Mathematical Statistics
In mathematical statistics the aim is to analyze data sets (samples) to gain insight on a broader entirety. Students of this course will be introduced to the basics behind the theory of mathematical statistics in a comprehensive introduction. Essential estimation and test methods are presented. These methods will also be implemented in modern software languages accompanied by the application examples which will give students a deeper understanding of the theory. Furthermore, the goal is to teach all fundamentals needed for more advanced statistical purposes such as in biostatistics, actuarial sciences and finance.
Lecture
Lecturer
Prof. Dr. Evgeny Spodarev
Assistant
Dr. Michael Juhos
Time and Place
Lectures
Monday, 10–12, N24-H14,
Wednesday, 12–14, N24-H14.
First lecture takes place monday, October 14, from 10 am to 12 am in WWP 47.0.501 („Roter Hörsaal“).
Exercise session
Thursday, 10–12, N24-H12.
ECTS
4 hours lecture + 2 hours exercise session
Prerequisites
- Elementare Wahrscheinlichkeitsrechnung und Statistik
- Wahrscheinlichkeitstheorie und Stochastische Prozesse
Target Audience
- BSc Mathematik: Wahlpflicht Angewandte Mathematik
- BSc Wirtschaftsmathematik: Wahlpflicht Stochastik/Optimierung/Finanzmathematik
- BSc Mathematische Biometrie: Wahlpflicht Stochastik
- MSc Mathematik: Wahlpflicht Angewandte Mathematik
- MSc Wirtschaftsmathematik: Wahlplficht Stochastik/Optimierung/Finanzmathematik
- MSc Mathematische Biometrie: Wahlpflicht Mathematik und Statistik
- MSc Finance: Wahlpflicht Mathematik
The course Mathematical Statistics (lecture and exercises) takes place from 14/10/2024 all the semester long; in addition the first half of the course until 05/12/2024 (lecture and exercises) constitutes the Angewandte Stochastik II for the bachelor’s programme Computational Science and Engeneering and concludes with its own exam.
Contents
- Parametric models and fundamental theory
- Exponential families, completeness, sufficiency
- Point estimation
- Properties of estimators (MSE, bias, consistency)
- Best unbiased estimators, Cramer-Rao inequality
- U-statistics, confidence intervals
- Hypothesis testing
- Density estimation or linear models (introduction)
Lecture Notes
Exercise Sheets
See Moodle website.
Exam
To participate in the final exam at least 50% of the homework points need to be achieved. Further information on Moodle website.
Registration for the exam needs to be completed four days in advance of the exam date (only possible if the prerequisite for the exam is passed).
Exam dates:
Mathematical Statistics | Angewandte Stochastik II | |
first date | 24/02/2024 | 16/12/2024, 16–18, N24 H12 |
second date | 31/03/2025 | 07/03/2025, 10–12, N24 H12 |
Literature
- H. Dehling and B. Haupt,
Einführung in die Wahrscheinlichkeitstheorie und Statistik
Springer, Berlin, 2003.
- P. Bickel and K. Doksum
Mathematical Statistics: Basic Ideas and Selected Topics
Prentice Hall, London, 2001. 2nd ed., Vol. l.
- A. A. Borovkov,
Mathematical Statistics
Gordon & Breach, 1998.
- G. Casella and R. L. Berger,
Statistical Inference
Pacific Grove (CA), Duxbury, 2002.
- E. Cramer and U. Kamps,
Grundlagen der Wahrscheinlichkeitsrechnung und Statistik
Springer, Berlin, 2007.
- P. Dalgaard,
Introductory Statistics with R
Springer, Berlin, 2002.
- A. J. Dobson,
An Introduction to Generalizes Linear Models
Chapmen& Hall, Boca Raton, 2002.
- L. Fahrmeir and T. Kneib and S. Lang,
Regression. Modelle, Methoden und Anwendungen
Springer, Berlin, 2007.
- L. Fahrmeir and R. Künstler and I. Pigeot and G. Tutz,
Statistik. Der Weg zur Datenanalyse
Springer, Berlin, 2001.
- H. O. Georgii,
Stochastik
de Gruyter, Berlin, 2002.
- J. Hartung and B. Elpert and K. H. Klösener,
Statistik. R
Oldenbourg Verlag, München, 1993. 9. Auflage.
- C. C. Heyde and E. Seneta,
Statisticians of the Centuries
Springer, Berlin, 2001.
- A. Irle,
Wahrscheinlichkeitstheorie und Statistik, Grundlagen, Resultate, Anwendungen
Teubner, 2001.
- I. T. Jolliffe,
Principal component analysis
Springer, 2nd edition, 2002.
- K. R. Koch,
Parameter Estimation and Hypothesis Testing in Linear Models
Springer, Berlin, 1999.
- E. L. Lehmann,
Elements of Large-Sample Theory
Springer, New York, 1999.
- J. Maindonald and J. Braun,
Data Analysis and Graphics Using R
Cambridge University Press, 2003.
- M. Overbeck-Larisch and W. Dolejsky,
Stochastik mit Mathematica
Vieweg, Braunschweig, 1998.
- H. Pruscha,
Angewandte Methoden der Mathematischen Statistik
Teubner, Stuttgart, 2000.
- H. Pruscha,
Vorlesungen über Mathematische Statistik
Teubner, Stuttgart, 2000.
- L. Sachs,
Angewandte Statistik
Springer, 2004.
- L. Sachs and J. Hedderich,
Angewandte Statistik, Methodensammlung mit R
Springer, Berlin, 2006.
- Robert J Serfling,
Approximation theorems of mathematical statistics
volume 162. John Wiley & Sons, 2009.
- M. R. Spiegel and L. J. Stephens,
Statistik
McGraw-Hill, 1999.
- Spokoiny and Dickhaus,
Basics of modern mathematical statistics
Springer, 2015.
- W. A. Stahel,
Statistische Datenanalyse
Vieweg, 1999.
- W. Venables and D. Ripley,
Modern applied statistics with S-PLUS
Springer, 1999. 3rd ed.
- L. Wasserman,
All of Statistics. A Concise Course in Statistical Inference
Springer, 2004.
Other useful literature to this course can be found in the Semesterapparat.
Contact
Lecturer
Prof. Dr. Evgeny Spodarev
Office: Helmholtzstraße 18, 1.65
Office hours: by appointment
E-mail: evgeny.spodarev(at)uni-ulm.de
Homepage
Assistant
Dr. Michael Juhos
Office: Helmholtzstr. 18, 1.41
Office hours: by appointment
E-mail: michael.juhos(at)uni-ulm.de
Homepage
Announcements
Current announcements will be posted here regularly.
- First lecture takes place monday, October 14, from 10 am to 12 am in WWP 47.0.501 („Roter Hörsaal“).
- On 17 October a lecture is going to take place instead of an exercise class.