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Abstract

In this paper, we propose an fast method for crack detection in 3D computed tomography
(CT) images. Our approach combines the Maximal Hessian Entry filter and a Deep-First
Search algorithm-based technique to strike a balance between computational complexity and
accuracy. Experimental results demonstrate the effectiveness of our approach in detecting the
crack structure with predefined misclassification probability.
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1 Introduction

Concrete is the traditional material of choice for constructing buildings, bridges, and road infrastruc-
ture, underscoring the critical importance of safety in their design, monitoring, and maintenance. In
the pursuit of enhancing safety, numerous studies have been conducted to understand the structure
of concrete [6], testing it under some specific types of loadings.

A modern visualizing technique is high resolution CT gray scale imaging, which shows cracks
as a collection of connected voxels carrying low gray values. Due to the nature of cracks, which
typically form a flat surface within the material, the crack segmentation can be done by applying
several classical methods [3,5,12], or implementing some Machine Leaning algorithms [2,13,14]. They
usually perform well, classifying crack voxels as anomaly with high performance [1]. However, in
real-world scenarios, the complexity of concrete including cracks, air pores, stones, or steel fibers often
necessitates the enhancement of classical segmentation techniques, leading to increased computational
demands. Furthermore, the shortage of training data due to high costs of stress tests and CT imaging
complicates the training of machine learning models. One approach to address this challenge involves
creating a large collection of semi-synthetic 3D CT images [8,9] which simulates real material and crack
behavior based on minimum-weight surfaces in bounded Voronoi diagrams. However, for extremely
large input 3D images that modern CT scanning are able to produce (e.g. of size 100002 × 2000),
runtimes of crack detection algorithms become a major concern.
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Therefore, in order to overcome this problem, a statistical approach can be employed to pre-identify
anomaly regions, reducing unnecessary computations. An effective strategy may involve applying a
relatively simple crack segmentation method, followed by the examination of subregion geometry. The
Deep-First Search algorithm (DFS) is identified as a promising solution for this task. Originating from
the work of French mathematician C. Trémaux, DFS has been widely adopted in graph theory [7, 15]
and connectivity problems [4], enabling the detection of connected components or object labeling
within binary images. By focusing on surface examination within smaller images and using natural
crack elongation, DFS can effectively identify crack regions within a reasonable timeframe. Moreover,
the framework [10] proposed for crack detection in real 3D CT images requires the computations of
geometric properties for each subregion belonging to the partition of the original input image. In this
context, DFS reduces the amount of computations by excluding crack-free image regions.

This paper presents a two-phase procedure involving crack segmentation and a DFS-based algorithm
for crack detection. Section 2 outlines a simple yet effective filter designed in [10] to generate a
binary image with high sensitivity, preserving crack structure while accommodating a certain level
of noise. Subsequently, Section 3 provides insights into the implementation of the DFS algorithm
to swiftly detect cracks in smaller regions. Additionally, Section 4 shows the numerical experiments
with methods from Section 2 and 3 employed for both semi-synthetic and real CT images, provided
by Technical University of Kaiserslautern and Fraunhofer ITWM. Finally, Section 5 offers a summary
of the key findings and identifies potential challenges for future research. The whole procedure is
describe in Diagram 1.

3D input image
Image binarization

using Hessian
Maximal Entry filter

Binary image
subdivision

Construct a specific
subgraph from
a lattice graph

Find the connected
components using
DFS algorithm

Classification
of subregions

Figure 1: 6-step process diagram for crack localization in 3D concrete images

2 Crack segmentation

In order to use the DFS algorithm for crack detection in a 3D gray scale image, one first needs
to apply certain fast image segmentation methods. In this paper, we utilize a Hessian-based filter
called Maximal Hessian Entry filter [10]. Let I = {I(p) ∈ [0, 1], p ∈ W ⊂ Z3} be an input 3D
gray scale image. For a prespecified value of σ > 0, let G be the 3-dimensional Gaussian kernel,
G(p;σ) = (2πσ2)−3/2 exp{−∥p∥22 /(2σ2)} with scale parameter σ > 0, where ∥ · ∥2 is the Euclidean
norm in R3. The Hessian matrix H(p;σ) of the image I at a voxel p = (p1, p2, p3) ∈ W is given by

H(p;σ) = (Hi,j(p;σ))
3
i,j=1 ,

where

Hi,j(p;σ) := σI(p) ∗ ∂2

∂pi∂pj
G(p;σ), i, j = 1, 2, 3 and ∗ denotes the usual convolution operation.
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Let

Lσ(I) =

{
Lσ(I, p) = max

i,j=1,2,3
(Hi,j(p;σ), 0) , p ∈ W

}
.

Denote by µ(Lσ(I)) and sd(Lσ(I)) the sample mean and the sample standard deviation of all gray
values within Lσ(I). For a threshold Tσ(I) = µ(Lσ(I)) + 3sd(Lσ(I)), one can obtain a binarized
image L∗

σ(I) as follows:

L∗
σ(I) = {L∗

σ(I, p) = 1{Lσ(I, p) ≥ Tσ(I)}, p ∈ W}.

Let S be a finite range of values of the smoothing parameter σ. The final outcome of the Maximal
Hessian Entry filter applied to image I is computed by

LS(I) = {LS(I, p) = max
σ∈S

L∗
σ(I, p), p ∈ W}.

The performance comparison between this and other classical crack segmentation methods has been
investigated in [1] and [10]. It is worth noting that the structure of cracks in the input image I is well
preserved in the filtered image LS(I) with a certain level of noise, for both semi-synthetic images
I1, I2, I3 and real CT images I4, I5 provided by Technical University of Kaiserslautern and Fraunhofer
ITWM, see Figure 2. It allows the geometric detection of local structures in concrete (such as air
pores, steel fibres and cracks) by means of the following DFS algorithm.

(a) I1 (b) I2 (c) I3 (d) I4 (e) I5

Figure 2: First row: Slices of input gray scale images Ij, j = 1, . . . , 5. Second row: Corresponding
slices of binary images LS(Ij), j = 1, . . . , 5 computed using the Maximal Hessian Entry filter.

3 DFS-based algorithm in crack detection

In this section, we present a method employing the DFS algorithm to identify crack-containing regions
within 3D binary images. Given the elongated flat 2D structure of cracks, it becomes evident that if
cracks exist within a sufficiently small cubic subregion W̃ , they are likely to intersect its boundary
∂W̃ , see Figure 3. Hence, determining whether a small region W̃ contains a crack depends on our
ability to detect cracks on one of the facets. Therefore, our detection procedure will be applied to 2D
surface W̃ instead of 3D volume W , which significantly reduces the computational cost.
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The DFS algorithm is commonly employed for detecting connected components or labeling objects
within 2D binary images. Its implementation requires the construction of a graph G = (V,E) over
the image domain, where V represents the set of pixels, and E is the set of the edges between vertices
in V with respect to 4-connectivity neighborhood relation. Since the complexity of DFS algorithm is
O(#V +#E). Here and in what follows, #A is the cardinality of a finite set A, performing DFS
consequently over a sufficiently large collection of 2D images is challenging in terms of run time,
which is one of our primary concerns.

To address this limitation, a novel approach involves constructing a modified image graph with
a reduced number of vertices, leveraging prior knowledge from the binary image, particularly the
identification of pixels representing cracks. Consider a binary image J = {J(p) ∈ {0, 1}, p ∈ W}, W =
[0, a]× [0, b] ∩ Z2. For any mesh size ∆ ∈ N, the following procedure is proposed to obtain such a
graph:

1. Define the lattice graph G∆ = (V∆, E∆), where V∆ = W ∩∆Z2 represents the set of vertices
and E∆ = {(e1, e2) | e1, e2 ∈ V∆, ∥e1 − e2∥2 = ∆} denotes the collection of edges, with ∥ · ∥2
being the Euclidean norm in R2.

2. Identify the set H = {p ∈ V∆ | J(p) = 1}, representing foreground pixels within J and belonging
to V∆.

3. Define the set K = {p1 ∈ V∆ \H | ∥p1 − p∥∞ = 1, p ∈ H}, finding all neighbors of H in the
graph, where ∥ · ∥∞ denotes the maximum norm in R2.

4. Remove all edges from E that do not have vertices in K, resulting in EK = {(e1, e2) ∈ E |
e1, e2 ∈ K}.

5. Define the new graph G∗ = (K,EK).

In context of crack detection we put J = {LS(I, p) : p ∈ W} where W is a facet of ∂W̃ ∩ Z2.
Foreground pixels correspond to a crack phase.

(a) 1003 region (b) 2003 region (c) 3003 region (d) LS(I4)

(e) 1003 region (f) 2003 region (g) 3003 region (h) LS(I5)

Figure 3: 3D visualization of subregions W̃ of different size of binary images LS(I4) and LS(I5).
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As illustrated in Figure 4, appropriate settings for ∆ in the above procedure result in a less
complex graph G∗ with lower cardinalities of both sets of vertices K and edges EK . Consequently,
any computation performed over such a simplified graph offers advantages in terms of computational
cost. Moreover, in the presence of cracks on one of the surfaces, the graph is capable of localizing
them, as shown in (b), (c).

However, when ∆ is large compared to the crack width, denoted by w, it is likely that our procedure
is unable to find the set H, as now #V∆ will be small. This prevents any attempt to capture the
pixels belonging to cracks, resulting in a graph with numerous small connected components that
bound the pixels belonging to air pores, see Figure 4, (e), (f). Therefore, it is necessary to control the
probability of missing anomaly pixels using this grid lattice. For simplicity, one can consider a crack
as a convex body C. Let C0 be an intersection of C with a facet of a small region W̃ = [a, b]3, a < b.
One needs to give an upper bound for the probability P{C0 ∩∆Zd = ∅}.

(a) The 2002 binary im-
age L1

S

(b) The graph G∗
1

with ∆ = 3
(c) The graph G∗

1

with ∆ = 5

(d) The 2002 binary im-
age L2

S

(e) The graph G∗
2

with ∆ = 3
(f) The graph G∗

2

with ∆ = 5

Figure 4: 2D binary images J with obtained graph G∗ by our procedure.

To this end, we use the following

Theorem 1. ( [11, Theorem 4]) For every ϵ > 0, there exist constants c̄ and w̄ such that if C0 is a
planar convex body with area |C0| > c̄ and mean width w0 < w̄, then

P{ρ(C0) ∩∆Z2 = ∅} <
∆2

4
· 1 + ϵ

|C0|
,

where ρ(C0) is congruent to C0 under a random isometry ρ of R2.

This suggests that, if one seeks to control the probability of missing a crack C0 at level α, then
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the maximum mesh size ∆max(α) can be chosen from inequality ∆2

4
· 1+ϵ
|C0| ≤ α resulting in

∆max(α) =

⌊
2

√
α|C0|
1 + ϵ

⌋
. (1)

Suppose we have derived G∗ = (K,EK) with a suitable selection for ∆. As illustrated in (b) and
(c) of Figure 4, G∗ contains connected components, including noise, air pores, or cracks. To distinguish
a crack from other artefacts, count vertices in each component. Notably, connected components linked
to cracks are expected to have a cardinality higher than a global threshold τ , thereby serving as a
crucial indicator for the presence of cracks within a region.

To detect cracks in a large 3D CT image I, one first needs to subdivide the computed 3D binary
image LS(I) into smaller subimages J , then the crack localization can be performed in each J by the
DFS algorithm. It is worth noting that the size of a subimage J should not be too small. Otherwise,
small parts of cracks can be easily misclassified as noise. For each subimage J , crack classification
depends on how we choose a facet of ∂W̃ to start our procedure. It is reasonable to begin with a
facet showing the highest foreground area, as it may have a chance to contain a crack.

The procedure can be summarized as follows:

1. Given a 3D gray scale image I, perform the Maximal Hessian Entry filter, obtaining the binary
image LS(I).

2. For D = {1, . . . , g}3, define the partition of the image LS(I) as follows:

W =
⋃
q∈D

W (q),

where all cubic grids W (q) = [aq, bq]
3 ∩ Z3 are of equal size. This results in a collection of cubic

subimages Aq = {LS(I, p), p ∈ W (q)}.

3. For any 3D binary image Aq, let A
∗
q be the 2D slice of Aq along a facet Wq of ∂[aq, bq]

3 with the
maximal number of foreground pixels.

4. For each binary subimage A∗
q, q ∈ D and a prespecified value of ∆ ∈ N, compute the graph

G∗
q = (K,EK).

5. Run the DFS algorithm over the graph G∗
q, obtaining the set Mq = {M i

q, i = 1, . . . ,m} of
connected components of G∗

q, where m is the total number of components. Here M i
q is a set of

vertices of the ith connected component of G∗
q.

6. Given a threshold τ > 0, the 3D subimage Aq is identified as containing a crack if

max
i=1,...,m

#M i
q > τ.

4 Numerical results

In this section, we apply the above crack detection method to five 2503 semi-synthetic 3D CT images
(cf. Figure 5) as well as two 5003 and 6003 real CT 3D images of concrete (cf. Figure 6).
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4.1 Semi-synthetic images

The effectiveness of this method can be assessed using standard metrics such as precision (P), recall
(R), and F1-score (F1), defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P +R
.

Here, TP (true positive) and FP (false positive) represent the numbers of subimages Aq correctly
and falsely detected as crack containing regions, respectively. Similarly, TN (true negative) and FN
(false negative) denote the numbers of Aq correctly and falsely detected as material, respectively. The
performance metrics of our method are summarized in Table 1.

(a) Image I6 (b) Image I7 (c) Image I8 (d) Image I9 (e) Image I10

Figure 5: 2D slices of five semi-synthetic 2503 CT input images.

Consider the set of five 2503 semi-synthetic input images with constant crack width w = 3, denoted
as I6 − I10 in Figure 5, with S = {1, 3, 5, 10} and the parameter value g = 5. We set the global
threshold τ = 50, where the value 50 corresponds to the number of voxels on one edge of ∂[aq, bq]

3.
For a 503 subimage Aq, assume that a crack Aq intersected with ∂[aq, bq]

3 has a rectangular shape
of size 50× w. Since we would like to control the false negative rate at level α, the maximal mesh
size ∆max(α) from (1) with ϵ = 0.1 yields ∆max(0.01) = 2 and ∆max(0.05) = 5.

Precision Recall F1-score

∆ = 2
Image I6 0.4393939 1.0000000 0.6105263
Image I7 0.3882353 1.0000000 0.5593220
Image I8 0.3870968 0.9729730 0.5538462
Image I9 0.4197531 1.0000000 0.5913043
Image I10 0.3125000 1.0000000 0.4761905

∆ = 5
Image I6 0.4531250 1.0000000 0.6236559
Image I7 0.3789474 0.9696970 0.5378151
Image I8 0.3913043 0.9729730 0.5581395
Image I9 0.4303797 1.0000000 0.6017699
Image I10 0.3118280 0.9666667 0.4715447

Table 1: Precision, Recall and F1-score of our crack detection method applied to the semi-synthetic
input images I6 − I10.

The recall metric in Table 1 shows that our method controls the false negative rate at level α
with the mesh size ∆ = ∆max(α). The low precision in Table 1 can be explained by the presence of a
large number of tiny thin cracks in images I6 − I10.

It is evident that setting τ to match the length of the edge of cubic subimages results in a strategy
that prioritizes capturing mid long cracks, leading to high sensitivity. This approach effectively reduces

7



the occurrence of false negatives, a critical aspect in concrete crack detection, by rarely overlooking
anomaly regions. However, the pursuit of high sensitivity comes at the expense of precision, as it
tends to generate a notable number of false positives. Consequently, while this method focuses on
pre-identifying large-scale issues and filtering out noise with minimal computational resources, it lacks
the precision required to indicate the exact locations of cracks.

4.2 Real CT images

In images I4 and I5 from Figure 6, the crack width is not constant. In order to derive the binary
image LS(Ij), j = 4, 5, we use a multiscale approach in the Maximal Hessian Entry filter with
S = {1, 3, 5, 10}. Since the size of the input images is large enough, set ∆ = 3; 5, g = 5; 6; 10; 12, and
the corresponding global threshold τ equal to the number of voxels on an edge of ∂[aq, bq]

3. The
results corresponding to I4 and I5 are shown in Figure 7.

(a) 5003 input
image I4

(b) 6003 input
image I5

Figure 6: 2D slices of two 3D CT input images of concrete.

(a) Image I4 (b) Image LS(I4) (c) g = 10,∆ = 3 (d) g = 5,∆ = 3 (e) g = 10,∆ = 5 (f) g = 5,∆ = 5

(g) Image I5 (h) Image LS(I5) (i) g = 12,∆ = 3 (j) g = 6,∆ = 3 (k) g = 12,∆ = 5 (l) g = 6,∆ = 5

Figure 7: The input images I4, I5 and the crack detection results produced by our method.

As the grid lattice get denser (i.e. the mesh size ∆ decreases), it is very likely that our method
also captures lots of voxels which apparently do not belong to cracks (high level of false positives).
Therefore, the reduction of noise for small ∆ is not significant. However, for higher values of ∆,
(∆ ≥ 5), as presented in (e) and (f) in Figure 7, the ratio of FP falls.

These results demonstrate the potential of our method to effectively reduce the amount of noise,
eliminating artefacts such as air pores in noisy concrete CT image. By pre-identifying area of a CT
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image, further statistical inference on their complement will enhance the quality of subsequent exact
crack segmentation.

4.3 Run time

The above numerical experiments were conducted on a desktop PC equipped with an Intel(R) Core(TM)
i9-10900K CPU running at 3.70 GHz and 128 GB RAM. The procedure comprises two main steps:
crack segmentation and the implementation of the DFS algorithm to identify inhomogeneous regions.
The highest computational cost is associated with the maximum value of g and the minimum value
of ∆. For the 6003 input image I5 in Figure 6, the crack pre-segmentation runtime is approximately
22 seconds, while executing the DFS algorithm with (g,∆) = (12, 3) takes around 9 seconds. For
other pairs (g,∆), including (12, 5), (6, 3), and (6, 5), the runtimes are 7 seconds, 4.5 seconds, and 3.6
seconds, respectively. In terms of complexity, our method requires O(#W ) arithmetic operations,
where #W represents the total number of voxels of the input image. To address the computational
demands posed by very large-scale real images, we suggest to implement parallel computing, which is
well supported by the above algorithms.

5 Conclusions

This paper presents a fast and efficient approach to pre-localize cracks in large CT 3D image of
concrete, offering a significant add-on value in computational challenges associated with large-scale
input images. It aims to balance the trade-off between the complexity of traditional crack segmentation
methods and their effectiveness. The key feature lies in the combination of the Maximal Hessian
Entry filter and a DFS-based approach with significantly reduced complexity, being able to deal with
large-scale images (eg. 100002 × 2000 voxels) within a reasonable time frame.

The numerical experiments show that our method captures the structure of cracks well and avoids
misclassification of anomaly regions, which is crucial in materials science application. Additionally,
its ability to be combined with slower statistical methods for exact crack segmentation is evident. By
significantly reducing the image space to be scanned for a crack, our approach enhances the overall
quality crack segmentation for large 3D CT images under acceptable run times.

Last but not least, our approach quantifies the error probability of missing a crack with a given
mean width.
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