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Abstract

Life annuities provide a guaranteed income for the remainder of the recipient’s lifetime, and

therefore, annuitization presents an important option when choosing an adequate investment

strategy for the retirement ages. While there are numerous research articles studying annuities

from a pensioner’s point of view, thus far there have been few contributions considering annuities

from the provider’s perspective. In particular, there are no surveys of the general risks within

annuity books.

The present paper aims at filling this gap: Using a simulation framework, it provides a long-

term analysis of the risks within annuity books. In particular, the joint impact of systematic

mortality risk and investment risk as well as their respective influences on the insurer’s financial

situation are studied.

The key finding is that, under the model specifications and using annuity data from the

United Kingdom, the risk premium charged for aggregate mortality or, more precisely, longevity

risk seems to be very large relative to its characteristics. Possible explanations as well as economic

implications are provided, and potential caveats are discussed.
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1 Introduction

Life annuities provide a guaranteed income for the remainder of the recipient’s lifetime; therefore,
annuitization presents an important option when choosing an adequate investment strategy for the
retirement ages. Yaari (1965) showed that in a deterministic financial economy and in the absence of
bequest motives, expected utility maximizers will annuitize their entire wealth. The same result was
recently confirmed by Davidoff et al. (2005) in a more general market setting. However, although the
current problems with state-run pay-as-you-go schemes in many countries and the shift from defined
benefit to defined contribution plans should increase the demand for annuities, empirical studies show
that the proportion of retirees choosing to annuitize their entire wealth or part thereof is rather small.
In economic literature this phenomenon is commonly referred to as the “annuity puzzle”.

Possible explanations for this peculiarity may be the consumption limitations or, more precisely,
the suboptimal consumption profile due to constant annuity pay-outs (see, for example, Brown (2001)
or Milevsky et al. (2006)), demographic risk (Schulze and Post (2006)), or the existence of bequest
motives. Another reason could be that annuities are overpriced or, more specifically, are conceived to
be overpriced by investors: Typically, yields on long-term debt are used to calculate the actuarially

fair price of an annuity, even though the rate of return on, for example, the insurer’s capital may be
substantially higher (see James and Song (2001)). Therefore, even if annuities are priced actuarially

fair – we have not yet specified what this means exactly – their prices may still be regarded as too
high by investors.

In Mitchell et al. (1999), the actuarially fair price of an annuity is defined to be the expected
present value, where current yields of treasury and corporate bonds as well as cohort mortality
tables that are adjusted for selection effects1 are used to determine interest and mortality rates,
respectively. They find that in the US in 1995 the average annuity policy generally delivered pay-
outs of less than 91 cents per unit of annuity premium. According to the authors, this “transaction
cost” is primarily due to expenses, profit margins, and contingency funds. However, the question
of whether this discount is adequate regarding the inherent risk is not addressed. Similar results
are found in Finkelstein and Poterba (2002) for the United Kingdom (UK) with the same notion of
actuarially fair priced annuities. Here, the difference between the actual and the fair value per unit of
annuity premium, which amounts to between 5 and 14 cents for different types of annuity contracts
and different cohorts, is not analyzed further either.

Murthi et al. (1999) come to similar conclusions. However, they note that annuitization costs of
about 5% of the account value are very small in comparison to typical costs during the accumulation
phase of a personal pension plan where over 40% of an individual account’s value is consumed by
various charges and fees. They provide possible explanations for their findings but also raise several
caveats: For instance, their results are quite sensitive to mortality assumptions, and they are focussing
on the mean of the money’s worth of an annuity without considering its distribution.

Annuitization costs, i.e. the positive difference between actuarially fair and market-observed an-
nuity prices, arise endogenously in the model presented in a paper by Van de Ven and Weale (2006).
In their two-period overlapping generation model, they consider the effect of aggregate longevity
uncertainty on annuity rates. Within an equilibrium framework they show that given risk-averse
preferences, annuities are sold at a discount for aggregate mortality risk. The value of this discount
is very sensitive to both, the changes in the risk aversion parameter and the level of uncertainty
regarding the future lifetime.

All-in-all there tends to be an accordance among empirical and theoretical approaches that an-
nuities are not fairly priced, i.e. they include a “transaction cost” which at least partially consists of
contingency funds and can thus be interpreted as a risk discount. However, the question of whether
this risk discount is adequate regarding the inherent risk is open, and it is not clear whether it is
majorly influenced by investment or longevity risk, that is the risk that future mortality patterns
differ from those anticipated in a way that is unfavorable from an annuity provider’s point of view.

While most of the above cited articles regard annuities from a pensioner’s point of view, we

1In general, mortality rates for the overall population exceed those for individual annuity purchasers when comparing
them within the same year and cohort.



Assessing Investment and Longevity Risks within Immediate Annuities 3

take a different approach by considering the annuity business from the provider’s position. From an
insurer’s perspective, selling annuities is similar to assuming a short position in a forward contract
on the survival of the annuitants within the insurer’s portfolio. But in contrast to standard forward
contracts, this position cannot be hedged as, thus far, there are no appropriate securities.2 However,
similar to classical portfolio selection problems, the risk-return profile of the insurer’s position can be
analyzed.

So far, there have been few contributions assessing the risk within life contingencies, and according
to Dowd et al. (2006) insurance companies have a general problem assessing the magnitude of the
financial risk implied by their mortality exposure. Using the two-factor stochastic mortality model
from Cairns et al. (2006b), Dowd et al. (2006) give a “blueprint” how to estimate risk measures for
any mortality-dependent risk and provide four illustrative types of mortality dependent financial
positions, including an insurer’s annuity book hedged by a hypothetical longevity bond similar to the
one announced (but never issued) by the European Investment Bank and BNP Paribas in November
2004 . However, their analysis is rather geared towards the general study of mortality contingent
positions and does not provide a survey of the risks within an annuity book.

The present study aims at filling this gap: We present a simple long-term analysis of risks of
an annuity book and, in particular, provide qualitative insights on how influential mortality risks
and investment risks are, respectively. Furthermore, the implications of this preliminary analysis are
discussed. More specifically, we focus on the question of whether annuities are priced appropriately
regarding the inherent risk.

In order to assess the risks within annuities, forecast models are needed for both, the evolution
of mortality and investment risk. The latter, i.e. modeling the evolution of financial assets, is a well-
studied problem with many available models. For forecasting the evolution of mortality, on the other
hand, the list of appropriate models is relatively short. For a detailed overview and a comprehensive
categorization of stochastic mortality models, we refer to Cairns et al. (2006a). One of the most
prominent models is the so-called Lee-Carter model (see Lee and Carter (1992)) with its various
extensions (see, for example, Lee (2000), Brouhns et al. (2002), or Renshaw and Haberman (2003)).
This approach quickly gained acceptance in both the academic community and among practitioners.3

Due to its popularity and relative simplicity, we choose a variant of the Lee-Carter method for
forecasting mortality and a very simple approach for modeling the evolution of the financial market.

The remainder of the text is organized as follows: In Section 2, we introduce the annuity book and
the forecasting approaches. Section 3 describes our simulation framework as well as the underlying
data. Subsequently, our results are presented in Section 4, with a discussion in Section 5. Finally,
in Section 6, we summarize, discuss the limitations of our results, and provide an outlook for future
research.

2 Modeling the Risks within an Annuity Book

According to Dowd et al. (2006) in order to assess the magnitude of the financial risk implied by
an insurer’s mortality exposure the key ingredients are a stochastic model of aggregate mortality, a
selection of financial risk measures, and a simulation framework. In order to capture the dimension
of the total financial risk implied by an insurer’s annuity book we further need a stochastic model for
the insurer’s assets.

In this section, after introducing the contract and the “risk” to be studied in Subsection 2.1, we
present our choices of asset and mortality models in Subsections 2.2 and 2.3, respectively.

2.1 The Annuity Book

An annuity is an insurance contract providing payments for the remaining lifetime of the insured
person, i.e. it is contingent on the insured’s survival. Annuities are offered in various designs, such as

2An exception are so-called longevity bonds or other longevity derivatives, i.e. financial instruments with payoffs
contingent on the survival of a certain cohort or population, which are starting to be offered by several investment
banks (see, e.g., Blake et al. (2006)).

3For example, it served as a starting point for mortality forecasting models used by the U.S. Social Security Ad-
ministration.
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deferred or immediate annuities, variable or fixed, with or without guarantee periods, etc. We focus
on the simplest kind, namely a fixed single premium immediate annuity (SPIA) without any guarantee
period, and this is also one of the predominant types of contract especially in the UK market. The
annuity market can be divided into open market options and compulsory purchase annuities. While
according to Finkelstein and Poterba (2002), the compulsory market is considerably larger than the
voluntary market, we focus on prices for the open market option. Thus, the structure of the considered
contract is quite simple: At time zero the annuitant pays a certain single premium, say P , to the
annuity provider. In return (neglecting credit risk) the annuitant obtains a payment of U units every
period conditional on her or his survival.

Therefore, assuming an initial expense of φ units, a policyholder’s individual account value A at
time 1 in the case of survival is

A1 = (P − φ)(1 + δ1) − U 1{τ>1},

where δt is the charge-adjusted return on the asset process governing the policy reserve fund from
time (t−1) to time t, and τ is the time of death of the recipient. Similarly, the account value at time
t – given the insured’s survival until (t− 1) – is given by

At = At−1(1 + δt) − U 1{τ>t}. (1)

Assuming that the insurer’s portfolio of policies is large enough to neglect unsystematic mortality
risk4 and considering x0-year old males at time 0, equation (1) can be transformed to express the
reserve per unit annuity (i.e. U = 1) at time t as

Rt = Rt−1(1 + δt) − tpx0
, (2)

where tpx0
denotes the (realized) proportion of the population of x0 years olds at time 0 who are still

alive at time t, i.e. who survived t periods from time 0 to time t. It is worth noting that Rt is not
known prior to time t and thus is a random variable as both δt and tpx0

are random variables that
are Ft-measurable.5

If ω denotes the limiting age, i.e. if survival beyond age ω is not possible, there are no payments
after time T = (ω−x0). The remaining surplus RT then characterizes the profitability regarding this
particular book of annuities from the insurer’s point of view:

• If RT < 0, the reserves have not been sufficient to cover the insurer’s liabilities. The resulting
shortfall has to be financed using other funds.

• If RT ≥ 0, there have been enough reserves to settle all claims, and the remaining surplus
remains with the insurer as a profit.

Therefore, in order to assess the risk of a book of immediate annuities, it is sufficient to analyze the
properties of the random variable RT , which depends on the evolution of both, the insurer’s assets
and liabilities.

2.2 Modeling the Insurer’s Assets

We assume that at time zero, the insurer invests collected premiums in three different types of assets:
zero-coupon bonds, a savings account B, and a well-diversified stock portfolio S. We further assume
that non-defaultable zero coupon bonds for any maturity t exist and that they are available for a
price of p(0, t) at time 0.6 Thus, the amount invested in a bond with maturity t accrues at a constant
rate of return rate over the period [0, t], while returns on funds invested in B and S yield a stochastic
return corresponding to the evolution of the interest rate and the stock portfolio, respectively. Hence,

4Here, unsystematic mortality risk corresponds to the part of the risk that can be diversified by the Law of Large
Numbers. See Biffis et al. (2005) for a classification of risks affecting insurance securities.

5As usual in this context, we fix a complete filtered probability space (Ω,F ,F = (F)t, P ) for our consideration,
where the filtration F describes the information flow.

6The assumption that bonds are available for all maturities and in particular that ultra-long bonds exist may seem
unrealistic. However, some governments have recently begun or are planning to issue bonds with maturities of 30 years
or even beyond.
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we need to make assumptions about the dynamics of B and S. While numerous models with different
levels of sophistication are available we rely on simple yet common specifications.

The savings account B evolves according to the differential equation

dBt = rt dt,

where r = {rt}t>0 is the nominal short-rate of interest, and it is modeled by a mean-reverting
square-root process

drt = ψ(γ − rt) dt+ σr

√
rt dWt, (3)

i.e. we assume the well-known Cox-Ingersoll-Ross (CIR) model for the evolution of the short rate
(see Cox et al. (1985) for details). Here, ψ, γ, and σr are some positive constants and W is a one-
dimensional standard Brownian motion. Furthermore, we model the stock portfolio S by a geometric
Brownian motion, i.e. we let

dSt = St (µdt+ σS dZt) , (4)

where again µ and σS are some positive constants and Z again is a one-dimensional standard Wiener
process, assumed to be independent of W . In particular we assume independence of the asset and
the short-rate process.

Having specified the underlying processes, we need to assume certain allocation strategies in order
to obtain the evolution of the returns on the reserve δ from equation (2). We consider two strategies:

1. The insurer does not hedge the liabilities and invests the entire funds into the savings account
and the stock portfolio at fixed proportions (1 − α) and α, respectively, and we also assume
that the portfolio is continuously rebalanced. Thus, α describes the stock proportion within
the insurer’s asset portfolio.

2. The insurer attempts to hedge the liabilities by buying tp̂x0
bonds with maturity t for t =

1, · · · , T , where tp̂x0
denotes the best estimate of his (random) liabilities tpx0

at time t. The
remainder of the reserve is then invested into the same portfolio as in strategy 1. If the payoff
from a t-bond exceeds the liabilities, the excess amount will also be transferred to this portfolio.
Similarly, if the bond payoff is insufficient, funds from the portfolio are used to settle the insurer’s
obligations. Thus, it is sufficient to simulate the short-rate and the stock portfolio as bond prices
are only needed at time 0 for which market prices are available. In this case δ refers only to the
excess or loss amount invested into or borrowed against the variable portfolio.

These two asset strategies are both somewhat extreme: In the first opportunistic strategy, the
insurer does not try to match his assets to his liabilities at all, whereas in the second case assets are
matched to liabilities as well as possible at time zero. However, the considered strategies do not allow
for adjustments based on the information at time t but are F0 measurable. Thus, when continuously
rebalancing the portfolio according to the information available, the insurer could even improve the
hedge in strategy 2.

Even though actual investment strategies will be somewhere in between, we believe that these two
scenarios will provide adequate insights on the actual distribution of RT . However, there are some
caveats: When funds are not sufficient to cover the liabilities, i.e. if the reserve Rτ becomes negative
for some 0 < τ < T , these strategies imply that the insurer will finance the shortfall by borrowing
against a variable portfolio rather than borrowing money at the prevailing interest rate. While this
assumption seems unrealistic at a first glance a large annuity provider might be able to “borrow”
funds from some other separately accounted portfolio or line of business within the company or its
group. Nevertheless, negative final reserve accounts have to be treated with care with respect to the
actual amount of the shortfall, but not the fact that they are negative.

2.3 Modeling the Insurer’s Liabilities

According to equation (2), it is sufficient to model tpx0
appropriately. Recently, it has become

clear that mortality improvements behave in an unpredictable manner (for an assessment of future
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mortality trends, see, e.g., Currie et al. (2004)). Therefore, it is not sufficient to use estimates from
prevailing mortality tables but their stochasticity has also to be taken into account.

So far, several stochastic mortality models have been proposed; for a detailed overview and a
categorization see Cairns et al. (2006a). One of the most prominent stochastic models for mortality
was proposed by Lee and Carter (1992, henceforth LC). This approach has rapidly gained acceptance
not only in academia but also among practitioners, which may partly be due to its relative simplicity.

In the LC model logarithmic central death rates mx,t for a life aged x at discrete times t, or during
years [t, t+ 1), are assumed to follow the equation

lnmx,t = ax + bxκt + εx,t (5)

where ax and bx are age-dependent parameters, κt is a so-called time index, which is independent
of age, and εx,t is the error term with εx,t ∼ N(0, σ2

ε). We impose the restrictions
∑

t κ̂t = 0 and
∑

x β̂x = 1 which ensure the uniqueness of the representation.
However, the LC model in its original form has a number of shortcomings, one of which is the

assumption that error terms are homoscedastic, i.e. εx,t ∼ N(0, σ2
ε) ∀x, t. Alho (2000) – among

others – pointed out that this assumption is somewhat unrealistic. They argue that in a number of
cases residuals actually showed significant variation with respect to the age x.

Among a large number of extensions and propositions for improvement is an approach presented
by Brouhns et al. (2002). They resort to the notion that the number of deaths among people aged
x in a given time interval [t, t + 1), dx,t, can be regarded as a Poisson counting process, which goes
back to Brillinger (1986). The assumption, however, implies that error terms are heteroscedastic,
i.e. Var(εx,t) may vary by age x, which seems to be more realistic. Another advantage is the fact
that parameters (which have virtually the same interpretation as in the LC model) can be obtained
iteratively as maximum likelihood estimators using an algorithm developed by Goodman (1979). Due
to the more realistic assumptions we resort to this alternative approach for our further analysis of
mortality. Henceforth it will be denoted by PML (Poisson Maximum Likelihood).

To project the evolution of mortality, only the time index κ̂t needs to be projected since âx and
b̂x depend on the age x only – but not of time t. Following the standard time series methodology of
Box-Jenkins, we choose an ARIMA(0,1,0) process, i.e. a random walk with drift, for {κ̂t}t>0:

7

κ̂t = κ̂t−1 + θ + ηt. (6)

By projecting the time series {κ̂t}t>0, mortality rates for a person aged x0 in year 0 can be
forecasted for future years s = 1, 2, . . . through

ln m̂x0+s,s = âx0+s + b̂x0+sκ̂s. (7)

Central death rates mx,t are widely used by actuaries and even more so by demographers to
describe and explain mortality. However, they are less illustrative than death or survival probabilities.
Following the standard notation (see e.g. Bowers et al., 1997) we transform the central death rate
projections from (7) into survival functions. For a person aged x0 at time 0, the survival function
sx0

(s) = spx0
gives the s-year survival probability (s > 0), the latter being the notation widely used

by actuaries. Restricting life time to a limiting age of ω by setting pω−1 = 0 it can be expressed as

spx0
=

s−1
∏

j=0

px0+j =

s−1
∏

j=0

exp(−µx0+j) =

s−1
∏

j=0

exp(−mx0+j,j)

=

s−1
∏

j=0

exp(−eâx0+j+b̂x0+j ·κ̂j ). (8)

For the transformation in (8), we use the frequently made assumption of constant force of mortality
in each year, i.e. µx,t+u = µx,t ∀u ∈ [0, 1) (see, e.g., Bowers et al. (1997) for further details).

7Although any ARIMA(p,d,q) process could have been used, the ARIMA(0,1,0) model has previously been favored
by numerous authors for varying data sets.
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The drift parameter (or trend) of the ARIMA(0,1,0) process from (6), θ, is estimated from the
fitted values of κ̂t. The disturbance terms ηt ∼ N(0, σ2

κ), the variance σ2
κof which can also be es-

timated directly from fitted values of κ̂t, solely incorporate randomness. By transforming (6) we
directly obtain randomized forecasts of the time-index when adding randomized values of ηt. Thus,
by combining (8) and (6) random realizations of the survival function sx0

(s) are generated.

While the presented PML approach extends the well-known LC model and overcomes some of
the shortcomings of the original model, an important caveat must be made. As is the case with all
attempts to model mortality, we do not know whether mortality actually behaves in the particular
way assumed by the LC and/or the PML approach. This uncertainty, i.e. the question of whether a
chosen model is the correct model or not, is commonly referred to as model uncertainty. Apart from
this uncertainty, we also have to be aware of a number of shortcomings of the LC model that could
not be corrected by the PML approach. To mention only some of these potential weaknesses, the LC
model has been shown not to be able to sufficiently incorporate cohort effects8; furthermore the LC
model has been criticized for underestimating mortality risk in some situations.

After having specified our asset and liability modeling approaches, and recurring to the blueprint
of Dowd et al. (2006), we still need to provide a simulation framework and some risk measures. These
ingredients will be presented next.

3 The Simulation Framework

In the previous section we described the underlying asset and liability model for an annuity provider.
However, these models still need to be calibrated. In 3.1 we describe the data. Subsequently, in order
to simulate assets and liabilities simultaneously, we embed the underlying models in a simulation
framework in 3.2. As our objective is to analyze the risks within annuity contracts we introduce the
considered risk measures in 3.3.

3.1 Data

The evolution of the insurer’s assets and liabilities depends on various quantities: annuity prices,
asset yields, survival probabilities, etc. In the following, we describe the data and the procedures
used to derive these quantities. Since the annuities market in the UK is one of the largest in the world
we focus our analysis on data from the UK. In other annuity markets, e.g. in Germany, contracts are
usually sold as participating contracts where profit distribution forms a significant component and
would have to be accounted for separately.

Annuity Price

The Financial Services Authority (FSA), the regulatory body for insurance companies in the UK,
regularly issues information concerning recent market prices for different types of annuity contracts in
the comparative tables section on their web page. As mentioned earlier in the text we consider prices
for the open market options type of annuities, payable monthly in arrears and without guarantee
period. Since all mortality data was available until 2003 only, we choose January 1, 2004 as the start
date for our projections. Hence we use an annuity quote for January 2004. Among the five lowest
quotes, i.e. those providing the highest yearly (or monthly) payments for a fixed single premium, we
chose the median provider to eliminate possible temporary effects.

Bond Prices

As our allocation strategies only include bond investments at time 0, we only need to infer bond
prices at the inception date, i.e. we can use historical data. We use UK government bonds9, where
zero coupon yields are available for short-term, 5-year, 10-year, and 20-year bonds. For maturities

8For a detailed analysis of cohort effects in the UK, i.e. the effect that some cohorts participate more than others
from lower mortality, cf. for instance Willets (2004). For an attempt to measure mortality improvements and compare
cohort effects for a selection of countries see MacMinn et al. (2005).

9Source: http://www.statistics.gov.uk/statbase, 10/18/2006.
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in between we interpolate linearly. As we also need bonds for longer maturities we extrapolate the
available data. Here we took a conservative approach: if the yield curve was upward shaped, i.e. if
the yields for bonds maturing in 20 years was higher than for bonds maturing in 10 years, we assumed
that yields for longer maturities equal that for a 20-year bond, i.e. we extrapolate a flat yield curve.
If the curve was downward shaped, we extrapolated linearly to incorporate sufficient prudence.

Short rates and Stocks

We use the 3-months LIBOR10 from January 1978 to September 2006 (monthly data) for calibrating
the short-rate model.11 For determining the parameters of the stock model, we used the monthly time
series of the FTSE 100 price index (January 1984 to September 2006) and of FTSE 100 dividend yields
(September 2003 to September 2006).12, and we rely on standard maximum likelihood estimators.

stock model µ σS

12.07% 16.20%
short-rate model ψ γ σr r0

5.54% 8.04% 5.2% 3.99%

Table 1: Parameters of the asset models

In Table 1, the resulting parameter estimates are displayed. For the stock quota within the mixed
portfolio, we use 37% as is displayed in the Legal and General PPFM Data Annex from 06/20/2006
for non-participating pension policies and adaptable pension plans. It is worth noting that within
the second asset allocation strategy, where the majority of funds is invested in a bond portfolio, the
proportion of stock within the insurers asset portfolio will be smaller, as only 37% of the remaining
funds are invested in stock.

Mortality Data

We consider three different sets of mortality data: on the one hand we aim at capturing typical
mortality patterns of the UK population, on the other hand typical mortality of insured persons was
of interest within the scope of the present investigation. Due to selection effects, mortality rates for
the general population usually exceed those for the population of assured.13

We resort to data from the Human Mortality Database (2006, henceforth HMD) for the overall
population mortality. Since data for the entire UK was not available, we follow prior investigations
and consider the series for male persons in England & Wales. More specifically, annual numbers of
death and exposure to risk for ages 60-100 during calendar years 1983 through 2003 were used within
the calibration procedure.

For the mortality experience of the population of insured, suitable data was cordially provided
by the Continuous Mortality Investigation Bureau (CMI), and we focus on observations from years
1983 to 2003 at ages between 60 and 100 in order to ensure compliance with the HMD data. Apart
from the usual per-capita data, i.e. exposures and deaths all having the same weight of 1, we also
considered mortality by amounts. This accounts for varying face values of annuity contracts, and it
could possibly contribute to refine results with respect to (anti-)selection effects. Note that not only
do insured persons exhibit lower mortality than the general population, but there is also evidence
that persons with higher income – thus being able to buy annuity contracts with higher benefits (and
higher premiums) – tend to live longer than less well-off persons.

As all data sets under consideration provide only sparse data for ages beyond 100, this data is
not included in our estimation procedure. Instead, we assume that if an insured person survives until
just before his 101st birthday, the insurer will pay an unconditional compensation – regardless of

10London Interbank Offer Rate.
11Source: http://www.statistics.gov.uk/statbase, 10/18/2006.
12Source: http://www.statistics.gov.uk/statbase, 10/18/2006; due to data availability we used the shorter time series

for the dividend yield.
13See e.g. Finkelstein and Poterba (2002).
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the remaining life time of that individual. This can be regarded as a means to clear the portfolio of
annuities and thus to dispose of the inherent uncertainty.

Note that the expected remaining (curtate) life time14 beyond age 100, e̊101, gives the expected
number of future annuity payments: exactly those payments that will be paid for under the notion
of a lump-sum compensation. To make the value of this compensation more prudent, no discounting
was included so that for a face value (i.e. yearly payments) of 1 it simply amounts to e̊101.

For cohorts born in z = 1983 − 101 = 1882 through ‘2003− 110 = 189315, i.e. for those for which

our data sets cover all ages beyond 100, we determined e̊
(z)
101. Since there was no significant trend

across these cohorts, we took the average of observed cohorts’ remaining life expectancy, e̊
(z)
101, to

estimate the compensation. For each random path of mortality, given survival until age 101, this
compensation was put up to close out the particular contract at that time, i.e. at time t = z + 101.
For further reference, note that for our investigation we fix the face value of the annuity contracts
to U = 1′ and proceed with a contracting age x0 = 60 and “limiting” age ω = 100 due to the
afore-mentioned compensation. Hence we have a maximum time horizon of T = 40 throughout our
analysis.

Fees and Expenses

Annuities are subject to several fees and expenses. For a typical contract of a large annuity provider,
an initial expense of 200£ plus 1.3% of the premium paid, an investment fee of 7 basis points (bps),
and an additional fixed annual renewing fee are representative. However, as the influence of the fixed
fees, i.e. the 200£ initial expense and the annual renewing fee, depend on the annuity purchase price,
we do not consider them for our analysis. Furthermore, we assume that there are no investment fees
for the bond portfolio. Thus, we only consider an initial expense of 1.3% and an investment fee of 7
bps for the risky portfolio.

3.2 Combining Asset and Liability Simulations

For both the mortality model and the development of the assets 20,000 random paths have been
generated. This was done in the following fashion:

• Parameters for both models were estimated from the underlying data sets.

• Random paths for the stock portfolio and the savings account were generated using the models
from Section 2.2 using the previously estimated parameters.

• Estimated parameters from the PML approach were combined with the technique described in
Equation (6) to obtain randomized survival probabilities.

• Asset and liability paths were combined to obtain 20,000 randomized developments of the
annuity provider’s portfolio.

This process was repeated in order to account for the different assumptions made: the two invest-
ment strategies presented in Subsection 2.2 and the different data sets of mortality.

3.3 Measuring Risks

Following the approach described in Subsection 2.1, Rt, the reserve per unit annuity at time t is
employed for describing the financial situation of the annuity provider. Aggregating the remaining
surplus values R40 from all realizations of the models underlying the insurer’s assets and liabilities
allows us to compute the expected value E(R40), the shortfall probability P(R40 < 0), the value

at risk (VaR) at probability level α, i.e. z
(40)
α such that P(R40 < z

(40)
α ) ≥ α, and the conditional

tail expectation E(R40|R40 < z
(40)
α ), assuming α = 0.001 in both cases. Furthermore, by plotting

histograms of the realizations, we can illustrate empirical density functions.

14The curtate life expectancy gives the (integer) number of whole years a given individual will continue to live.
15Note that we interpret ω = 110 although the last class of ages in the HMD data denotes ages 110 and beyond.

Due to very scarce data at this “age” we neglect possible inaccuracy.



Assessing Investment and Longevity Risks within Immediate Annuities 10

The defined risk measures relate to all random paths generated. Hence, they reflect random
coincidences of a mortality development and an asset development. “Good” and “bad” developments
– with respect to either part – can potentially level out. Insurers welcome this diversification effect
of mortality and interest risk. However, this phenomenon might dilute actual characteristics of either
risk component.

In order to measure the magnitude of these two aspects of risk, we condition the sample described
above on “good” and “bad” paths of mortality as well as of asset development. For the determination
of “unidirectional conditional” risk measures, i.e. the risk measures described above restricted to
“good” or“bad” random paths (with respect to either mortality or funds), we compose a smaller sub-
sample of 2,000 of the “best” and “worst” developments with respect to one component and a random
selection of developments of the other component. For example, for the “conditional” risk measures
with respect to mortality, we combined the 2,000 “best” mortality paths with 2,000 randomly chosen
funds paths. The same was done with the 2,000 “worst” mortality paths. On the basis of these 2,000
reserve values Rt the introduced risk measures were calculated.

In this context “good” and “bad” random paths are understood from the insurers perspective, i.e.
“good” mortality development basically translates into early death since in that case the obligation
to pay terminates. “Good” developments with respect to funds refer to a high average or aggregate
rate of return over time since higher yields are to be seen positive. “Bad” developments refer to the
respective opposite outcomes.

To make exact comparisons between any two paths, we considered the 40-year life expectancy,
e̊60:40 , for mortality paths and the aggregate interest rate development,

∑40
k=1 f0,k with f0,k =

∏k

t=1 (1 + rt), for the funds paths. While the former gives the expected number of years that a
60-year person will continue to live within the next 40 years, the sum in the latter expression can be
regarded as an approximation of the integral of the yields’ evolution curve. Note that the exact values
of these “measures” are irrelevant for our analysis, our comparisons are only based on the relative
size of the numbers which we believe do adequately reflect the typical annuity providers’ preferences
in terms of (for his business) desirable mortality and interest rate realizations. Applying these “mea-
sures” to the respective mortality paths permitted to compare and rank the random developments,
and thus compute the “conditional” versions of the above risk measures.

4 Results

4.1 Unconditional Analyses

To analyze the risks we focus on the risk measures previously defined under the various parameter
settings detailed out in Subsection 3.2. Furthermore, as the expected value of the remaining sur-
plus E [R40] is in monetary units at time t = 40, we also provide the discounted expected value
p(0, 40) E [R40] which is given in monetary units at time t = 0. However, as the return on a 40-year
bond in 2004 (4.24% p.a.) is relatively low in comparison to the long term mean of interest rates,
these quantities have to be interpreted with care.16 Note that the amount invested in bonds within
strategy 2 coincides with the actuarially fair value or the “money’s worth” of the annuity product
as defined by Mitchell et al. (1999) and Finkelstein and Poterba (2002). For the UK during the late
1990s the latter find that for an annuitant, i.e. taking into account selection effects, the money’s
worth of an annuity amounts to between 86 and 95 pence per pound annuity. For pensioners we find
a value of 13.49 percent, i.e. the money’s worth amounts to 0.9026 per unit annuity, which is at the
upper end of the spectrum from Finkelstein and Poterba (2002). For the general population, we find
a value of 11.92 percent (yielding a money’s worth ratio of 0.7976) which is considerably lower due
to the mentioned selection effect.

Similarly, for the remaining surplus values after 40 years, R40, we can identify a significant dif-
ference between considering the overall population or restricting our analysis to insured persons’
mortality. The respective values for strategy 2 are given in the second and fourth columns of Table
2; Figure 1 shows the corresponding histograms.

16For example, the mean reversion level of the CIR-process from equation (3) can serve as a proxy for the long term
mean, and with 8.04% it is substantially higher than 4.24%.
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Pop. Lives Ann. Lives

Risk Measure Strategy 2 Strategy 1 Strategy 2 Strategy 1

E [R40] 98.45 201.53 47.35 176.39
p(0, 40) E [R40] 17.92 36.69 8.62 32.12
P (R40 < 0) 0 h 1.1h 0h 7.6h
V@R(0.001) 14.36 -9.45 6.81 -22.41
E [R40 | R40 < V@R] 12.93 -11.39 6.23 -36.64

Table 2: Risk measures for R40, Population Lives and Annuitants Lives
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Figure 1: Histograms of R40 under Bond Strategy 2

Under neither parameter constellation does R40 become negative when applying strategy 2. Nev-
ertheless, the selection effect of assuming insured persons’ mortality is obvious. The empirical dis-
tribution in this case is somewhat closer to zero and it is less scattered than the overall population’s
surplus distribution. The expected value in the case of annuitants’ mortality is roughly reduced by
50%. The observation for the value at risk and the conditional tail expectation are similar which
translates into the insurer operating under greater exposure to longevity risk, although we should
underline the fact that at least the risk of shortfall, i.e. R40 < 0, can be hedged under the assumption
of strategy 2.

The pronounced selection effect in the case of bond hedging can also be observed if the insurer
does not try to hedge assets and liabilities, but instead pursues an “opportunistic” investment. In
that case, however, shortfalls do occur, i.e. in some cases we observe R40 < 0. As before, the in-
surers’ surplus situation is somewhat tighter when resorting to annuitants’ mortality while it is also
less volatile compared to the general population case. Values of the corresponding risk measures are
given in columns 3 and 5 of Table 2.

Figure 2 shows the simulated distributions of final reserves R40 under both investment strategies
when general population mortality is assumed. As pointed out before no shortfalls occur under
the bond-hedging strategy. While the expected final reserve under the opportunistic investment
strategy is roughly twice what it is under strategy 2 these potential insufficiencies produce a shortfall
probability of 1.1h. Also, both the V@R at 0.001 and the corresponding Conditional Tail Expectation
become negative in the case of opportunistic investment while they remain positive under bond
hedging. This shows that the results are considerably more volatile if no bond hedging is available,
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Figure 2: Histograms Population Lives

rendering the final reserve situation less predictable.
The same tendencies can be observed when assessing the results in the situation of annuitants’

mortality either with respect to lives or amounts, although the specific numbers differ from the case
of the general population mortality. However, as a general result for our model we should emphasize
that bond hedging prevents shortfalls regardless of the specific mortality data. Contrarily, under
opportunistic investment R40 < 0 does occur in all three cases, with probabilities ranging from 1.1h

in the case of overall population mortality to 7.6h or 7.7h when incorporating the selection effects
captured in annuitants’ mortality data. The values are given in Table 3.

As pointed out earlier, there is a selection effect not only when considering insured persons versus
the overall population, but one can also assume that people with higher “amounts”, i.e. higher annuity
payments, have been subject to even more prudent selection by the insurer and through self-selection.
However, this selection effect is less pronounced than the one described before; the respective risk
measure can also be found in Table 3.

Ann. Lives Ann. Am’ts

Risk Measure Strategy 2 Strategy 1 Strategy 2 Strategy 1

E [R40] 47.35 176.39 47.10 176.38
p(0, 40) E [R40] 8.62 32.12 8.58 32.11
P (R40 < 0) 0 h 7.6h 0 h 7.7h
V@R(0.001) 6.81 -22.41 6.78 -20.68
E [R40 | R40 < V@R] 6.23 -36.64 6.26 -36.35

Table 3: Risk measures for R40, Annuitants’ Lives and Annuitants’ Amounts

While under the opportunistic investment strategy the results from the population mortality and
the annuitants’ mortality settings differ only slightly, which can been seen by comparing Figures
2 and 3, greater differences can be observed in the case of the bond hedging strategy. For annui-
tants’ mortality reserve values become less scattered, i.e. results closer to the expected final reserve
E(R40) occur more frequently than under the overall population mortality assumption. Even though
no shortfalls are generated under these two settings, the corresponding histograms show significant
deviations.
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Figure 3: Histograms Annuitants Lives

To summarize the main results of the unconditional analysis, we find that the bond hedging
strategy 2 allows the insurer to completely dispel the risk of generating negative final reserves. Even
if the opportunistic investment strategy is pursued, which was already pointed out to be a somewhat
extreme assumption, shortfalls occur relatively seldom with probabilities ranging between roughly
1h and 8h.

Two selection effects could be identified. The effect of transiting from the overall population to
annuitants’ mortality was considerably larger than the further selection expressed by the transition
from annuitants’ lives to amounts which only marginally changed the results. However, the tendency
is the same: the stronger the selection effect the less beneficial was the annuity provider’s situation
after 40 years.

4.2 Conditional Analyses

The conditional results for “good” and “bad” mortality or interest rate paths are given in Tables
4 and 5, respectively. The conditional sampling results are presented together with results for the
unconditional values, which have already been discussed in the previous section, in order to facilitate
a comparison of both analyses.

Risk Measure Bad Mortality Unconditional Good Mortality

E

[

R̃40

]

43.82 47.35 49.08

Rel. Deviation -7.46% 0 +3.64%
p(0, 40) E [R40] 7.98 8.62 8.94

Table 4: Expected values of the free reserve, conditional on mortality and unconditional, using
annuitants’ lives mortality under the bond-based strategy 2

As can be seen from Table 4, when restricted to “good” or “bad” mortality evolutions, these
“marginal” results are relatively close to those from the unconditional analysis. Figure 4 shows
the corresponding histograms, and although differences are not strikingly pronounced, the general
direction is noticeable: a spread in R40 of almost 5 per unit means that the annuity could potentially
be paid for five more years. If the difference between actual and actuarially fair price, i.e. the
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Figure 4: Comparison of influence of good and bad mortality developments

“transaction cost”, was smaller the situation would be drastically different for the annuity provider.
In short: there is significant risk, but due to relatively high transaction costs, the affect on the reserve
situation is rather small.

Risk Measure Lowest Asset Returns Unconditional Highest Asset Returns

E

[

R̃40

]

14.16 47.35 140.45

Rel. Deviation -70.11% 0 +196.59%
p(0, 40) E [R40] 2.58 8.62 25.57

Table 5: Expected values of the free reserve, conditional on interest rates and unconditional, using
annuitants’ lives mortality under the bond-based strategy 2

In Table 5 the results conditional on “bad” and “good” yield evolutions are displayed. We observe
that differences are far more pronounced in this case. This observation is underlined by Figure 5 which
depicts the respective empirical distribution of R40.

Moreover, we find that “bad” capital market development lead to results that are far less volatile,
i.e. possible values are significantly more concentrated on a relatively small interval ranging from zero
to approximately 35. This may be surprising when comparing them to the results we obtain when
limiting our considerations to the 10% “best” capital market paths, in which final reserve values are
generally larger but are also spread over a much larger interval. In that case the major portion of
values lie somewhere in the interval between 50 and 300. Although the variation of results is some-
what opposite to what the notion of “bad” and “good” capital market paths suggests, they clearly
do not lead to significant risk when thinking in terms of shortfalls, i.e. R40 < 0.

Thus, all in all, the observations are in compliance with the frequently assumed statement that
mortality risk in annuities is a lot smaller than the risk arising from the capital markets. However,
one should note that interest rate risk can be hedged, which is visible when comparing the bond
hedging strategy with the opportunistic investment. While the latter is a situation where the insurer
is completely exposed to interest rate risk, investment strategy 2 hedges that risk by investing in an
appropriate bundle of bonds in advance.

Although fluctuations generated by unforeseen mortality paths tend to be considerably smaller
they can still be of great interest for an annuity provider since mortality risk cannot yet be hedged
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Figure 5: Comparison of influence of good and bad capital market developments

with appropriate market instruments. Hence mortality fluctuations – despite their smaller influence
on the aggregate risk as outlined before – may pose a problem for annuity providers.

5 Discussion

In the last section, we analyzed the risks within a book of annuities. One of the key findings is that
under almost all circumstances, the annuity provider will be able to meet the contractual obliga-
tions. Even under a very opportunistic asset allocation strategy, conditional on a (from the insurer’s
perspective) negative evolution of the mortality, if people tend to live extremely long, and under a
very disadvantageous evolution of the financial market, the shortfall probability, i.e. the probability
that the insurer cannot fulfill his obligations, is very low. This is mainly due to the considerable
contingency funds.

Thus, our results indicate that – under the assumptions made – this remaining difference between
actual and actuarially fair annuity price, which can be considered to describe a transaction cost, is
sufficient to sustain even very disadvantageous scenarios with a profit. But can the whole costs be
used to fulfill the insurer’s obligations if necessary? Or, are there other cash flows that need to be
included?

According to Mitchell et al. (1999) and Friedmann and Warshawsky (1990), this transaction cost
is mainly due to expenses, profit margins, and contingency funds. However, Milevsky and Young
(2007) point out that for variable-payment annuities there is an explicit mortality risk fee. They
believe that while some economists might classify any additional fee as transaction costs, this par-
ticular fee is an inseparable component of aggregate mortality risk and creates a unique impediment
to annuitization. As there must be similar fees within fixed annuities, a substantial part of the costs
assessed in the present paper will also be a mortality risk fee.

Under this assumption, however, the question arises whether this fee is adequate. And here our
simulation study suggests that it is not. In fact the transaction cost proves to be sufficient to cover the
insurer’s obligations in almost all cases, even under risky allocations where huge profits are possible
(see Table 2).

Moreover, our conditional analyses show that mortality risk is far less influential than financial
risk. However, the latter – at least for the most part – is hedgeable. The fact that the shape of
the distribution of the remaining surplus is still more influenced by the financial risk even under this
hedge, i.e. under the bond-based strategy, is also due to the high level of transaction cost: after the
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hedge portfolio is set up, the difference between actual and fair value is invested in the fund and
therefore the performance of the insurer’s asset portfolio is still highly dependent on the performance
of the financial market.

As shown by Davidoff et al. (2005), full or at least partial annuitization remains optimal in many
situations, even when annuities are not actuarially fair. Thus, our results are certainly not able to
explain the annuity puzzle. However, they may give rise to one possible solution: an increase in
the loading leads to a proportional drop in annuity payments for a given annuity premium, which,
ceteris paribus, makes the annuity less attractive as an investment opportunity from the retiree’s
perspective. This causes a shrinking annuity demand (see Mitchell et al. (1999) or Schulze and Post
(2006)), which in turn means that a decrease in the loading will lead to an increasing annuity demand.
But how could the price difference be reduced?

As pointed out by Dowd et al. (2006), insurance companies seem to have a general problem with
assessing the magnitude of the financial risk implied by their mortality exposure. However, with the
increasing number of models and contributions of how to assess and manage aggregate mortality risk,
insurers will become more familiar with this risk.17 As a consequence of this education, it is likely
that insurers will dare to offer cheaper annuities in the future.

One promising way to manage longevity risk is securitization via so-called mortality derivatives, for
example longevity bonds, which have been the subject of lively discussions in the actuarial community
in the recent past (see, e.g., Blake et al. (2006) and references therein). The basic idea of a longevity
bond is that the coupon payments depend on the proportion of survivors of a certain cohort or
population. Thus, if properly designed, these instruments could help annuity providers hedge most
of their aggregate mortality risk while the other end of the risk could be taken by the market. And
as these are investment opportunities with a rather low correlation to “regular” or traditional asset
classes, the market’s appetite could be considerable while the hedge for the insurers could be relatively
cheap.

6 Conclusion

This paper presents an analysis of the risks within a book of single premium immediate annuities.
We use historical prices of annuities from the UK and simulate the insurer’s assets and liabilities
simultaneously. For the simulation, stochastic models for assets and liabilities are needed; we decided
to use well-known and well-studied but rather simple models, and calibrate them to UK financial
and mortality data, respectively. In order to simulate the assets, we have to assume asset allocation
strategies for the annuity provider. We introduce two very simple, yet extreme strategies: in the
first strategy, the insurer does not try to hedge the liabilities and invests the entire reserve in a fund
consisting of a risky and a locally risk-free asset (bank account) at constant proportions, whereas in
the second strategy, the insurer tries to hedge liabilities as well as possible, seen from the inception
date, by buying zero-coupon bonds to cover expected payoffs in each year.

By Monte-Carlo simulation, we derive the distribution of the remaining per contract surplus for
an annuity paying one unit each year after the portfolio has run off, i.e. after all the annuitants
within the insurers portfolio have deceased. Aside from providing plots of the density functions of
the remaining surplus for the different allocation strategies and different underlying data sets, we
compute several risk measures to characterize the risk-return profile of the insurer’s position.

Our results indicate that the insurer’s position is not very risky at all. Even under the rather
opportunistic first allocation strategy, the shortfall probability, i.e. the probability that the insurer
will not be able to fulfill obligations, is 1.1h, and the expected discounted surplus is more than 36
units, i.e. more than twice the initial price of the annuity, if we calibrate the mortality model to
the general population. If we use annuitants’ mortality data, the situation changes tremendously:
With 7.6h, the shortfall probability is almost seven times as high, and the expected discounted
surplus is decreased by more than 12% to approximately 32 units. Thus, our results are in line
with earlier contributions who found pronounced selection effects within annuities.18 However, the
shortfall probability is still very low and the expected surplus rather high. Contrarily, if we consider

17For example, the last issue of The Journal of Risk and Insurance in 2006 was completely dedicated to longevity
risk.

18See, for example, Finkelstein and Poterba (2002) or Mitchell et al. (1999).
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the more conservative bond-based strategy no shortfalls occur at all. Therefore the “transaction cost”
within the annuity’s premium seems to be more than sufficient to cover the insurer’s obligations, even
under rather disadvantageous scenarios.

In order to compare the influence of the aggregate mortality risk and the financial risk within the
annuity book we present a series of conditional analyses: by restricting our simulation to (from the
insurer’s perspective) advantageous or disadvantageous mortality and financial scenarios, respectively,
we are able to assess how “bad” or “good” mortality or financial environments affect the insurer.

We find that the performance of the financial market is far more influential for the distribution
of the remaining surplus than the evolution of mortality improvements. However, at least within
the bond-based strategy, this is mainly due to the enormous safety loading as it is invested in the
rather risky fund. This is also the key reason why the distribution of the remaining surplus for
the bond-based strategy is altered considerably when switching from financially beneficial evolutions
to non-beneficial evolutions and vice versa. However, for the bond-based strategy there are still
no shortfalls for disadvantageous capital market evolutions as the “necessary part” of the interest
rate risk is hedged by the bond portfolio. While an advantageous or a disadvantageous evolution of
mortality improvements is clearly noticeable in the distribution, their respective influence is far less
pronounced. The difference in the discounted expected value of the remaining surplus for “good” and
“bad” scenarios amounts to less than one unit. Thus, a safety loading which is considerably smaller
than the “transaction cost” found in the insurance premium would be sufficient.

Under the assumption that a considerable part of this “transaction cost” represents a premium for
aggregate mortality risk, our study suggests that insurers charge too much for it. If insurers were to
charge less, i.e. if they offered annuities at a lower price, the annuity demand would be stimulated, and
this would at least partly alleviate the annuity puzzle. However, as pointed out by Brown and Orszag
(2006), this only holds “to the extent that consumer demand is responsive to pricing” – and this is
difficult to assess since no price elasticities exist for these products.

The notion that insurers charge too much could be explained by the general problem insurance
companies seem to have with assessing the magnitude of the financial risk implied by their mortality
exposure.19 However, with an increasing number of contributions from the recent past regarding
aggregate mortality risk, we believe that annuity providers will become more familiar with assessing
and managing their longevity risk, which could lead to “more fair” annuity prices. For example, one
promising way to manage longevity risk could be the introduction of so-called longevity bonds20 or
other mortality-linked securities to the market, enabling insurers to hedge most of their aggregate
mortality risk at a relatively low cost.

Even though our results are rather strong, it would not be appropriate to rely on them without
further research. In particular, with regard to the underlying models for the assets and liabilities as
well as their parameterizations, caution is required. Another critical point is the fact that we restricted
our analysis to the influence of aggregate mortality risk but ignored the influence of unsystematic
mortality risk arising due to the finite number of annuitants within an insurer’s portfolio. Also, there
are open issues regarding costs and fees within annuity products, meaning our assumption that the
“transaction cost”, i.e. the positive difference between the actual and the actuarially fair price, can
solely be interpreted as a premium for aggregate mortality risk is questionable.

Due to all these possible pitfalls, our findings and conclusions need to be interpreted carefully.
More specifically, the quantitative outcomes need to be handled with care. However, the distinctness
of our results support the hypothesis that annuities are with respect to the inherent risk. In order
to further investigate this hypothesis, there is a need for more advanced empirical studies as it could
have important implications for the annuity and other puzzles.
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