Statistic Methods in Data Mining
Lecturer
Prof. Dr. Gholamreza Nakhaeizadeh
Teaching assistant
N.N.
Time and place
Lecture
Monday 8-10 in He220
Exercise session
Monday 10-11 in He220
Type
2 hours lecture + 1 hour exercise
Content
- Introduction to Data Mining
- Data Mining Process:
- Data Understanding
- Data Pre-processing
- Modelling
- Model validation
- Data Mining Algorithms:
- Regression Analysis
- Bayesian Classifiers
- Discriminant Analysis
- Cluster Analysis
- Decision and Regression Trees
- Artificial Neural Networks
- Association Rules
Final exam
The final exam hasn't been scheduled yet.
Slides
Introduction (pdf)
Process, part 1 (pdf)
Process, part 2 (pdf)
Process, part 3 (pdf)
Decision Trees (pdf)
Association Rules (pdf)
Artificial Neural Networks (pdf)
Regression Analysis, part 1 (pdf)
Naïve Bayes (pdf)
Exercise sheets
Exercises, part 1 to 8 (pdf)
Literature
- Hand, D.J., Mannila, H., Smyth, P.
Principles of Data Mining
MIT Press, 2001 - Tan, P., Steinbach, M., Kumar, V.
Introduction to Data Mining
Addison Wesley, 2005 - Han, J., Kamber, M.
Data Mining, Concepts and Techniques
Morgen Kaufmann, 2006