Recently, a new generation of adaptive Process- Aware Information System (PAIS) has emerged, which allows for dynamic process and service changes (e.g., to insert, delete, and move activities and service executions in a running process). This, in turn, has led to a large number of process variants derived from the same process model, but differing in structure due to the applied changes. Generally, such process variants are expensive to configure and difficult to maintain. This paper provides a sophisticated approach which fosters learning from past process changes and allows for mining process variants. As a result we obtain a generic process model for which the average distance between this model and the respective process variants becomes minimal. By adopting this generic model in the PAIS, need for future process configuration and adaptation decreases. We have validated the proposed mining method and implemented it in a powerful proof-of-concept prototype.
Discovering Reference Process Models Through the Mining of Process Variants
Ulm University Ulm UniversityDoktorandenvortrag, Chen Li, University of Twente, Ort: O27/545, Zeit: 11:15 Uhr, Datum: 16. Mai 2008