Dr. Matthias Weber
Email adress | matthias.weber(at)uni-ulm.de |
Phone | +49 (0)731/50-23590 |
Fax | +49 (0)731/50-23649 |
Adress |
|
Office hours | on appointment |
Publications
- Feinauer J, Brereton T, Spettl A, Weber M, Manke I and Schmidt V (2015). Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on the sphere. Computational Materials Science 109, 137-146.
- Weber M, Spettl A, Dosta M, Heinrich S and Schmidt V (2017). Simulation-based investigation of core-shell agglomerates: Influence of spatial heterogeneity in particle sizes on breakage characteristics. Computational Materials Science 137, 100-106.
- Furat O, Leißner T, Ditscherlein R, Šedivý O, Weber M, Bachmann K, Gutzmer J, Peuker U and Schmidt V (2018). Description of Ore Particles from X-Ray Microtomography (XMT) Images, Supported by Scanning Electron Microscope (SEM)-Based Image Analysis. Microscopy and Microanalysis 24 (5), 461-470.
- Furat O, Prifling B, Westhoff D, Weber M and Schmidt V (2018). Statistische Analyse und Modellierung von komplexen Partikelsystemen in 3D mittels tomographischer Bilddaten. In: Clemens H, Mayer S and Panzenböck M (eds.) Fortschritte in der Metallographie. Sonderband der Praktischen Metallographie zur 15. Internationalen Metallographie-Tagung in Leoben, 19.-21.09.2018, pp. 341-346.
- Schlüter S, Blaser SRGA, Weber M, Schmidt V and Vetterlein D (2018). Quantification of Root Growth Patterns From the Soil Perspective via Root Distance Models. Frontiers in Plant Science 9, 1084.
- Dosta M, Weber M, Schmidt V and Antonyuk S, DEM Analysis of Breakage Behavior of Bicomponent Agglomerates. In: Antonyuk S (ed.) Particles in Contact. Springer International Publishing, Cham 2019, pp. 165-183.
- Furat O, Prifling B, Westhoff D, Weber M and Schmidt V (2019). Statistical 3D Analysis and Modeling of Complex Particle Systems based on Tomographic Image Data. Practical Metallography 56 (12), 787-796.
- Furat O, Wang M, Neumann M, Petrich L, Weber M, Krill CE and Schmidt V (2019). Machine Learning Techniques for the Segmentation of Tomographic Image Data of Functional Materials. Frontiers in Materials 6, 145.
- Kaack L, Altaner CM, Carmesin C, Diaz A, Holler M, Kranz C, Neusser G, Odstrcil M, Schenk HJ, Schmidt V, Weber M, Zhang Y and Jansen S (2019). Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review. IAWA Journal 40 (4), 673-702.
- Schnepf A, Black CK, Couvreur V, Delory BM, Doussan C, Koch A, Koch T, Javaux M, Landl M, Leitner D, Lobet G, Mai TH, Meunier F, Petrich L, Postma JA, Priesack E, Schmidt V, Vanderborght J, Vereecken H and Weber M (2020). Call for participation: Collaborative benchmarking of functional-structural root architecture models. The case of root water uptake. Frontiers in Plant Science 11, 316.
- Weber M, Bäuerle A, Schmidt M, Neumann M, Fändrich M, Ropinski T and Schmidt V (2020). Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning. Journal of Microscopy 277 (1), 12-22.
- Zhang Y, Carmesin C, Kaack L, Klepsch MM, Kotowska M, Matei T, Schenk HJ, Weber M, Walther P, Schmidt V and Jansen S (2020). High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant, Cell & Environment 43 (1), 116-130.
- Blagodatskaya E, Tarkka M, Knief C, Koller R, Peth S, Schmidt V, Spielvogel S, Uteau D, Weber M, Razavi BS (2021). Bridging microbial functional traits with localized process rates at soil interfaces. Frontiers in Microbiology 12, 625697.
- Furat O, Frank U, Weber M, Wawra S, Peukert W and Schmidt V (2020). Estimation of bivariate probability distributions of nanoparticle characteristics, based on univariate measurements. Inverse Problems in Science & Engineering 29, 1343-1368.
- Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V and Jansen S (2021). Pore constrictions in intervessel pit membranes reduce the risk of embolism spreading in angiosperm xylem. New Phytologist 230, 1829-1843.
- Weber M, Wilhelm T and Schmidt V (2021). Multidimensional characterisation of time-dependent image data: A case study for the peripheral nervous system in ageing mice. Image Analysis & Stereology 40 (2), 85-94.
- Ridder A, Prifling B, Hilger A, Osenberg M, Weber M, Manke I, Birke KP and Schmidt V (2023). Quantitative analysis of cyclic aging of lithium-ion batteries using synchrotron tomography and electrochemical impedance spectroscopy. Electrochimica Acta 444, 142003.
- Weber M, Grießer A, Glatt E, Wiegmann A and Schmidt V (2023). Modeling curved fibers by fitting R-vine copulas to their Frenet representations. Microscopy and Microanalysis 29, 155–165.
- Weber M, Neumann M, Schmidt M, Pfeiffer PB, Bansal A, Fändrich M and Schmidt V (2023). Segmentation and morphological analysis of amyloid fibrils from cryo-EM image data. Journal of Mathematics in Industry 13 (2).
- Prifling B, Weber M, Ray N, Prechtel A, Phalempin M, Schlüter S, Vetterlein D and Schmidt V (2023). Quantifying the impact of 3D pore space morphology on soil gas diffusion in loam and sand. Transport in Porous Media 149, 501-527.
- Weber M, Grießer A, Mosbach D, Glatt E, Wiegmann A and Schmidt V (2023). Copula-based modeling and simulation of 3D systems of curved fibers by isolating intrinsic fiber properties and external effects. Scientific Reports 13, 19359.
- Weber M, Grießer A, Mosbach D, Glatt E, Wiegmann A and Schmidt V. Investigating microstructure-property relationships of nonwovens by model-based virtual materials testing. Under preparation.
Teaching
Term | Course |
---|---|
WS 2017/18 | Angewandte Stochastik II |
SS 2020 | Monte Carlo Methods |
WS 2020/21 | Angewandte Stochastik II |
SS 2021 | Angewandte Stochastik I |
WS 2021/22 | Wirtschaftsstatistik und Ökonometrie |