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Abstract

Innovative life insurance products such as unit-linked life insur-
ance, hybrid life insurance, and variable annuities are rapidly gaining
popularity and becoming a major part of new business in Germany.
However, since traditional life insurance products still dominate the
portfolios of life insurance companies, discussions about the standard
formula for determining the solvency capital requirement have focused
on this type of business. Any detailed discussion on how to calculate
the solvency capital requirement for innovative life insurance products
within the standard formula has yet to occur.

This paper brings to light some interesting facts about unit-linked
business and Solvency II. In particular, it analyzes the impact of the
transition from Solvency I to Solvency II on the solvency capital re-
quirement of a German unit-linked insurance product with guaranteed
death benefits. The modeling of lapses is another focus of research,
reflecting the increased importance of lapse risks for innovative life
insurance products. Since there are strong concerns about nonlinear-
ities between the various risks, especially between market risk and
lapse risk, the paper examines this problem as well. Finally, an al-
ternative method for calculating the net solvency capital requirement,
the so-called single equivalent scenario (also referred to as the killer-
scenario), is presented.

Keywords: Unit-linked insurance, Solvency II, standard formula, single
equivalent scenario, dynamic policyholder behavior
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1 Introduction
Innovative life insurance products have been gaining in popularity during
the last decade and now represent nearly a third of new business in Germany
(see Helfenstein & Barnshaw (2003), Enz (2006) and Märten & Daalmann
(2009)). However, and despite the importance of these products to the future
of the insurance industry, most discussions about the Solvency II framework
focus on traditional insurance products. The results of the last quantitative
impact study, QIS4, indicate that most insurance companies do not calcu-
late the solvency capital requirement for innovative life insurance products
as systematically as they do for traditional products (see CEIOPS (2008a)).

In academic literature of the last decade, fair valuation of life insurance
products has been an emerging field. Especially traditional life insurance
contracts with interest rate guarantees have been analyzed in particular (see
Bauer et al. (2006), Bacinello (2001) and Steffensen (2002)). Common op-
tions of traditional policies such as the option to surrender also draw growing
attention (see Grosen & Jorgensen (2000) and Steffensen (2002)). Further-
more, the recent low interest period, changing customer need and tax law led
to increased new business of unit-linked life insurance, hybrid life insurance
and variable annuities and therefore a development of pricing techniques (see
Bauer et al. (2008)). However, innovative life insurance products still need
to be examined in conjunction with recent regulatory changes in Europe (e.g.
Solvency II).

The aim of this paper is to provide the first contribution to a discussion
about the solvency capital requirement for innovative life insurance products.
The paper brings together fair valuation, risk analysis and a detailed product
design and should be of interest to academics as well as to practitioners.

Innovative life insurance products differ from traditional life insurance
products in some fundamental aspects and therefore require an in-depth risk
examination. For both insurers and policyholders, the value of an innovative
life insurance product is expected to be somewhat volatile, since the capi-
tal is mostly invested in risky assets, compared to the fixed-income-oriented
investment strategies of traditional life insurance products. Furthermore, in-
novative life insurance products are usually complex in their structure and
contain a broad range of options and guarantees (see Gatzert (2009)). These
insurance products also induce dynamic policyholder behavior. Their volatile
value, complexity, dynamic policyholder behavior, options, and guarantees
can all have an unexpected influence on the solvency capital requirement.
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The contribution of this paper is to identify the main risks of a unit-
linked life insurance product and to discuss two methods for calculating the
solvency capital requirement, the standard formula and the single equivalent
scenario. Furthermore, a way to implement dynamic policyholder behavior
in the standard formula is presented. This paper also provides a method-
ology for calculating solvency capital requirement for other innovative life
insurance products.

The paper is organized as follows: To establish a methodology, a German
unit-linked insurance with guaranteed death benefits is examined based on
the standard formula method (see CEIOPS (2008c)). A simplified version
of the standard formula and information about the calculation of the sol-
vency capital requirement is presented in chapter 2, the stress scenarios can
be found in capter 5. The product design is illustrated in chapter 3 and in-
cludes fixed and variable costs, mortality, deterministic and dynamic lapses,
kickbacks, a bonus system in accordance with German law, and a realistic
set of parameters. The analysis is performed on products with single premi-
ums as well as on products with regular premiums. Furthermore, the paper
analyzes the impact of the transition from Solvency I (see Müller (1997) and
Bundesministerium der Justiz (2009)) to Solvency II on the solvency cap-
ital requirement for the unit-linked insurance product with different death
benefits and different sets of parameters. Chapter 4 provides a detailed de-
scription of the asset and the liability models and their implementation. A
method for modeling dynamic lapses is discussed in chapter 7. The single
equivalent scenario is presented in chapter 8. The paper examines the lin-
earity assumption by means of a sensitivity analysis in chapter 6.

8



2 Solvency capital requirement
The solvency capital of an insurance company guarantees the solvability of
the latter during a financial distress. Regarding the importance of insurance
to the society, economy and public welfare, the insurance company should
have enough capital to overcome almost every crisis. In Solvency I the sol-
vency capital requirement is calculated via a factor-based framework. This
framework is easy to understand and easy to use, and it requires only some
balance sheet values and the corresponding risk factors. The Solvency I cap-
ital requirement for German unit-linked products, where the policyholder
bears the investment risk, is defined as 1% of the investment fund value plus
0.3% of the risk premium1. The downside of a factor-based framework is that
it does not reflect the actual risks. Solvency II, as a risk based framework,
will provide a more sophisticated view on the risk taking of an insurance
company2.
In the Solvency II framework, the amount of solvency capital an insurance
company has to hold is in the broader sense defined as the amount of capital
needed to survive a ”one in two hundred years crisis”.

2.1 SCR - the mathematical approach
Let X denote a risk, the solvency capital requirement of SCRα(X) is defined
as

SCRα(X) = V aRα(X)−E[X] (1)

The following transformations lead to a mathematical definition of the SCR3:

SCRα(X) = V aRα(X)−E[X] (2)
= V aRα(X −E[X]) (3)
= argmin

x
(P [X −E[X] ≤ x] ≥ α) (4)

= argmin
x

(1− P [X −E[X] > x] ≥ α) (5)

= argmin
x

(P [X −E[X] > x] ≤ 1− α) (6)

1See Bundesministerium der Justiz (2009) and Müller (1997).
2See Doff (2008), Duverne & Le Douit (2009), Holzmüller (2009), Elderfield (2009) or

Steffen (2008) for a comparison of different regulatory frameworks and general information
about Solvency II.

3As introduced in Bauer et al. (2009). Bergmann’s notion is used for practical applica-
tions. It is approximately equivalent to P (AC1 ≥ 0|AC0 = x) ≥ α, but avoids the implicit
nature of the definition.
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Now given a one in two hundred years crisis and a one year horizon and
X set to X = − AC1

(1+i) with E[X] = −AC0, the solvency capital requirement
SCR can be expressed as4

SCRα = argmin
x

(
P

[
AC0 − AC1

(1 + i) > x

]
≤ 1− α

)
(7)

for an α = 0.995, an interest rate i and the available capital ACt in time
t = 0 and t = 15.

2.2 SCR - the standard formula
Although the formula above perfectly defines the solvency capital require-
ment, it is not practical because of two reasons: firstly, it is very difficult
to describe an insurance company as a whole with a stochastic model and
secondly, nested simulations are needed. In order to provide a more simple
approach, especially for small insurance companies that do not use an internal
model, CEIOPS introduced the standard formula. The main simplification
is the definition of deterministic stress scenarios that should represent the
one in two hundred years crisis. In addition, risks are supposed to be multi-
variate normally distributed. Let X = −Π denote a random loss variable or
negative profits Π, then the SCR can be simplified to6

SCR = V aR(−Π)−E[−Π] (8)
SCR = (Liabilities− Assets) |stress − (Liabilities− Assets) (9)
SCR = (Assets− Liabilities)− (Assets|stress − Liabilities|stress) (10)

The stress scenarios are formulated for various risk modules (interest
rates, equity, mortality, lapses and expenses) and are aggregated via a corre-
lation matrix. Let Xi denote the loss variable exposed to a risk i defined in
a risk module and SCR (Xi) denote the solvency capital requirement calcu-
lated for the same risk module.

4Implicitly assuming that dividends have not been paid to shareholders yet at t = 1.
5The available capital can be expressed in terms of MCEV. See Bauer et al. (2009) for

more information.
6Assets and Liabilities denote the expected present value of all Assets and Liabilities

as defined in QIS4 (see below for more information).
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Then the aggregated solvency capital requirement SCR (X) for the ag-
gregated loss variable7 X =

∑
i

Xi is defined as8:

SCRα(X) = V aRα(X)−E[X] (11)

= V aRα

(∑
i

Xi

)
−E[X] (12)

=
√∑

i,j

ρi,j (V aRα(Xi)−E[Xi]) (V aRα(Xj)−E[Xj]) (13)

+E
[∑

i

Xi

]
−E[X]

=
√∑

i,j

ρi,jSCRα(Xi)SCRα(Xj) (14)

Figure 1 shows a simplified modular view on the standard formula. Only
relevant risks for a German unit-linked insurance product are considered.

SCR

Adj
BSCR

SCRmkt SCRlife

MKTint

MKTeq

LIFEmort

LIFElapse

LIFEexp

Figure 1: Modular structure of the SCR

7With E[X] = E

[∑
i

Xi

]
.

8See GDV (2005, page 88-93).
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The solvency capital requirement can be expressed with the following
formulae9:

SCR =
√
SCR2

mkt + 2 · ρmkt,life · SCRmktSCRlife + SCR2
life (15)

SCRmkt =
√
SCR2

int + 2 · ρint,eq · SCRintSCReq + SCR2
eq (16)

SCRlife =
√
SCR2

mort + SCR2
lapse + SCR2

exp + 2 · ρmort,lapse · SCRmortSCRlapse

(17)
+2 · ρmort,exp · SCRmortSCRexp + 2 · ρlapse,exp · SCRlapseSCRexp

The corresponding correlation factors can be obtained from table 1.

CorrSCR= SCRmkt SCRlife
SCRmkt 1 0.25
SCRlife 0.25 1

CorrMkt= SCRint SCReq
SCRint 1 0
SCReq 0 1

CorrLife= SCRmort SCRlapse SCRexp
SCRmort 1 0 0.25
SCRlapse 0 1 0.5
SCRexp 0.25 0.5 1

Table 1: Correlation matrices
9See chapter 5 for details on the relevant risk modules.
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According to the principles of Solvency II, a ”best estimate is equal to
the probability-weighted average of future cash-flows, taking account of the
time value of money, using the relevant risk-free interest rate term struc-
ture. The calculation of best estimate should be based upon current and
credible information and realistic assumptions and be performed using ade-
quate actuarial methods and statistical techniques.”10. In this case, the best
estimate of technical provisions equals the best estimate of liabilities. In
order to simplify the task, a risk margin will not be calculated. The valu-
ation of assets is performed with a mark to model procedure. This frame-
work ensures a market-consistent valuation of all assets and liabilities. Let
Π = Assets− Liabilities denote the value of an insurance policy. Then, the
solvency capital requirement for the particular risk modules is defined as

SCRint−up = (Π)− (Π|up−shock) (18)
SCRint−down = (Π)− (Π|down−shock) (19)

SCRint = max (SCRint−up, SCRint−down; 0) (20)

SCReq = max ((Π)− (Π|eqshock) ; 0) (21)

SCRmort = max ((Π)− (Π|mortshock) ; 0) (22)

SCRlapse−up = (Π)− (Π|up−shock) (23)
SCRlapse−down = (Π)− (Π|down−shock) (24)
SCRlapse−mass = (Π)− (Π|mass−shock) (25)

SCRlapse = max (SCRlapse−up;SCRlapse−down;SCRlapse−mass; 0) (26)

SCRexp = max ((Π)− (Π|expshock) ; 0) (27)

2.3 The risk absorbing effect of future profit sharing
Future bonuses paid out to the policyholders will change while calculating the
profits under a stress scenario when stochastic profit sharing rules are used.
The solvency capital calculated with adjusted bonuses is referred to as the
net solvency capital requirement (nSCR). The solvency capital calculated
with constant bonuses through a stress is referred to as the basic solvency

10See CEIOPS (2008c, page 13-14).
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capital requirement (BSCR). The value of the future discretionary bonuses
FDB can be defined as

FDB = Π|no profit sharing − Π|profit sharing (28)

The adjustment for the risk absorbing effect of future profit sharing to the
BSCR is then defined as

AdjFDB = min (BSCR− nSCR,FDB) (29)

and the overall SCR or net basic solvency capital requirement nBSCR is
defined as

SCR = nBSCR = BSCR− AdjFDB (30)

The calculation of the BSCR is performed with ”constant” bonuses through-
out all stress scenarios. There are several interpretations what ”constant”
bonuses are. One interpretation is that the BSCR ”should be calculated
under the condition that the absolute amount of future discretionary ben-
efits cash flows per policy and year remain unchanged before and after the
shock being tested”11. This direct calculation of the BSCR requires storage
of bonuses for every simulation step and every simulation path. In order to
avoid a huge computational capacity requirement and improve the practica-
bility, the problem can be simplified using an alternative interpretation:
The calculation of theBSCR is performed with a ”constant value” of bonuses.
Therefore, the BSCR is ”calculated under the condition that the value of
future discretionary benefits remains unchanged before and after the shock
being tested”12. Let Liabilities = Bonuses + otherLiabilities be a decom-
position of the liabilities, then Π and BSRC can be defined as

Π = Assets−Bonuses− otherLiabilities (31)
BSCR = (Assets−Bonuses− otherLiabilities) (32)

− (Assets|stress −Bonuses|stress − otherLiabilities|stress)

Since the bonuses should be constant in order to calculate the BSCR and
therefore Bonuses = Bonuses|stress, the above equation can be simplified to

BSCR = (Assets− otherLiabilities) (33)
− (Assets|stress − otherLiabilities|stress)

11See CEIOPS (2009b).
12See CEIOPS (2009b).
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The above BSCR corresponds to the nSCR calculated without any profit
sharing. Therefore, in order to calculate the BSCR the profit sharing param-
eters ”risk profit participation rate” (rbrate) and ”expense profit participation
rate” (cbrate) are set to 0. In general, with participation rates other than zero,
the nSCR is defined as:

nSCR = (Assets−Bonuses− otherLiabilities) (34)
− (Assets|stress −Bonuses|stress − otherLiabilities|stress)

with

Bonuses 6= Bonuses|stress (35)

Figures 2 and 3 show different solvency balance sheets for BSCR and
nSCR.

BSCR

Assets Assets

Liabilities

Bonus

Profits

Liabilities

Bonus

Profits

best estimate stressed

Figure 2: Risk absorbing effect of future profit sharing I
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nSCR

Assets Assets

Liabilities

Bonus

Profits

Liabilities

Bonus

Profits

best estimate stressed

Figure 3: Risk absorbing effect of future profit sharing II
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3 Product design and parameter assumptions
3.1 Product design
3.1.1 Premiums

In this paper two forms of the product are considered: single premium con-
tracts and regular premium contracts. With a single premium contract, the
policyholder has to pay only a lump-sum at the beginning of the contract
period. Concluding a regular premium contract, the policyholder commits
to pay a premium at the beginning of every month until the end of the con-
tract period, death of the policyholder or lapse of the policy. The premium
income is immediately used to buy shares of the investment fund after de-
duction of acquisition charges. Let T denote the policy term in years, then
t = 0, . . . , 12 · T is counting the time steps (months). A premium payment
at time t is denoted by Pt.

3.1.2 Charges

Three kinds of expenses can be identified regarding a standard unit-linked
insurance product: acquisition expenses, fixed monthly expenses, and vari-
able monthly expenses. In order to refinance, the insurer deducts charges
from the investment fund. These charges represent the prudent projected
expenses13. The prudent projected expenses consist of the expected ex-
penses plus a risk margin. The charges at time t are denoted as achargest,
fchargest and vchargest. The acquisition charges for regular premium poli-
cies are calculated with expected interest rates but without any mortality or
lapse assumptions. The fixed monthly charges (fchargest) are considered to
be deterministic and constant for all t, while the variable charges (vchargest)
are driven by the current investment fund value14. The acquisition charges
are immediately deducted from the premiums; in the single premium case,
they are deducted from the single premium at once, in the regular premium
case, the acquisition charges are decomposed in small payments and deducted
from the premiums (for maximum five years). The incurred monthly (fixed
and variable) expenses are paid at the end of every month. In order to fi-
nance the incurred expenses, the insurer withdraws an amount equal to the
prudent projected expenses from the investment fund at the beginning of
every month and deposits it on a bank account earning the risk-free interest
rate. Let FVt denote the investment fund value at time t, P tot denote the

13See 3.3 for assumptions of expenses the insurer expects to experience.
14See 3.5 for more details to the calculation of charges.
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single premium (in the single premium policy case) or the total amount of
regular premiums (in the regular premium policy case, P tot = 12 ·Pt ·T ) and
let achargesrate and vchargesrate denote the rates of the charges, then the
following equations hold15:

achargest = P tot · achargesrate for t = 0 single premium

(36)

achargest = P tot · achargesrate
äs er

for t ∈ [0, s− 1] regular premium

(37)
vchargest = vchargesrate · FVt (38)

3.1.3 Mortality

German DAV 2008 T mortality tables are used for prudent mortality as-
sumptions16. Uniform distribution of deaths is used as an assumption for
fractional ages. For integer x and t ∈ [0, 1] the probability of a x-year-old to
die in the ongoing year is uniformly distributed over the year, therefore

tqx = tqx (39)

Let NPt denote the number of policies (which is equal to the number of
policyholders) at time t, then the number of policies at time t + 1 without
considering lapses is:

NPt+1 = NPt −NPb t
12 c·12 ·

1
12qx (40)

3.1.4 Death benefits

Death benefits are paid at the end of the month. Four kinds of policies are
considered which include different guaranteed death benefits. The guarantees
refer to the current investment fund and/or the premiums. Then, the death
benefits DBt at time t are defined as:

policy A: DBt = max (1.1 · FVt, P tot)

policy B: DBt = max (FVt, 0.5 · P tot)

policy C: DBt = 1.1 · FVt
15With s = max{12 ·P tot, 60} and an expected risk-free interest rate er (see 4.1 for more

information).
16See Appendix B.
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policy D: DBt = FVt + 0.1 · P tot

Like the charges, death benefits are also financed by withdrawing an
amount from the investment fund at the beginning of the month. The amount
withdrawn from the investment fund is referred to as the ”risk premium” and
denotes the prudent estimated excess of the death benefits over the invest-
ment fund value. Let qx be the probability of a x-year-old dying the ongoing
year and let RPt denote the risk premium at time t, then the following equa-
tion holds:

RPt = (DBt − FVt) qx
12− qx (41)

The risk premium is withdrawn from the investment funds at the beginning
of the month and deposited on a bank account earning the risk free interest
rate. Therefore, in case the death benefit paid to the policyholder is larger
than the value of the amount of shares of the investment funds associated
with the policy, the risk premium is used to close the gap. It is worth to
notice that the risk premium is calculated at the beginning of the month with
respect to the investment funds value at the beginning of the month while
the death benefit is calculated with respect to the investment funds value at
the end of the month. An unfavorable development of the investment funds
during the month can lead to insufficient funds and therefore to negative
profits for the insurer.
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3.2 Lapses
Evaluating the value of the policies in its portfolio, the insurance company
must take into account, that the insured might use his option to surrender,
withdraw, or lapse his policy17. There are several factors that influence the
number of lapses: the remaining policy term, the performance of the pol-
icy compared to other products, the age of the policyholder, unemployment
rates, growth of the GDP, the rating of the insurance company, marketing
and marketing channels as well as personal reasons18. Lapses triggered by
these factors are not incorporated in this model in particular but combined
and defined as irrational lapse and modeled by deterministic lapse rates.
Rational lapse is triggered by the value of the policy to the policyholder,
more precisely, the surrender value of the policy. Rational lapse also often
is referred to as dynamic policyholder behavior, since it cannot be modeled
with deterministic assumptions. In literature, rational lapse is often used in
connection with the valuation of a surrender option and therefore lapses are
assumed to occur at any time the surrender value is larger than the value of
the policy. Note that this definition of rational lapses differs from the ratio-
nal lapse as presented in this paper. Dynamic policyholder behavior should
be carefully managed by the insurance company because changes might be
excessive and lead to huge financial losses. This paper also examines rational
lapses (dynamic lapse functions)1920.

3.2.1 Irrational lapse

The irrational lapse is assumed to evolve with a deterministic monotonically
decreasing lapse rate lrdett . It is useful to work with a annual lapse rate at
first: Let alrdets denote the annual lapse rate with s = 1, . . . , T and alrα, alrβ
and alrγ denote a start, multiplier and floor value, then the annual lapse rate
is defined as

alrdets = max{alrα − alrβs, alrγ} (42)

and the conversion equation is:

1− alrdetb t
12 +1c =

(
1− lrdett

)12 (43)

17The three expressions are equally used in literature.
18For more information about lapse, see Anzilli & De Cesare (2007), Cerchiara et al.

(2008), Kuo et al. (2003), Mauer & Holden (2007), Bacinello (2003), Cox & Lin (2006),
Outreville (1990) and Prestele (2006).

19See chapter 7.
20See CEIOPS (2009a) for more information about irrational and rational lapses.
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The number of policies at time t + 1 is then without regarding mortality or
rational lapses:

NPt+1 = NPt
(
1− lrdett

)
(44)

3.2.2 Lapse fees

The insurance company is allowed to deduct a lapse fee from the surrender
value of the policy in most European countries21. The main reasons for lapse
fees are adverse selection, administration expenses, acquisition expenses and
solvency22.

Lapse fees are set to have a deterministic and monotonically decreasing
lapse fee rate. In case a policyholder decides to surrender his policy, he
receives the investment fund value less the lapse fee. Let lf ratet denote the
lapse fee rate and lfα, lfβ and lfγ denote a start, multiplier and floor value,
then the lapse fee rate is defined as

lf ratet = max{lfα − lfβ
⌊
t

12

⌋
, lfγ} (45)

and the surrender value SVt is defined as:

SVt = FVt
(
1− lf ratet

)
(46)

3.3 Best estimate assumptions and expenses
Best estimate assumptions are formulated for mortality, seperate assump-
tions are used for expenses.
• The best estimate mortality is assumed to be a constant fraction of the

prudent mortality:

q′x = 0.6qx (47)

• The fixed monthly expenses are considered to be deterministic but
monthly increasing with a expeses inflation factor. Let cinf denote
a constant expenses inflation rate (per annum) and cpu′ (expenses per
unit) denote the constant fixed expenses of one policy, then the fixed
monthly expenses of one policy at time t can be expressed by

fexpenses′t = cpu′ (1 + cinf)
t

12 (48)
21E.g. in Germany (see VVG §169(5)), but not in France (see Helfenstein & Barnshaw

(2003)), Norway (see Nordahl (2008)).
22See DAV-Arbeitsgruppe Stornoabzüge (2007) and Gatzert (2009) for further informa-

tion.
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• The variable expenses are assumed to be zero.

• The aquisition charges equal the aquisition expenses.

3.4 Bonus system
The insurer uses prudent and best estimate assumptions for mortality and
different assumptions for charges and expenses because of prudence. There-
fore, in the long run, the insurer will make profits out of the assumption of
parameters. According to German law, these profits have to be shared with
the policyholders. Two kinds of profits can be identified: mortality profits
are profits generated by mortality risk taking and expense profits are profits
generated by expenses risk taking. Expense profits also include profits from
lapse fees and kickbacks23. Profits are generated every month and deposited
on a bank account earning the risk free interest rate. At the end of the
year the insurer credits at least 75% of the mortality profits and at least
50% of the expense profits to the policyholders investment fund. The rest of
the profits are profits of the insurance company and denote the value of the
policy (discounted at time t = 0) to the insurer.

23The investment fund management pays kickbacks to the insurer. Kickbacks are seen
as an allowance on management fees due to a high transaction volume.
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3.5 Parameter assumptions
The parameters set in this section represent the standard setting and are
used unless otherwise noted.

Parameter Value Description Category
T 30 policy term in years

general

gender male gender of the policyholders
x 30 age of the policyholders at t = 0
NP0 10000 number of policyholders at t = 0
P0 100000 single premium in Euro
Pt=0,...,12·T 305 regular premium in Euro
achargesrate 6% acquisition charges in per cent of P tot

charges

cpu 4 fixed charges per policy per month in Euro
vchargesrate 0% variable charges per month in per cent of FVt

(single premium case)
vchargesrate 0.15% variable charges per month in per cent of FVt

(regular premium case)
aexpensesrate′ 6% acquisition expenses in per cent of P tot

expensescpu′ 4 fixed expenses per policy per month in Euro
cinf 2% fixed expenses inflation per annum
vexpensesrate′ 0% variable expenses per month in per cent of FVt
alrα 12% start value of the alrdets function

lapse

alrβ 2% multiplier value of the alrdets function
alrγ 2% floor value of the alrdets function
lfα 5% start value of the lf ratet function
lfβ 0.5% multiplier value of the lf ratet function
lfγ 0% floor value of the lf ratet function
rbrate 75% risk profit participation rate bonus

systemcbrate 50% expense profit participation rate

Table 2: Parameter assumptions
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4 Simulations
4.1 Financial market model
The financial market model consists of one risky asset (e.g. a share) and a
riskfree investment possibility (e.g. a state bond). The risky asset is modeled
by using the standard Black-Scholes-Merton model, while the interest rates
are modeled with the Cox-Ingersoll-Ross model.

4.1.1 Investment fund

The investment fund contains only risky assets but is modeled with respect
to investment fund fees and kickbacks to the insurance company.
Let St denote the value of one share of the risky asset with a constant
volatility σ, rt the risk-free short-rate24 and Wt a Brownian motion at time
t ∈ [0, T ], then St fulfills the following sde in a risk-free world25:

dSt = rtStdt+ σStdWt (49)

This sde has a known solution:

St = St−1 exp

(∫ t

t−1

(
rs − σ2

2

)
ds+

∫ t

t−1
σ dWs

)
(50)

= St−1 exp

(∫ t

t−1
rsds− σ2

2 + σε

)
with ε ∼ N (0, 1) (51)

Now let FundFee denote a constant rate of fees, which will be retained
by the investment fund management and let At denote the value of one share
of the investment fund, then

dAt = rtAtdt+ σAtdWt + ln (1− FundFee)Atdt (52)

describes the movements of the investment fund. The investment fund is
modeled like a dividend paying share26. The solution of this sde can be

24Assuming an adapted interest rate process rt Shreve (2000, page 215).
25See Shreve (2000, page 214-217).
26See Shreve (2000, page 234-240).
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written as

At = At−1 exp

(∫ t

t−1

(
rs − σ2

2 + ln (1− FundFee)
)
ds+

∫ t

t−1
σ dWs

)
(53)

= At−1 exp

(∫ t

t−1
rsds− σ2

2 + σε

)
(1− FundFee) with ε ∼ N (0, 1)

(54)

= At−1
St
St−1

(1− FundFee) (55)

The amount of fees retained by the investment fund management per
investment fund share at time t is then

FGt = At−1
St
St−1

FundFee (56)

Since the investment fund fee is usually given in an annual form, denoted by
aFundFee, the following conversion formula is used:

1− aFundFee = (1− FundFee)12 (57)

The kickbacks are paid by the investment fund management to the insurer
and are financed with the investment fund managment fees27. The amount
of kickbacks per investment fund share is

Kickbacks (per share) = At · kickbackrate (58)

4.1.2 Interest rates

The Cox-Ingersoll-Ross model is used to model the short rate28. Unfortu-
nately, this model has no closed-form solution, but the interest rates are
always positive. Let lm denote the constant long run short rate, mrs the
constant mean reversion speed, σr the volatility of the interest rates and W r

t

a Brownian motion, then the model for the short rate process rt is

drt = mrs (lm− rt) dt+ σr
√
rtdW

r
t (59)

It is useful to introduce some additional expressions for the interest rates29.
Let fr[t−1,t],i denote the forward rate for t ∈ [t− 1, t] for the simulation path

27Therefore, the rate of kickbacks should be chosen smaller than the rate of investment
fund management fees.

28See Shreve (2000, page 151-153).
29See chapter 5.
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i; the zero coupon bond swap rate at maturity t is denoted by zcsrt,i. Then
the following equations hold30:

1 + fr[t−1,t],i = exp
(∫ t

t−1
rs,ids

)
(60)

(1 + zcsrt,i)t = (1 + zscrt−1,i)t−1 (1 + fr[t−1,t],i
)

(61)

4.1.3 Implementation

To implement the financial market model, the first step is the simulation of
the two Brownian motions Wt and W r

t . Sometimes, it is useful to correlate
the stochastic parts of the risky and the risk-free asset. Since the interest
rate already influences the risky asset by design of the process (the drift of
the geometric Brownian motion) and with no influence of the risky asset on
the interest rate in this model yet, it might be useful to define the Brownian
motions as follows:

Wt = Bt (62)
W r
t = ρWt +

√
1− ρ2Br

t (63)

with two independent standard Brownian motions Bt and Br
t and correlation

factor ρ.

Unit-linked products are usually calculated every month, therefore the
simulation steps have a time span of one month. With the policy term T
and n simulation runs, 12 · T · 2 · n independent standard normal random
variables must be generated31. Note that all variables are defined pathwise
in this section, the index i has been left out for reason of readability32.

Let Xt and Xr
t be independent standard normal random variables with

t = 0, . . . , 12 · T , then the random variables for the simulations can be ob-
tained with:

εt = X1
t (64)

εrt = ρεt +
√

1− ρ2Xr
t (65)

The second step is the simulation of the interest rates. Since there is no
closed-form solution, a discretization is used to obtain the short rates. The

30See Daniel & Vaaler (2007) for more information about interest rates.
31The random number generator included in the Microsoft Office 2003 was used for the

simulations.
32Therefore, i.e. St = St,i or rt = rt,i
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well known Euler-Maruyama discretization scheme has been used because of
its simplicity33. Let r0 be the starting value, then the following short rates
for t = 1, . . . , 12 · T are defined by:

rt = rt−1 + 1
12mrs (lm− rt−1) + σr

√
1
12rt−1 ε

r
t (66)

The additional expressions for the interest rates can easily be obtained
by

1 + fr[t−1,t] = exp
(

1
12rt−1

)
(67)

(1 + zcsrt)t = (1 + zscrt−1)t−1 (1 + fr[t−1,t]
)

(68)

The zero coupon bond swap rates at maturity t are monthly; it is useful to
annualize them34. The annualized zero coupon bond swap rates at maturity
t, azcsrt, are defined by

azcsrt = (1 + zcsrt)12 − 1 (69)

For some calculations, the insurer needs a projected interest rate (e.g. ac-
quisition charges in the regular premiums case). In order to avoid nested
simulations, the expected value, which is calculated with the discretization
of the short rate formula is used. Let ert denote the expected short rate and
let er0 = r0 be a starting value, then the following equation holds:

ert = ert−1 + 1
12mrs (lm− ert−1) (70)

The third step, the simulation of the risky asset and the investment fund,
is straight forward. With the starting value S0 = A0 and using the forward
rate, the values of one share of the risky asset St and the values of one share
of the investment fund At for t = 1, . . . , 12 · T can be obtained by

St = St−1 exp

(
ln
(
1 + fr[t−1,t]

)− 1
12
σ2

2 + σ

√
1
12εt

)
(71)

At = At−1
St
St−1

(1− FundFee) (72)

33See Alfonsi (2006, page 3).
34The QIS4 interest rates stress scenario is performed on annual zero coupon bond swap

rates.
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4.2 Parameter assumptions
The parameters set in this section represent the standard setting and are
used unless otherwise noted.

Parameter Value Description Category
n 5000 number of simulations general
ρ 0 correlation between the Brownian motions
S0 100 starting value of the risky asset risky

assetσ 20% volatility per annum
r0 4% starting value

interest
rate

mrs 0.3 mean reversion speed
lm 4.5% long run short rate
σr 2.5% volatility per annum
aFundFee 1.5% investment fund fee per annum investment

fundakickbackrate 0.5% kickback rate per annum

Table 3: Financial market model parameter assumptions
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4.3 Simulation steps
The following figure describes the simulation sequence of one simulation path
of the liability portfolio projection component of the Excel-tool:

For t = 0:

determination num-
ber of policyholders

determination ag-
gregate premiums

single premium policy regular premium policy

calculation aggre-
gate total premiums

calculation ac-
quisition charges

lump sum regular deduction

determination invest-
ment funds value

calculation death benefits

calculation risk premiums

determination charges

determination
number of shares

Figure 4: Simulation steps I
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For t = 1, . . . , 12T :

projection investment fund

determination num-
ber of policyholders

determination expenses

calculation death benefits

calculation best esti-
mate death benefits

determination lapses

calculation profits

profit distribution no profit distribution

recalculation in-
vestment funds

calculation death benefits

calculation risk premiums

determination charges

determination
number of shares

next simulation step

Figure 5: Simulation steps II
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Figure 6: Timeline

31



4.4 Numerical results

SCR Profits SCR ratio
A € 15,03 mln € 40,10 mln 266,77% 1,60% 1,00%
B € 15,01 mln € 39,63 mln 264,09% 1,60% 1,00%
C € 15,17 mln € 39,87 mln 262,80% 1,61% 1,00%
D € 15,07 mln € 39,75 mln 263,87% 1,60% 1,00%
A reg € 14,76 mln € 40,15 mln 272,02% 1,43% 0,00%
B reg € 14,70 mln € 39,98 mln 272,02% 1,42% 0,00%
C reg € 14,75 mln € 40,06 mln 271,55% 1,43% 0,00%
D reg € 14,75 mln € 40,05 mln 271,57% 1,43% 0,00%

Policy type P type Solvency ratio SCR ratio – Solvency I
sin
sin
sin
sin

Table 4: Numerical results I

Policy A Policy B Policy C Policy D
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Composition of the BSCR
single premium policy

BSCRexp
BSCRlapse
BSCRmort
BSCRint
BSCReq

Figure 7: Composition of the BSCR – single premium
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Policy A Policy B Policy C Policy D
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Composition of the BSCR
regular premium policy

BSCRexp
BSCRlapse
BSCRmort
BSCRint
BSCReq

Figure 8: Composition of the BSCR – regular premium

Policy A Policy B Policy C Policy D
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Composition of the SCR
single premium policy

SCRexp
SCRlapse
SCRmort
SCRint
SCReq

Figure 9: Composition of the nSCR – single premium
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Policy A Policy B Policy C Policy D
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Composition of the SCR
regular premium policy

SCRexp
SCRlapse
SCRmort
SCRint
SCReq

Figure 10: Composition of the nSCR – regular premium

Table 4 presents the simulated SCR’s and the insurer’s profits for all
four kinds of policies with both premium types (”sin” for single premium
and ”reg” for regular premium). Furthermore, it presents two important
financial ratios: Solvency ratio and SCR ratio35. Figures 7 to 10 show the
compositions of the BCSR and the nSCR before diversification.

The first observation is that market risks and lapse risk dominate the
risk structure of the respective product. Throughout all simulation runs the
long-term increase of the lapse rates proved to be the relevant stress scenario.
Expense risk and mortality risk are both almost negligible. Therefore, the
type of death benefits has also only little impact on the solvency capital
requirement.

Secondly, comparing the results of the simulations, the premium type
of the policy proves to be very important for the policies’ risk structure.
Although the regular premium policy is just insignificantly more risky than
the single premium policy (by comparing the SCR ratio), interest rate risk
represents market risks almost completely. This fact is not surprising, since,
with a regular premium policy, the fund value is small at the beginning. On
the opposite, the market risk of a single premium policy is dominated by the
equity risk. A shock of interest rates does not have a significant impact on
the profits. Since a change of interest rates does affect the discounting of
future profits as well as the trend of the risky assets and since the profits

35With Solvency ratio = Π
SCR and SCR ratio = SCR

P tot .
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are mostly generated or triggered by the investment fund value, both effects
seem to offset each other.

Thirdly, the solvency capital requirement calculated with the standard
formula of the Solvency II framework that does not even include operational
risk yet, seems to be much higher than the solvency capital requirement cal-
culated according to the Solvency I framework (by a factor of 1.6 or higher,
comparing the SCR ratios). For the regular premium policy, Solvency I re-
quires only little solvency capital at the beginning of the policy term and the
biggest amount of solvency capital at the end of the policy term although
this is illogical since the risk obviously decreases to the end of the policy term
in general.

SCRmkt

SCRlife
Div

FDB

SCR

Figure 11: SCR - Structure - single premium

SCRmkt

SCRlife

Div

FDB

SCR

Figure 12: SCR - Structure - regular premium
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total
total

Profits € 40,10 mln € 0,60 mln € 39,50 mln € 7,41 mln € 32,62 mln 
€ 39,97 mln € 0,51 mln € 39,46 mln € 7,41 mln € 32,58 mln 
€ 39,42 mln € 0,60 mln € 38,82 mln € 7,41 mln € 32,61 mln 
€ 35,16 mln € 0,41 mln € 34,75 mln € 10,09 mln € 25,03 mln 
€ 27,31 mln € 0,73 mln € 26,58 mln € 5,03 mln € 22,08 mln 
€ 40,12 mln € 0,45 mln € 39,68 mln € 7,41 mln € 32,67 mln 

total
total

Profits € 78,82 mln € 2,42 mln € 76,40 mln € 14,69 mln € 62,77 mln 
€ 78,38 mln € 2,05 mln € 76,33 mln € 14,69 mln € 62,69 mln 
€ 77,50 mln € 2,42 mln € 75,08 mln € 14,69 mln € 62,77 mln 
€ 68,99 mln € 1,67 mln € 67,31 mln € 19,97 mln € 48,08 mln 
€ 54,36 mln € 3,01 mln € 51,35 mln € 9,98 mln € 42,42 mln 
€ 78,53 mln € 1,77 mln € 76,76 mln € 14,69 mln € 62,86 mln 

Profits distribution with profit sharing Policy type A P type sin
from risk from expenses

from lapse from kickbacks

Profits after mort-shock
Profits after exp-shock
Profits after lapse-shock
Profits after eq-shock
Profits after int-shock

Profits distribution without profit sharing Policy type A P type sin
from risk from expenses

from lapse from kickbacks

Profits after mort-shock
Profits after exp-shock
Profits after lapse-shock
Profits after eq-shock
Profits after int-shock

total
total

Profits € 40,15 mln € 1,11 mln € 39,04 mln € 0,37 mln € 8,52 mln 
€ 39,84 mln € 0,94 mln € 38,90 mln € 0,37 mln € 8,49 mln 
€ 39,41 mln € 1,11 mln € 38,30 mln € 0,37 mln € 8,50 mln 
€ 28,35 mln € 0,84 mln € 27,51 mln € 0,47 mln € 5,95 mln 
€ 40,06 mln € 1,11 mln € 38,95 mln € 0,37 mln € 8,50 mln 
€ 34,34 mln € 0,86 mln € 33,48 mln € 0,35 mln € 7,28 mln 

total
total

Profits € 74,81 mln € 4,68 mln € 70,12 mln € 0,72 mln € 15,31 mln 
€ 73,97 mln € 3,98 mln € 69,99 mln € 0,72 mln € 15,28 mln 
€ 73,48 mln € 4,68 mln € 68,80 mln € 0,72 mln € 15,31 mln 
€ 53,08 mln € 3,53 mln € 49,55 mln € 0,92 mln € 10,73 mln 
€ 74,66 mln € 4,69 mln € 69,97 mln € 0,71 mln € 15,28 mln 
€ 63,63 mln € 3,59 mln € 60,04 mln € 0,68 mln € 13,07 mln 

Profits distribution with profit sharing Policy type A P type reg
from risk from expenses

from lapse from kickbacks

Profits after mort-shock
Profits after exp-shock
Profits after lapse-shock
Profits after eq-shock
Profits after int-shock

Profits distribution without profit sharing Policy type A P type reg
from risk from expenses

from lapse from kickbacks

Profits after mort-shock
Profits after exp-shock
Profits after lapse-shock
Profits after eq-shock
Profits after int-shock

Table 5: Composition of the profits

Table 5 presents the impact of the stress-scenarios on the profits. Fur-
thermore, the composition of the profits is shown. Note that profits from
lapse fees and kickbacks are part of the profits from expenses. Table 5 also
displays the impact of profit sharing on profits and its risk absorbing effect.
Table 6 presents the effect of profit sharing in more detail. The insurer is
able to mitigate the risk almost identical to the profit participation rates.
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Profits € 40,10 mln € 78,82 mln 49%
SCR € 15,03 mln € 28,98 mln 48%

€ 12,79 mln € 24,46 mln 48%
€ 0,00 mln € 0,29 mln 100%
€ 0,13 mln € 0,44 mln 70%
€ 4,94 mln € 9,83 mln 50%
€ 0,68 mln € 1,32 mln 49%

Policy type A P type sin
with profit sharing without profit sharing risk mitigation

SCReq
SCRint
SCRmort
SCRlapse
SCRexp

Profits € 40,15 mln € 74,81 mln 46%
SCR € 14,76 mln € 27,46 mln 46%

€ 0,08 mln € 0,15 mln 43%
€ 5,81 mln € 11,18 mln 48%
€ 0,30 mln € 0,84 mln 64%
€ 11,80 mln € 21,73 mln 46%
€ 0,74 mln € 1,32 mln 44%

Policy type A P type reg
with profit sharing without profit sharing risk mitigation

SCReq
SCRint
SCRmort
SCRlapse
SCRexp

Table 6: Risk absorbing effect of future profit sharing

37



5 Stress scenarios
The solvency capital requirement is defined as the difference of the best
estimate net asset value (profits) and the net asset value under stress36. The
stress scenarios defined in this chapter originate from QIS4. The design of
the regarded insurance product requires the consideration of the following
risks: in the market risk module, the interest rate risk and the equity risk
are relevant. Mortality risk, lapse risk and expense risk are the relevant
risks from the life underwriting risk module. Note that CEIOPS proposes
to adjust some of the stress scenarios of QIS437, these adjustments are not
considered in this paper.

5.1 QIS4 stress scenarios
”interest rate risk” 38 – The interest rate risk module includes two stress

scenarios: up-shift of the interest rate curve (zero coupon bond rate)
and down-shift of the interest rate curve. The exact magnitude of the
shifts can be found in the QIS4 tables39.

”equity risk” 40 – The equity risk module contains an immediate loss of
32% of the risky assets41.

”mortality risk” 42 – The mortality stress is defined as an increase of the
mortality rates amounting to 10%.

”lapse risk” 43 – The lapse risk includes three stress scenarios: a long-term
increase of the lapse rates, a long-term decrease of the lapse rates and
a massive immediate lapse of 30% of the policyholders.

”expense risk” 44 – The expense risk stress scenario is defined as an in-
crease of 10% in future expenses and an increased expenses inflation
(+1% per annum).

36See chapter 2 for details.
37see the consultation papers for more information.
38See CEIOPS (2008c, pages 134-137).
39See appendix A.
40See CEIOPS (2008c, pages 137-143).
41The risky assets are assumed to belong to the asset category ”Global”.
42See CEIOPS (2008c, pages 162-164).
43See CEIOPS (2008c, pages 167-169).
44See CEIOPS (2008c, pages 169-170).
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5.2 Implementation of the stress scenarios
The liability portfolio projection component of the Excel-tool is run through
several loops during the calculation of the solvency capital requirement. The
different stress scenarios shock the following parameters. Note that the sim-
ulated results of the financial market model are required, since the market
stresses are performed on this results.

”interest rate risk” The stresses are applied to the annualized zero coupon
bond swap rates at maturity t, azcsrt. The relative changes of the
interest rates due to an upward stress are denoted by supward and the
relative changes due to a downward stress are denoted by sdownward.
The stressed annualized zero coupon bond swap rates are then

azcsrupwardt = azcsrt
(
1 + supward

)
(73)

and

azcsrdownwardt = azcsrt
(
1 + sdownward

)
(74)

The stressed zero coupon bond swap rates and forward rates are de-
rived from the stressed annualized zero coupon bond swap rates using
equations 69 and 68. The stressed interest rates are also used to derive
the movements of the risky assets (as the drift of the geometric Brow-
nian motion). Therefore, the interest rates stresses have an influence
on the financial market model as a whole.

”equity risk” The equity stress is an immediate short term stress on the
risky asset. Let sdownequity = −32% denote the relative change of equity
value, then

S1

S0

∣∣∣∣
stressed

= S1

S0

(
1 + sdownequity

)
(75)

The values of the risky asset are calculated with a recursive formula,
therefore a change of S1 and A1 requires recalculation of St and At for
all t > 1.

”mortality risk” The increase of 10% of the mortality rates applies to the
best estimate mortality rates, therefore:

q′stressedx = 1.1 · 0.6qx (76)
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”lapse risk” The relative changes are performed to the monthly determin-
istic lapse rates:

lr
det/up
t = 1.5 · lrdett ∀t (77)

lr
det/down
t = 0.5 · lrdett ∀t (78)

lr
det/mass
t = 1− (1− 0.3) 1

12 ∀t ∈ [0, 11] (79)

”expense risk” The increase of 10% of the expenses applies to the monthly
fixed expenses and 1% is added to the expenses inflation rate, therefore:

cpu′stressed = 1.1cpu′ (80)
cinf stressed = cinf + 0.01 (81)
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6 Linearities
The Solvency II standard formula is based on the assumption of linearity.
Two types of linearity can be identified: Linearity within a risk and linear-
ity between risks. Linearity within a risk ensures that the solvency capital
requirement of a single risk module increases linearly with the risk factor.
Following equation holds:

kSCR(Xi) = SCR(kXi) (82)

for any positive k and every risk i. The linearity between risks ensures that
the separately calculated diversified solvency capital requirement of several
risk modules equals the solvency capital requirement of a simultaneous shock
with adjusted risk factors:

SCRk·SES(X) =
√∑

i,j

ρi,jSCR(kXi)SCR(kXj) (83)

with X =
∑
i

Xi and the single equivalent scenario SES45.
Non-linearities can compromise the accuracy of the solvency capital require-
ment calculated with the standard formula. Excessive non-linearities nearing
the defined stress scenarios can lead to significant changes of the solvency
capital requirement. More crucial, non-linearities between risks can not be
evaluated with the standard formula. It is possible that an insurance com-
pany facing unfavorable developments in several risk modules is in need of
much more or much less capital than aggregated with the standard formula.
Furthermore, the single equivalent scenario method requires both, linearity
within a risk and linearity between risks46.

Figures 13 and 14 show sensitivity graphs of the relevant risks, equity and
lapse (up-shock) for a single premium policy (type A). For a regular premium
policy (type A), sensitivity graphs of the interest rate (up-shock) and lapse
(up-shock) are presented. The values on the x-axis denote the reduction
factor for the risk from zero, denoting ”no stress”, to one, denoting ”full
QIS4 stress-scenario”47. The grey curves represent the impact on the profits
while the black curves linear regression lines. All graphs indicate almost
perfect linearity. Non-linearity can be found within the lapse risk. There is

45See chapter 8 for more information.
46See chapter 8.
47A value of 0.5 for the equity risk would denote an immediate loss of 16% of the risky

assets.
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also non-linearity between market risks and lapse risk as seen in figure 15.
Here, the grey curves represent the impact on the profits of simultaneous
stress-scenarios with adjusted risk factors, the black curves represent the
total impact on the profits of seperately calculated stress-scenarios including
diversification. This result is important for the single equivelent scenario48.

48See chapter 8 for more information.
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Figure 13: Numerical results - Linearities - single premium
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Figure 14: Numerical results - Linearities - regular premium
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Figure 15: Numerical results - Non-linearities between risks
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7 Dynamic policyholder behavior
Dynamic policyholder behavior is a major concern to actuaries. The lack
of statistical data and the amount of factors that may influence the policy-
holder’s behavior have to be taken into account and make it difficult to model
or project the policyholder’s actions. The challenge is even bigger consider-
ing a situation of a new product launch and therefore only little experience.
On the other hand, it is common sense among actuaries that dynamic policy-
holder behavior, especially dynamic lapses, can be a major risk. Throughout
the literature, there are indicators that suggest a more distinct dynamic be-
havior for unit-linked products49 caused by a higher volatility in the ”value”
of options, guarantees or the fund value. CEIOPS addresses the existence of
options and guarantees as well as the financial markets as reasons for possible
dynamic policyholder behaviour50.

In this chapter, two ways of modeling dynamic lapses are introduced.
Since the product has only one guarantee, dynamic lapses could be triggered
by the value of the guaranteed death benefits. The model is designed accord-
ing to the SOA approach. This way of modeling dynamic lapses is introduced
for reasons of completeness since it is rather unlikely that policyholders would
tie their lapse behavior to the guaranteed death benefits of a simple German
unit-linked insurance. Dynamic lapses triggered by guarantees seem to be
more important for insurance products with stronger guarantees such as ac-
cumulation or withdrawal guarantees. On the other hand, the product is
very market sensitive, therefore it is also reasonable to model dynamic lapses
triggered by the fund value. Very simple lapse functions are used in both
cases, more sophisticated lapse functions can be found in the literature51.

The impact of dynamic policyholder behavior on the solvency capital
requirement is measured with the following approach: the output of a lapse
function, denoted as the dynamic lapse multiplier, adjusts the deterministic
lapse rates. The lapse rates therefore reflect a combination of irrational lapse
bahaviour and rational lapse behavior. This setup makes sure that, when
the lapse stress scenario is performed, only the deterministic lapse rates are
affected directly while the risk from dynamic lapses is taken in account in the

49See Helfenstein & Barnshaw (2003, page 20), Hochreiter et al. (2007, page 8), Edwards
(2009), Cerchiara et al. (2008) and Milliman (2009).

50See TS.II.D.11-15 CEIOPS (2008c, page 34).
51See Kochanski (2009), Kolkiewicz & Tan (2006), Smink (2001), Zenios (1999) and

De Giovanni (2008).
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sub-module of the trigger (here: the market risk at most)52. In the second
step, the solvency capital requirement is recalculated with the average annual
lapse rates of the first step just as if the insurer would experience lapses
without the assumption of dynamic policyholder behavior. The impact of
dynamic lapse rates is then the ratio of the SCR’s obtained.

7.1 Dynamic lapse multiplier triggered by death ben-
efits

The Society of Actuaries (SOA) has introduced a dynamic lapse multiplier for
similar products (variable annuities – GMDB type). The multiplier adjusts
the lapse rates depending on the ratio of the guaranteed death benefit and
the current investment fund value. ”This factor adjusts the lapse rate to
reflect the antiselection present when the guarantee is in-the-money. Lapse
rates may be lower when the guarantees have more value.”53 The lapse rates
are adjusted with the following method: Let dlmt denote the dynamic lapse
multiplier, then

lrt = lrdett · dlmt with (84)

dlmt = min
(

1,max
(

0.5, 1− 1.25
(
DBt

FVt
− 1.1

)))
(85)

7.2 Generalized dynamic lapse multiplier triggered by
death benefits

In this setup, the SOA-multiplier is generalized to allow a variety of impact
scenarios on the deterministic lapse rates:

lrt = lrdett · dlmt with (86)

dlmt = min
(
dlmmax,max

(
dlmmin, 1− adja

(
DBt

FVt
− adjb

)))
(87)

where dlmmax and dlmmin denote the maximum and the minimum value of
the dynamic lapse multiplier, while adja and adjb adjust the sensitivity of the
multiplier to a change of the value of the guaranteed death benefits.

52This approach is presented in CEIOPS (2009a, page 20-24).
53See American Academy of Actuaries (2005, page 59).
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7.3 Dynamic lapse multiplier triggered by the funds
value

Another way to motivate dynamic policyholder behavior is to trigger dynamic
lapse rates by the performance of the fund value. Using a simple step function
and assuming that bad fund performance leads to higher lapse rates while
good fund performance reduces lapses, the dynamic lapse multiplier can be
defined as follows:

lrt = lrdett · dlmt with (88)

dlmt =


dlmmin, for At

Amax {0,t−d}
> adja

dlmmax, for At

Amax {0,t−d}
< adjb

1, else
(89)

where dlmmax and dlmmin denote the maximum and the minimum value of
the dynamic lapse multiplier, while adja and adjb set the fund value perfor-
mance that triggers dynamic lapse behavior and d denotes the number of
months the policyholder monitors the fund value until he makes a decision.

7.4 Parameter assumptions

Parameter Value Description Category
dlmmax 1 maximum value of the dynamic lapse

multiplier Dynamic lapse
multiplier
triggered by
death benefits

dlmmin 0.5 minimum value of the dynamic lapse
multiplier

adja 1.25 sensitivity factor a
adjb 1.1 sensitivity factor b
dlmmax 1.5 maximum value of the dynamic lapse

multiplier

Dynamic lapse
multiplier
triggered by the
fund value

dlmmin 0.5 minimum value of the dynamic lapse
multiplier

adja 1.5 fund value performance triggering
lower lapses

adjb 0.9 fund value performance triggering
higher lapses

d 12 monitoring period in months

Table 7: Dynamic lapse model parameter assumptions
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7.5 Numerical results
Simulations have been run for both kinds of lapse multipliers in order to
detect the riskier dynamic lapse trigger.

SCR Profits
A -8,47% -1,76% 7,33% -9,31% -11,52% 1,68% -7,02%
B -0,94% -0,37% 0,57% -1,38% -2,62% 0,05% -0,94%
C 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
D -2,20% -0,51% 1,73% -3,18% -1,70% 0,17% -1,93%
A reg -21,96% -21,90% 0,08% -23,86% -27,04% -20,92% -26,54%
B reg -18,89% -20,82% -2,38% -22,54% -23,35% -17,19% -24,23%
C reg 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
D reg -18,34% -20,46% -2,59% -22,20% -23,10% -16,56% -23,79%

Policy Type P type Solvency ratio SCRmkt SCRmort SCRlapse SCRexp
sin
sin
sin
sin

Table 8: Numerical results - dynamic lapses triggered by death benefits

SCR Profits
A 3,48% 1,18% -2,22% 4,99% 10,52% 0,02% 7,01%
B 3,59% 1,06% -2,44% 5,48% 8,78% 0,04% 6,99%
C 3,72% 1,04% -2,59% 5,74% 2,83% 0,05% 6,97%
D 3,68% 1,05% -2,54% 5,67% 4,82% 0,05% 6,98%
A reg 1,16% 5,98% 4,76% 5,92% 7,14% -0,15% 6,82%
B reg 1,13% 5,96% 4,78% 5,83% 6,69% -0,13% 6,82%
C reg 1,13% 5,97% 4,78% 5,81% 7,01% -0,12% 6,82%
D reg 1,13% 5,97% 4,78% 5,83% 7,09% -0,12% 6,82%

Policy Type P type Solvency ratio SCRmkt SCRmort SCRlapse SCRexp
sin
sin
sin
sin

Table 9: Numerical results - dynamic lapses triggered by the fund value

Tables 8 and 9 show substancial changes in the structure of the solvency
capital requirement as well as in the profits due to dynamic lapses. Dynamic
lapses triggered by death benefits lead to a decrease of the SCRmkt for policies
with strong guarantees such as policy type A. This is the only significant
effect for single premium policies (note that SCRmort and SCRexp have only
little influence on the SCR). For regular premium policies, there is also a
substantial decrease in the profits as well as in SCRlapse. Overall, the usage of
dynamic lapses triggered by death benefits defined as in the model improves
the solvency ratio for single premium policies and worsens the solvency ratio
for regular premium policies.

Table 9 shows the more relevant results from simulations with dynamic
lapses triggered by the fund value. Again, dynamic lapses lead to changes of
the SCRmkt, here the SCRmkt increases, and since the type of the guarantee
is not a trigger for dynamic lapses in this model, the changes are similar for
all types of policies. For single premium policies, the SCRmkt has a bigger
influence on the SCR than for regular premium policies. The opposite effect
occurs regarding the profits. Overall, the use of dynamic lapses triggered
by the fund value defined as in the model worsens the solvency ratio for
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single premium policies and improves the solvency ratio for regular premium
policies.

The changes of the deterministic lapses (run 1 – original deterministic
lapses and run 2 – average overall lapses from run 1) are presented in tables
18 to 2054.

The impact of dynamic lapse behavior as modeled in this paper on the
solvency capital requirement of a German unit-linked insurance with guar-
anteed death benefits is not alarming. However, this may not be the case
with unit-linked products with strong guarantees and options.

54See Appendix C.
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8 Single equivalent scenario
The single equivalent scenario was developed to avoid double-counting of
the loss-absorbing capacity of future discretionary benefits and to detect
non-linearities55. As opposed to perform single stress tests to determine the
solvency capital requirement for every risk module and then using the SCR-
formulas, only one stress scenario is performed but with all stresses at one
time and therefore with lesser shocks. The calibration of the shocks should be
performed on the BSCR, therefore the derivation starts with the standard
formula for basic solvency capital requirement:

BSCR =
√∑

i,j

ρi,jSCRiSCRj (90)

Since the stresses in the single equivalent scenario happen simultaneously,
all correlation factors are changed to ρi,j = 1, ∀i, j56. The change of the
correlation factors increases the level of significance. To ensure a constant
level of significance, a change of correlation factors must be accompanied
by an adjustment to the stress scenarios. Furthermore, linearity is assumed
throughout the entire model, therefore, the solvency capital requirement for
every sub-module can be adjusted by multiplying with a diversification reduc-
tion factor, which also is applied to the stress scenarios. Using the adjusted
SCRi and replacing the correlation factors, the BSCR can be expressed as

BSCR =

√√√√(∑
i

drfi SCRi

)2

(91)

=
√(

SCRSES
int + SCRSES

eq + SCRSES
mort + SCRSES

lapse + SCRSES
exp

)2

(92)
= SCRSES

int + SCRSES
eq + SCRSES

mort + SCRSES
lapse + SCRSES

exp (93)
= BSCRSES (94)
= Π− Π|SES (without profit sharing) (95)

where SCRSES
i denotes the solvency capital requirement of the sub-module

i resulting from an adjusted shock57. In QIS4, most shocks are expressed
55See CEIOPS (2009b) for general description and CEIOPS (2008b) for implementation

in the standard formula.
56The single equivalent scenario method requires positive definite initial correlation ma-

trices (see CEIOPS (2009a) for further information).
57SCRSES

i = drfi SCRi holds only with a linear model.
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with factors to the relevant rates (e.g. mortality rates, lapse rates etc.),
moderated shocks as used in the single equivalent scenario are created with
diversification reduction factors. The diversification reduction factors that
adjust the shock rates are derived through the following approach: The diver-
sified solvency capital requirement is allocated to every sub-module with the
covariance principle58. Then, the diversification reduction factors that adjust
the stress scenarios are defined as the proportion of the allocated diversified
solvency capital requirement to the stand-alone solvency capital requirement.
Let CSCR, Cmkt and Clife denote the correlation matrices of the overall SCR,
the market risk and the underwriting risk modules. Let

U =
(
SCRmkt

SCRlife

)
, V =

(
SCRint

SCReq

)
, W =

SCRmort

SCRlapse

SCRexp

 , (96)

then the 1st step diversification reduction factors f are defined by:(
fmkt
flife

)
= 1
BSCR

CSCRU (97)(
fint
feq

)
= 1
SCRmkt

CmktV (98)fmortflapse
fexp

 = 1
SCRlife

ClifeW (99)

The 2nd step diversification reduction factors drf are obtained by multiply-
ing the risk module 1st step diversification reduction factors with the overall
1st step diversification reduction factors, e.g. drfmort = fmortflife (the re-
duced mortality shock would be 10% · drfmort)59.

Now, the reduced shocks can be used to calculate the net solvency cap-
ital requirement via the single equivalent scenario. A significant difference
between the nSCR and the nSCRSES suggests a significant double counting
of loss-absorbing capacity of future discretionary benefits.

The existence of non-linearities leads to significant difference between the
BSCR and the BSCRSES. Therefore, the single equivalent scenario can also
be used to detect non-linearities.

58See Albrecht & Koryciorz (2004) for more information.
59See D for an example for above calculations.
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Table 10 shows the BSCR and the SCR obtained by the standard for-
mula and the percental deviation of the BSCR and the SCR obtained by
the single equivalent scenario method. There is no indication for double
counting of loss-absorbing capacity of future discretionary benefits since the
deviation is almost identical for the BSCR and the SCR. The deviation
does not change with different bonus participation rates60. The reason for
the difference of the solvency capital requirements is non-linearity61. The
diversification reduction factors are presented in table 11. Nevertheless, re-
quiring less computational capacities than the standard formula, the single
equivalent scenario can be useful, once the diversification reduction factors
are obtained. Unfortunately, the adjustment of the diversification reduction
factors requires the calculation of the solvency capital requirement with the
standard formula method. Therefore, the single equivalent scenario can not
be used to replace the standard formula.

BSCR SCR SES-BSCR SES-SCR
A € 28,98 mln € 15,03 mln -4,55% -4,83%
B € 28,91 mln € 15,01 mln -4,66% -4,78%
C € 29,58 mln € 15,17 mln -4,87% -4,88%
D € 29,17 mln € 15,07 mln -4,75% -4,82%
A reg € 27,46 mln € 14,76 mln -6,41% -6,27%
B reg € 26,78 mln € 14,70 mln -6,27% -6,20%
C reg € 26,84 mln € 14,75 mln -6,25% -6,18%
D reg € 26,89 mln € 14,75 mln -6,27% -6,20%

Policy Type P type
sin
sin
sin
sin

Table 10: Numerical results - SES

reg
0,011 0,611
0,935 0,008
0,042 0,048
0,571 0,917
0,346 0,508

Policy Type A
premium type sin
drf_int
drf_eq
drf_mort
drf_lapse
drf_exp

Table 11: Diversification reduction factors - SES
60Tested with higher and lower bonus participation rates and also without minimum

participation rates.
61As shown in chapter 6, figure 15.
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total
total

Profits € 78,82 mln € 2,42 mln € 76,40 mln € 14,69 mln € 62,77 mln 
€ 51,16 mln € 2,39 mln € 48,77 mln € 12,49 mln € 37,50 mln 

Profits € 40,10 mln € 0,60 mln € 39,50 mln € 7,41 mln € 32,62 mln 
€ 25,80 mln € 0,58 mln € 25,22 mln € 6,31 mln € 19,52 mln 

Profits distribution – SES Policy type A P type sin
from risk from expenses

from lapse from kickbacks
with profit sharing

Profits after combined shock
without profit sharing

Profits after combined shock

total
total

Profits € 74,81 mln € 4,68 mln € 70,12 mln € 0,72 mln € 15,31 mln 
€ 49,10 mln € 3,08 mln € 46,03 mln € 0,88 mln € 10,04 mln 

Profits € 40,15 mln € 1,11 mln € 39,04 mln € 0,37 mln € 8,52 mln 
€ 26,31 mln € 0,74 mln € 25,58 mln € 0,45 mln € 5,57 mln 

Profits distribution – SES Policy type A P type reg
from risk from expenses

from lapse from kickbacks
with profit sharing

Profits after combined shock
without profit sharing

Profits after combined shock

Table 12: Composition of the profits – SES
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9 Summary
The analysis reveals that market risk and lapse risk are in fact the main
risks associated with a German unit-linked insurance product with guaran-
teed death benefits. Mortality and expense risks are negligible. The type
of the death benefits has no impact on the solvency capital requirement.
On the other hand, the premium type influences the type of market risks.
The insurance product is linear to the risk factors for the most part. Some
non-linearity has been revealed attached to lapse risks. This matter of fact
causes a lower solvency capital requirement calculated with the single equiva-
lent method. There is no indication of double-counting of the loss-absorbing
capacity of future discretionary benefits so far. The single equivalent sce-
nario method also proves to be a tool to review main assumptions of the
standard formula. Dynamic policyholder behaviour has not a large impact
on the solvency capital requirement for this particular insurance product.
Nevertheless, dynamic lapses have a potential to be a major risk and should
be evaluated with other unit-linked products and other lapse functions.
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Appendices
A Interest rate shock

Maturity t (years) 1 2 3 4 5 6 7
relative change sup(t) 0.94 0.77 0.69 0.62 0.56 0.52 0.49

relative change sdown(t) -0.51 -0.47 -0.44 -0.42 -0.40 -0.38 -0.37

Maturity t (years) 8 9 10 11 12 13 14
relative change sup(t) 0.46 0.44 0.42 0.42 0.42 0.42 0.42

relative change sdown(t) -0.35 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Maturity t (years) 15 16 17 18 19 20 20+
relative change sup(t) 0.42 0.41 0.40 0.39 0.38 0.37 0.37

relative change sdown(t) -0.34 -0.33 -0.33 -0.32 -0.31 -0.31 -0.31

Table 13: Interest rate shock
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B Mortality tables
           DAV-Sterbetafel 2008 T Männer 2,25%

x x

0 6,113 1.000.000 6.113 1.000.000,000 36.300.634,756 5.978,484 201.208,526 1.024.816.900,952 13.749.651,606 0
1 0,423 993.887 420 972.016,626 35.300.634,756 402,115 195.230,042 988.516.266,196 13.548.443,079 1
2 0,343 993.467 341 950.225,392 34.328.618,130 318,755 194.827,927 953.215.631,440 13.353.213,037 2
3 0,275 993.126 273 928.997,031 33.378.392,739 249,853 194.509,171 918.887.013,309 13.158.385,111 3
4 0,220 992.853 218 908.304,701 32.449.395,708 195,430 194.259,319 885.508.620,571 12.963.875,939 4
5 0,182 992.634 181 888.122,126 31.541.091,006 158,081 194.063,889 853.059.224,863 12.769.616,621 5
6 0,155 992.454 154 868.421,015 30.652.968,880 131,643 193.905,808 821.518.133,857 12.575.552,732 6
7 0,139 992.300 138 849.179,863 29.784.547,865 115,439 193.774,164 790.865.164,977 12.381.646,924 7
8 0,129 992.162 128 830.378,315 28.935.368,002 104,762 193.658,726 761.080.617,112 12.187.872,760 8
9 0,125 992.034 124 812.001,170 28.104.989,687 99,267 193.553,964 732.145.249,109 11.994.214,034 9
10 0,129 991.910 128 794.033,907 27.292.988,517 100,176 193.454,697 704.040.259,422 11.800.660,070 10
11 0,143 991.782 142 776.461,102 26.498.954,611 108,591 193.354,521 676.747.270,905 11.607.205,373 11
12 0,173 991.640 172 759.266,570 25.722.493,509 128,463 193.245,930 650.248.316,294 11.413.850,852 12
13 0,222 991.469 220 742.430,530 24.963.226,939 161,193 193.117,468 624.525.822,785 11.220.604,922 13
14 0,303 991.248 300 725.932,235 24.220.796,409 215,117 192.956,275 599.562.595,846 11.027.487,454 14
15 0,417 990.948 413 709.743,059 23.494.864,175 289,450 192.741,157 575.341.799,436 10.834.531,180 15
16 0,557 990.535 552 693.835,790 22.785.121,116 377,962 192.451,707 551.846.935,262 10.641.790,022 16
17 0,709 989.983 702 678.190,048 22.091.285,325 470,256 192.073,745 529.061.814,146 10.449.338,315 17
18 0,850 989.281 841 662.796,295 21.413.095,278 550,980 191.603,489 506.970.528,821 10.257.264,570 18
19 0,953 988.440 942 647.660,555 20.750.298,983 603,639 191.052,509 485.557.433,543 10.065.661,081 19
20 1,012 987.498 999 632.805,217 20.102.638,428 626,307 190.448,870 464.807.134,560 9.874.608,572 20
21 1,022 986.499 1.008 618.254,101 19.469.833,211 617,952 189.822,563 444.704.496,132 9.684.159,702 21
22 1,004 985.491 989 604.031,536 18.851.579,110 593,103 189.204,612 425.234.662,921 9.494.337,138 22
23 0,963 984.501 948 590.146,786 18.247.547,574 555,806 188.611,509 406.383.083,812 9.305.132,526 23
24 0,911 983.553 896 576.604,865 17.657.400,788 513,728 188.055,703 388.135.536,238 9.116.521,018 24
25 0,856 982.657 841 563.403,010 17.080.795,923 471,661 187.541,975 370.478.135,450 8.928.465,314 25
26 0,808 981.816 793 550.533,728 16.517.392,913 435,043 187.070,314 353.397.339,527 8.740.923,340 26
27 0,772 981.023 757 537.984,251 15.966.859,185 406,185 186.635,272 336.879.946,613 8.553.853,025 27
28 0,752 980.265 737 525.739,782 15.428.874,934 386,657 186.229,087 320.913.087,428 8.367.217,754 28
29 0,745 979.528 730 513.784,280 14.903.135,152 374,346 185.842,430 305.484.212,494 8.180.988,667 29
30 0,752 978.799 736 502.104,167 14.389.350,872 369,274 185.468,084 290.581.077,342 7.995.146,236 30
31 0,768 978.063 751 490.686,146 13.887.246,706 368,554 185.098,810 276.191.726,469 7.809.678,153 31
32 0,791 977.311 773 479.520,097 13.396.560,560 370,954 184.730,256 262.304.479,764 7.624.579,342 32
33 0,820 976.538 801 468.597,356 12.917.040,463 375,794 184.359,302 248.907.919,204 7.439.849,087 33
34 0,855 975.738 834 457.910,128 12.448.443,107 382,898 183.983,507 235.990.878,741 7.255.489,785 34
35 0,895 974.903 873 447.450,968 11.990.532,979 391,656 183.600,609 223.542.435,634 7.071.506,278 35
36 0,945 974.031 920 437.213,203 11.543.082,010 404,075 183.208,953 211.551.902,656 6.887.905,668 36
37 1,005 973.110 978 427.188,299 11.105.868,808 419,877 182.804,878 200.008.820,646 6.704.696,715 37
38 1,083 972.132 1.053 417.368,191 10.678.680,508 442,063 182.385,001 188.902.951,838 6.521.891,837 38
39 1,181 971.079 1.147 407.741,986 10.261.312,317 470,947 181.942,938 178.224.271,329 6.339.506,836 39
40 1,301 969.933 1.262 398.298,722 9.853.570,331 506,784 181.471,991 167.962.959,012 6.157.563,898 40
41 1,447 968.671 1.402 389.027,418 9.455.271,609 550,536 180.965,207 158.109.388,681 5.976.091,907 41
42 1,623 967.269 1.570 379.916,377 9.066.244,191 603,036 180.414,671 148.654.117,072 5.795.126,700 42
43 1,833 965.699 1.770 370.953,323 8.686.327,814 664,995 179.811,635 139.587.872,881 5.614.712,029 43
44 2,082 963.929 2.007 362.125,541 8.315.374,491 737,355 179.146,640 130.901.545,067 5.434.900,394 44
45 2,364 961.922 2.274 353.419,653 7.953.248,950 817,099 178.409,285 122.586.170,577 5.255.753,753 45
46 2,669 959.648 2.561 344.825,594 7.599.829,296 900,088 177.592,186 114.632.921,627 5.077.344,468 46
47 2,983 957.087 2.855 336.337,657 7.255.003,703 981,218 176.692,098 107.033.092,331 4.899.752,282 47
48 3,302 954.232 3.151 327.955,366 6.918.666,046 1.059,079 175.710,881 99.778.088,628 4.723.060,184 48
49 3,630 951.081 3.452 319.679,665 6.590.710,680 1.134,902 174.651,801 92.859.422,583 4.547.349,303 49
50 3,981 947.629 3.773 311.510,247 6.271.031,015 1.212,834 173.516,899 86.268.711,902 4.372.697,502 50
51 4,371 943.856 4.126 303.442,665 5.959.520,768 1.297,162 172.304,066 79.997.680,887 4.199.180,602 51
52 4,812 939.731 4.522 295.468,281 5.656.078,104 1.390,507 171.006,904 74.038.160,119 4.026.876,536 52
53 5,308 935.209 4.964 287.576,027 5.360.609,823 1.492,864 169.616,397 68.382.082,015 3.855.869,632 53
54 5,857 930.244 5.448 279.755,084 5.073.033,797 1.602,470 168.123,533 63.021.472,192 3.686.253,235 54
55 6,460 924.796 5.974 271.996,634 4.793.278,713 1.718,434 166.521,063 57.948.438,395 3.518.129,702 55
56 7,117 918.822 6.539 264.292,944 4.521.282,079 1.839,582 164.802,630 53.155.159,682 3.351.608,639 56
57 7,831 912.283 7.144 256.637,625 4.256.989,135 1.965,505 162.963,047 48.633.877,603 3.186.806,009 57
58 8,604 905.138 7.788 249.024,837 4.000.351,510 2.095,462 160.997,542 44.376.888,468 3.023.842,962 58
59 9,454 897.351 8.484 241.449,611 3.751.326,673 2.232,435 158.902,080 40.376.536,958 2.862.845,420 59
60 10,404 888.867 9.248 233.904,104 3.509.877,062 2.379,989 156.669,645 36.625.210,285 2.703.943,340 60

1000 * qx lx dx Dx Nx Cx Mx Sx Rx

Table 14: Mortality table I
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x x1000 * qx lx dx Dx Nx Cx Mx Sx Rx

61 11,504 879.619 10.119 226.377,081 3.275.972,958 2.546,936 154.289,657 33.115.333,222 2.547.273,694 61
62 12,818 869.500 11.145 218.848,743 3.049.595,877 2.743,475 151.742,721 29.839.360,264 2.392.984,038 62
63 14,429 858.355 12.385 211.289,525 2.830.747,134 2.981,610 148.999,246 26.789.764,387 2.241.241,317 63
64 16,415 845.970 13.887 203.658,512 2.619.457,609 3.269,491 146.017,636 23.959.017,253 2.092.242,071 64
65 18,832 832.083 15.670 195.907,538 2.415.799,097 3.608,147 142.748,145 21.339.559,643 1.946.224,435 65
66 21,704 816.413 17.719 187.988,467 2.219.891,559 3.990,319 139.139,997 18.923.760,546 1.803.476,291 66
67 25,016 798.694 19.980 179.861,482 2.031.903,093 4.400,406 135.149,678 16.703.868,987 1.664.336,293 67
68 28,738 778.714 22.379 171.503,244 1.852.041,611 4.820,206 130.749,272 14.671.965,894 1.529.186,616 68
69 32,822 756.335 24.824 162.909,128 1.680.538,367 5.229,343 125.929,066 12.819.924,283 1.398.437,344 69
70 37,219 731.511 27.226 154.094,988 1.517.629,239 5.609,058 120.699,723 11.139.385,916 1.272.508,277 70
71 41,880 704.285 29.495 145.095,087 1.363.534,251 5.942,868 115.090,666 9.621.756,678 1.151.808,554 71
72 46,597 674.789 31.443 135.959,418 1.218.439,164 6.195,893 109.147,798 8.258.222,427 1.036.717,888 72
73 51,181 643.346 32.927 126.771,752 1.082.479,746 6.345,531 102.951,905 7.039.783,262 927.570,090 73
74 56,110 610.419 34.251 117.636,623 955.707,994 6.455,346 96.606,374 5.957.303,516 824.618,186 74
75 61,477 576.168 35.421 108.592,697 838.071,371 6.529,050 90.151,028 5.001.595,522 728.011,812 75
76 67,433 540.747 36.464 99.674,077 729.478,674 6.573,420 83.621,979 4.163.524,151 637.860,783 76
77 74,160 504.283 37.398 90.907,340 629.804,598 6.593,338 77.048,559 3.434.045,477 554.238,805 77
78 81,806 466.885 38.194 82.313,595 538.897,258 6.585,571 70.455,220 2.804.240,879 477.190,246 78
79 90,478 428.691 38.787 73.916,723 456.583,663 6.540,672 63.869,650 2.265.343,621 406.735,026 79
80 100,261 389.904 39.092 65.749,522 382.666,940 6.447,054 57.328,978 1.808.759,958 342.865,376 80
81 111,193 350.812 39.008 57.855,657 316.917,418 6.291,583 50.881,924 1.426.093,018 285.536,398 81
82 123,283 311.804 38.440 50.290,966 259.061,762 6.063,590 44.590,340 1.109.175,600 234.654,475 82
83 136,498 273.364 37.314 43.120,728 208.770,796 5.756,375 38.526,750 850.113,839 190.064,134 83
84 150,887 236.050 35.617 36.415,487 165.650,068 5.373,715 32.770,375 641.343,043 151.537,384 84
85 166,500 200.433 33.372 30.240,453 129.234,581 4.924,240 27.396,660 475.692,975 118.767,009 85
86 183,344 167.061 30.630 24.650,775 98.994,128 4.420,119 22.472,420 346.458,394 91.370,349 86
87 201,323 136.432 27.467 19.688,218 74.343,353 3.876,471 18.052,301 247.464,266 68.897,929 87
88 220,284 108.965 24.003 15.378,511 54.655,134 3.313,095 14.175,831 173.120,914 50.845,628 88
89 240,073 84.962 20.397 11.727,013 39.276,624 2.753,388 10.862,735 118.465,779 36.669,797 89
90 260,556 64.565 16.823 8.715,573 27.549,611 2.220,924 8.109,347 79.189,155 25.807,062 90
91 281,602 47.742 13.444 6.302,864 18.834,037 1.735,843 5.888,423 51.639,545 17.697,715 91
92 303,079 34.298 10.395 4.428,328 12.531,173 1.312,600 4.152,580 32.805,508 11.809,291 92
93 324,872 23.903 7.765 3.018,283 8.102,845 958,979 2.839,981 20.274,335 7.656,711 93
94 346,887 16.137 5.598 1.992,887 5.084,562 676,095 1.881,002 12.171,489 4.816,730 94
95 369,051 10.540 3.890 1.272,940 3.091,675 459,442 1.204,908 7.086,927 2.935,728 95
96 391,305 6.650 2.602 785,487 1.818,735 300,601 745,465 3.995,252 1.730,820 96
97 413,938 4.048 1.676 467,601 1.033,249 189,298 444,864 2.176,517 985,355 97
98 437,313 2.372 1.037 268,013 565,648 114,626 255,566 1.143,268 540,491 98
99 461,101 1.335 615 147,489 297,635 66,511 140,939 577,620 284,925 99
100 485,304 719 349 77,733 150,147 36,894 74,429 279,984 143,986 100
101 509,924 370 189 39,128 72,414 19,513 37,535 129,838 69,557 101
102 534,957 181 97 18,754 33,286 9,812 18,021 57,424 32,022 102
103 560,407 84 47 8,529 14,532 4,675 8,210 24,138 14,001 103
104 586,265 37 22 3,667 6,003 2,103 3,535 9,606 5,791 104
105 612,529 15 9 1,484 2,336 0,889 1,432 3,603 2,256 105
106 639,188 6 4 0,562 0,852 0,351 0,544 1,268 0,824 106
107 666,233 2 1 0,198 0,290 0,129 0,192 0,416 0,280 107
108 693,651 1 0 0,065 0,091 0,044 0,063 0,126 0,088 108
109 721,425 0 0 0,019 0,026 0,014 0,019 0,035 0,026 109
110 749,533 0 0 0,005 0,007 0,004 0,005 0,009 0,007 110
111 777,950 0 0 0,001 0,002 0,001 0,001 0,002 0,002 111
112 806,647 0 0 0,000 0,000 0,000 0,000 0,000 0,000 112
113 835,585 0 0 0,000 0,000 0,000 0,000 0,000 0,000 113
114 864,722 0 0 0,000 0,000 0,000 0,000 0,000 0,000 114
115 894,008 0 0 0,000 0,000 0,000 0,000 0,000 0,000 115
116 923,382 0 0 0,000 0,000 0,000 0,000 0,000 0,000 116
117 952,778 0 0 0,000 0,000 0,000 0,000 0,000 0,000 117
118 982,113 0 0 0,000 0,000 0,000 0,000 0,000 0,000 118
119 1000,000 0 0 0,000 0,000 0,000 0,000 0,000 0,000 119
120 1000,000 0 0 0,000 0,000 0,000 0,000 0,000 0,000 120
121 1000,000 0 0 0,000 0,000 0,000 0,000 0,000 0,000 121

Table 15: Mortality table II
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0 5,088 1.000.000 5.088 1.000.000,000 37.323.540,567 4.976,039 178.699,596 1.095.402.631,223 13.219.326,188 0
1 0,387 994.912 385 973.019,071 36.323.540,567 368,272 173.723,557 1.058.079.090,656 13.040.626,592 1
2 0,318 994.527 316 951.239,621 35.350.521,496 295,838 173.355,285 1.021.755.550,089 12.866.903,035 2
3 0,255 994.211 254 930.011,860 34.399.281,875 231,934 173.059,447 986.405.028,592 12.693.547,750 3
4 0,202 993.957 201 909.315,117 33.469.270,015 179,640 172.827,513 952.005.746,717 12.520.488,303 4
5 0,163 993.756 162 889.126,098 32.559.954,898 141,738 172.647,873 918.536.476,702 12.347.660,790 5
6 0,134 993.594 133 869.419,238 31.670.828,800 113,939 172.506,134 885.976.521,803 12.175.012,917 6
7 0,115 993.461 114 850.173,824 30.801.409,563 95,619 172.392,196 854.305.693,003 12.002.506,783 7
8 0,105 993.347 104 831.370,224 29.951.235,739 85,373 172.296,577 823.504.283,440 11.830.114,587 8
9 0,099 993.243 98 812.990,641 29.119.865,514 78,715 172.211,204 793.553.047,701 11.657.818,010 9
10 0,102 993.144 101 795.022,156 28.306.874,873 79,308 172.132,489 764.433.182,187 11.485.606,805 10
11 0,111 993.043 110 777.448,474 27.511.852,717 84,398 172.053,181 736.126.307,314 11.313.474,316 11
12 0,127 992.933 126 760.256,408 26.734.404,243 94,428 171.968,784 708.614.454,597 11.141.421,135 12
13 0,153 992.807 152 743.432,621 25.974.147,836 111,242 171.874,356 681.880.050,354 10.969.452,351 13
14 0,188 992.655 187 726.962,226 25.230.715,215 133,662 171.763,113 655.905.902,518 10.797.577,995 14
15 0,228 992.468 226 710.831,840 24.503.752,989 158,503 171.629,452 630.675.187,304 10.625.814,882 15
16 0,271 992.242 269 695.031,561 23.792.921,148 184,209 171.470,949 606.171.434,315 10.454.185,430 16
17 0,310 991.973 308 679.553,259 23.097.889,588 206,026 171.286,740 582.378.513,167 10.282.714,481 17
18 0,324 991.666 321 664.393,738 22.418.336,329 210,527 171.080,714 559.280.623,579 10.111.427,742 18
19 0,330 991.344 327 649.563,300 21.753.942,591 209,639 170.870,187 536.862.287,250 9.940.347,028 19
20 0,328 991.017 325 635.060,092 21.104.379,290 203,716 170.660,548 515.108.344,659 9.769.476,841 20
21 0,322 990.692 319 620.881,949 20.469.319,198 195,525 170.456,832 494.003.965,369 9.598.816,293 21
22 0,314 990.373 311 607.023,985 19.848.437,249 186,411 170.261,307 473.534.646,171 9.428.359,461 22
23 0,304 990.062 301 593.480,078 19.241.413,264 176,448 170.074,896 453.686.208,922 9.258.098,153 23
24 0,297 989.761 294 580.244,166 18.647.933,186 168,540 169.898,448 434.444.795,658 9.088.023,257 24
25 0,293 989.467 290 567.307,417 18.067.689,020 162,563 169.729,908 415.796.862,472 8.918.124,809 25
26 0,292 989.177 289 554.661,316 17.500.381,603 158,397 169.567,344 397.729.173,452 8.748.394,901 26
27 0,292 988.888 289 542.297,658 16.945.720,287 154,866 169.408,947 380.228.791,849 8.578.827,557 27
28 0,296 988.600 293 530.209,591 16.403.422,629 153,489 169.254,081 363.283.071,562 8.409.418,610 28
29 0,302 988.307 298 518.388,899 15.873.213,038 153,109 169.100,592 346.879.648,933 8.240.164,529 29
30 0,311 988.009 307 506.828,700 15.354.824,139 154,155 168.947,484 331.006.435,894 8.071.063,936 30
31 0,327 987.701 323 495.521,835 14.847.995,440 158,470 168.793,329 315.651.611,755 7.902.116,453 31
32 0,351 987.378 347 484.459,461 14.352.473,605 166,303 168.634,858 300.803.616,315 7.733.323,124 32
33 0,386 987.032 381 473.632,680 13.868.014,144 178,799 168.468,555 286.451.142,710 7.564.688,266 33
34 0,433 986.651 427 463.031,646 13.394.381,464 196,081 168.289,756 272.583.128,565 7.396.219,711 34
35 0,490 986.224 483 452.646,605 12.931.349,818 216,916 168.093,675 259.188.747,101 7.227.929,955 35
36 0,555 985.740 547 442.469,250 12.478.703,213 240,167 167.876,759 246.257.397,284 7.059.836,280 36
37 0,624 985.193 615 432.492,596 12.036.233,963 263,937 167.636,592 233.778.694,071 6.891.959,521 37
38 0,701 984.578 690 422.711,707 11.603.741,367 289,800 167.372,655 221.742.460,108 6.724.322,929 38
39 0,783 983.888 770 413.120,182 11.181.029,659 316,355 167.082,855 210.138.718,742 6.556.950,274 39
40 0,872 983.118 857 403.713,163 10.767.909,477 344,291 166.766,500 198.957.689,082 6.389.867,419 40
41 0,972 982.261 955 394.485,208 10.364.196,314 375,002 166.422,208 188.189.779,605 6.223.100,919 41
42 1,084 981.306 1.064 385.429,602 9.969.711,106 408,612 166.047,206 177.825.583,291 6.056.678,711 42
43 1,213 980.242 1.189 376.539,654 9.584.281,504 446,692 165.638,594 167.855.872,185 5.890.631,505 43
44 1,359 979.053 1.331 367.807,249 9.207.741,849 488,851 165.191,902 158.271.590,681 5.724.992,910 44
45 1,524 977.723 1.490 359.224,840 8.839.934,601 535,412 164.703,051 149.063.848,831 5.559.801,008 45
46 1,706 976.232 1.665 350.784,725 8.480.709,761 585,270 164.167,640 140.223.914,231 5.395.097,956 46
47 1,903 974.567 1.855 342.480,475 8.129.925,036 637,399 163.582,369 131.743.204,470 5.230.930,317 47
48 2,109 972.712 2.051 334.306,831 7.787.444,561 689,538 162.944,971 123.613.279,433 5.067.347,948 48
49 2,324 970.661 2.256 326.260,908 7.453.137,730 741,546 162.255,432 115.825.834,872 4.904.402,977 49
50 2,546 968.405 2.466 318.340,027 7.126.876,822 792,659 161.513,886 108.372.697,143 4.742.147,545 50
51 2,782 965.940 2.687 310.542,331 6.808.536,795 844,918 160.721,228 101.245.820,321 4.580.633,658 51
52 3,035 963.252 2.923 302.863,963 6.497.994,464 898,965 159.876,309 94.437.283,526 4.419.912,431 52
53 3,306 960.329 3.175 295.300,509 6.195.130,502 954,781 158.977,344 87.939.289,061 4.260.036,121 53
54 3,593 957.154 3.439 287.847,673 5.899.829,993 1.011,478 158.022,563 81.744.158,559 4.101.058,777 54
55 3,898 953.715 3.718 280.502,138 5.611.982,320 1.069,337 157.011,085 75.844.328,567 3.943.036,214 55
56 4,228 949.997 4.017 273.260,382 5.331.480,181 1.129,922 155.941,747 70.232.346,247 3.786.025,129 56
57 4,585 945.981 4.337 266.117,396 5.058.219,799 1.193,299 154.811,826 64.900.866,066 3.630.083,382 57
58 4,974 941.643 4.684 259.068,213 4.792.102,403 1.260,250 153.618,527 59.842.646,267 3.475.271,556 58
59 5,402 936.960 5.061 252.107,196 4.533.034,190 1.331,915 152.358,277 55.050.543,864 3.321.653,029 59
60 5,884 931.898 5.483 245.227,690 4.280.926,994 1.411,168 151.026,362 50.517.509,673 3.169.294,752 60

1000 * qy ly dy Dy Ny Cy My Sy Ry

Table 16: Mortality table III
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61 6,449 926.415 5.974 238.420,313 4.035.699,305 1.503,738 149.615,194 46.236.582,679 3.018.268,390 61
62 7,126 920.441 6.559 231.670,162 3.797.278,992 1.614,554 148.111,455 42.200.883,374 2.868.653,196 62
63 7,935 913.881 7.252 224.957,731 3.565.608,830 1.745,760 146.496,901 38.403.604,382 2.720.541,741 63
64 8,898 906.630 8.067 218.261,801 3.340.651,099 1.899,358 144.751,141 34.837.995,552 2.574.044,840 64
65 10,025 898.563 9.008 211.559,616 3.122.389,298 2.074,215 142.851,783 31.497.344,453 2.429.293,699 65
66 11,323 889.555 10.072 204.830,055 2.910.829,682 2.268,255 140.777,568 28.374.955,155 2.286.441,916 66
67 12,797 879.482 11.255 198.054,537 2.705.999,627 2.478,732 138.509,313 25.464.125,473 2.145.664,348 67
68 14,460 868.227 12.555 191.217,636 2.507.945,090 2.704,163 136.030,580 22.758.125,845 2.007.155,035 68
69 16,332 855.673 13.975 184.305,750 2.316.727,454 2.943,845 133.326,417 20.250.180,755 1.871.124,455 69
70 18,440 841.698 15.521 177.306,277 2.132.421,704 3.197,582 130.382,572 17.933.453,301 1.737.798,037 70
71 20,813 826.177 17.195 170.207,090 1.955.115,427 3.464,567 127.184,990 15.801.031,597 1.607.415,465 71
72 23,475 808.982 18.991 162.997,134 1.784.908,337 3.742,159 123.720,423 13.845.916,170 1.480.230,475 72
73 27,035 789.991 21.357 155.668,241 1.621.911,203 4.115,884 119.978,263 12.061.007,832 1.356.510,053 73
74 30,413 768.634 23.376 148.126,895 1.466.242,962 4.405,852 115.862,380 10.439.096,629 1.236.531,789 74
75 34,287 745.257 25.553 140.461,527 1.318.116,067 4.710,029 111.456,528 8.972.853,667 1.120.669,409 75
76 38,749 719.704 27.888 132.660,658 1.177.654,540 5.027,352 106.746,500 7.654.737,600 1.009.212,881 76
77 43,937 691.817 30.396 124.714,123 1.044.993,882 5.358,987 101.719,147 6.477.083,060 902.466,382 77
78 49,993 661.420 33.066 116.610,815 920.279,759 5.701,442 96.360,160 5.432.089,178 800.747,234 78
79 57,024 628.354 35.831 108.343,365 803.668,944 6.042,222 90.658,718 4.511.809,419 704.387,074 79
80 65,113 592.523 38.581 99.917,059 695.325,580 6.362,738 84.616,496 3.708.140,475 613.728,356 80
81 74,288 553.942 41.151 91.355,657 595.408,521 6.637,290 78.253,758 3.012.814,895 529.111,861 81
82 84,590 512.791 43.377 82.708,096 504.052,864 6.842,326 71.616,468 2.417.406,374 450.858,102 82
83 96,095 469.414 45.108 74.045,788 421.344,768 6.958,856 64.774,143 1.913.353,511 379.241,634 83
84 109,028 424.305 46.261 65.457,563 347.298,980 6.979,665 57.815,287 1.492.008,743 314.467,492 84
85 123,611 378.044 46.730 57.037,512 281.841,417 6.895,319 50.835,622 1.144.709,763 256.652,205 85
86 140,022 331.314 46.391 48.887,088 224.803,906 6.694,638 43.940,303 862.868,345 205.816,583 86
87 158,257 284.922 45.091 41.116,695 175.916,818 6.363,819 37.245,664 638.064,439 161.876,280 87
88 178,185 239.832 42.734 33.848,108 134.800,123 5.898,509 30.881,846 462.147,621 124.630,616 88
89 199,669 197.097 39.354 27.204,775 100.952,016 5.312,421 24.983,337 327.347,498 93.748,770 89
90 222,504 157.743 35.098 21.293,716 73.747,240 4.633,679 19.670,916 226.395,483 68.765,433 90
91 246,453 122.645 30.226 16.191,471 52.453,524 3.902,628 15.037,237 152.648,242 49.094,517 91
92 271,195 92.418 25.063 11.932,552 36.262,053 3.164,840 11.134,610 100.194,718 34.057,279 92
93 295,584 67.355 19.909 8.505,138 24.329,501 2.458,663 7.969,770 63.932,665 22.922,670 93
94 319,362 47.446 15.152 5.859,321 15.824,363 1.830,068 5.511,107 39.603,164 14.952,900 94
95 343,441 32.294 11.091 3.900,319 9.965,043 1.310,053 3.681,039 23.778,800 9.441,793 95
96 367,818 21.203 7.799 2.504,440 6.064,724 900,908 2.370,986 13.813,758 5.760,753 96
97 392,493 13.404 5.261 1.548,422 3.560,284 594,372 1.470,079 7.749,034 3.389,767 97
98 417,460 8.143 3.399 919,978 2.011,862 375,603 875,707 4.188,750 1.919,689 98
99 442,716 4.744 2.100 524,131 1.091,884 226,935 500,104 2.176,889 1.043,982 99
100 468,258 2.644 1.238 285,662 567,753 130,820 273,169 1.085,005 543,878 100
101 494,075 1.406 695 148,556 282,091 71,783 142,349 517,252 270,709 101
102 520,164 711 370 73,504 133,534 37,393 70,566 235,161 128,360 102
103 546,514 341 186 34,494 60,030 18,437 33,173 101,627 57,794 103
104 573,114 155 89 15,298 25,536 8,575 14,736 41,597 24,621 104
105 599,953 66 40 6,387 10,238 3,748 6,162 16,061 9,884 105
106 627,014 26 17 2,499 3,851 1,532 2,414 5,823 3,723 106
107 654,283 10 6 0,912 1,352 0,583 0,882 1,972 1,309 107
108 681,741 3 2 0,308 0,440 0,205 0,299 0,620 0,427 108
109 709,364 1 1 0,096 0,132 0,067 0,093 0,180 0,128 109
110 737,130 0 0 0,027 0,036 0,020 0,026 0,048 0,035 110
111 765,011 0 0 0,007 0,009 0,005 0,007 0,011 0,009 111
112 792,974 0 0 0,002 0,002 0,001 0,002 0,002 0,002 112
113 820,987 0 0 0,000 0,000 0,000 0,000 0,000 0,000 113
114 849,009 0 0 0,000 0,000 0,000 0,000 0,000 0,000 114
115 876,998 0 0 0,000 0,000 0,000 0,000 0,000 0,000 115
116 904,905 0 0 0,000 0,000 0,000 0,000 0,000 0,000 116
117 932,675 0 0 0,000 0,000 0,000 0,000 0,000 0,000 117
118 960,249 0 0 0,000 0,000 0,000 0,000 0,000 0,000 118
119 987,564 0 0 0,000 0,000 0,000 0,000 0,000 0,000 119
120 1000,000 0 0 0,000 0,000 0,000 0,000 0,000 0,000 120
121 1000,000 0 0 0,000 0,000 0,000 0,000 0,000 0,000 121

Table 17: Mortality table IV
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C Deterministic lapse changes

Run 1 Run 2
1 10,00% 9,48%
2 9,00% 8,19%
3 8,00% 7,16%
4 7,00% 6,20%
5 6,00% 5,28%
6 5,00% 4,38%
7 4,00% 3,50%
8 3,00% 2,62%
9 2,00% 1,74%
10 2,00% 1,74%
11 2,00% 1,73%
12 2,00% 1,73%
13 2,00% 1,73%
14 2,00% 1,72%
15 2,00% 1,72%
16 2,00% 1,72%
17 2,00% 1,72%
18 2,00% 1,72%
19 2,00% 1,72%
20 2,00% 1,72%
21 2,00% 1,72%
22 2,00% 1,72%
23 2,00% 1,72%
24 2,00% 1,72%
25 2,00% 1,72%
26 2,00% 1,72%
27 2,00% 1,73%
28 2,00% 1,73%
29 2,00% 1,73%
30 2,00% 1,73%

policy det. lapse det. lapse
year

Table 18: Change of deterministic lapses - dynamic lapses triggered by death
benefits - single premium policy type A
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Run 1 Run 2
1 10,00% 5,12%
2 9,00% 4,60%
3 8,00% 4,08%
4 7,00% 3,56%
5 6,00% 3,04%
6 5,00% 2,53%
7 4,00% 2,02%
8 3,00% 1,51%
9 2,00% 1,01%
10 2,00% 1,01%
11 2,00% 1,02%
12 2,00% 1,03%
13 2,00% 1,06%
14 2,00% 1,10%
15 2,00% 1,14%
16 2,00% 1,18%
17 2,00% 1,24%
18 2,00% 1,29%
19 2,00% 1,34%
20 2,00% 1,39%
21 2,00% 1,44%
22 2,00% 1,48%
23 2,00% 1,52%
24 2,00% 1,55%
25 2,00% 1,59%
26 2,00% 1,62%
27 2,00% 1,65%
28 2,00% 1,67%
29 2,00% 1,70%
30 2,00% 1,72%

policy det. lapse det. lapse
year

Table 19: Change of deterministic lapses - dynamic lapses triggered by death
benefits - regular premium policy type A
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Run 1 Run 2
1 10,00% 10,72%
2 9,00% 9,94%
3 8,00% 8,85%
4 7,00% 7,75%
5 6,00% 6,65%
6 5,00% 5,53%
7 4,00% 4,42%
8 3,00% 3,31%
9 2,00% 2,22%
10 2,00% 2,22%
11 2,00% 2,21%
12 2,00% 2,21%
13 2,00% 2,21%
14 2,00% 2,22%
15 2,00% 2,22%
16 2,00% 2,21%
17 2,00% 2,21%
18 2,00% 2,21%
19 2,00% 2,22%
20 2,00% 2,21%
21 2,00% 2,21%
22 2,00% 2,22%
23 2,00% 2,21%
24 2,00% 2,22%
25 2,00% 2,21%
26 2,00% 2,21%
27 2,00% 2,21%
28 2,00% 2,22%
29 2,00% 2,21%
30 2,00% 2,21%

policy det. lapse det. lapse
year

Table 20: Change of deterministic lapses - dynamic lapses triggered by the
fund value - single premium policy type A
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D Example SES

corr matrix 1st step diversification
factor

2nd step diversifica-
tion factor

SCRint 10 1 0 10·1+20·0
22.36 = 0.45 0.45 · 0.46 = 0.21

SCReq 20 0 1 10·0+20·1
22.36 = 0.89 0.89 · 0.46 = 0.41

diversified
capital
= SCRmkt

22.36

corr matrix 1st step diversification
factor

2nd step diversi-
fication factor

SCRmort 30 1 0 0.25 30·1+40·0+50·0.25
88.03 = 0.48 0.48 · 0.97 = 0.47

SCRlapse 40 0 1 0.5 30·0+40·1+50·0.5
88.03 = 0.74 0.74 · 0.97 = 0.72

SCRexp 50 0.25 0.5 1 30·0.25+40·0.5+50·1
88.03 = 0.88 0.88 · 0.97 = 0.86

diversified
capital
= SCRlife

88.03

corr matrix 1st step diversification
factor

SCRmkt 22.36 1 0.25 22.36·1+88.03·0.25
96.10 = 0.46

SCRlife 88.03 0.25 1 22.36·0.25+88.03·1
96.10 = 0.97

diversified
capital
= SCR

96.10

Table 21: Single equivalent scenario – example
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Märten, Gesine, & Daalmann, Stefanie. 2009. Fondsgebundene Ver-
sicherungsprodukte mit Garantien trotzen der Finanzmarktkrise. Towers
Perrin.

Nordahl, Helge. 2008. Valuation of life insurance surrender and exchange
options. Insurance: Mathematics and Economics, 42, 909–919.

67



Outreville, J. Francois. 1990. Whole-life insurance lapse rates and the
emergency fund hypothesis. Insurance: Mathematics and Economics, 9,
249–255.

Prestele, Andreas. 2006. Storno in der Lebensversicherung: Einflussfak-
toren, Auswirkungen, Gegenmassnahmen. Vdm Verlag Dr. Müller.

Shreve, Steven E. 2000. Stochastic Calculus for Finance 2. Springer.

Smink, Meye. 2001. Risk Measurment for Asset Liability Matching, A
simulation Approach to single premium deferred Annuities. 2nd AFIR
Colloquium, 2, 75–92.

Steffen, Thomas. 2008. Solvency II and the Work of CEIOPS. The
Geneva Papers, 33, 60–65.

Steffensen, Mogens. 2002. Intervention options in life insurance. Insur-
ance: Mathematics and Economics, 31(1), 71–85.

Zenios, Stavros A. 1999. Financial Optimization. Cambridge University
Press.

68




