy involves simultaneous testing within all scanning windows,
known as multiple hypotheses testing. Early approaches, such as the Bonferroni
correction [10] and the Šidák correction [29], aimed to rigorously control the Family-
Wise Error Rate (FWER) to prevent inflation of the probability of making at least one
false discovery. Subsequent methods, introduced by [21, 22, 30], included step-down
and step-up procedures that dynamically adapt based on observed p-values, striking a
balance between error control and sensitivity. In large-scale hypothesis testing, rather
than maintaining an extremely conservative test, one can relax the rejection rule,
allowing for more false positives and increased power. This led to the introduction
of the False Discovery Rate (FDR) concept by [7], which also proposed a testing
procedure resulting in a significant gain in power.

In this study, we have developed a comprehensive framework comprising three
main phases to improve the detection of cracks in 3D CT concrete images. The initial
phase involves pre-processing the 3D CT concrete image to distinguish cracks from
the surrounding material. Following basic crack segmentation, we study the geometry
properties of each subregion within a partition, offering a preliminary indication of
crack presence.

After that, we construct a multivariate random field observed within a collection
of parameterized scanning windows, which contains the information gathered in the
previous phase. The final phase involves applying the Benjamini-Hochberg multiple
testing procedure. This step classifies anomaly regions within the concrete, providing a
refined understanding of potential areas of interest. The whole procedure is described
in Diagram 1.

The paper is organized as follows: In Section 2, we present various classical
edge-detection methods and the implementation of the Hessian-based filter on input
images. A comparison between these methods over semi-synthetic images is also
discussed. Furthermore, the selection and computation of a geometric multivariate
random field {ξk, k ∈ W ⊂ Rn},W ⊂ Zn is motivated, providing a suitable framework
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Figure 1: 6-step processing pipeline diagram for crack localization in 3D concrete images

for hypothesis testing. In Section 3, we use CUSUM statistic test in the context
of multiple hypotheses tests in order to find anomaly regions within a realization
of {ξk, k ∈ W ⊂ Rn},W ⊂ Zn. Section 4 presents numerical results for both semi-
synthetic and real images, with a discussion on the advantages and disadvantages of
the entire framework. Finally, in Section 5, we conclude the paper, summarizing key
findings and suggesting potential challenges for future research.

2. Crack segmentation

In this section, we present several classical methods proposed in [17, 32] including
Frangi filter and Sheet filter. The Hessian-based percolation [15, 33] is used for crack
tracking once candidate voxels for a crack are identified. The common idea for these
methods is to locally compute the Hessian matrix of an image, which captures its
second-order partial derivatives, providing a quantitative representation of local image
structures and intensity variations based on its eigenvalues. This approach possesses
both pros and contras, notably in terms of computational expenses. Therefore, a
simpler method will be introduced to overcome this crucial difficulty. Let W be a
subset of Z3. The grayscale image I = {I(p) ∈ [0, 1], p ∈ W} is employed to represent
the input data.

2.1. Classical crack segmentation methods

The smoothed second-order partial derivatives of the input image I are computed
as follows:

∂̃2I

∂pi∂pj
(p, σ) = σI(p) ∗ ∂2

∂pi∂pj
G(p, σ), i, j = 1, 2, 3, p = (p1, p2, p3)

T ∈ W,
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whereG is the 3-dimensional Gaussian kernelG(p, σ) = (2πσ2)−3/2 exp{−∥p∥22 /(2σ2)}
with scale parameter σ > 0 and ∥ · ∥2 the Euclidean norm in R3. Here ∗ denotes the
usual convolution operation. The Hessian matrix H(p, σ) of an image I at a voxel
p ∈ W is given by

H(p, σ) =


∂̃2I
∂p21

∂̃2I
∂p1∂p2

∂̃2I
∂p1∂p3

∂̃2I
∂p2∂p1

∂̃2I
∂p22

∂̃2I
∂p2∂p3

∂̃2I
∂p3∂p1

∂̃2I
∂p3∂p2

∂̃2I
∂p23


The eigenvalues of H play a crucial role in describing and characterizing local

structures within an image through considerations such as their magnitudes and
ratios. Represented in ascending order as |λ1(p, σ)| ≤ |λ2(p, σ)| ≤ |λ3(p, σ)|, these
eigenvalues at voxel p offer crucial insights into the crack structure of concrete samples.
The visualization of these eigenvalues is exemplified in Figure 2.

Figure 2: From the left to the right: 2d slices of input image I and three images containing the
eigenvalues λ1(p, σ), λ2(p, σ), λ3(p, σ) of H.

The Sheet filter and Frangi filter predominantly rely on the numerical values
of λ1(p, σ), λ2(p, σ),λ3(p, σ). They were designed to detect lower dimensional image
features such as vessels and cracks. Given the scale parameter σ as well as parameters
δ > 0, ρ ∈ (0, 1] at voxel p, denote by S(p, σ) and F (p, σ) the outcomes produced by
Sheet filter and Frangi filter, respectively:

S(p, σ) =

λ3(p, σ) · g(λ1(p, σ), λ3(p, σ)) · g(λ2(p, σ), λ3(p, σ)), λ3(p, σ) > 0,

0, else,

where
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g(λs(p, σ), λt(p, σ)) =



[
1 + λs(p,σ)

|λt(p,σ)|

]δ
, λs(p, σ) ≤ 0, |λt(p, σ)| ≥ |λs(p, σ)|,[

1− ρ λs(p,σ)
|λt(p,σ)|

]δ
, λs(p, σ) > 0, |λt(p, σ)| ≥ ρλs(p, σ),

0, else,

and

F (p, σ) =



exp
(
−Q2

A(p)

a

)
exp

(
−Q2

B(p)

b

)(
1− exp

(
−K2(p)

c

))
, λ3(p, σ) > 0,

λ2(p, σ) ̸= 0,

exp
(
−Q2

A(p)

a

)
(1− exp

(
−K2(p)

c
)
)
, λ3(p, σ) > 0,

λ2(p, σ) = 0,

0, else,

where

QA(p) := QA(p, σ) =

∣∣∣∣λ2(p, σ)

λ3(p, σ)

∣∣∣∣ , QB(p) := QB(p, σ) =
|λ1(p, σ)|√

|λ2(p, σ)λ3(p, σ)|
.

and

K(p) := K(p, σ) =
√

λ2
1(p, σ) + λ2

2(p, σ) + λ2
3(p, σ).

Both filters rely on assessing the magnitude of the difference between eigenvalues
of H, with λ3 highlighting significant changes along specific directions within the
image. Intuitively, the variations between these eigenvalues suggest the existence of a
direction at p in which gray values of I vary the most compared to others, indicating
the presence of a flat structure that p belongs to.

If a voxel p belongs to a crack, it is highly probable that both S(p, σ) and F (p, σ)
will exhibit higher values compared to voxels belonging to homogeneous parts of I.
To distinguish cracks from the homogeneous material, an appropriate global threshold
must be applied to filtered images {S(p, σ), p ∈ W} and {F (p, σ), p ∈ W}. Here,
both adaptive and manual threshold settings are available. For instance, a suitable
threshold range is proposed in [5], assuming synthetic input images with a fixed width
for cracks.

However, in practice, the anomalies within a real CT image of a material often do
not exhibit ideal conditions, such as a constant width of cracks or significantly higher
grayscale contrast at the crack edges, which might make the choice of a threshold
T obstacle. To overcome this disadvantage, one can consider an adaptive global
threshold T = µ(I) + 3 · sd(I), where µ(I) and sd(I) are the sample mean and the
sample standard deviation of all gray values within I, let
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Then the binary images Sσ and Fσ can be obtained using T as

S∗(p, σ) = 1{S(p, σ) ≥ µ(Sσ) + 3sd(Sσ)}, p ∈ W,

F ∗(p, σ) = 1{F (p, σ) ≥ µ(Fσ) + 3sd(Fσ)}, p ∈ W.

It is worth noting that the quality of the binary images produced by both methods
heavily depends on the scale parameter σ, recommended to be half of the crack
width. These approaches demonstrate robust performance in synthetic input images
where cracks are well-designed with a constant width. However, in real-world images,
the geometry of cracks is unpredictable, affecting the appropriateness of the choice
of σ. To tackle this challenge, a multi-scale approach is proposed, which involves
computing outcomes from these filters at various scales and selecting the maximum
result. Subsequently, a proper threshold is applied. The multi-scale Frangi filter is
defined as:

FS(p) = max
σmin≤σ≤σmax

F (p, σ),

where σmin and σmax are chosen in advance. Furthermore, with the assistance of the
two aforementioned filters, one can proactively identify a set of voxels, denoted as H,
displaying characteristics indicative of potential crack regions. The Hessian-based
percolation methodology, structured as an iterative process, systematically explores
the neighborhood by commencing the search from all voxels within the set K. The
exploration criteria are contingent upon grayscale values. Originally developed for 2D
images [33], the methodology has been generalized to 3D case [15]. The algorithmic
representation is outlined as follows:

1. Select the set of possible crack voxels H
2. Initialize P = H.
3. ∀p ∈ H, let t = I(p) + ϵ for ϵ ∈ R. If q ∈ W is a neighbor of p, and I(q) < t,

then add q to P .
4. Let t be the new threshold t = max(maxq∈P I(q), t) + ϵ.
5. Repeat steps 3 and 4 until P ∩∂E ̸= ∅, where M ∈ Z,M > 0 chosen in advance,

∂E is the boundary of the window {b ∈ W, ∥b− p∥∞ = M}.
6. If the quantity |P ∩H|/|P | ≥ r, where | · | is the cardinality of corresponding

set, and r is prespecified, then label all voxels in P as crack.
7. Denote by τ(p) the times that p is taken into account during this process. If

τ(p) ≤ 5, then label p as a voxel belonging to material.

Obviously, the effectiveness of this algorithm is significantly influenced by the
careful selection of the set H, as it directly impacts the ratio |P∩H|/|P |. Furthermore,
this method affords the capability to include some disconnected voxels that are
presumed to be part of a crack.
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2.2. Maximal Hessian Entry filter

With the challenge posed by the variability in crack widths, careful consideration
is necessary for computational runtime and storage requirements. Images exceeding
dimensions of 6003 present significant computational challenges in both Hessian matrix
computation and eigenvalue extraction. In response to this challenge, an alternative
methodology is proposed—one that avoids extracting maximal information from the
Hessian matrix and instead relies exclusively on its entries.

From Figure 1, cracks in CT images can manifest as dark regions or disruptions
in the intensity pattern, presenting local changes at certain voxels. Due to the flat
structure of cracks, if a voxel p belongs to a crack, the gray values along a line tangent
to the crack surface will exhibit a pattern similar to a concave function, since the gray
values of voxels belonging to homogeneous material are higher than the ones in cracks.
Therefore, across all Hessian matrix elements, i.e., the second-order derivatives along
six different directions, there should exist at least one element that is non-negative.
Choosing the maximal nonnegative entry allows us to capture any sudden changes
at voxels belonging to cracks. For an image I = {I(p) ∈ [0, 1], p ∈ W ⊂ Z3}, with a
single value of σ, the Maximal Hessian Entry filter is defined as follows:

Lσ = {Lσ(p) = max
i,j=1,2,3

(Hi,j(p, σ), 0), p ∈ W}.

We apply the same 3σ-rule for the global threshold, which results in a binary image:

L∗
σ = {L∗

σ(p) = 1{Lσ(p) ≥ µ(Lσ) + 3sd(Lσ)}, p ∈ W}.

Let σ ∈ S, then compute

LS = {LS(p) = max
σ∈S

L∗
σ(p), p ∈ W}.

The choice of the discrete set S can be predetermined according to the nature of
the input image. It is important to note that this approach is implemented based solely
on the maximal positive entry of the Hessian matrix and a global threshold, leading
to a binary image with noticeable noise. However, as observed in the comparison
in Section 2.3, the method still preserves the essential structure of cracks, which is
beneficial for our subsequent geometric analysis.

2.3. Performance and run time

To compare the performance of the above crack segmentation methods, we executed
them on different semi-synthetic images with a resolution of 2563 and varying crack
widths w = 3; 5, which are provided by Technical University of Kaiserslautern and
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Fraunhofer ITWM, see Figure 3. The algorithm to generate semi-synthetic images
and the repository (Zenodo) are provided in [26].

(a) Image I1 with w = 3 (b) Image I2 with w = 5 (c) Image I3 with w = 5

Figure 3: 2D slices of input images with different widths.

The careful selection of these parameters plays a pivotal role in influencing
the outcomes of our image processing methods. The comprehensive investigation
of optimal parameters for the Frangi filter (FF), Sheet filter (SF), and Hessian
percolation (HP) has been conducted in [5] given the Ground truth (GT). For the
Frangi filter, when w = 3, we selected σ = 1.5, a = 0.3, b = 0.3, and for w = 5,
we chose σ = 2.5, a = 0.3, b = 0.3. For the Sheet filter, when w = 3, we set
σ = 1.5, ρ = 1, δ = 1.5, and for w = 5, we used σ = 2.5, ρ = 1, δ = 1. For Hessian
percolation, when w = 3, we specified ϵ = −0.5, τ = 4, r = 0.6,M = 3, and for
w = 5, we employed ϵ = −0.5, τ = 5, r = 0.6,M = 5. For the Hessian Maximal
entry filter (HM), with w values of both 3 and 5, we selected the structuring element
S = {1, 3, 5}.

The results obtained by applying these methods to the input images I1, I2, I3 are
showcased in Figure 4. It is evident that all four approaches successfully capture
the structural intricacies of cracks within the input images, which highlights the
effectiveness of the Hessian Maximal entry filter. However, due to the presence of
pores with low gray values in the material, voxels belonging to the edges may be
incorrectly identified as cracks. This discrepancy arises from the limited examination
of the surrounding structure. Furthermore, by taking the maximum over all binary
images, all noise is retained, resulting in a more noisy image compared to the ones
from classical filters.
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(a) Input image (b) GT (c) FF (d) SF (e) HP (f) HM

Figure 4: From left to right: 2D slices of the input images, ground truth and theirs binary images
with w = 3, 5, 5, respectively.

To provide a more comprehensive evaluation, the quality of these methods can be
assessed through metrics such as precision (P), recall (R), and F1-score (F1), defined
as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P +R
.

Here, TP (true positive) and FP (false positive) represent the numbers of voxels
correctly and falsely detected as belonging to a crack, respectively. Similarly, TN (true
negative) and FN (false negative) denote the numbers of voxels correctly and falsely
detected as material. The performance metrics for these methods are summarized in
Table 1. It is easy to see that, from the recall metric, the Maximal Hessian Entry
filter is able to capture effectively crack voxels compared with the other methods.

From the setting of the Hessian Maximal entry filter, it becomes apparent that nu-
merous voxels belonging to the material are misclassified as cracks. Consequently, the
precision and F1-score of this method are notably lower compared to its counterparts.
Despite these limitations, the Hessian Maximal entry filter demonstrates its ability to
preserve the structural details of cracks, as indicated by its recall, which is comparable
to that of other established methods. The benefits of this approach will be further
demonstrated in the applications to real-world images, here we only compare the
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Precision Recall F1-score

Image I1
Frangi filter 0.5751666 0.8662149 0.6913061
Sheet filter 0.5982854 0.8658113 0.7076066

Hessian Percolation 0.9013737 0.7901476 0.8421038
Hessian Maximal entry filter 0.2016482 0.8860226 0.3285275

Image I2
Frangi filter 0.9879916 0.6631641 0.7936266
Sheet filter 0.9743654 0.7249849 0.8313768

Hessian Percolation 0.9596404 0.8350595 0.8930260
Hessian Maximal entry filter 0.6088826 0.7225134 0.6608490

Image I3
Frangi filter 0.9548712 0.6366311 0.7639332
Sheet filter 0.9091337 0.7658742 0.8313777

Hessian Percolation 0.9581398 0.7971772 0.8702784
Hessian Maximal entry filter 0.6803809 0.7617763 0.7187816

Table 1: Precision, Recall and F1-score of methods applied to the input images I1, I2, I3.

Frangi filter with σ = 2.5 and Hessian Maximal entry filter with S = {1, 3, 5} for a
6003 CT image I0, see Figure 5.

The results shown in Figure 5 highlight the distinction between single-scale and
multi-scale approaches. While the Frangi filter struggles to classify voxels belonging to
thick cracks, the Maximal Hessian Entry filter, with a well-tailored setting for S, can
effectively capture various types of cracks with a tolerance for a higher level of noise.
Although a multi-scale approach for the Frangi filter is desirable, its computational
cost poses a significant obstacle to its practical use for large 3D images.

(a) The input image I0 (b) Frangi filter with σ = 2.5 (c) Hessian Maximal entry filter

Figure 5: 2D slices of input images and its outcome produced by Frangi filter and Hessian Maximal
entry filter with varying crack widths.
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In terms of running time, a comparison was conducted among the Frangi filter,
Sheet filter, Hessian percolation and Maximal Hessian Entry filter. Notably, Hessian
percolation requires more time due to the need for an initial setH from the binarization
phase. For processing 2563 semi-synthetic images I1, I2, I3 from Figure 3, the Frangi
filter and Sheet filter with a single scale take approximately 10-15 seconds, while the
Maximal Hessian Entry filter requires less than 3 seconds. With a higher resolution
image, such as 6003, the single-scale approach for the Frangi filter and Sheet filter
takes 70-80 seconds, and the multi-scale setting for them requires around 6 minutes.
In contrast, the running time for the Maximal Hessian Entry filter is 20 seconds.

Despite the high noise level in the outcomes generated by the Maximal Hessian
Entry filter, its advantageous running time and capability to capture the structure
of cracks make it a valuable tool for detecting anomaly regions within a reasonable
timeframe. Studying the geometry of objects in smaller regions, where cracks pre-
dominantly overshadow noise, aids in effectively classifying them. From this point
forward, we exclusively utilize the Maximal Hessian Entry filter for further processing.

2.4. Geometry of the binary image LS

In this section, we propose a method to study the geometry of local structure
elements, helping to distinguish cracks from noise such as air pores, stones, steel rods,
etc. within concrete structures. The key idea is to create a grid of relatively small
images out of W , where any existing cracks are expected to exhibit relevant geometry
features minimally affected by noise. The proper selection of subimage size is crucial
to prevent statistical flattening, a phenomenon that can occur when the size is either
too large or too small. Under these conditions, differences in shapes between noise
and cracks become reliable contributors for further assessment.

Let LS : W → {0, 1} represents a binary image. First, we aim to construct a
partition of cubes along the axes for the entire concrete structure. Each cube’s size is
chosen to be neither too small nor too large in comparison to the whole window W ,
ensuring the capacity to capture objects without statistical flattening, which could
lead to information loss. Let g ∈ N and Wg = {1, · · · , g}3, the partition of LS is
defined as

W =
⋃

q∈Wg

W (q),

where all W (q) share an equal size. This results in a collection of cubes along the
axes, denoted as {Lq, q ∈ Wg}, where

Lq(p) = {LS(p) ∈ {0, 1} : p ∈ W (q)}.
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Second, we compute various geometry statistics from the collection of subimages
{Lq, q ∈ Wg}. Intuitively, considering the continuity of cracks and their widths,
we focus on subimages with |W (q)| ∈ [153, 303]. Notably, the crack surface density
provides insights into the spatial distribution of cracks, while the volume of fore-
ground in each cube offers a measure of the amount of material present, aiding in
distinguishing regions with cracks from those without. Additionally, considering the
projection of cracks into planes corresponding to 13 possible 3D grid directions reveals
substantial changes in shapes. In contrast, noise such as air pores tends to maintain
similar patterns across different directions. Therefore, the standard deviation of
areas of projection for 13 different directions emerges as an applicable statistic to
differentiate crack regions from noise-dominated areas. Denoting aq, bq, and cq as the
surface density, volume of foreground, and standard deviation of areas of projections,
respectively, we define Tq = (aq, bq, cq) as a vector containing all statistics obtained
from a subimage Lq. The statistics aq, bq, and cq are computed as follows:

aq =
Sq

Vq

, bq = Vq, cq = sd(Sq,r, r ∈ D)

where Sq, Vq, Sq,r, and D represent the area of the inner surface, volume of fore-
ground, area of projection in direction r, and the parameterized collection of 13
different directions in 3-dimensional space, respectively. This computation is per-
formed using ToolIP software [16]. For more in-depth information on the calculations
of Vq and Sq,r, please refer to [27]. Based on these, we define the following three
images:

Ag = {aq, q ∈ Wg}, Bg = {bq, q ∈ Wg}, Cg = {cq, q ∈ Wg}.

It is crucial to observe that the obtained features have different ranges of values.
Therefore, it is ideal to standardize each geometry statistic. Let A∗

g, B
∗
g , C

∗
g be defined

as follows:

A∗
g =

{
aq

sd(Ag)
, q ∈ Wg

}
, B∗

g =

{
bq

sd(Bg)
, q ∈ Wg

}
, C∗

g =

{
cq

sd(Cg)
, q ∈ Wg

}
.

The derived statistics effectively discern disparities between anomaly regions
(crack) and homogeneous regions (material). Hence, the images A∗

g, B
∗
g , C

∗
g ought to

replicate a similar crack pattern as the input CT images.
This procedure is applied to both semi-synthetic and real images, compare Figure

6. We choose g = 16 for subdividing the 2563 semi-synthetic image I2 from Figure 3
and g = 30 for the real CT image I0 from Figure 5.
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(a) Image I2 (b) HM (c) A∗
16 (d) B∗

16 (e) C∗
16

(f) Image I0 (g) HM (h) A∗
30 (i) B∗

30 (j) C∗
30

Figure 6: From left to right: 2D slices of input images, binary image computed from the Maximal
Hessian Entry filter and geometric statistic images.

In Figure 6, it is evident that the selected statistics serve as valuable features
for identifying regions with cracks. Consequently, one can utilize these features
for crack identification, offering an alternative to working with a large-scale input
image. Moreover, one can handle all feature images Ag, Bg, Cg as coordinate-wise
realizations of a 3-variate random field X = {ξk ∈ R3, k ∈ W}. Within this framework,
the classification of anomaly regions essentially involves studying the change-point
problem of multivariate random fields.

3. Crack detection as a change-point problem

In the books [11, 12], the change-point problems are discussed under a general
parametric setting using a CUSUM statistic test which is widely accepted for anomaly
detection, especially in time series; cf. e.g. [31, 4, 23, 9]. For our problem, a
change-in-mean CUSUM statistic test will be employed, following the idea proposed
in [14, 20].

3.1. Multiple Hypotheses Testing

Let X = {ξq, q ∈ W},W ⊂ Zn denote a stationary, centered, vector-valued
random field, P{ξq ∈ Rd} = 1. We introduce the finite parameter space Θ, where
for each θ ∈ Θ, we define Jθ ⊂ W as the corresponding scanning window within W .
The selection of Jθ is crucial, and it should avoid being excessively small or large,

14



ensuring meaningful analysis. The change-point hypotheses for any Jθ, θ ∈ Θ, are
formulated as follows:

H0(θ) : Eξk = µ ∈ Rd for all k ∈ W , i.e. there is no change in mean, versus
H1(θ): there exists a vector h ∈ Rd, h ̸= 0 such that Eξk = µ + h, k ∈ Jθ and

Eξq = µ, q ∈ Icθ .
To test H0(θ) versus H1(θ), for p ≥ 1, employ the change-in-mean CUSUM

statistic:

T (θ) =

∥∥∥∥∥∥ 1

|Jθ|
∑
k∈Jθ

ξk −
1

|J c
θ |

∑
k∈Jc

θ

ξk

∥∥∥∥∥∥
p

, where ∥ · ∥p is the Lp-norm in Rd.

The null hypothesis H0(θ) is rejected when the test statistic T (θ) exceeds a pre-
specified critical value denoted as y(θ, α), with α representing the predetermined
significance level. Alternatively, if the p-value p(θ) associated with the statistic T (θ)
is available, the null hypothesis H0(θ) is rejected when p(θ) ≤ c(θ, α). In order to
find the p-value, knowing the null distribution, i.e. the distribution of Tθ) provided
H0 holds is required. However, in the absence of knowledge about the distribution,
determining the p-values becomes challenging. To address this issue in practical
applications, the empirical null distribution for T (θ)|H0 can be utilized.

To identify regions containing cracks, a comprehensive approach involves examining
all scanning windows, and multiple hypotheses testing is applied. The goal is to test
all null hypotheses H0(θ), θ ∈ Θ, simultaneously. Analogous to single hypothesis
testing, where controlling Type-I error and Type-II error at a certain level α are
crucial, in the context of multiple testing, there are two types of errors known as
family-wise error (FWER) and false discovery rate (FDR). Assuming |Θ| = N is
the total number of hypotheses, let V or S represent the total number of falsely or
correctly rejected null hypotheses. The errors FWER and FDR are defined as follows:

FWER = P{V > 0} and FDR = E
[

V
V+S

]
.

In other words, FWER signifies the probability of committing one or more false
discoveries within a family of tests while FDR is a measure of the expected value of
the proportion of false positives among the rejected null hypotheses. The concept
of p-values, serving as a quantitative measure of evidence against a null hypothesis,
is central to our discussion. In crack detection scenarios with a large number of
hypotheses (N), the objective is often to maximize discoveries. Traditional methods
controlling FWER can be overly restrictive, leading to conservative tests and reduced
power. In such cases, stringent FWER control may miss the detection of true positives.
As an alternative, controlling FDR allows for a higher level of false H0 rejections
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while enhancing test power. This adaptability is crucial in crack detection, where
achieving a balance between sensitivity and control reveals meaningful patterns.
The well-known Benjamini-Hochberg procedure [7], a step-up approach, effectively
controls FDR at a pre-specified level α under the assumption of independence among
hypotheses.

Theorem 1 (Benjamini-Hochberg Procedure [7]). Let p(1), p(2), . . . , p(m) be the
ordered p-values from m independent tests. For a given significance level α, reject the
null hypotheses corresponding to p(i) for i = 1, 2, . . . , k, where k is the largest index
such that p(i) ≤ i·α

m
. This procedure controls the False Discovery Rate (FDR) at level

α.

We will apply this procedure to both semi-synthetic and real concrete images. In
the subsequent numerical section, our objective is to illustrate the efficiency of this
procedure in localizing anomalies within our dataset. In this paper, we neglect the
interdependence of our hypotheses H0(θ) vs. H1(θ), θ ∈ Θ.

4. Numerical results

In this section, our objects are three semi-synthetic images from Figure 3 and
two different types of real CT images, provided from the Technical University of
Kaiserslautern and Fraunhofer ITWM, see Figure 7.

(a) 5003 input image I4 (b) 6003 input image I5

Figure 7: 2D slices of real CT concrete images with different sizes.

As mentioned earlier, the theoretical null distribution remains unknown. However,
in large-scale simultaneous hypothesis testing, the empirical null distribution can
be considered a useful alternative. Additionally, from a practical standpoint, under-
standing the structure of the material is crucial before applying multiple testing to a
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specific type of data. Applying a fixed theoretical threshold for p-values may lead to
misclassification when the material’s properties fluctuate.

Figure 8: From left to right: 2D slices of 2563 and 4003 homogeneous real CT images.

We apply the Maximal Hessian Entry filter with S = {1, 3, 5} to both CT images
in 7. The parameter settings for the geometry extraction phase differ. For the 2563

image, we subdivide it into cubes of size 163, resulting in W = {1, 2, . . . , 16}3. In the
case of the 4003 image, its partition consists of 203 cubes, and W = {1, 2, . . . , 20}3.
In the multiple testing step, let n = d = 3 and

Θ = {θ = (a, b, c, u) : a, b, c ∈ Z, Jθ = [a, a+ u]× [b, b+ u]× [c, c+ u] ∩ Z3 ⊂ W}.

For the computation of the CUSUM statistic T (θ), we use p = ∞ for the maximum
norm. The scanning window size is denoted by u, and in this instance, we fix u = 3.
The histograms illustrating the empirical distribution of statistics T (θ), θ ∈ Θ, under
H0 can be found in Figure 9.

Figure 9: From left to right: Histograms of statistics T (θ) from 2563 and 4003 homogeneous real
CT images from Figure 8.

Let F̂g, g ∈ {16, 20} represents the empirical null distribution functions derived
from the statistic T (θ) of 2563 and 4003 homogeneous images from Figure 8, respec-
tively. For any computed value of T (θ), θ ∈ Θ, the estimated p-value is defined as
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p(θ) = 1− F̂g(T (θ)). Set Rα(θ) to be 1 if we reject the null hypothesis H0(θ) and -1
if we accept it, where α signifies the desired level of False Discovery Rate.

It is crucial to note that due to the overlapping scanning windows, a region
within the input image is used in the computations of statistics, thereby the decision
that this region has cracks depends on several statistics. An additional step is
necessary to precisely identify and visualize the anomaly regions. Recall our partition
W =

⋃
q∈Wg

W (q). For each W (q), Iq represents the collection of scanning windows

containing W (q). After completing multiple hypotheses testing, the set Rα,q =
{Rα(θ) : Jθ ∈ Iq} is obtained. A region W (q) ⊂ W is identified to contain a crack if∑

x∈Rα,q

x ≥ 0.

By considering this criterion, all involved scanning windows contribute to making
the final decision, leading to higher precision and a reduction in the number of false
positives.

4.1. Semi-synthetic images

Consider the 2563 semi-synthetic images I1, I2, I3, as illustrated in Figure 3, setting
parameters g = 16, u = 3, and |Θ| = 2744, the p-values p(θ), are estimated using the
empirical null distribution F̂16, derived from homogeneous data. Multiple testing is
performed at two different levels, α ∈ {0.4, 0.5}.

To evaluate the classification performance, precision, recall, and F1-score metrics
are employed.

Precision Recall F1-score
α = 0.4
Image I1 0.1445087 0.9052925 0.2492331
Image I2 0.7877013 0.7888563 0.7882784
Image I3 0.8651026 0.3831169 0.5310531
α = 0.5
Image I1 0.1220044 0.9359331 0.2158689
Image I2 0.7213115 0.9032258 0.8020833
Image I3 0.7380952 0.6844156 0.7102426

Table 2: Performance over semi-synthetic data with respect to different levels α = 0.4, 0.5 of our
multiple testing procedure.

In Table 2, the efficacy of multiple testing is notably influenced by the quality
of binary images. The performance, as illustrated in conjunction with Table 1, is
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significantly impacted by the low precision in processing the image I1. This results
in an excessively noisy binary image, where noise and pores may be erroneously
connected to form a crack. Consequently, the geometric properties become less
effective in such scenarios. However, when the noise level is within acceptable limits,
the Benjamini-Hochberg procedure demonstrates relatively favorable outcomes in
terms of power and precision.

An essential consideration is the choice of the significance level α. Given the
unspecified dependency structure among hypotheses, there is an inherent loss of
information. The Benjamini-Yekutieli procedure [8] offers a modification to the
Benjamini-Hochberg approach, but the threshold for each p-value often tends to make
the test conservative. As a result, instead of choosing α = 0.1 or 0.2 as recommended,
we opt for higher values of 0.4 and 0.5. These adjusted values will be employed in
subsequent applications to real-world images.

4.2. Real CT images of concrete

Now, we extend the framework to process real CT input images of concrete
samples. Subdividing the images into 203 cubes, we set g = 25 for 5003 image I4, and
g = 30 for 6003 image I5 (cf. Figure 7). The parameter space and significance level α
remain the same as in Section 4.1. In these cases, we get |Θ| = 12167 for 5003 image
and |Θ| = 21952 for 5003 image.

The results in Figure 10 illustrate that our methodology effectively captures
the structural characteristics of cracks. The approach demonstrates strong noise
elimination from the binary images, benefiting from the detailed geometry analysis
of Section 2.4. Notably, selecting a value for α from the range [0.4, 0.5] proves to
be particularly effective. However, when dealing with complex crack patterns, the
method may face difficulties in accurately detecting anomalies, which could result in
a higher false negative rate. This challenge may arise due to the diverse orientations
of cracks within a cube, causing geometric statistics to resemble the form of a sphere,
commonly associated with air pores or noise. Additionally, the quality of the scale
image is a crucial factor. In the case of the 6003 input image I5 in Figure 7, variations
in lighting conditions may cause certain parts of the crack, expected to exhibit low
gray scale values, to behave similarly to homogeneous regions, impacting the detection
process.

Additionally, a significant challenge arises from the substantial variation in crack
widths. The results heavily depend on the outcomes of the Hessian filter, an edge-
detection method that can only partially capture the cracks. This limitation leads to a
high rate of false negatives in the subsequent statistics computation and testing. Even
when we can capture the crack entirely, determining suitable features for subfields
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remains a question.

Figure 10: From left to right: Slices of the input image, outcomes produced by Maximal Hessian
Entry filter and the predicted anomaly regions with respect to α = 0.4 and 0.5, respectively.

4.3. Run time

In this section, we present the runtime analysis of our procedure applied to both
semi-synthetic and real concrete images with sizes of 2563, 5003, and 6003. The
overall framework involves three main steps: image binarization, geometry study, and
performing multiple hypotheses testing.

The experiments were conducted on a desktop PC equipped with an Intel(R)
Core(TM) i9-10900K CPU running at 3.70 GHz and 128 GB RAM. For the 2563 image
I1, I2, I3 in Figure 3, the entire process takes approximately 35 seconds, distributed
as follows: 3 seconds for applying the Maximal Hessian Entry filter, 30 seconds
for geometry study, and less than 2 seconds for the testing procedure. Processing
the 5003 image I4 from Figure 7 requires around 2.5 minutes, including 14 seconds,
2 minutes, and 5 seconds for each respective step. The complete crack detection
analysis for the 6003 image I5 from Figure 7 takes approximately 3.5 minutes, with
25 seconds, 3 minutes, and 10 seconds allocated to the individual phases. The most
time-consuming task remains evidently in extracting geometric information from each
cube Lq. However, since this step is executed sequentially, a substantial reduction in
time can be achieved by implementing parallel computing. Analysis of complexity:
our method takes O(|W |), where |W | denotes the volume of the image I.
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5. Conclusions

This paper introduces a statistical approach for efficient crack localization, ad-
dressing the challenges associated with the computational cost in large-scale image
processing. Traditional statistical methods for crack detection, especially when em-
ploying multi-scale approaches, often incur significant computational expenses. In
response to this, our proposed method strikes a balance between computational
efficiency and the effectiveness of Hessian-based filters in Section 2.1.

Its key feature is combining a straightforward edge-detection technique with a
nuanced analysis of the image geometric structure in subregions, where we control the
DFR, i.e. have a specified error probability. This collaborative approach optimizes the
performance of the Maximal Hessian Entry filter while managing the computational
demands, making it well-suited for large-scale crack detection tasks. The results
indicate that our approach achieves the desired goal of crack localization within a
reasonable time frame, indicating its practical utility in big data image processing.

It is still a future challenge to test our crack segmentation approach on significantly
larger images of (10000 × 10000 × 2000) voxels, including those of steel-reinforced
concrete. Tackling these challenges requires a robust approach. Once our crack
detection algorithm localized potential image regions containing cracks, the subsequent
precise crack segmentation methods (including Deep Learning techniques) run on
these subregions of a large original image, resulting in drastic runtime reduction and
enhancing the effectiveness of crack segmentation.
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