Second ERC Synergy grant for the group

Great success for the Institute of Theoretical Physics. In a team with Fedor Jelezko at Ulm and Jan Ardenkjaer-Larsen at the Technical University of Denmark, Martin Plenio wins the ERC Synergy grant HyperQ – Quantum hyperpolarisation for ultrasensitive nuclear magnetic resonance and imaging. This project will allow us to continue our exciting work on diamond based hyperpolarisation that was started with the theory proposal in our group [1] and the first experiments in Fedor Jelezko’s group [2]. We arejoined by Jan Ardenkjaer-Larsen who has pioneered dissolution DNP and as a team we hope to develop this technology to bring it to applications.

[1] J.M. Cai, A. Retzker, F. Jelezko and M.B. Plenio. A large-scale quantum simulator on a
diamond surface at room temperature.
Nature Physics 9, 168 -173 (2013) and E-print arXiv:1208.2874

[2] P. London, J. Scheuer, J.M. Cai, I. Schwarz, A. Retzker, M.B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L.P. McGuinness, B. Naydenov and F. Jelezko. Detecting and polarizing nuclear spins with nuclear double resonance on a single electron spin. Phys. Rev. Lett. 111, 067601 (2013) and E-print arXiv:1304.4709

Contact X logoGitHub logo

Ulm University
Institute of Theoretical Physics
Albert-Einstein-Allee 11
D - 89081 Ulm
Germany

Tel: +49 731 50 22911
Fax: +49 731 50 22924

Office: Building M26, room 4117

Click here if you are interested in joining the group.

Most Recent Papers

Efficient Information Retrieval for Sensing via Continuous Measurement, Phys. Rev. X 13, 031012arXiv:2209.08777

Active hyperpolarization of the nuclear spin lattice: Application to hexagonal boron nitride color centers, Phys. Rev. B 107, 214307, arXiv:2010.03334

Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs, Commun Phys 6, 65 (2023)arXiv:2205.06623

Asymptotic State Transformations of Continuous Variable Resources, Commun. Math. Phys. 398, 291–351 (2023)arXiv:2010.00044

Spin-Dependent Momentum Conservation of Electron-Phonon Scattering in Chirality-Induced Spin Selectivity, J. Phys. Chem. Lett. 2023, 14, XXX, 340–346arXiv:2209.05323