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We present a new model for all solid-state lithium ion batteries that
takes into account detailed aspects of ion transport in solid solutions
of crystalline metal oxides. More precisely, our model describes
transient lithium ion flux through a solid electrolyte, the solid–solid
interfaces and an intercalation electrode. The diffuse part of the dou-
ble layer is dynamically described via the Poisson equation, while
the Stern layer potential drop is modeled by a Robin boundary condi-
tion. Electrochemical reactions on the electrode/electrolyte interface
are modeled via non-linear Neumann boundary conditions. After a
detailed derivation of the model equations and boundary conditions,
numerical results are presented and discussed.

1. Introduction

For a combined solar cell-battery device classical liquid electrolytes are not able to guar-
antee long-term stability as temperature rises up to 150◦C on the backside of a solar cell.
Switching to solid electrolytes with crystalline structure does not only provide thermal sta-
bility, long-term cycling stability and safety benefits, but also an improved diffusivity as
temperature rises. A promising crystalline solid electrolyte is Li5+xBaLa2Ta2O11.5+0.5x,
x ∈ [0,2] (1) with a lithium ion conductivity of 105 to 5 ·105[S · cm−1]. To gain a better un-
derstanding of the limiting processes within the battery cell, a mathematical model which
describes the transport of lithium ions in detail, is of great interest. This model has to take
into account the flat or non-porous solid electrolyte/electrode interface and the chemical
reactions occurring at that interface. Since the interface is quite small compared to porous
liquid electrolyte/electrode interfaces, it is important to accurately describe the electro-
chemical reaction in a mathematical sense. Furthermore, we cannot assume the classical
double layer model at the interface, as we have a fixed anion structure which leads to a
different ion distribution (2,3) near the interface, as compared to liquid electrolytes.
In addition, the desired thin film lithium ion battery cell has an electrode thickness of about
300nm and electrolyte thickness of 200nm. In this case, we cannot assume anymore linear
potential drop across the solid electrolyte. Hence, we have to model a solid electrolyte as a
Poisson-Nernst-Planck (PNP) equation system which does not assume local electroneutral-
ity nor any classical model for the diffuse part of the double layer. In contrast to classical
models for lithium ion batteries (4-6), we explicitly compute the diffuse part of the double
layer and model the Stern layer potential drop by a Robin type boundary condition. This
allows us to couple electrochemical reactions with the dynamic Stern layer potential drop
which are mathematically described as a non-linear Neumann boundary conditions.

In Section 2, we explain the model equations for the solid electrolyte and the interca-
lation cathode, while in Section 3 we give a detailed derivation of the boundary conditions
for the electric potential on the solid electrolyte/electrode interface and the lithium ion
flux. Numerical results are given and discussed in Section 4, followed by a summary in
Section 5.
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Figure 1: Model reduction from a whole 3-D battery cell to a battery cross section.

2. Model Assumptions and Transport Equations

Before we derive the model equations and the related boundary conditions, we collect
our model assumptions.

1. The battery cell is reduced to a 1-D geometry which is motivated by the assumption
of isotropic transport properties in y- and z-direction, see Figure 1.

2. We assume perfect planar interfaces between the solid electrolyte and the electrodes.
In our 1-D geometry, this assumption complies to a pointwise coupling between the
electrode and electrolyte while in a full 3-D geometry it refers to a 2-D interface.
Even if the interface is not perfectly planar, this assumption is valid for solid elec-
trolytes. This can be seen by considering mapping strategies from rough 2-D inter-
faces to a planar interface which will be discussed in a forthcoming paper.

3. (Electro-) chemical reactions only occur at the planar interfaces, since we assumed
no porous electrodes and not any phase transformation yet.

4. In the solid electrolyte, we do not take into account repulsive ion-ion interaction
which could be operative in regions where the ion concentration is high. However,
this is part of our current research and results will be published in soon elsewhere.
This assumption yields to a constant diffusion coefficient for the lithium ions in the
solid electrolyte.

5. Further on, we do not explicitly model any electron transport. Hence, we assume that
electrons are always and instantaneously available. This assumption could be crucial
for semiconductors, but follows classical models for battery systems.

6. Particle diffusion within the electrodes only occurs as interior diffusion, while the
process of intercalation only happens at the planar interface. This could be thought of
as perfect mono-crystalline structures. We do not take into account surface diffusion.

7. We consider the potentiostatic case.
8. Potential variations as function of status of charge (SOC) were not yet taken into

account.
9. The anode is a lithium foil without any diffusion processes. Thus, we only model

diffusion processes within the solid electrolyte and the intercalation cathode.
10. We neglect elastic effects of intercalation on the the reacting phases. Especially in an



all solid-state battery, intercalation induced stress in the electrodes plays an important
role in terms of long time cycling stability. This is part of our current research and
results will be published in soon elsewhere.

The considered battery cell consists of a lithium foil anode, a solid electrolyte, and an inter-
calation cathode. Thus, the battery cell cross section Ω =∪iΩi, i = 1,2, can be described as
union of two one-dimensional segments of length Li, i = 1,2. Here, Ω1 corresponds to the
solid electrolyte and Ω2 to the positive electrode of the lithium ion battery (compare Figure
1). To describe macroscopic phenomena occourring during battery discharge appropriately,
equations specifying mass transfer in both phases and charge distribution in the electrolyte
are needed. The continuum fields representing the state of the solution in the electrolyte are
the lithium ion concentration C+

Li(X1, t), the electrostatic potential Φ(X1, t) and the lithium
concentration in the electrode CLi(X2, t). The derivation of the equations for the solid elec-
trolyte is followed by those for the cathode. In each region species mass balance holds,
i.e.,

∂Ci

∂ t
=− ∂Ji

∂X j
, j = 1, if i = Li+, else j = 2, [1]

thus modeling mass transfer for species i reduces to the description of the particle flux Ji.

Transport equations for the solid electrolyte

Because charged particles move due to diffusion and electromigration processes, we as-
sume a Nernst-Planck flux (7-10) in the electrolyte

JLi+ =−
(

DLi+
∂CLi+

∂X1
+ µLi+CLi+

∂Φ
∂X1

)
, [2]

where the diffusion coefficient DLi+ and the mobility µLi+ are assumed to be constant. With
the Nernst-Einstein relation, the mobility of a species i can be expressed in terms of its dif-
fusivity µi = ziFDi/RT . Here, R denotes the universal gas constant, T the absolute temper-
ature and F the Faraday’s constant. Since lithium has a single valance electron, the charge
number after oxidation is zLi+ = 1. Hence, we omit the charge number in the following.
Substituting the universal Nernst-Einstein relation into [2] and inserting the Nernst-Planck
flux in the continuity equation [1], we obtain the following transport equation for lithium
ions in the solid electrolyte

∂CLi+

∂ t
= DLi+

∂ 2CLi+

∂X2
1

+ FDLi+

RT
∂

∂X1

(
CLi+

∂Φ
∂X1

)
. [3]

Charged particles migrate due to an electric field which is related to the electric potential
by the Gauss law E = −∂X1Φ. Furthermore, it can be shown that this also holds for time
dependent electric fields at the time scales under consideration, since in this case magnetic
effects are negligible (7). The electrostatic potential is related to the volume charge density
via the Poisson’s equation

−εb
∂ 2Φ
∂X2

1
= ρ [4]



where εb is the constant permittivity of the bulk solvent and ρ is the volume charge density.
The charge density is a function of the concentrations of the charged particles and thus a
function of space and time, ρ(X1, t) = F · (CLi+(X1, t)−CA). In the case of a solid elec-
trolyte with a fixed anion structure like an anion jelly, ρ is only dependent on the lithium
ion concentration while the anion concentration CA is constant (8). Due to the fact that in
the bulk electrolyte anion and cation concentrations are equal, the resulting electric field is
constant. In particular the diffuse double layer is explicitly calculated.

Transport equations for the intercalation cathode

Lithium ion flux of intercalated lithium is described via Fick’s first law of diffusion which
states that the particle flux is proportional to the negative concentration gradient (4-6).
Conservation of mass [1] and the assumption of a constant diffusion coefficient lead to

∂CLi

∂ t
= DLi

∂ 2CLi

∂X2
2

. [5]

Although electrons for intercalated lithium are dislocated, we think of intercalated lithium
ions as formally neutral particles. Thus equation [5] can also be interpreted as special case
of [2] with zLi = 0, i.e., without elecromigration.

Combining [3 - 5] results in a non-linear system of drift-diffusion partial differential
equations (PDE) for the unknown CLi,CLi+ and Φ, where the non-linearity arises from to the
convective term CLi+∂X Φ in the Nernst-Planck equation [3]. To obtain a non-dimensional
system, we scale all quantities appropriately. The resulting dimensionless variables are

xi = Xi

Li
, i = 1,2, τ = δ t, c = CLi+

Cbulk
Li+

, ρ = CLi

Cmax
Li

, ϕ = FΦ
RT

. [6]

Here we scale each length according to the length of the corresponding component, poten-
tial to the thermal voltage F/RT and concentrations to maximum concentrations or bulk
concentration. We obtain dimensionless unknowns c(x1,τ),ρ(x2,τ) and ϕ(x1,τ). The
equation system [3 - 5] becomes

L1δ
∂

∂τ
c(x1,τ) = DLi+

∂ 2

∂x2
1

c(x1,τ)+ DLi+
∂

∂x1

(
c(x1,τ) ∂

∂x1
ϕ(x1,τ)

)
, [7]

0 = ε
2 ∂ 2

∂x2
1

ϕ(x1,τ)+ 1
2

(c(x1,τ)− cA), [8]

L2δ
∂

∂τ
ρ(x2,τ) = DLi

∂ 2

∂x2
2

ρ(x2,τ), [9]

with ε := λD/L1 and λD :=
√

εbRT/2F2Cbulk
Li+ .

3. Boundary conditions for the potential and the concentrations

The description of the boundary phenomena at the electrochemical interface, i.e., the dou-
ble layer and the electrochemical reactions, is mathematically formulated by Robin- and



Neumann boundary conditions. First of all, we derive the boundary condition for the elec-
tric potential at the interface followed by the derivation of the lithium flux boundary con-
dition using classical first order redox reactions and transition state theory. In particular,
the lithium flux boundary condition is a coupling boundary condition connecting the mass
transport between the two phases Ω1 and Ω2.

Robin boundary conditions for the electrical potential

A closer look to the solid electrolyte/electrode interface, where both regions are treated as
a continuum mechanical model, yields to the unknown potential drop ∆ΦS. In general, the
potential drop can be calculated via Φ(XR) = Φ0−∆ΦS (compare Figure 2). This potential
drop can be modeled as the potential drop across an ideal plate capacitor with capacity ĈS
under the following assumptions:

• The relative permittivity εr of the dielectric is constant. Note that this is not true in
general, as the potential drop of 1− 2V occur at 1− 2 Angstroms, resulting in an
electric field of orders of 109V/m.
• Intercalation and adsorption of the lithium ions does not influence the capacity of the

plate capacitor model.

With a given capacity ĈS and the capacity per unit area CS of the Stern layer it follows that

ĈS = Q
∆ΦS

= 1
∆ΦS

Aε0εrE, [10]

and thus

∆ΦS =− A
ĈS

ε0εr
∂Φ
∂X1

=− 1
CS

ε0εr
∂Φ
∂X1

∣∣
X1=XR

[11]

by using Gauss’ theorem E = −∂X1Φ. Here, Q denotes the charge on the surface area A,
ε0 the vacuum permittivity and XR = {0,L1} the boundary points of the electrolyte in the
1-D model. This results in the following Robin boundary condition (7, 9-11) (for the anode
side)

∂Φ
∂n

∣∣
X1=0 + CS

ε0εr
Φ
∣∣
X1=0 = CS

ε0εr
Φ0. [12]

Note that, we arbitrarily set the electric potential Φ0 on the cathode side to 0 and hence get

∂Φ
∂n

∣∣
X1=L1

+ CS

ε0εr
Φ
∣∣
X1=L1

= 0. [13]

The boundary points are denoted with an index R to emphasise that at these points a Robin
boundary condition is applied. With these boundary conditions, the model is able to de-
scribe the Stern Layer potential drop and the diffuse part of the double layer dynamically
and concentration dependent. Furthermore, the potential drop across the Stern layer (12)
accelerates the chemical reactions, and not the whole potential drop across the double layer.
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Figure 2: Solid electrolyte/electrode interface model. Φ0 is the outer electric potential of
the solid bulk material, Φ(XR) is the electric potential right behind the Stern layer. ∆ΦS is
the unknown potential drop across the Stern Layer.

Neumann boundary conditions for the concentration

We start by a general first order redox reaction A 
 B. The classical mathematical descrip-
tion of a first order redox reaction is

∂CA

∂ t
=−k fCA︸ ︷︷ ︸

A→B

+kbCB︸︷︷︸
B→A

[14]

with concentrations CA(X , t),CB(X , t) for species A,B, respectively. The reaction rate coef-
ficients k f ,kb for forward and backward reactions are calculated via transition state theory.
Therefore, the reaction rate coefficient ki can be expressed as

ki = kBT
h

exp

(
−∆G‡

i
RT

)
[15]

with Gibbs free energy of activation ∆G‡
i for reaction i, Bolzmann constant kB and Planck

constant h. Electrochemical reactions are accelerated by the electric potential difference
between the two phases, i.e., between the surface of the electrode and the surface of the
solid electrolyte. Hence, the energy barrier of the forward reaction is declined by α∆ΦS,
while for the backward reaction raised by (1−α)∆ΦS. Here, α denotes the dimensionsless
symmetry factor of the reduction reaction. All parameters except the dependent variables
are included in the new pre-exponential factors k̂ f , k̂b. This leads to the expression

∂

∂ t
CA(X , t) =−k̂ fCA(X , t)eα∆ΦS(X ,t) + k̂bCB(X , t)e−(1−α)∆ΦS(X ,t). [16]

With η = ∆ΦS−∆Φeq
S this is the classical Butler Volmer equation (5). Here, ∆Φeq

S denotes
the equilibrium Stern layer potential drop determined by from the solution of the stationary
problem [21 - 27].
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To relate the outward flux of lithium ions to the surface reaction occurring on the planar
interfaces, the surface concentration c̃ is defined. Here, this is done by evaluating the
concentration field on the boundary and multiplying by the Van der Waals diameter of the
ion dV which is a volume strip of thickness dV ,

c̃ := c(X)
∣∣
x∈∂ΩdV

[
mol
m2

]
. [17]

The whole framework described above for chemical reactions can directly be adapted to
surface reactions. This leads to the expression

∂ c̃A

∂ t
=−k f c̃A + kbc̃B. [18]

Looking closer at the outward flux of species A through a surface ΓA, it holds that
nJA = −∂t c̃A with the outward normal unit vector n of the surface. Taking further the po-
tential dependence of the reaction rate coefficients into account, this leads to the following
expression (for the surface ΓA = Ω1∩Ω2):

nJA = k f c̃A− kbc̃B = k f dV cA
∣∣
∂Ω1
− kbdV cB

∣∣
∂Ω2

= k̂ f dV

[
cAeα∆ΦS

]∣∣
∂Ω1
− k̂bdV

[
cBe−(1−α)∆ΦS

]∣∣
∂Ω2

. [19]

This non-linear Neumann boundary condition also describes the inward flux of species B
because of mass conservation. Thus, JB on the reaction boundary ΓB = ΓA = Ω1 ∩Ω2 in
the direction of the negative outward union normal of Ω2 equals this non-linear Neuman
boundary condition. Clearly it holds that

nJA =−nJB. [20]

It is also obvious that this argumentation is also true for the anode/solid electrolyte interface
and leads to the missing boundary condition for the lithium ion flux at the other boundary
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Figure 4: The outward flux JA in normal direction of species A through a surface ΓA is
related to the surface reaction occurring on that surface. Since there is mass conservation,
the outward flux JA corresponds to the inward flux JB.

vertex of Ω1 for our 1-D case. For the outward flux of intercalated lithium ions, it is natural
to assume isolation at the boundary next to the deflector.

Hence, we derived all required boundary conditions, leading to a fully-coupled non-
linear PDE-system for lithium ion concentrations and electric potential in the electrolyte
and intercalated lithium inside the electrode. The fully non-dimensional system is given in
the Appendix.

4. Numerical Results

The numerical realization of the time dependent discharge of an all solid-state lithium
ion battery has been performed using COMSOL Multiphysics which is a finite element
discretization software.
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Figure 5: Computed initial condition of the electric potential Φ0 (dashed line) and c0 (solid
line). The Stern layer potential drop ∆ΦS is marked by an arrow.

Each component Ωi, i = 1,2, was modeled as a separate geometry and the equations
of the dimensionless PDE system [7 - 9] were entered in the ‘PDE General Form” ap-
plication mode on the appropriate geometry, respectively. The results visualized below
were computed by scripting COMSOL with MATLAB. We applied non-uniform quadratic
Lagrange-Elements, with 1554 Elements in the electrolyte and 154 in the cathode. Each
grid is applied on the non-dimensional domain, i.e., on [0,1]. The reasons for choosing
a non-uniform Finite Element mesh are the different length scales of phenomena. In the



double layer, drift processes, are dominating, mass and therfore charge is varying by a high
order of magnitude.

We consider an initially fully charged battery cell. For the transient simulation of dis-
charge, an initial condition representing the potential distribution in the electrolyte of a fully
charged battery cell is needed. In a mathematical sense, this is equivalent to determine a
stationary solution of the coupled PDE system in the electrolyte with homogeneous Neu-
mann boundary conditions for the mass transfer, i.e., with equilibrium chemical reactions
at the flat interfaces.

Steady state is characterized by ∂τc = 0, i.e., no variation in time τ . To solve the (non-
dimensional) stationary system in the electrolyte

0 = DLi+
∂ 2

∂x1
c(·,τ)+ DLi+

∂

∂x1

(
c(·,τ) ∂

∂x1
ϕ(·,τ)

)
, [21]

0 = ε
2 ∂ 2

∂x1
ϕ(·,τ)+ 1

2
(c(·,τ)− cA), [22]

with isolation and potentiostatic boundary conditions (following (13) define the effective
thickness of the compact part of the double layer λs := ε0εr/Cs and set γ := λS/λD)

DLi+
∂

∂x1
c(x1,τ)+ DLi+c(x1,τ) ∂

∂x1
ϕ(x1,τ) = 0, on x1 ∈ {0,1}, [23]

∂

∂x1
ϕ(0,τ)+ 1

γε
ϕ(0,τ) = ϕ0, [24]

∂

∂x1
ϕ(1,τ)+ 1

γε
ϕ(1,τ) = 0, [25]

an additional weak constraint is required (10)∫ 1

0
c(x1)dx1 = cA. [26]

This integral constraint is not needed when solving the time-dependent problem, since
the total number of lithium ions is set by the initial conditions for the concentrations. The
integral constraint reflects that in a solid electrolyte the overall amount of the mobile charge
carrier species should be equal to the fixed one. From a mathematical point of view the
constraint is needed to ensure well-posedness of the stationary system.

Figure 5 displays the initial potential distribution across the solid electrolyte including
the diffuse part of the double layer (dashed line), the potential drop in the Stern layer (solid
labeled line) and the concentration field computed with a constant diffusion coefficient for
lithium ions. Figure 6 is just a close-up view to emphasize that the impression of non-
smoothness in Figure 5 is caused by the illustration, i.e., by the scale.

As there is no repulsive ion-ion interaction, the lithium concentration on the boundary
rises to about 80 times the amount of the bulk concentration. This is still a critical point in
our model. The bulk lithium ion concentration of the solid electrolyte is 3.0e + 04[mol/m]
for Li5+xBaLa2Ta2O11.5+0.5x,x ∈ [0,2]. Furthermore, the Debey screening length λD dis-
played here is not the classical Debey-length, but shifting the pre-factors of the Poisson
equation in the same way as it is done for liquids, it is equal to what is usually called the
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Figure 6: Detailed view of the potential and concentration distribution near the elec-
trode/solid electrolyte interface.

Debey-length. Also note that the bulk concentration is set to 1 and the diffuse part of the
double layer is about 1nm, due to the high lithium ion concentration.

The simulation result for the transient behavior of an all solid-state lithium ion battery
is shown in Figure 7. Note that in the model the chemical reaction is only accelerated due to
the Stern layer potential drop in contrast of taking the whole double layer potential drop into
account. Together with the assumption of planar interfaces and a non-porous intercalation
electrode, this yields to slower chemical reactions compared to models for classical liquid
electrolyte batteries (4 - 6). The parameter setting box in Figure 7 includes the total amount
of intercalated lithium, i.e., the integral over the concentration of the intercalated lithium.
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Figure 7: Transient potential Φ (dashed line) and concentration c (solid line) distribution
through the solid electrolyte. The Stern layer potential drop ∆ΦS is marked by an arrow.
Furthermore the concentration of intercalated lithium inside the electrode ρ is shown in the
right plot (solid line).

High concentrations at the interface leads to fast discharge times. Some of the critical
assumtions include that there are no repulsive ion-ion effects incorperated and that the dif-
fusion coefficients are assumed to be constant. Tayor expansion of the diffusion coefficient
as function of concentration and concentration gradient shows that a constant diffusion co-
efficient is only valid for small concentration variations. A first heuristic approach is to
restrict high concentrations within the diffusion coefficient. More sophisticated strategies
seem to be free energy formulations. Although we have not validated the model framework



yet, we think this is a reasonable basic structure for model options like muli-scale mod-
elling, incorperating temperature and mechanical effects, i.e., for a detailed discription of
phenomenia.

5. Summary

Under the assumptions of Section 2, our new model describes potentiostatic discharge
of a lithium foil vs. an arbitrary intercalation electrode in an all solid-state battery. The
diffuse part of the double layer is calculated via the coupled Poisson equation, while the
Stern layer potential drop is also dynamically determined via the Robin boundary condi-
tion. The charge density distribution on the right hand side of the Poisson equation takes
into account the fixed anion structure of the solid electrolyte. Electrochemical reactions on
the planar surfaces are modeled as non-linear Neumann boundary conditions. Reaction rate
coefficients are determined by transition state theory. The electrochemical reactions are not
accelerated by the whole double layer potential drop, but just by the Stern layer potential
drop, which is the Frumkin Butler Volmer approach (14).

Appendix

The model developed above is also reasonable for higher dimensional geometries un-
derlaying isotropy. In Ω1, we have the following system with appropriate boundary and
initial conditions:

Poisson Nernst Planck System:

L1δ
∂

∂τ
c = ∇ · (D1∇c + D1c∇ϕ) , ∆ϕ =− 1

2ε2 (c− cA) .

Initial condtitions:

ϕ(x1,0) = ϕ0(x1), c(x1,0) = c0(x1).

Note the initial conditions are solutions of the stationary, isolated problem with an addi-
tional integral constraint described in Section 4 above.

Boundary conditions:

n · (D1∇c + D1c∇ϕ)
∣∣
x1=0 = kc,1

[
c(x1)eαc(ϕ0−ϕ(x1))

]
x1=0
− ka,1cM

[
e−αa(ϕ0−ϕ(x1))

]
x1=0

,

n · (D1∇c + D1c∇ϕ)
∣∣
x1=1 = kc,2

[
c(x1)e−αcϕ(x1)

]
x1=1
− ka,2ρNρ(x2)

∣∣
x2=0

[
eαaϕ(x1)

]
x1=1

,

with cathodic coefficients kc,1,kc,2,αc and anodic coefficients ka,1,ka,2,αa,

n ·∇ϕ + 1
γε

ϕ = ϕ0, at x1 = 0, n ·∇ϕ + 1
γε

ϕ = 0, at x1 = 1.



For the intercalation electrode (Ω2), the following system and initial, boundary condi-
tions are given:

Diffusion equation:

L2δ
∂

∂τ
ρ = ∇ · (D2∇ρ) .

Initial condition:

ρ(x2,0) = 0.

This describes the circumstance of a discharge model in which the intercalation electrode
is initially empty (no intercalated lithium ions).

Boundary conditions:

n · (D2∇ρ)
∣∣
x2=0 = ka,2ρ(x2)

∣∣
x2=0

[
e−αϕ(x1)

]
x1=1
− kc,2

ρN

[
c(x1)eαϕ(x1)

]
x1=1

,

n · (D2∇ρ)
∣∣
x2=0 = 0.
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