Feature-Model Counting
In this project, we work on the following aspects of feature-model analysis related to computing the number of valid configuration:
- Gather use-case scenarios for feature-model counting
- Identify scalable solutions for computing the number of valid configurations
- Optimize and tailor existing solutions for the application on feature models
- Develop new algorithms and tools to support analysis
Motivation
Feature-model counting enables a large variety of analyses. These range from simple analyses, such as prioritizing errors that appear in more valid configurations, to more complex computations such as finding a uniformly distributed sample of configurations.
Model Counting aka #SAT
The #SAT problem corresponds to computing the number of satisfying assignments of a propositional formula. By translating a feature model to a formula, we can reduce computing the number of valid configurations to a #SAT problem. This allows the usage of heavily optimized tools, #SAT solvers, that have made significant advances in the last decade. Nevertheless, we have seen feature models in the wild that cannot be analyzed within weeks of runtime.
Jan Baudisch
B.Sc. Raphael Dunkel
Tolga Eskin
Vincenzo Brancaccio
Dominik Schießl
Lars Licha
Yvonne Heimowski
B.Sc. Heiko Raab
Elias Kuiter
Ina Schaefer
Marc Hentze
Publications
2024
DOI: | 10.1145/3646548.3672590 |
DOI: | 10.18420/sw2024_18 |
ISBN: | 978-3-88579-737-1 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2024/2024-SE-Sundermann.pdf |
DOI: | 10.1145/3634713.3634733 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2024/2024-VaMoS-Kuiter.pdf |
DOI: | 10.1145/3634713.3634716 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2024/2024-VaMoS-Hess.pdf |
2023
DOI: | 10.1007/s10472-023-09906-6 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-AMAI-Sundermann.pdf |
DOI: | 10.48550/arXiv.2303.12383 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-TR-Sundermann.pdf |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-SE-Kuiter-Tseitin.pdf |
DOI: | 10.1007/s10664-022-10265-9 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-EMSE-Sundermann.pdf |
2022
DOI: | 10.1145/3550355.3552411 |
ISBN: | 9781450394666 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-MODELS-Hentze.pdf |
DOI: | 10.1145/3551349.3556938 |
ISBN: | 9781450394758 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ASE-Kuiter.pdf |
2021
DOI: | 10.1145/3442391.3442404 |
ISBN: | 9781450388245 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2021/2021-VaMoS-Sundermann.pdf |
2020
DOI: | 10.1145/3377024.3377025 |
ISBN: | 9781450375016 |
File: | https://github.com/SoftVarE-Group/Papers/raw/main/2020/2020-VaMoS-Sundermann.pdf |
Theses
2024
2023
DOI: | 10.18725/OPARU-52288 |
2022
DOI: | 10.18725/OPARU-46759 |
DOI: | 10.18725/OPARU-47708 |
File: | https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/47784/thesis_vill.pdf |
DOI: | 10.18725/OPARU-43414 |
File: | https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/43490/Thesis_RaabHeiko.pdf |
Project Lead
M.Sc. Chico Sundermann
Institute of Software Engineering and Programming Languages
Albert-Einstein-Allee 11