In den Bereichen Computer Vision und Neuroinformatik gab es in den letzten Jahren große Fortschritte, die neuartige Augmented Reality Anwendungen ermöglichen. So können beispielsweise im industriellen Umfeld Smartphones dazu verwendet werden, Maschinenbauteile über eine Kamera zu erkennen, zu klassifizieren und weitere Informationen über diese bereitzustellen. Hierfür existieren verschiedene Objekterkennungs-Frameworks, deren industrielle Verwendbarkeit jedoch nicht hinreichend evaluiert wurde.
In dieser Abschlussarbeit werden die Frameworks TensorFlow Lite und ARKit näher betrachtet. Ziel ist es, die Erkennungsrate und -geschwindigkeit der beiden Frameworks mit Hilfe eines Experiments zu evaluieren. In dem Experiment werden Maschinenteile einer pharmazeutischen Verpackungsmaschine als Subjekte verwendet und deren Erkennungsleistung auf Basis verschiedener Umgebungsfaktoren, wie Blickwinkel und Entfernung evaluiert.
Objekterkennung mit ARKit und TensorFlow: Anwendungsfälle, Konzepte, Evaluierung
Ulm University Ulm UniversityBA Abschlussvortrag, Kristijan Biro, Ort: O27/545, Datum: 17.12.2019, Zeit: 10:00 Uhr