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Abstract

This paper studies the optimal stopping problem in the presence of model uncertainty
(ambiguity). We develop a method to practically solve this problem in a general setting,
allowing for general time-consistent ambiguity averse preferences and general payoff pro-
cesses driven by jump-diffusions. Our method consists of three steps. First, we construct
a suitable Doob martingale associated with the solution to the optimal stopping problem
using backward stochastic calculus. Second, we employ this martingale to construct an
approximated upper bound to the solution using duality. Third, we introduce backward-
forward simulation to obtain a genuine upper bound to the solution, which converges to
the true solution asymptotically. We analyze the asymptotic behavior and convergence
properties of our method. We illustrate the generality and applicability of our method and
the potentially significant impact of ambiguity to optimal stopping in a few examples.
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1 Introduction

The theory of optimal stopping and control has evolved into one of the most important branches
of modern probability and optimization and has a wide variety of applications in many areas,
perhaps most notably in operations management, statistics, and economics and finance. There
exists a vast literature on both theory and applications of optimal stopping and control, going
back to Wald [85] and Snell [80], and we mention here only an incomplete selection related to
the setting of this paper: Brennan and Schwartz [16], McDonald and Siegel [63], Pindyck [70],
Barone-Adesi and Whaley [3], Dixit [35], Dixit and Pindyck [36], Karatzas and Shreve [55],
Dayanik and Karatzas [31], Guo and Pham [46], Dasci and Laporte [32], Peskir and Shiryaev
[68], Øksendal and Sulem [65], Henderson and Hobson [52], and Dharma Kwon [34]. Prime
applications are a manufacturer’s market entry decision1 or ageing plant closing decision in
operations management; a real estate agent’s decision to accept a bid or search problems in
economics; and the valuation of American-style derivatives in finance.2 These applications
naturally lead to an optimal stopping problem.

Since the (future) reward (sequence) is typically uncertain in these applications, it needs
to be evaluated using probabilistic methods, and the main target in the above-mentioned
literature on standard optimal stopping is the maximization of the expected reward over a
family of stopping strategies. That is, the central object is the expectation of the reward
induced by the problem’s payoff process. Such a setting requires that the reward’s expectation
can be unambiguously determined by the decision-maker, which is the case in particular if
the reward’s probability law is given to the decision-maker. In reality, however, this is quite
a restrictive requirement: in many situations the decision-maker faces uncertainty about the
true probabilistic model, meaning that the probability law generating the future reward is
(partially) unknown.3 In these situations, different probabilistic models may be plausible,
each of them potentially leading to very different optimal stopping strategies. Such model
uncertainty is usually referred to as ambiguity. In decision theory, the more specific term of
Knightian uncertainty (after Knight [56]) is also employed, to distinguish from decision under
uncertainty problems in which the probabilistic model is objectively given — the specific case of
decision under risk. Approaches that explicitly take ambiguity into account are often referred
to as robust approaches.

In a general probabilistic setting, a robust approach that has recently gained much attention
is provided by convex measures of risk (Föllmer and Schied [39], Frittelli and Rosazza Gianin
[41], and Heath and Ku [51], extending Artzner et al. [2]; see also the early Ben-Tal [9] and
Ben-Tal and Teboulle [10]). For applications of convex risk measures in the context of decision
and optimization, see e.g., Ruszczyńsky and Shapiro [75], Lesnevski, Nelson and Staum [60],
Ben-Tal, Bertsimas and Brown [12], Choi, Ruszczyńsky and Zhao [25], Tekaya, Shapiro, Soares
and da Costa [83], and Laeven and Stadje [58, 59]. By the representation theorem of convex

1From the entrance time onwards, the firm will encounter fixed irreversible costs but will at the same time
start generating an (uncertain) reward. The goal of the management would be to maximize their present value.

2The buyer of such a derivative wants to find the optimal time to exercise the option such that the reward
be maximized.

3This is, for instance, the case if estimation is unreliable, data are scarce, or if the evaluation necessarily
relies on extrapolating past trends, but past patterns are no longer representative for their future counterpart.
Furthermore, in financial decision-making (as in the case of American-style derivatives), investors may need to
cope with markets that are inherently incomplete, meaning, in particular, that no unique probabilistic pricing
operator exists.
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risk measures, a random future reward, say H, is evaluated according to

U(H) = inf
Q∈Q
{EQ [H] + c(Q)}, (1.1)

where Q = {Q|Q ∼ P} is the set of probabilistic models Q that share the same null sets
with a base reference model P , with each Q attaching a different probability law to the future
reward H, and c is a penalty function specifying the plausibility of the model Q.4 Models Q
that have ‘low’ plausibility are associated with a high penalty, while models that have ‘high’
plausibility yield a low penalty, with c(Q) =∞ corresponding to the case in which the model
Q is considered fully implausible. By taking the infimum over Q a conservative worst-case
approach occurs, also typical in (deterministic) robust optimization.

A canonical class of penalty functions is provided by φ-divergences; see e.g., Ben-Tal and
Teboulle [10, 11]. In this case, the decision-maker starts with a reference model P , which is an
approximation or ‘an educated guess’ to the probabilistic model driving the reward H rather
than the true model. The decision-maker therefore does not solely rely on the model P but
considers instead a collection of models Q, with esteemed plausibility (or trust) decreasing
with their φ-divergence measure with respect to the approximation P . A similar approach was
adopted by Hansen and Sargent [48, 49] in macroeconomics, using the specific Kullback-Leibler
(φ-)divergence (or relative entropy; see also Csiszár [29] and Ben-Tal [9]). Another special case
of interest is given by penalty functions of the form

c(Q) =

{
0, if Q ∈M ⊂ Q;
∞, otherwise;

(1.2)

for a fixed set of probabilistic models M ⊂ Q. The subclass of penalty functions given by an
indicator function as in (1.2) yields evaluations of the form5

U(H) = inf
Q∈M

EQ [H] , (1.3)

which attaches the same plausibility to all probabilistic models in M ; see e.g., Föllmer and
Schied [40] for further details. In a dynamic setting, such as considered in this paper, time-
consistent versions of convex measures of risk were discussed by Riedel [72] and have also been
considered more recently in e.g., Ruszczyńsky and Shapiro [76], Cheridito, Delbaen and Kupper
[24], Ruszczyńsky [74], Philpott, de Matos and Finardi [69], and Laeven and Stadje [59]; see
also Duffie and Epstein [37], Chen and Epstein [21], Shapiro, Dentcheva and Ruszczyński [79],
Chapter 6, and Glasserman and Xu [45]. The usual definition of time-consistency requires
that whenever, in each state of nature at time t, a reward H2 is preferred over H1, it is also
preferred prior to time t. In our context, this implies in particular that a stopping strategy
that is optimal at time t = 0 will not be reversed at a later point in time. For dynamic versions
of evaluations of the form (1.1), time-consistency is equivalent to a dynamic programming
principle (recursiveness).

Decision-making under ambiguity, with probabilities of events unknown to the decision-
maker, has been extensively studied in economics since the seminal work of Ellsberg [38]. It has
been noted that incorporating ambiguity may not only be of theoretical and normative interest,

4In the literature, a convex risk measure is usually defined as−U(H) leading however to the same optimization
problem.

5In this case, U corresponds to a coherent risk measure given by −U(H).
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but can also play a potential role in explaining empirically important failures of a purely
risk-based framework (Chen and Epstein [21]). Popular approaches to decision-making under
ambiguity are provided by the multiple priors preferences of Gilboa and Schmeidler [43] (see also
Schmeidler [77]), also referred to as maxmin expected utility, and the significant generalization
of variational preferences developed by Maccheroni, Marinacci and Rustichini [62]. With linear
utility, multiple priors essentially reduces to the evaluation (1.3) while variational preferences
reduces to (1.1). Such preferences induce aversion to ambiguity (Cerreia-Vioglio et al. [20]). A
version of multiple priors was also studied by Huber [53] in robust statistics; see also the early
Wald [85].

The theory of convex measures of risk and ambiguity averse preferences is well-established
and their use in optimal stopping problems has recently been developing; see, in particular,
Riedel [71], Krätschmer and Schoenmakers [57], Bayraktar, Karatzas and Yao [4], Bayraktar
and Yao [5], Cheng and Riedel [23] and Øksendal, Sulem and Zhang [66]. However, the de-
velopment of numerical methods to practically solve robust optimal stopping problems may
currently be considered breaking ground.

In this paper, we develop a method to practically solve the optimal stopping problem un-
der ambiguity in a general continuous-time setting, allowing for general time-consistent convex
measures of risk, i.e., all time-consistent dynamic counterparts of (1.1), and general (sequences
of) rewards. As to the payoff process, we allow for a general jump-diffusion model specification.
The key to our method is to expand two duality theories of a different kind. The first kind
of duality theory is the martingale duality approach to standard optimal stopping problems,
dating back to Rogers [73], Haugh and Kogan [50] and Andersen and Broadie [1] (see also
Davis and Karatzas [30]). We expand their martingale dual representation to encompass gen-
eral preference functionals beyond plain conditional expectation. The second kind of duality
theory explicates the connection between time-consistent convex measures of risk and backward
stochastic differential equations (BSDEs), which we expand to apply to our setting. We note
that powerful numerical tools are nowadays available for BSDEs.

Our method is then composed of three steps. First, expanding duality theory of the second
kind and using backward stochastic calculus, we construct a suitable Doob martingale from
the Snell envelope generated by the optimally stopped and robustly evaluated payoff process.
Second, expanding duality theory of the first kind, we employ this martingale to construct
an approximated upper bound to the solution of the optimal stopping problem. Third, we
introduce the notion of backward-forward simulation to obtain a genuine upper bound to the
solution. We analyze the asymptotic behavior of our method by deriving its convergence prop-
erties. To the best of our knowledge, we are not aware of other practical solution methods
for robust optimal stopping problems in the literature so far. Finally, to illustrate the gener-
ality of our approach and the relevance of ambiguity to optimal stopping, we supplement the
presentation of our method with a few examples of robust optimal stopping problems, includ-
ing Kullback-Leibler divergences, worst case scenarios, and good-deal bounds. Our numerical
results illustrate that our algorithm is easily implemented for a wide range of robust optimal
stopping problems and has good convergence properties, yielding accurate results in realistic
settings at the pre-limiting level. They also reveal that ambiguity can have a significant impact
on the robust reward evaluations under standard specifications. Thus, ambiguity really matters
for optimal stopping.

The development of methods to practically compute the solution to a standard optimal
stopping problem (with plain conditional expectations) has a long history, in particular in the
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American-style option literature. Seminal contributions based on regression include Carriere
[19] and Longstaff and Schwartz [61]; see also Tsitsiklis and Van Roy [84] and Clément, Lam-
berton and Protter [26]. These methods, which are connected to the stochastic mesh method
of Broadie and Glasserman [17] (see Glasserman [44]), can be used to generate lower bounds
to the optimal solution and are part of the literature that is referred to as primal. The de-
velopment of practical dual methods started with Andersen and Broadie [1] who exploited
the dual representation obtained by Rogers [73] and Haugh and Kogan [50]. Many follow-up
papers have further refined their method; see e.g., Belomestny, Bender and Schoenmakers [6]
and Schoenmakers, Zhang and Huang [78] and their references. Employing duality (of the first
kind), our method may, in some sense, be viewed as the analogous contribution for robust op-
timal stopping problems of the original contribution by Andersen and Broadie [1] for standard
optimal stopping problems. But we note that we are not even aware of any primal method to
practically solve robust optimal stopping problems in the literature to date. Furthermore, we
note that we allow for a more general reward specification.

An interesting aspect of our method, which may be of interest as a contribution to the BSDE
literature in its own right, is the introduction of backward-forward Monte Carlo simulation to
obtain a genuine (biased high) upper bound, which will converge to the true solution as the
number of Monte Carlo simulations and basis functions increases and the mesh ration of the
time-grid tends to zero. Bender, Schweizer, and Zhuo [7] derive upper and lower bounds on
the solution to a discrete-time (reflected) BS∆E, rather than a continuous-time BSDE as we
consider, using techniques different from ours.

The remainder of this paper is organized as follows. In Section 2, we introduce our setting,
specify the robust optimal stopping problem, recall some basic properties of time-consistent
ambiguity averse preferences, and provide some illustrative examples. In Section 3, we present
the duality results (of the first and second kind) underpinning our approach, and revisit our
examples using duality. In Section 4, we provide a general outline of our algorithm and a
preview of our convergence results. Section 5 contains the numerical examples. A detailed
step-wise description of our algorithm and its convergence properties are presented in Section 6.
Details of our proofs are deferred to the Appendix.

2 Problem Description

2.1 Setting, Rewards and Preferences

Consider a decision-maker (economic agent or firm) who has to decide at what time to stop
(or exercise) a certain action in order to maximize his future uncertain (sequence of) rewards.
For the dynamics of the rewards, we assume a continuous-time jump-diffusion setting with
ambiguity. Formally, we consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) and assume
that the probability space is equipped with two independent processes, which will serve as our
stochastic drivers:

(i) A standard d-dimensional Brownian motion W = (W 1, . . . ,W d)ᵀ.

(ii) A standard k-dimensional Poisson process N = (N1, . . . , Nk)ᵀ with intensities λP =
(λ1
P , . . . , λ

k
P )ᵀ.

Standard in this case means that the components are assumed to be independent, and, in the
case of W , to have zero mean and unit variance. We denote the vector of compensated Poisson
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processes by Ñ = (Ñ1, . . . , Ñk)ᵀ, where

Ñ i
t = N i

t − λiP t, i = 1, . . . , k.

We assume that these stochastic drivers generate an n-dimensional adapted Markov process
(Xt)t∈[0,T ] satisfying the strong Markov property. The process X is exogenous and may repre-
sent a production process, a capacity process, a stream of net cash flows, or a price process of
e.g., a collection of risky assets.

The decision-maker chooses a stopping time τ taking values between time 0 and a fixed
maturity time T < ∞. We assume that if the decision-maker exercises at time τ = ti, he
receives the reward

Hti = Π(ti, Xti) +
L∑
j=i

h(tj , Xtj ), ti ∈ {t0 = 0, t1, . . . , tL = T}, (2.1)

for functions Π and h mapping from {t0 = 0, t1, . . . , tL = T} × Rn to R. Furthermore, we
assume that h(tj , Xtj ) ∈ L2 for all j = 0, . . . , L. Standard examples that take the form (2.1)
include:

(a) The optimal entrance problem: In this case, typically Π(t, x) = − exp (−ρt)κ, for a fixed
irreversible cost κ depreciating at a continuous rate ρ, and h(t, x) = exp (−ρt) (h(x)− ξ),
which measures the present value of the payoff or the production per time unit, h(x),
after entering the market, minus the running costs, ξ. Often times h(x) is simply taken
to be equal to x. Of course, the fixed costs may also depend on the state of the economy
at time t, Xt.

(b) The optimal (simple) reward problem: In this case, h ≡ 0 and Π(t, x) is the (simple)
reward function of exercising at time t. This problem appears abundantly in the American
option pricing literature, with Xt a vector of risky asset values at time t.

For further details on these and other examples, see the references provided in the Introduction.
In standard optimal stopping problems, the decision-maker maximizes the expected reward

under a given probabilistic model P :

max
τ∈T

E [Hτ ] ,

where T = {t0 = 0 < t1 < . . . < tL = T} is the set of possible exercise dates. Specifying
the model P in our setting means specifying the distribution of the whole path (Xt)t∈[0,T ]. In
reality, however, the probabilities with which future rewards are received are often times subject
to model uncertainty. Therefore, it is appealing to consider instead a robust decision criterion,
which induces that the optimal stopping strategy accounts for a whole class of probabilistic
models and not just a single one. Different approaches to decision-making under ambiguity
have emerged in the literature. Among the most popular approaches are multiple priors (Gilboa
and Schmeidler [43]) and variational preferences (Maccheroni, Marinacci and Rustichini [62]).
With linear utility, these decision criteria correspond to coherent (Artzner et al. [2]) and convex
measures of risk (Föllmer and Schied [39]). Henceforth, we postulate that the decision-maker
adopts a convex measure of risk and evaluates his future reward according to

U(Hτ ) = inf
Q∈Q
{EQ[Hτ ] + c(Q)}, (2.2)

6



with Q = {Q|Q ∼ P} and c : Q → R ∪ {∞}. (We call Q equivalent to P and write Q ∼ P if
events that have probability zero under P still have probability zero under Q and vice versa.)
For our purposes, we have to consider the dynamic version of (2.2), given by

Ut(Hτ ) = inf
Q∈Q
{EQ[Hτ |Ft] + ct(Q)}, (2.3)

in which ct(Q) reflects the esteemed plausibility of the model Q given the information up to time
t. In (2.3), and in the rest of this paper, we define for notational convenience sup := ess.sup
and inf := ess.inf. The optimal stopping problem at time ti is then given by

V ∗ti = sup
τ∈Ti

Uti(Hτ ) = sup
τ∈Ti

inf
Q∈M
{EQ[Hτ |Fti ] + cti(Q)}, (2.4)

with Ti := {τ ≥ ti|τ ∈ T }.

2.2 Time-Consistency, Dynamic Programming and Assumptions

We now consider the question of which class of plausibility indices (penalty functions) to
employ in (2.3)–(2.4). To this end, we first recall the notion of time-consistency in dynamic
choice problems under uncertainty. We say that a dynamic evaluation (Ut(H))t∈[0,T ] is time-
consistent if

Ut(H2) ≥ Ut(H1) ⇒ Us(H2) ≥ Us(H1), t ≥ s.

This means that if, in each state of nature at time t, the reward H2 is preferred over the
reward H1, then H2 should also have been preferred over H1 prior to time t. It turns out
that requiring time-consistency of U is equivalent to requiring that U satisfies a dynamic
programming principle, which, in turn, is equivalent in our setting to the penalty function
associated with U taking a certain form, specified later.

Next, we explain what a change of measure from P to Q implies in our setting. If Q ∼ P ,

we denote by Dt the Radon-Nikodym derivative Dt = E
[
dQ
dP |Ft

]
. In our jump-diffusion setting

it is known that, for every model Q ∼ P , there exist a predictable, Rd-valued, stochastic drift q
and a positive, predictable, Rk-valued process λ such that the Radon-Nikodym derivative can
be written as

Dt = exp

{∫ t

0
qsdWs +

∫ t

0
log

(
λs
λP

)
dNs −

∫ t

0

(
|qs|2

2
+ λs − λP

)
ds

}
, t ∈ [0, T ], (2.5)

with λs
λP

:= ( λ
1
s

λ1
P
, . . . , λ

k
s

λkP
)ᵀ. In particular, Q is uniquely characterized by q and λ. The stochastic

exponential on the right-hand side of (2.5) is also referred to as the Doléans-Dade exponential.
By Girsanov’s theorem, under Q, WQ

t := Wt −
∫ t

0 qsds is a Brownian motion and the process

Ñt has jumps with intensity λt. The probabilistic model P occurs when q = 0 and λ = λP .
We then state the form of a penalty function induced by requiring a dynamic evaluation to

be time-consistent (or, equivalently, by requiring recursiveness or Bellman’s dynamic program-
ming principle). The result is due to Tang and Wei [82], who generalized a result of Delbaen,
Peng and Rosazza Gianin [33] obtained in a Brownian setting to a setting with jumps.

Lemma 1 (Tang and Wei [82]) Let Ut(H) = inf{Q∼P on Ft}{EQ[H|Ft] + ct(Q)} for t ∈
[0, T ]. The following statements are equivalent:
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(i) U is time-consistent on square-integrable rewards.

(ii) U is recursive (i.e., satisfies Bellman’s principle): for every t ∈ [0, T ], A ∈ Ft and
square-integrable H,

U0(Ut(H)IA) = U0(HIA).

(iii) There exists a function

r : [0, T ] × Ω × Rd × (−λ1
P ,∞)× . . .× (−λkP ,∞) → R ∪ {∞}

(t, ω, q, v) 7−→ r(t, ω, q, v),

which is convex and lower semi-continuous in (q, v), such that

ct(Q) = EQ

[∫ T

t
r(s, qs, λs − λP )ds

∣∣∣Ft] , t ∈ [0, T ]. (2.6)

Remark 2 In the case of a coherent risk measure, (2.6) corresponds to the existence of a
convex, closed, set-valued predictable mapping, say C, taking values in Rd× (−λ1

P ,∞)× . . .×
(−λkP ,∞) such that r(s, q, v) = ICs(q, v).

Violation of time-consistency would lead to situations in which the decision-maker takes deci-
sions that he knows he will regret in every future state of nature. We rule out such situations.
Because in our continuous-time setting time-consistency is equivalent to a penalty function of
the form (2.6), we henceforth assume:

(G1) (ct(Q))t∈[0,T ] is of the form

ct(Q) = EQ

[∫ T

t
r(s, qs, λs − λP )ds

∣∣∣Ft] , (2.7)

for a function r : [0, T ]×Rd×(−λ1
P ,∞)× . . .×(−λkP ,∞)→ R+

0 ∪{∞} mapping (t, q, v) 7→
r(t, q, v) that is lower semi-continuous and convex in (q, v) with r(t, 0, 0) = 0.

Remark 3 We note that for numerical tractability of the optimal stopping problem, we have
postulated in (G1) that r does not depend on ω.

Remark 4 Since by (G1) in particular ct ≥ 0 and ct(P ) = 0, we have Ut(H) = H if H is
Ft-measurable. That is, if a reward is known, then there is no uncertainty, and therefore the
evaluation returns the reward itself.

We note that q may be viewed as an additional drift in the Brownian motion that the reference
model P fails to detect, while λs−λP is the deviation of the new jump intensity λs under Q from
the intensity λP under P . Since r is non-negative and r(s, 0, 0) = 0, r is minimal in (0, 0) with
q = 0 and λ = λP . These values of q and λ render the probabilistic model P itself. Therefore,
the reference model P is associated with the highest plausibility. (Note that, if we would not
make the assumption that r(s, 0, 0) = 0, we could redefine the reference model P to correspond
to a (q, λ) for which the minimum is attained.) The fact that (q, λ − λP ) 7→ r(t, q, λ − λP ) is
convex in (q, λ−λP ) (with minimum assumed to be in (0, 0)) explicates that penalty functions
giving rise to time-consistent evaluations in our setting may be interpreted as penalty functions
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for which the divergence penalty function r is directly applied to the additional stochastic drift
q affecting the Brownian motion and the deviation of the jump intensity λ− λP , instead of to
the composition of q and λ− λP appearing in the Radon-Nikodym derivative process (2.5).

We now illustrate the generality of (2.4) and (G1) with some examples of penalty functions
satisfying our conditions:

Examples 5 (1) Kullback-Leibler divergence: A prototypical example of the penalty func-
tion in (2.4) is the Kullback-Leibler (φ-)divergence given by

ct(Q) = αKLt(Q|P ), α > 0, with KLt(Q|P ) =

 EQ

[
log
(dQ
dP

)∣∣∣Ft] , if Q ∈ Q;

∞, otherwise;

see Csiszár [29], Ben-Tal [9] and Ben-Tal and Teboulle [10, 11]. The Kullback-Leibler
divergence is also referred to as the relative entropy and measures the distance between
the probabilistic models Q and P ; it is used e.g., by Hansen and Sargent [48, 49] to
generate model robustness in macroeconomics. The parameter α measures the degree
of trust the decision-maker assigns to the reference model P . The limiting case α ↑ ∞
(α ↓ 0) induces a maximal degree of trust (distrust). One may verify (see, for example,
Proposition 9.10 in [28]) that in our continuous-time setting, for every Q satisfying c(Q) <
∞, αKLt(Q|P ) is of the form (2.7), where r(s, q, v) = α

2 |q|
2 +α(λP +v)ᵀ log(1+ v

λP
)−1ᵀv

with 1 = (1, . . . , 1)ᵀ, where q and λ correspond to the model Q characterized through
(2.5), and where the logarithm should be taken componentwise.

(2) Worst case with discrete scenarios: The decision-maker considers a family of finitely many
values q1,s, . . . , qL,s and λ1,s, . . . , λL,s for the future drift, qs, and jump intensity, λs, that
characterize the model Q through (2.5), with s > t. Ex ante these L ‘scenarios’ are
equally plausible and the decision-maker adopts a worst case approach. Consider

M =
{
Q ∈ Q

∣∣∣ for Lebesgue-a.s. all s : (qs, λs) ∈ {(qi,s, λj,s)| i, j ∈ {1, . . . , L}}
}
.

This corresponds to a penalty function of the form (2.7), with

r(s, q, λ− λP ) =

{
0, if (q, λ) ∈ conv

(
{(qi,s, λj,s)|i, j ∈ {1, . . . , L}}

)
;

∞, otherwise;

where conv(·) is given by its convex hull. (By redefining the reference model, one may

ensure (without loss of generality) that 0 ∈ conv
(
{(qi,s, λj,s)|i, j ∈ {1, . . . , L}}

)
.)

(3) Worst case with ball scenarios: The decision-maker considers alternative and equally
plausible probabilistic models Q in a small ball around the reference model P and adopts
a worst case approach:

M =
{
Q ∈ Q

∣∣∣|qt| ≤ δ1, |λt| ≤ δ2, for Lebesgue-a.s. all t
}
,

for δ1, δ2 > 0. This corresponds to a penalty function of the form (2.7), with

r(s, q, λ− λP ) =

{
0, if |q| ≤ δ1, |λ− λP | ≤ δ2;
∞, otherwise.
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For our next examples we will assume that the n-dimensional Markovian process (Xt)t∈[0,T ] is
either a geometric Brownian motion with jumps and drift, or a Brownian-Poisson process with
drift. In the first case,

dXi
t

Xi
t

= µidt+ σidWt + J idÑt, i = 1, . . . , n, (2.8)

while in the second case

dXi
t = µidt+ σidWt + J idÑt, i = 1, . . . , n, (2.9)

for µi ∈ R, σi ∈ R1×d, and J i ∈ (−1,∞)1×k (former) or J i ∈ R1×k (latter). We set
µ = (µ1, . . . , µn)ᵀ ∈ Rn, σ = (σ1, . . . , σn)ᵀ ∈ Rn×d and J = (J1, . . . , Jn)ᵀ ∈ (−1,∞)n×k

(former) or J = (J1, . . . , Jn)ᵀ ∈ Rn×k (latter). In optimal entrance/exit decision problems,
such as those provided in the Introduction, X often times satisfies either (2.8) or (2.9) (with or
without jumps). In finance, µi is commonly referred to as the excess return and represents the
compensation for bearing the risky asset i. Now let us continue with some examples of penalty
functions that induce time-consistent evaluations, i.e., satisfy (G1), and may be considered in
the general problem (2.4), assuming dynamics as in (2.8) or (2.9).

Examples 5 (Continued; with (2.8) or (2.9) valid)

(4) Worst case with mean (partially) known: The decision-maker is certain that the (instan-
taneous or logarithmic instantaneous) mean return µQ lies between a known lower and
upper bound, (µ−) and (µ+), respectively. As a special case, (µ−) and (µ+) coincide
(mean fully known). By Girsanov’s theorem, under Q,

µQt = µ+ σqt + J(λt − λP ).

The resulting models are considered equally plausible and the decision-maker adopts a
worst case approach:

M =
{
Q ∈ Q|µ− ≤ µQt ≤ µ+, for Lebesgue-a.s. all t}

=

{
Q ∈ Q|µ− − µ ≤ σqt + J(λt − λP ) ≤ µ+ − µ, for Lebesgue-a.s. all t

}
.

We assume B− ≤ q ≤ B+ for certain vectors B+, B− ∈ Rn and d− ≤ λ − λP ≤ d+ for
vectors d+, d− > −λP , to ensure well-posedness. This corresponds to a penalty function
of the form (2.7) with

r(s, q, λ− λP ) =

{
0, if µ− − µ ≤ σq + J(λ− λP ) ≤ µ+ − µ;
∞, otherwise.

(5) Pricing with Good-Deal Bounds: A fundamental approach to price financial derivatives
that are liquidly traded on the financial market is by replicating the derivatives using other
(base) assets and applying no-arbitrage arguments. However, if the financial market is
incomplete, a full-blown replication is infeasible, and no-arbitrage arguments only yield
price bounds. In general, these price bounds are typically too wide to be practically useful.
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One approach to narrowing these bounds is provided by the good-deal pricing approach
introduced by Cochrane and Saá-Requejo [27]. Under this approach, only pricing kernels
that are sufficiently ‘close’ to the physical measure are considered. Here, ‘close’ means
that only pricing kernels with a variance below a certain bound are considered. By duality
results derived in a celebrated paper by Hansen and Jagannathan [47], this corresponds to
ruling out portfolios with a too high Sharpe ratio. The intuition is that portfolios with a
very high Sharpe ratio, although strictly speaking not providing arbitrage opportunities,
are ‘too good to be true’ and will be eliminated in a competitive market. In a continuous-
time setting, such as ours, the bound for the variance of the pricing kernel is equal to
the highest (local) Sharpe ratio in the market, say Λ. In this case, the good-deal bound
evaluation Ut(Hτ ) is given by

Ut(Hτ ) = inf
(q,λ)∈C

EQ [Hτ ] ,

with C = (Ct)t∈[0,T ] given by (see Björk and Slinko [14])

Ct =
{

(q, λ− λP ) ∈Rd × (−λ1
P ,∞)× . . .× (−λkP ,∞)

∣∣∣µ+ σq + J(λ− λP ) = 0

and |q|2 +
k∑
i=1

(λi − λiP )2

λiP
≤ Λ

}
.

This corresponds to a penalty function of the form (2.7) with

r(s, q, λ− λP ) =

{
0, if (q, λ) ∈ C;
∞, otherwise.

For numerical tractability in what follows, we need the following additional assumption:

(G2) We can simulate i.i.d. copies of (Xt)t∈[0,T ].

Assumption (G2) is satisfied in particular if X follows a linear SDE, which holds e.g., in the
case of a Brownian motion with drift, a Poisson process with drift, an Ornstein-Uhlenbeck
process, or a geometric Brownian motion with drift (with or without Poisson type jumps). But
note there are by now also very general results available on exact sampling of more general
diffusions and jump-diffusions; see, e.g., Beskos and Roberts [13], Broadie and Kaya [18], Chen
and Huang [22], or Giesecke and Smelov [42].

In principle, we would only need assumptions (G1)–(G2). However, if the sublevel sets
of the penalty function are non-compact (meaning that models that are ‘far away’ from the
reference model may still yield high plausibility), then the associated optimal stopping problem
(2.4) would be ill-posed. To verify, consider, for example, the case that c = 0 so that U0(Hτ ) =
infωHτ(ω)(ω), which leads to a degenerate (and non-semimartingale) evaluation. Therefore,
we will assume additionally to (G1)–(G2) that:

(G3) The domain of r is included in a compact set: for every s,{
(q, λ) ∈ Rd × (−λ1

P ,∞)× . . .× (−λkP ,∞)

∣∣∣∣ r(s, q, λ− λP ) <∞
}
⊂ Cs,

for a compact set C = (Cs)s∈[0,T ] ⊂ [0, T ]× Rd × (−λ1
P ,∞)× . . .× (−λkP ,∞).

11



Loosely speaking, condition (G3) states that, if the additional drift q or jump intensity λ− λP
that the model Q adds to the Brownian motion or the Poisson process when compared to P
is ‘too large’, then the model Q should not be considered. Condition (G3) may be generalized
substantially. In fact, it would be sufficient for our purposes to impose a condition on the
penalty function that guarantees that the sublevel sets are (weakly) compact. However, in
order to keep the exposition simple, we will impose the somewhat stronger condition (G3).

3 Duality Theory

3.1 Duality Theory of the First Kind

Reconsider the optimal stopping problem (2.4). We show in the Appendix that there exists an
optimal stopping family

(
τ∗ti
)
ti∈{t0=0,t1,...,tL=T} satisfying

V ∗ti = sup
τ∈Ti

Uti(Hτ ) = Uti(Hτ∗ti
), ti ∈ {0, . . . , T}. (3.1)

Furthermore, we show that Bellman’s principle

V ∗ti = max
(

Π(ti, Xti) + Uhti , Uti(V
∗
ti+1

)
)
, ti ∈ {0, . . . , tL−1}, (3.2)

holds, with Uhti defined as

Uhti : = Uti

 L∑
j=i

h(tj , Xtj )


= inf

Q∈Q

EQ

 L∑
j=i

h(tj , Xtj ) +

∫ T

ti

r(s, qs, λs − λP )ds|Fti

 ; (3.3)

see the Appendix for technical details. Recall that in the absence of model uncertainty, Uti(H)
reduces simply to an ordinary conditional expectation (corresponding to the case in which
cti(Q) =∞ for Q 6= P and cti(P ) = 0 in (2.3)).

To compute the solution V ∗ — referred to as the (generalized) Snell envelope — to the
optimal stopping problem (2.4), we will rely on the Doob decomposition of V ∗ into a martingale
and a predictable process. However, to do so, we first need to generalize the notion of a
(standard) martingale (with respect to an ordinary conditional expectation) to martingales
with respect to classes of functionals: We will say that M is a U -martingale if Ms = Us(Mt),
s, t ∈ {t0 = 0, t1, . . . , tL = T} and s ≤ t. By time-consistency, this is equivalent to Ms =
Us(MT ) for any s. The class of U -martingales M with M0 = 0 is denoted by MU

0 . Define, for
i = 0, . . . , L,

A∗gti :=

i∑
j=1

(Utj−1(V ∗tj )− V
∗
tj−1

), M∗gti :=
i∑

j=1

(V ∗tj − Utj−1(V ∗tj )). (3.4)

One may verify that M∗g is a U -martingale, A∗g is non-decreasing and predictable, M∗g0 =
A∗g0 = 0, and that

V ∗ti = V ∗0 +M∗gti +A∗gti , i = 0, . . . , L, (3.5)
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provides a U -Doob decomposition of V ∗ =
(
V ∗ti
)
ti∈{t0=0,...,T}.

To construct genuine upper bounds to the optimal solution to the stopping problem (2.4),
which will converge asymptotically to the true value, our method will exploit an additive
dual representation of the optimal stopping problem (2.4), by expanding the well-known dual
representation for the standard setting, in which U is just the ordinary conditional expectation
(Rogers [73] and Haugh and Kogan [50]). This generalized additive dual representation, the
proof of which uses results obtained by Krätschmer and Schoenmakers [57] in a discrete-time
setting with h = 0, reads as follows:

Proposition 6 Let M∗g ∈ MU
0 be the (unique) U -martingale in the U -Doob decomposition

(3.5). Then the optimal stopping problem (2.4) has a dual representation

V ∗ti = inf
M∈MU

0

Uti

(
max

tj∈{ti,...,T}

(
Π(tj , Xtj ) + Uhtj +MT −Mtj

))
= Uti

(
max

tj∈{ti,...,T}

(
Π(tj , Xtj ) + Uhtj +M∗gT −M

∗g
tj

))
, ti ∈ {t0 = 0, ..., T}. (3.6)

Remark 7 In the absence of model uncertainty, so that U is a regular conditional expectation,
MU

0 =M0 is the class of martingales in the usual sense. In this case, interestingly, also

V ∗ti = inf
M∈M0

Uti

(
max

tj∈{ti,...,T}

(
Π(tj , Xtj ) + Uhtj +Mti −Mtj

))
, ti ∈ {t0 = 0, ..., T}, (3.7)

is true. So, for regular conditional expectations, in fact two dual representations hold, namely
(3.6) and (3.7). However, (3.7) breaks down in general if U is not a conditional expectation,
and only (3.6) is preserved.

3.2 Duality Theory of the Second Kind

Next, we describe the second kind of duality theory on which our method is based. For t ∈ [0, T ],
z ∈ R1×d and z̃ ∈ R1×k, given a function r specifying the penalty function c through (2.7), we
define a function g by Fenchel’s duality as follows:

g(t, z, z̃) := inf
(q,λ−λP )∈Ct

{zq + z̃(λ− λP ) + r(t, q, λ− λP )}, (3.8)

with Ct induced by assumption (G3). Note that by assumption (G3), g thus defined is Lipschitz
continuous. Note furthermore that (G3) is satisfied in all our Examples 5 above, except for
the Kullback-Leibler divergence. In this case, however, we will restrict our analysis to terminal
conditions that are Lipschitz continuous in the Brownian motion and the Poisson process, so
that the domains of z and z̃ are bounded, and g may be considered to be Lipschitz continuous
as well. Furthermore, suppose that, for every exercise date tj , j = 0, . . . , L, we have a fine time
grid πj = {sj0 = tj < sj1 < . . . < sjP = tj+1}. Denote the corresponding overall time grid by
π = {s00, s01, . . . , sLP }. The following theorem provides a way to practically compute M∗g in
(3.4) by connecting it to specific semi-martingale dynamics that can be dealt with numerically
efficiently.

Theorem 8 (a) There exists a unique square integrable predictable (Zh, Z̃h) such that

dUht = −g(t, Zht , Z̃
h
t )dt+ Zht dWt + Z̃ht dÑt, for t ∈ (tj , tj+1], (3.9)
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and Uhtj = Uhtj+ + h(tj , Xtj ), for each j ∈ {0, . . . , L − 1}. Furthermore, there exists a

unique square-integrable predictable (Z∗, Z̃∗) such that

dUt(V
∗
tj+1

) = −g(t, Z∗t , Z̃
∗
t )dt+Z∗t dWt+Z̃

∗
t dÑt, for t ∈ [tj , tj+1], j ∈ {0, ..., L−1}. (3.10)

(b) For t ∈ [0, T ], (Z∗, Z̃∗) from part (a) satisfy

M∗gt = Ut(M
∗g
T ) = −

∫ t

0
g(s, Z∗s , Z̃

∗
s )ds+

∫ t

0
Z∗s dWs +

∫ t

0
Z̃∗s dÑs. (3.11)

Remark 9 Note that by Remark 4 and (3.3), we have terminal conditions UhT = h(T,XT ) and
Utj+1(V ∗tj+1

) = V ∗tj+1
, for j = 0, . . . , L− 1, in (3.9) and (3.10). Hence, given Uhtj+1

and V ∗tj+1
, we

may compute Uhtj and Utj (V
∗
tj+1

) through the relationships given in Theorem 8(a); V ∗tj can then
be obtained by Bellman’s principle (3.2).

Remark 10 As Utj+1(V ∗tj+1
) = V ∗tj+1

, we can write, by Theorem 8(a), for t ∈ [tj , tj+1],

Ut(V
∗
tj+1

) = V ∗tj+1
+

∫ tj+1

t
g(s, Z∗s , Z̃

∗
s )ds−

∫ tj+1

t
Z∗sdWs −

∫ tj+1

t
Z̃∗sdÑs. (3.12)

Similarly, it follows that, for t ∈ (tj , tj+1],

Uht = Uhtj+1
+

∫ tj+1

t
g(s, Zhs , Z̃

h
s )ds−

∫ tj+1

t
Zhs dWs −

∫ tj+1

t
Z̃hs dÑs. (3.13)

Remark 11 Note that if g ≡ 0 would hold in (3.10), then the increments of the evaluation U
were increments of a (standard) martingale. In that case, Ut(H) would simply be a (standard)
martingale, and, because UT (H) = H, correspond to the (regular) conditional expectation
Ut(H) = E [H|Ft]. However, our decision-maker is ambiguity averse and considers alternative
probabilistic models with potentially different degrees of esteemed plausibility. This leads to
g ≤ 0, which by (3.12)–(3.13) decreases the evaluation. Note furthermore that the couple Z∗

and Z̃∗ may be viewed as a measurement of the degree of ‘variability’ underlying the evaluation
— in the same way as the volatility in standard asset pricing models in finance — due to the
Brownian motion and the jump component, respectively: The larger |Z∗| (|Z̃∗|), the more
variability comes from the local Gaussian part (the jump component) of the model. Because
g(t, ·) ≤ 0 is concave in (z, z̃), with maximum in (0, 0), greater variability will lead to a larger
‘penalty’ term.

Equations (3.9)–(3.10) are also referred to as backward stochastic differential equations (BS-
DEs)6 and their solution is often referred to as a (conditional) g-expectation. A g-expectation
inherits many properties from a regular (conditional) expectation, such as monotonicity, trans-
lation invariance, and the tower property, but not linearity; for further details, see, for instance,
the survey of Peng [67].

6Formally, given a terminal payoff H ∈ L2 and a function g : [0, T ] × Rd × Rk → R, the solution to the
corresponding BSDE is a triple of square-integrable and suitably measurable processes (Y,Z, Z̃) satisfying

dYt = −g(t, Zt, Z̃t)dt + ZtdWt + Z̃tdÑt, and YT = H.
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To conclude the exposition of the duality theory of the second kind, let us, for illustration
purposes, employ the penalty functions of Examples 5 and compute the corresponding g’s using
(3.8). These g functions will later be used in numerical illustrations.

Examples 12 (1) Kullback-Leibler divergence:

g(t, z, z̃) = −|z|
2

2α
− α

k∑
i=1

λi
(
e−z̃

i/α +
z̃i

α
− 1

)
.

(2) Worst case with discrete scenarios:

g(t, z, z̃) = min
i=1,...,L

zqi,t + min
j=1,...,L

z̃(λj,t − λP ).

(3) Worst case with ball scenarios: Suppose without loss of generality that |λP | ≥ δ2. Then,

g(t, z, z̃) = −δ1|z| − δ2|z̃|.

(4) Worst case with mean (partially) known and (2.8) or (2.9): From (3.8),

g(t, z, z̃) = inf
(q,λ−λP )∈Ct

{zq + z̃(λ− λP )}, (3.14)

with

Ct =
{

(q, λ− λP ) ∈ Rd × Rk
∣∣∣µ− − µ ≤ σq + J(λ− λP ) ≤ µ+ − µ,

B− ≤ q ≤ B+, d− ≤ λ− λP ≤ d+
}
.

In general, g cannot be simplified further, although it can in specific cases, such as
(µ−) = (µ+) (mean fully known). However, in view of (3.14), for fixed (t, z, z̃), g can be
obtained as the solution to a linear programming problem.

(5) Good-Deal Bounds and (2.8) or (2.9): Let b = −µ and let A = (σ, J) be a matrix mapping
from Rd×Rk to Rn. Define 〈(z, z̃), (q, λ−λP )〉 := qz+ z̃(λ−λP ). Furthermore, for q ∈ Rd

and v ∈ Rk, define |〈q, v〉|∗ :=

√
|q|2 +

∣∣∣ vλP ∣∣∣2, where the division is defined componentwise

and | · | denotes the Euclidean norm. Then,

g(t, z, z̃) = inf
(q,λ−λP )∈C

〈(z, z̃), (q, λ− λP )〉,

with C given by

C =
{

(q, λ− λP )|A(q, λ− λP )ᵀ = b and |〈q, λ− λP 〉|∗ ≤
√

Λ
}
.

(Note that the case of no-arbitrage pricing corresponds to Λ = ∞.) If the set C is non-
empty, this optimization problem has an explicit solution: Let PW (0) be the projection of
0 onto the set W := {x|Ax = b} in the | · |∗ norm. Using Lagrangian duality techniques,
it is not hard to verify that

g(t, z, z̃) = −
(√

Λ− |PW (0)|∗
)√√√√|z|2 +

∣∣∣ k∑
i=1

z̃iλiP

∣∣∣2 + 〈(z, z̃), PW (0)〉.

This concludes our examples.
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4 The Algorithm: General Outline

Our method is composed of three steps. Theorem 8 (‘duality theory of the second kind’) jointly
with Bellman’s principle (3.2) will serve as a first stepping stone for our approach, by providing
a practical way to find U -martingales, to be employed in the dual representation (3.6), which is
our second stepping stone (‘duality theory of the first kind’). In particular, Theorem 8(a) yields
that, to construct the U -martingale M∗g in the U -Doob decomposition (3.5) of the (generalized)
Snell envelope V ∗ solving our optimal stopping problem, we only have to find (Z∗, Z̃∗) for every
(V ∗s )tj<s≤tj+1 . And this can be achieved either by solving a PDE (or PIDE in the presence
of jumps) or by least squares Monte Carlo regression and backward stochastic calculus. We
will adopt the latter approach. It will provide an approximated upper bound on the solution
V ∗ to the optimal stopping problem, in view of the dual representation (3.6) in Proposition 6.
While this bound will be seen to converge to the true optimal solution asymptotically and is an
approximated upper bound at the pre-limiting level, it is not a genuine upper bound estimate
to the true optimal solution as it is not ‘biased high’, that is, biased above the Snell envelope
V ∗. This means that on average this upper bound may not provide enough protection. Our
third stepping stone, then, is the introduction of backward-forward simulation in the context
of BSDEs to obtain a genuine (biased high) upper bound on the solution V ∗ to our stopping
problem (see Step (3.) below).

Therefore, we will:

Step (1.) Exploiting duality theory of the second kind:

Step (1.a.) Compute an approximation to (Uhtj )tj∈{0,...,T} in (3.3) through backward recursion,

using (3.9) and UhT = 0. This involves least squares Monte Carlo regression.

Step (1.b.) Set V ∗T = HT = Π(T,XT ) and do a backward recursion over tj : Given V ∗tj+1
, compute

(Z∗s , Z̃
∗
s )s∈[tj ,tj+1] and Us(V

∗
tj+1

)tj<s≤tj+1 through (3.10). This involves least squares

Monte Carlo regression. We can then set V ∗tj = max
(

Π(tj , Xtj ) + Uhtj , Utj

(
V ∗tj+1

))
,

by (3.2). If (and as long as) tj > 0, set j = j− 1, and repeat the same computation.
Otherwise, go to Step (1.c.) below.

Step (1.c.) Given the whole path of (Z∗s , Z̃
∗
s )s∈[0,T ], compute an approximation to (M∗gtj )tj∈{t1,...,T}

through (3.11).

Step (2.) Exploiting duality theory of the first kind, obtain an approximated upper bound to V ∗0
through (3.6). This involves least squares Monte Carlo regression.

Step (3.) Introducing backward-forward simulation:

Step (3.a.) Compute a genuine (biased high) upper bound to (Uhtj )tj∈{0,...,tL−1} by using the
least squares Monte Carlo results obtained under Step (1.a.) as input in Monte
Carlo forward simulations.

Step (3.b.) Compute a genuine (biased high) upper bound to the Snell envelope V ∗0 by using
the least squares Monte Carlo results obtained under Steps (1.) and (2.) as input
in Monte Carlo forward simulations.

We describe our algorithm (in particular, Steps (1.)–(3.) above) in detail in Section 6, but
already preview the following results. Since our optimal stopping problem is Markovian, there
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exists a function v∗ : [0, T ]× Rn → R such that V ∗t = v∗(t,Xt). In particular, V ∗0 = v∗(0, X0).
Our method will ultimately provide an approximation to the function v∗, using Monte Carlo
simulation techniques that are standard in e.g., the (no-ambiguity) American option literature.
This entails that, for a finite number of Monte Carlo simulations, our approximation will
inherently be random, as it depends on the stochastic nature of simulations. Our method,
then, will be proven to have the following two appealing properties (see Theorem 15 below for
the formal results):

(i) Our approximation converges to the true value as the mesh size of the time grid tends to
zero and the numbers of Monte Carlo simulations and basis functions tend to infinity.

(ii) For every finite time grid and finite numbers of Monte Carlo simulations and basis func-
tions, our approximation provides a genuine (biased high) upper bound to the true value.

Our numerical examples provided below illustrate that, already after a limited number of Monte
Carlo simulations, our method yields rather close estimates in realistic settings. Moreover, by
property (ii) above, for a finite time grid and a finite number of simulations, the genuine upper
bound will also provide a safety buffer, i.e., a maximal amount the decision-maker (firm or
buyer) should be willing to pay or reserve for the action or undertaking. The examples also
illustrate the generality of our approach and the relevance of ambiguity to optimal stopping.

5 Numerical Examples

In this section, we present numerical results obtained by applying our algorithm to a few
examples of robust optimal stopping problems. We consider two stochastic processes, Xi,
i = 1, 2, with dynamics (cf. (2.8))

dXi
t

Xi
t

= µidt+ σidW i
t + J idÑ i

t , Xi
0 = xi0,

where W i
t is a one-dimensional standard Brownian motion, σi ≥ 0 denotes the diffusion coeffi-

cient (volatility), Ñ i
t is a one-dimensional compensated Poisson process with intensity λiP ≥ 0,

and J i ∈ (−1,∞) denotes the jump size. The processes W i
t and Ñ i

t are assumed to be mutually
independent.

In Sections 5.1 and 5.2, we consider the optimal (simple) reward problem (i.e., h ≡ 0).
We first analyze in Section 5.1 the setting in which the jump component in Xi is absent (i.e.,
J i ≡ λiP ≡ 0 for i = 1, 2), and next consider in Section 5.2 the general setting with non-trivial
jump component. This problem occurs e.g., in American-style derivative pricing in finance,
in which case the drift µi under the reference model is equal to ρ − δ (for i = 1, 2), where ρ
represents the risk-free rate and δ the dividend rate. In these sections, we deal specifically with
simple rewards of the form

Π(t,Xt) = exp(−ρt) (Xt −K)+ , or Π(t,Xt) = exp(−ρt) (K −Xt)
+ ,

or Π(t,Xt) = exp(−ρt)
(
max

{
X1
t , X

2
t

}
−K

)+
,

where we write Xt =
(
X1
t , X

2
t

)
in the two-dimensional and Xt = X1

t in the one-dimensional
case. Here, K ≥ 0 is the fixed cost (or reward) associated with exercising. We assume that the
agent always has the possibility not to exercise so that his exercising payoff can never become
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negative. In finance, these rewards resemble the to time 0 discounted payoffs when exercising
at time t of Bermudan call, put and max-call options with strike price equal to K, respectively.
In Section 5.3, we analyze the optimal entrance problem, with non-trivial h. There, we assume
that Π and h are given by

Π (t,Xt) = − exp (−ρt)κ and h (t,Xt) = exp (−ρt) (Xt − ξ) ,

for a fixed irreversible cost κ ≥ 0 and where h measures the payoff, Xt, after entering the
market minus the running costs, ξ ≥ 0, taking into account discounting. An appropriate choice
of the basis functions mM , ψM and ψ̃M , M ∈ N, that we employ in the least squares Monte
Carlo regressions, is crucial to obtain tight upper bounds. We will state them in detail for the
various examples that we analyze.

5.1 Optimal Reward Problem with a Geometric Brownian Motion

Let us first consider the situation in which the jump component is absent (i.e., J i ≡ λiP ≡ 0 for
i = 1, 2). We will provide numerical results for the univariate and bivariate cases. Following
Andersen and Broadie [1], we take the following parameter set under the reference model:

ρ = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 years.

Furthermore, we consider exercise dates given by tj = jT
9 , j = 0, . . . , 9, and a fine grid {sjp}

with ∆jp = sj(p+1) − sjp = 1/1,500. For the choice of basis functions, we follow Andersen
and Broadie [1] by including still-alive European options and corresponding option deltas. Our
results are based on 10,000 simulated trajectories for the calculation of the regression coefficients
in Step (1.b.) and the U -martingale increments in Step (1.c.), the approximated upper bound
to V ∗ in Step (2.), and the genuine upper bound to V ∗ in Step (3.b.). For Step (2.), the
basis functions ψMt are enlarged by the martingale and maximum processes, as included in the
Markov process X (defined in Step (2.); see Section 6.2). This applies to both the univariate
and the bivariate cases.

5.1.1 Univariate Case

In the univariate case, we restrict attention to the simple reward Π(t,Xt) = exp(−ρt) (Xt −K)+

(i.e., call options). Let EΠ (t,Xt, T ) denote the price at time t of a European call option with

maturity time T and let ∂EΠ(t,Xt,T )
∂Xt

denote its derivative with respect to the underlying risky

asset’s price. For mM
t , tj ≤ t ≤ tj+1, we take the set of basis functions given by

{1, Pol2 (Xt) , Pol3 (EΠ (t,Xt, tj+1)) , Pol3 (EΠ (t,Xt, tL))} . (5.1)

Here, Poln (y) denotes the set of monomials up to degree n of a vector y. Furthermore, for ψMt
(corresponding to the Brownian motion driven part of the BSDE), tj ≤ t ≤ tj+1, we take the
set {

1, Xt
∂EΠ (t,Xt, tj+1)

∂Xt
, Xt

∂EΠ (t,Xt, tL)

∂Xt

}
. (5.2)

Kullback-Leibler divergence: First, we consider the case of the Kullback-Leibler divergence
for different values of its parameter α. The results are in Table 1. The last column, with
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α = ∞, has to be interpreted as g ≡ 0. Thus, it corresponds to the (limiting) case of a
standard conditional expectation.

α

x0 10 100 104 106 ∞
90 2.4405 4.0546 4.4049 4.4088 4.4088

2.4932 4.0673 4.4662 4.4708 4.4708
(0.0003) (0.0009) (0.0013) (0.0013) (0.0013)

100 4.6077 7.4023 7.9848 7.9913 7.9914
4.8251 7.3887 8.0328 8.0402 8.0403

(0.0005) (0.0012) (0.0018) (0.0019) (0.0019)
110 10.0281 12.2732 13.1574 13.1661 13.1662

10.1468 12.2934 13.1656 13.1756 13.1757
(0.0008) (0.0015) (0.0024) (0.0024) (0.0024)

Table 1: Approximated and genuine (in italics) upper bounds to robust call option prices using the

Kullback-Leibler divergence with different values of its parameter α and depending on the initial value

of the underlying risky asset’s price x0. Standard errors for the genuine upper bounds are given in

parentheses. Univariate case.

Only in the case of α = ∞ we have reference values, provided e.g., by Andersen and Broadie
[1]. They appear to be very close to our values. For example, for x0 = 100, the true value is
7.98, which is to be compared to our approximated and genuine upper bounds equal to 7.99
and 8.04, respectively. With an increase in α we observe an, initially rapid, increase in the
robust call option’s value. In general, we observe that American call option values may decrease
substantially when ambiguity is taken into account. In view of the fact that our approximated
and genuine upper bounds turn out to be quite close, we restrict attention henceforth to the
approximated upper bounds, when assessing numerically the impact of ambiguity on optimal
stopping problems.

Worst case with mean partially known: Next, we consider the example of worst case with
mean partially known, where we either take µ− = −0.05 and vary µ+ or we take µ+ = −0.05
and vary µ−. Furthermore, we choose large values for the parameters B+ and B− such that the
resulting driver is practically independent of these parameters (specifically, we take B+ = 1,000
and B− = −1,000). The results are in Table 2.

µ+ µ+ = µ− µ−

0.05 0 -0.05 -0.1 -0.15
x0 (µ− = −0.05) (µ+ = −0.05)

90 4.41 4.41 4.41 2.62 1.64
100 7.99 7.99 7.99 5.57 4.10
110 13.17 13.17 13.17 10.84 10.17

Table 2: Upper bounds to robust call option prices under the worst case with mean partially known

example with different values of the parameters µ+ and µ− and depending on the initial value of the

underlying risky asset’s price x0. Univariate case.

We observe from Table 2 that the robust call option values are insensitive to changes in µ+ for
given µ−. By contrast, the robust call option values are quite sensitive to changes in µ− for
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given µ+. Of course, the case of µ+ = µ− yields the case of a standard conditional expectation.
It agrees with the last column of Table 1. Note further that, without jumps, the worst case with
mean partially known example would agree with the worst case with ball scenarios example

(see Examples 5 (3)) whenever
∣∣∣µ−−µσ

∣∣∣ =
∣∣∣µ+−µ

σ

∣∣∣ = δ1 subject to µ+−µ
σ ≤ B+ and µ−−µ

σ ≥ B−

holds.

5.1.2 Bivariate case

Next, we consider the bivariate case. In the bivariate case, we analyze the simple reward
Π(t,Xt) = exp(−ρt)

(
max

{
X1
t , X

2
t

}
−K

)+
(i.e., a max-call option). We denote the price of a

European max-call option at time t with maturity time T by EΠ (t,Xt, T ). It is given by the
following expression (Johnson [54]):

EΠ (t,Xt, T ) =

2∑
l=1

X l
t

e−δ(T−t)√
2π

∫
(−∞,dl+]

exp

[
−1

2
z2

] 2∏
l′=1,l′ 6=l

N

 log
(
Xl
t

Xl′
t

)
σ
√
T − t

− z + σ
√
T − t

 dz

−Ke−ρ(T−t) +Ke−ρ(T−t)
2∏
l=1

(
1−N

(
dl−

))
,

with

dl− :=
log
(
Xl
t

K

)
+
(
ρ− δ − σ2

2

)
(T − t)

σ
√
T − t

, dl+ := dl− + σ
√
T − t.

Here, N denotes the standard Gaussian cumulative distribution function. For the correspond-
ing option delta, denoted by ∂EΠ(t,Xt,T )

∂Xl
t

, it follows that

∂EΠ (t,Xt, T )

∂X l
t

=
e−δ(T−t)√

2π

∫
(−∞,dl+]

exp

[
−1

2
z2

] 2∏
l′=1,l′ 6=l

N

 log
(
Xl
t

Xl′
t

)
σ
√
T − t

− z + σ
√
T − t

 dz.

In Step (1.b.) of our algorithm, we choose the same set of basis functions for mM
t as in the

univariate case (see (5.1)). For the Brownian motion driven part, we have to adapt to the
two-dimensionality of our problem, and for ψMt we now consider the set{

1,

(
X l
t

∂EΠ (t,Xt, tj+1)

∂X l
t

)
1≤l≤2

,

(
X l
t

∂EΠ (t,Xt, tL)

∂X l
t

)
1≤l≤2

}
.

The parameters are chosen as in the univariate case, with common µi, σi and J i for i = 1, 2,
and assuming independence between W 1 and W 2 and between N1 and N2.

Kullback-Leibler divergence: In Table 3, we consider the Kullback-Leibler divergence for
different values of its parameter α.
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α

x0 10 100 104 106 ∞ BBS

90 4.49 7.49 8.12 8.12 8.12 8.09
100 8.12 12.98 13.97 13.98 13.98 13.96
110 13.41 20.12 21.43 21.45 21.45 21.46

Table 3: Upper bounds to robust max-call option prices using the Kullback-Leibler divergence with

different values of its parameter α and depending on the common initial value of the underlying risky

assets’ prices x0. Bivariate case. The last column displays reference values for the case of α = ∞ (or

g ≡ 0) obtained by Belomestny, Bender and Schoenmakers [6] (BBS).

We observe again that with an increase in α, the robust option value initially increases rapidly.
The last column, with α = ∞, yields the case of a standard conditional expectation (g ≡ 0).
Only in this special case do we have reference values given e.g., in Belomestny, Bender and
Schoenmakers [6] (BBS). For g ≡ 0, our values are very close to the upper bounds obtained by
Belomestny, Bender and Schoenmakers [6].

Worst case with mean partially known: Next, we consider the worst case with mean
partially known example. Upper bounds on the robust option price are given in Table 4, for
different values of µ+ and µ−.

µ+ µ+ = µ− µ−

0.05 -0.05 -0.15
x0 (µ− = −0.05) KLLSS BBS (µ+ = −0.05)

90 8.12 8.12 8.09 3.02
100 13.98 13.98 13.96 7.08
110 21.45 21.45 21.46 13.58

Table 4: Upper bounds to robust max-call option prices under the worst case with mean partially known

example with different values of the parameters µ+ and µ− and depending on the common initial value

of the underlying risky assets’ prices x0. Bivariate case. In the fifth column we display reference values

as obtained by Belomestny, Bender and Schoenmakers [6] (BBS) for the case of µ+ = µ− (or g ≡ 0).

Similar to the univariate case, the robust max-call option values are insensitive to changes in
µ+ for given µ−, and are quite sensitive to changes in µ− for given µ+. The case of µ+ = µ−

yields the case of a standard conditional expectation and agrees with the last two columns of
Table 3. Furthermore, as in the univariate case (without a jump component), the worst case
with mean partially known example agrees with the worst case with ball scenarios, for specific
parameter sets.

5.2 Optimal Reward Problem with a Jump-Diffusion

Let us now consider the situation in which the Poissonian jump component is present, next to
the continuous diffusion component. We restrict attention to the univariate case. We take the
following parameter set under the reference model:

ρ = 0.04, δ = 0, σ = 0.2, J = 0.06, K = 100, T = 1 year,

and consider different values of λP . The exercise dates are given by tj = jT
10 , j = 0, ..., 10, and

the fine grid is given by ∆jp = 1/100.
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In this subsection, we analyze the simple reward Π(t,Xt) = exp(−ρt) (K −Xt)
+ (i.e., put

options). We let EΠ (t,Xt, T ) denote the price at time t of a European put option with maturity

time T and we let ∂EΠ(t,Xt,T )
∂Xt

denote its derivative with respect to the underlying risky asset’s
price. This price is given by the following expression (see e.g., Cont and Tankov [28]):

EΠ (t,Xt, T ) = e−ρ(T−t)
∑
n≥0

e−λP (T−t) (λP (T − t))n

n!
BS
(
T − t,X(n)

t , σ
)
, (5.3)

where
X

(n)
t = Xt exp (nJ − λP (T − t) exp (J) + λP (T − t)) ,

and where BS denotes the Black-Scholes price of the corresponding European put option.7

In Step (1.b.), we choose for mM
t , tj ≤ t ≤ tj+1, the set of basis functions given in (5.1), but

with Xt now a jump-diffusion and with EΠ(t,Xt, T ) the price of a European put option. The
basis functions for the Brownian motion driven part of the BSDE, ψMt , and the jump part, ψ̃Mt ,
are both given by (5.2). Our numerical results are based on 5,000 simulated trajectories for all
relevant steps of the algorithm. For Step (2.), ψMt and ψ̃Mt are enlarged by the martingale and
maximum processes, included in the Markov process X , as in the previous subsection.

Kullback-Leibler divergence: In Table 5, we deal with the Kullback-Leibler divergence and
present results for different values of its parameter α and of the jump intensity λP .

α

x0 10 100 104 106 ∞

J = λP = 0
90 10.42 11.54 11.83 11.83 11.83
100 4.63 6.14 6.40 6.41 6.41
110 2.19 3.06 3.22 3.22 3.22

J = 0.06, λP = 1
90 10.54 11.79 12.09 12.10 12.10
100 4.85 6.46 6.74 6.74 6.74
110 2.37 3.33 3.50 3.50 3.50

J = 0.06, λP = 3
90 11.00 12.52 12.89 12.89 12.89
100 5.27 7.12 7.45 7.46 7.46
110 2.74 3.89 4.10 4.10 4.10

Table 5: Upper bounds to robust put option prices using the Kullback-Leibler divergence with different

values of its parameter α and of the jump intensity λP , and depending on the initial value of the

underlying risky asset’s price x0. Univariate case.

We observe from Table 5 that the put options become more valuable if the jump intensity
under the reference model increases, and depreciate in the presence of ambiguity, as expected.

Worst case with ball scenarios: In the worst case with ball scenarios example we provide
results for different values of δ1 and δ2. These are given in Table 6.

7The formula given in Cont and Tankov [28] pertains to the case of Gaussian jumps. Here, we face the special
case of a fixed degenerate jump size, which can be viewed as a Gaussian jump with mean J and volatility equal
to zero. We calculate an approximation to (5.3), which involves an infinite sum, but converges very rapidly.
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x0 δ1 = δ2 = 0.5 δ1 = 0.5, δ2 = 1 δ1 = 1, δ2 = 0.5

λP = 1
90 10.48 10.37 10.20
100 4.22 3.92 3.13
110 1.73 1.54 1.05

λP = 3
90 10.90 10.74 10.43
100 4.77 4.44 3.58
110 2.15 1.92 1.34

Table 6: Upper bounds to robust put option prices under the worst case with ball scenarios example

with different values of the parameters δ1 and δ2 and of the jump intensity λP , and depending on the

initial value of the underlying risky asset’s price x0. Univariate case.

Upon comparing the results in Table 6 to the corresponding no-ambiguity results in the last
column of Table 5 (with α =∞ hence g ≡ 0), we observe that the put options clearly depreciate
in the presence of ambiguity with respect to the drift in the Brownian motion (as measured by
δ1) and to the jump intensity (as measured by δ2).

Worst case with mean partially known: Next, we consider the worst case with mean
partially known example. We take B+ = 0.5, B− = −0.5, d+ = 0.5, and d− = −0.25. The
results are in Table 7.

µ+ µ+ = µ− µ−

0.14 0.04 -0.06
x0 (µ− = 0.04) (µ+ = 0.04)

J = λP = 0
90 10.48 11.83 11.83
100 4.26 6.41 6.41
110 1.74 3.22 3.22

J = 0.06, λP = 1
90 10.62 12.05 12.05
100 4.57 6.67 6.68
110 1.95 3.44 3.45

J = 0.06, λP = 3
90 11.10 12.85 12.85
100 5.16 7.40 7.40
110 2.41 4.04 4.05

Table 7: Upper bounds to robust put option prices under the worst case with mean partially known

example with different values of the parameters µ+ and µ− and of the jump intensity λP , and depending

on the initial value of the underlying risky asset’s price x0. Univariate case.

Note that for put options, the pattern observed is different from (opposite to) what we observed
for call options in Tables 2 and 4, in the sense that uncertainty about a potentially lower drift
does not impact the put option values, in contrast to the call option values.

Good-deal bounds: In view of the presence of jumps, it is now sensible to also consider
good-deal bounds. We provide results for different values of λP and Λ, given in Table 8.
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x0 λP = 1, Λ = 0.5 λP = 3, Λ = 0.5 λP = Λ = 1 λP = 3, Λ = 1

90 11.50 12.11 10.44 10.70
100 6.06 6.54 4.05 4.20
110 2.98 3.29 1.53 1.47

Table 8: Upper bounds to robust put option prices using good-deal bounds with different values of

the parameters λP and Λ, and depending on the initial value of the underlying risky asset’s price x0.

Univariate case.

Upon comparing the results in Table 8 to the corresponding no-ambiguity results in the last
column of Table 5 (with α = ∞ hence g ≡ 0), we clearly observe that the good-deal bound
evaluations of put options can be significantly lower than the corresponding no-ambiguity
prices.

5.3 Optimal Entrance Problem

So far, we have considered examples of simple rewards for which h ≡ 0. Now we consider the
optimal entrance problem, with Π(t,Xt) = − exp (−ρt)κ and h(t,Xt) = exp (−ρt) (Xt − ξ),
in a univariate geometric Brownian motion setting (i.e., J ≡ λP ≡ 0). We define the grid of
exercise dates by tj = j∆c, j = 0, ..., T/∆c, with 1/∆c the number of exercise dates in a year.
For the fine grid, we take ∆jp = ∆c/10, and we vary ∆c. We use the following parameter set
under the reference model:

µ = 0, ρ = 0.1, σ = 0.1, ξ = 1, κ = 1, T = 100 years.

In Steps (1.a.) and (1.b.) of our algorithm, we choose for mM
t the set of basis functions

given by
{1, Pol3 (Xt) , Pol3 (h (t,Xt))} .

The basis functions for the Brownian motion driven part of the BSDE are given by the set{
1, Xt

∂h (t,Xt)

∂Xt

}
.

In Step (2.), we add, as usual, the martingale and maximum processes, included in the Markov
process X , to the set of basis functions. We generate 5,000 simulated trajectories in each step
of our algorithm.

Standard conditional expectation: First, we consider the case of a standard conditional
expectation. In Table 9, we present results for different values of ∆c and x0. The results in the
second and third columns of Table 9 can be viewed as rough approximations to the continuous-
time optimal entrance problem with infinite time horizon as considered, for example, in Dixit
[35], where 1/∆c = T = ∞. The last column in Table 9 displays the corresponding values
obtained by Dixit [35].
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1/∆c

x0 1 10 1/∆c = T =∞ (Dixit)

1 0.79 0.77 0.56
1.375 3.22 3.01 2.75
1.5 4.47 4.26 4.00

Table 9: Upper bounds to robust expected rewards with different values of the number of exercise dates

1/∆c and depending on the initial value of the underlying stream of cash flows x0. Univariate case.

The initial value of 1.375 would be the entrance boundary given by Dixit [35], for the parameter
set considered here.

Kullback-Leibler divergence: Next, we consider the Kullback-Leibler divergence for differ-
ent values of α, taking 1/∆c = 10. The results are in Table 10.

α

x0 10 100 104 106 ∞
1 0.40 0.70 0.77 0.77 0.77

1.375 1.14 2.64 3.00 3.01 3.01
1.5 1.57 3.83 4.25 4.26 4.26

Table 10: Upper bounds to robustly evaluated rewards using the Kullback-Leibler divergence with

different values of its parameter α and depending on the initial value of the underlying stream of cash

flows x0. Univariate case.

Of course, the last column, with α = ∞ (or g ≡ 0), agrees with the third column in Table 9.
Robustly evaluated rewards appear to be fairly sensitive to changes in α, at moderate levels of
α, which is in agreement with our observations from Tables 1, 3 and 5.

Worst case with mean partially known: Finally, we consider the worst case with mean
partially known example. We take B+ = 1,000 and B− = −1,000 such that the resulting driver
is practically independent of these parameters. The results are in Table 11.

µ+ µ+ = µ− µ−

0.05 0 -0.01 -0.03 -0.05
x0 (µ− = 0) (µ+ = 0)

1.375 2.99 3.01 2.03 0.88 0.49
1.5 4.25 4.26 3.15 1.41 0.70

Table 11: Upper bounds to robustly evaluated rewards under the worst case with mean partially known

example with different values of the parameters µ+ and µ− and depending on the initial value of the

underlying stream of cash flows x0. Univariate case.

We observe from Table 11 that the robustly evaluated rewards are insensitive to changes in
µ+ for given µ−, and are quite sensitive to changes in µ− for given µ+, a pattern consistent
with Tables 2 and 4. Again, the case of µ+ = µ− yields the case of a standard conditional
expectation, and agrees with the last column of Table 10 (as well as the third column in Table
9). As explained in Section 5.1.1, the worst case with mean partially known driver coincides
with the worst case with ball scenarios driver for certain parameter sets, in the absence of
jumps.
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In sum, whenever reference values can be obtained by methods that are currently available
in the literature, our numerical results confirm that our algorithm has good convergence prop-
erties, yielding accurate results at the pre-limiting level. The numerical results also reveal the
potentially relevant and significant impact of taking ambiguity into account when evaluating
optimal stopping strategies.

6 Algorithm: Step-Wise Description

6.1 Step (1.): Duality Theory of the Second Kind

6.1.1 Step (1.a.): Construct an Approximation to Uh

Since the approximation scheme adopted in Step (1.a.) will also be used in the steps that
follow, it will be useful to use slightly more general notation. Recall the n-dimensional adapted
process (Xt)t∈[0,T ], satisfying the strong Markov property. We start with a function w : Rn → R
(such that w(XT ) is square-integrable) and the function g(t, z, z̃). Define ∆jp := sj(p+1) − sjp,
∆Wjp := Wsj(p+1)

− Wsjp , ∆Ñjp := Ñsj(p+1)
− Ñsjp , and |π| := maxj,p ∆jp, j = 0, . . . , L,

p = 0, . . . , P . We will approximate Uh in (3.3) with a process Y π. We initialize Y π
T =

yπ(XT ) = w(XT ) where (here in Step (1.a.)) w(XT ) = h(T,XT ). We then do a backward
recursion over the sjp. Suppose we have an approximation Y π

sj(p+1)
and we want to compute

Y π
sjp . Theorem 8 then yields:

Y π
sjp ≈ Y

π
sj(p+1)

+ g(sjp, Z
π
sjp , Z̃

π
sjp)∆jp − Zπsjp∆Wjp − Z̃πsjp∆Ñjp for all j, p;

see (3.9). Taking conditional expectations,

Y π
sjp ≈ Ejp

[
Y π
sj(p+1)

]
+ g(sjp, Z

π
sjp , Z̃

π
sjp)∆jp, (6.1)

with Ejp [·] = E[·|Xsjp ]. We take

(Zπsjp , Z̃
π
sjp) = argmin(Z,Z̃)∈L2

d+k(σ(Xsjp ))Ejp

[(
Y π
sj(p+1)

− Z∆Wjp − Z̃∆Ñjp

)2
]
.

Suppose that, for all j, p, we have basis functions (mk(sjp, Xsjp))k∈N, (ψk(sjp, Xsjp))k∈N and

(ψ̃k(sjp, Xsjp))k∈N spanning the space L2(σ(Xsjp)), respectively. Since we can computationally
deal only with finitely many basis functions let us fix an M ∈ N. We write

mM (sjp, Xsjp) = (m1(sjp, Xsjp), . . . ,mM (sjp, Xsjp))
ᵀ,

and define ψM and ψ̃M similarly. Furthermore, define by P π,Msjp (Y π,M
sj(p+1)

) := απ,Msjp m
M (sjp, Xsjp),

and

Zπ,Msjp (Y π,M
sj(p+1)

) := γπ,Msjp ψM (sjp, Xsjp)∆Wjp, Z̃π,Msjp (Y π,M
sj(p+1)

) := γ̃π,Msjp ψ̃M (sjp, Xsjp)∆Ñjp,

the orthogonal projections on the space spanned by mM (sjp, Xsjp), ψ
M (sjp, Xsjp)∆Wjp and

ψ̃M (sjp, Xsjp)∆Ñjp, respectively. (Here and in the remainder of this section, we understand
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vector multiplication as dot (scalar) product.) Note that

απ,Msjp = (Aπ,Msjp )−1Ejp

[
Y π,M
sj(p+1)

mM (sjp, Xsjp)
]
,

γπ,Msjp = (Āπ,Msjp )−1Ejp

[
Y π,M
sj(p+1)

ψM (sjp, Xsjp)∆Wjp

]
, (6.2)

γ̃π,Msjp = (Ãπ,Msjp )−1Ejp

[
Y π,M
sj(p+1)

ψ̃M (sjp, Xsjp)∆Ñjp

]
, (6.3)

with coefficients given by

(Aπ,Msjp )1≤k,l≤M = Ejp
[
mM
k (sjp, Xsjp)m

M
l (sjp, Xsjp)

]
,

(Āπ,Msjp )1≤k,l≤M = Ejp
[
ψMk (sjp, Xsjp)ψ

M
l (sjp, Xsjp)

]
E
[
∆2Wjp

]
, (6.4)

(Ãπ,Msjp )1≤k,l≤M = Ejp

[
ψ̃Mk (sjp, Xsjp)ψ̃

M
l (sjp, Xsjp)

]
E
[
∆2Ñjp

]
. (6.5)

Here, we define the process Y π,M
T by setting Y π,M

T = w(XT ), and then recursively

Y π,M
sjp = απ,Msjp m

M (sjp, Xsjp) + g(sjp, γ
π,M
sjp ψM (sjp, Xsjp), γ̃

π,M
sjp ψ̃M (sjp, Xsjp))∆jp. (6.6)

To compute the conditional expectations in (6.2)–(6.5) numerically, we simulate N0 inde-
pendent paths (Xn

sjp)sjp , starting with XT for sjp = T. Then, for n = 1, . . . , N0, we define

yπ,M,N0

T (x) := w(x), and

yπ,M,N0
sjp (x) :=απ,M,N0

sjp mM (sjp, x)

+ g(sjp, γ
π,M,N0
sjp ψM (sjp, x), γ̃π,M,N0

sjp ψ̃M (sjp, x))∆jp, (6.7)

where

απ,M,N0
sjp = (Aπ,M,N0

sjp )−1 1

N0

N0∑
n=1

Y π,M,N0
sj(p+1)

mM (sjp, X
n
sjp)

γπ,M,N0
sjp = (Āπ,M,N0

sjp )−1 1

N0

N0∑
n=1

Y π,M,N0
sj(p+1)

ψM (sjp, X
n
sjp)∆W

n
jp

γ̃π,M,N0
sjp = (Ãπ,M,N0

sjp )−1 1

N0

N0∑
n=1

Y π,M,N0
sj(p+1)

ψ̃M (sjp, X
n
sjp)∆Ñ

n
jp, (6.8)

with coefficients given by

(Aπ,M,N0
sjp )1≤k,l≤M =

1

N0

N0∑
n=1

mM
k (sjp, X

n
sjp)m

M
l (sjp, X

n
sjp)

(Āπ,M,N0
sjp )1≤k,l≤M =

1

N0

N0∑
n=1

ψMk (sjp, X
n
sjp)ψ

M
l (sjp, X

n
sjp)∆jp

(Ãπ,M,N0
sjp )1≤k,l≤M =

1

N0

N0∑
n=1

ψ̃Mk (sjp, X
n
sjp)ψ̃

M
l (sjp, X

n
sjp)λP∆jp. (6.9)

We stop if sjp = 0.

Finally, we define uh,π,M,N0
sjp (x) := yh,π,M,N0

sjp (x), zh,π,M,N0
sjp (x) := γh,π,M,N0

sjp ψM (sjp, x) and,

similarly, z̃h,π,M,N0
sjp (x) := γ̃h,π,M,N0

sjp ψ̃M (sjp, x).
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6.1.2 Step (1.b.): Construct an Approximation to V ∗

To do a backward recursion over tj , we initialize tj = T and V ∗,πT = v∗,π(T,XT ) := Π(T,XT ).

Assuming that we are given an approximation V ∗,π,M,N1
tj+1

= v∗,π,M,N1(tj+1, Xtj+1), we carry out

the following loop: For p = P , we initialize UπsjP := Utj+1(V ∗,π,M,N1
tj+1

) = V ∗,πtj+1
. Now, given

Uπsj(p+1)
, Uπsjp we know from (3.10) that

Uπsjp ≈ U
π
sj(p+1)

+ g(sjp, Zsjp , Z̃sjp)(sj(p+1) − sjp)− Zsjp∆Wj(p+1) − Z̃tj∆Ñj(p+1). (6.10)

Therefore, using N1 simulations we can construct as before the vectors (uπ,M,N1
sjp )p, (α

π,M,N1
sjp )p,

(γπ,M,N1
sjp )p, and (γ̃π,M,N1

sjp )p (with T = tj+1, t0 = tj , and w(·) = v∗,π(tj+1, ·) as terminal con-
dition). This yields functions uπ,M,N1 , zπ,M,N1 and z̃π,M,N1 . Finally, when we have arrived at
p = 0, we set j = j − 1 and by (3.2) we define

v∗,π,M,N1(tj , x) := max(Π(tj , x) + uh,π,M,N1
tj

(x), uπ,M,N1
sj0 (x)).

We stop if j = 0.

6.1.3 Step (1.c.): Construct an Approximation to M∗g

We then obtain a martingale Mg,π,M,N1
sip by defining

Mg,π,M,N1
sip : = −

i∑
j=0

p−1∑
l=0

∫ sj(l+1)

sjl

g(u, zπ,M,N1
sjl

(Xsjl), z̃
π,M,N1
sjl

(Xsjl))du

+

i∑
j=0

p−1∑
l=0

zπ,M,N1
slp

(Xsjl)∆Wjl +

i∑
j=0

p−1∑
l=0

z̃π,M,N1
slp

(Xsjl)∆Ñjl, (6.11)

see (3.11). Given i.i.d. simulations Xn we can then simulate i.i.d. copies of Mg,π
sip through

Mg,π,M,N1,n
sip : = −

i∑
j=0

p−1∑
l=0

∫ sj(l+1)

sjl

g(u, zπ,M,N1
sjl

(Xn
sjl

), z̃π,M,N1
sjl

(Xn
sjl

))du

+

i∑
j=0

p−1∑
l=0

zπ,M,N1
slp

(Xn
sjl

)∆Wn
jl +

i∑
j=0

p−1∑
l=0

z̃π,M,N1
slp

(Xn
sjl

)∆Ñn
jl. (6.12)

Note that (6.11) defines a true discrete-time U -martingale (Mg,π,M,N1
tj

)j∈{0,1,2,...,L}, and

that (6.12) gives rise to an exact simulation scheme of it. The simulations (Mg,π,M,N1,n)tj
will be employed to establish a dual upper bound to the Snell envelope and the simulations
(Mg,π,M,N1,n)sjp (living on the finer grid π) will be needed for the numerical approximation.
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6.2 Step (2.): Duality Theory of the First Kind and an Approximated Upper
Bound to V ∗

Eventually (in Step (3.) below) we will find a genuine (biased high) upper bound for V ∗0
according to Proposition 6. To this end, we are faced with the computation of

V ∗0 = inf
M∈MU

0

U0

(
max

tj∈{0,t1,...,T}

(
Π(tj , Xtj ) + Uhtj +MT −Mtj

))
= U0

(
max

tj∈{0,t1,...,T}

(
Π(tj , Xtj ) + Uhtj +M∗gT −M

∗g
tj

))
. (6.13)

We set
F := max

tj

(
Π(tj , Xtj ) + Uhtj +M∗gT −M

∗g
tj

)
.

Since we can only compute an approximation to M∗g, we cannot attain the infimum in (6.13).
However, Mg,π,M,N1

T obtained in the previous Step (1.c.) is a true U -martingale, which can be
used to obtain an approximation to an upper bound. Let us first define, with N0 = N1,

F π,M,N1 := max
tj∈{0,t1,...,T}

(
Π(tj , Xtj ) + Uh,π,M,N1

tj
+Mg,π,M,N1

T −Mg,π,M,N1
tj

)
.

Next, define the (n+ 2)-dimensional Markov process

X π,M,N1
s :=

(
Xsjp ,M

g,π,M,N1
sjp , max

tl∈{0,t1,...,tj}

(
Π(tl, Xtl) + Uh,π,M,N1

tl
−Mg,π,M,N1

tl

))
for sjp ≤ s < sj(p+1). Let us compute U0(F π,M,N1) numerically. Recall that for a payoff H, by
Theorem 8(a),

Ut(H) = inf
Q∼P

{
EQ

[
H +

∫ T

t
r(s, qs, λs − λP )ds)

∣∣Ft]} (6.14)

= H +

∫ T

t
g(s, Zs, Z̃s)ds−

∫ T

t
ZsdWs −

∫ T

t
Z̃sdÑs. (6.15)

Hence, we can apply the approximation scheme (6.7)–(6.9) (with X = X and terminal condition

maxtl∈{0,t1,...,tj}

(
Π(tl, Xtl) + Uh,π,M,N1

tl
−Mg,π,M,N1

tl

)
). Simulate n = 1, . . . , N2 paths

(X π,M,N1,n
sjp )j =

(
Xπ,n
sjp ,M

g,π,M,N1,n
sjp , max

tl∈{0,t1,...tj}

(
Π(tl, X

n
tl

) + Uh,π,M,N1
tl

−Mg,π,M,N1,n
tl

))
.

LetM be the number of basis functions in the least squares Monte Carlo regression. We then ob-
tain coefficients, say απ,M,N2

j , γπ,M,N2
j , γ̃π,M,N2

j , and processes (V π,M,N2
t , Zπ,M,N2

t , Z̃π,M,N2
t )0≤t≤T .

Then, by applying Theorem 16 in the Appendix three times, we may conclude that

lim
π→0

lim
M→∞

lim
N2,N1,N0→∞

(V π,M,N2 , Zπ,M,N2 , Z̃π,M,N2) = (V ∗, Z∗, Z̃∗); (6.16)

see the technical details provided in the Appendix. In particular, V π,M,N2
0 → V0 as the mesh

ratio of the grid, π, tends to zero, and the number of Monte Carlo simulations and basis
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functions tend to infinity. Thus, our algorithm will converge to the true value of the (U -)Snell
envelope V ∗.

However, at the pre-limiting level, our estimates from Step (2.) for the upper bound to V ∗

are not biased high (above the Snell envelope), meaning that in the average the upper bound
may not provide enough protection. For this reason we will subsequently proceed to construct
a genuine (biased high) upper bound.

6.3 Step (3.): Backward-Forward Simulation

6.3.1 Step (3.a.): Construct a Genuine Upper Bound to Uh

By Theorem 8(a), for i = 0, . . . , L− 1,

Uhti = inf
Q∼P

EQ

 L∑
j=i

h(tj , Xtj ) +

∫ T

ti

r(s, qs, λs − λP )ds
∣∣Fti

 , (6.17)

= Uhti+1
+

∫ ti+1

ti

g(s, Zhs , Z̃
h
s )ds−

∫ ti+1

ti

Zhs dWs −
∫ ti+1

ti

Z̃hs dÑs + h(ti, Xti). (6.18)

Denote the Q that attains the infimum in (6.17) by Qh.
The following proposition provides a way to practically obtain the extremal Qh (leading in

the end to an upper bound) by computing (Zh, Z̃h) in (6.18).

Proposition 13 For H ∈ L2(P ), the infimum in (6.17) is attained at

dQh

dP
= exp

{∫ t

0
q∗sdWs +

∫ t

0
log

(
λ∗s
λP

)
dNs −

∫ T

0

(
|q∗s |2

2
+ λ∗s − λP

)
ds

}
,

for every (q∗s , λ
∗
s − λP ) ∈ ∂g(s, Zhs , Z̃

h
s ), where ∂g(s, ·, ·) stands for the subdifferentials of the

convex function g(s, ·, ·).8

We then compute a genuine upper bound to (Uhtj )tj∈{0,...,tL−1} by:

(i) Computing approximations to (Z, Z̃) by solving (6.18). In view of Proposition 13, (Z, Z̃)
induces an approximation to Qh, say Qh,approx.

(ii) Evaluating EQh,approx

[∑L
j=i h(tj , Xtj ) +

∫ T
ti
r(s, qs, λs − λP )ds|Xti

]
and making use of

(6.17). This will deliver the desired genuine (biased high) upper bound to (Uhtj )tj∈{0,...,tL−1}.

So let us carry out our program to compute approximations Uh,ntj
= uh,ntj (Xn

tj ), for n =
1, . . . , N3: Simulate N3 copies of (Xn

sjp) (‘outer simulation’). For Xn
tj = x, let N4 ∈ N and sim-

ulate additional paths (X
tj ,x,n
sjp ) for n = 1, . . . , N4 and j, p (‘inner simulation’). For simplicity,

assume that g(s, ·, ·) is continuously differentiable. (If this is not the case, then our algorithm
may still be implemented by taking elements in the subgradient.) Define, with N0 = N1,

zh,π,M,N1
sjp (x̄) := γh,π,M,N1

sjp ψM (sjp, x̄), z̃h,π,M,N1
sjp (x̄) := γ̃π,M,N1

sjp ψ̃M (sjp, x̄) and

q
h,π,tj ,x,n
sjp := gz(sjp, z

h,π,M,N1
sjp (X

tj ,x,n
sjp ), z̃h,π,M,N1

sjp (X
tj ,x,n
sjp ))

λ
h,π,tj ,x,n
sjp − λP := gz̃(sjp, z

h,π,M,N1
sjp (X

tj ,x,n
sjp ), z̃h,π,M,N1

sjp (X
tj ,x,n
sjp )).

8Formally, ∂f(x) of a convex function is given by the set of all slopes of all tangents at f(x). Of course, in
the one-dimensional case, ∂f(x) = [f−(x), f ′+(x)]. Furthermore, ∂f(x) = {f ′(x)} if f is differentiable.
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Next, for each Xn
tj = x, define i.i.d. simulations of the measure dQg,π,M,N4,tj ,x

dP via the Radon-
Nikodym derivative

Dπ,n
ti

(x) := exp

( ∑
ti≤sjp

q
π,tj ,x,n
sjp ∆Wn

jp +
∑
ti≤sjp

log

(
λ
π,tj ,x,n
sjp

λP

)
∆Nn

jp

−
∑
ti≤sjp

(1

2
|qπ,tj ,x,nsjp |2 + λ

π,tj ,x,n
sjp − λP

)
∆jp

)
;

for i = 1, . . . , L, see also (2.5). We then set

ũupp,h,N4
tj

(x) :=
1

N4

N4∑
n=1

Dπ,n
tj

(x)

[ L∑
l=j

h(tl, X
tj ,x,n
tl

) (6.19)

+
L∑
l=1

P∑
p=1

∫ sl(p+1)

slp

r(s, qh,π,tl,x,nslp
, λh,π,tl,x,nslp

− λP )ds

]
.

Now (Dπ,n
tj

(Xn
tj )), (qh,π,M,N4,n

sjp )j,p and (λh,π,M,N4,n
sjp )j,p are true i.i.d. simulations of dQh,π,M,N4

dP ,

the piecewise constant (qt) and (λt), conditioned onXtj = x. Therefore, by (6.15), ũupp,h,N4
t (Xn

t )
can be taken as approximative simulations of Uht , yielding a genuine (biased high) upper bound
to Uht = uht (Xt). Summarizing this step, we obtain the following proposition.

Proposition 14 We have E
[
ũupp,h,πt (x)

]
≥ uht (x), for any x.

6.3.2 Step (3.b.): Construct a Genuine Upper Bound to V ∗0

In this final step, we proceed as in Step (3.a.) above, but this time we only need to compute
an upper bound at time t = 0: Denote the Q that attains the infimum in (6.14) by Qg, with
corresponding (q∗s , λ

∗
s−λP ). As in Proposition 13 one may see that (q∗s , λ

∗
s−λP ) ∈ ∂g(s, Zs, Z̃s)

with (Z, Z̃) from (6.15). We shall exploit this to practically compute our approximation. Let
N3 ∈ N and simulate paths (Wn

sjp) and (Xn
sjp) for n = 1, . . . , N3 and j, p. Define

Uupper,h,π,ntj
:= ũupp,h,πtj

(Xn
tj ),

qπ,M,N2,n
sjp := gz(sjp, z

π,M,N2,n
sjp (Xn), z̃π,M,N2,n

sjp (Xn))

λπ,M,N2,n
sjp − λP := gz̃(sjp, z

π,M,N2,n
sjp (Xn), z̃π,M,N2,n

sjp (Xn)).

Next, define i.i.d. simulations dQg,π,M,N3,n

dP via

dQg,π,M,N3,n

dP
:= exp

(∑
j,p

qπ,M,N2,n
sjp ∆Wn

jp +
∑
j,p

log

(
λπ,M,N2,n
sjp

λP

)
∆Nn

jp

−
∑
j,p

(1

2
|qπ,M,N2,n
sjp |2 + λπ,M,N2,n

sjp − λP
)

∆jp

)
,
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Finally, we set

Ṽ upp,N3
0 :=

1

N3

N3∑
n=1

dQg,π,M,N3,n

dP

[
max

tj∈{0,...,T}

(
Π(tj , X

n
tj ) + Uupper,h,π,ntj

+Mg,π,M,N1,n
T −Mg,π,M,N1,n

tj

)
+
∑
j,p

∫ sj(p+1)

sjp

r(s, qπ,M,N2,n
sjp , λπ,M,N2,n

sjp − λP )ds

]
, (6.20)

whereMg,π,M,N1,n
tj

should be simulated using απ,M,N1 , γπ,M,N1 and γ̃π,M,N1 estimated previously
(under Step (1.)).

6.4 Summary and Main Result

Let us summarize our algorithm more succinctly. Given a fixed time grid π and M basis
functions:

(1.) Run N0 Monte Carlo simulations to compute Uh,π,M,N0 . Run N1 Monte Carlo simulations
to compute Mg,π,M,N1 . To fully describe the evolution of these processes, it is sufficient
to store the corresponding (αh,π,M,N0

sjp ), (γh,π,M,N0
sjp ), (γ̃h,π,M,N0

sjp ); and (απ,M,N1
sjp ), (γπ,M,N1

sjp )

and (γ̃π,M,N1
sjp ).

(2.) With N0 = N1, (αh,π,M,N1
sjp ), (γh,π,M,N1

sjp ), (γ̃h,π,M,N1
sjp ) and (απ,M,N1

sjp ), (γπ,M,N1
sjp ), (γ̃π,M,N1

sjp )
give rise to a terminal condition F π,M,N1 and a Markov process X π,M,N1 defined under
Step (2.). Run N2 Monte Carlo simulations to calculate (V π,M,N2 , Zπ,M,N2 , Z̃π,M,N2) as
the solution to corresponding BS∆Es with the Markov process X π,M,N1 and terminal
condition F π,M,N1 . Store the corresponding (γπ,M,N2

sjp ) and (γ̃π,M,N2
sjp ).

(3.a.) Simulate N3 (outer simulation) copies of (Xn
sjp). Simulate, for every n, j, p, N4 addi-

tional (inner simulation) copies of (Xn
sjp), to eventually compute, with (γh,π,M,N1

sjp ) and

(γ̃h,π,M,N1
sjp ) at hand from the previous Step (1.), N3 copies of Uupper,h,n.

(3.b.) With (γπ,M,N2
sjp ) and (γ̃π,M,N2

sjp ) at hand from the previous Step (2.), simulate N3 copies of
dQg,π

dP . Furthermore, with (απ,M,N1
sjp ), (γπ,M,N1

sjp ) and (γ̃π,M,N1
sjp ) at hand from the previous

Step (1.), simulate N3 copies of F π,M,N1 . Using (6.20), a genuine (biased high) estimate
for V ∗ can then be obtained.

The total computation time is determined by MLP (N0 +N1 +N2 +N3(1+LPN4)). In case the
function h is identical zero so that the optimal stopping problem is a (simple) reward problem,
the inner simulation is not needed and N0 and N4 may be set equal to zero.

Our main result, then, reads as follows:

Theorem 15 The primal estimator V ∗,π,M,N1
0 and both the dual estimators V π,M,N2

0 and Ṽ upp,N3
0

converge to the upper Snell envelope, i.e.,

lim
π→0

lim
M→∞

lim
Ni→∞,i=0,1

V ∗,π,M,N1
0 = lim

π→0
lim
M→∞

lim
Ni→∞,i=0,1,2

V π,M,N2
0

= lim
π→0

lim
M→∞

lim
Ni→∞,i=0,...,4

Ṽ upp,N3
0 = V ∗0 .
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Furthermore, with (απ,M,N1
sjp ), (γπ,M,N1

sjp ), (γ̃π,M,N1
sjp ), (γπ,M,N2

sjp ) and (γ̃π,M,N2
sjp ) fixed from the pre-

ceding Steps (1.) and (2.), our estimator in Step (3.) gives rise to a genuine (biased high)

upper bound, i.e., E
[
Ṽ upp,N3

0

]
≥ V ∗0 .

7 Conclusion

We have developed a method to practically compute the solution to the optimal stopping prob-
lem in a general continuous-time setting featuring general time-consistent ambiguity averse
preferences and general rewards driven by jump-diffusions. The resulting algorithm delivers
an approximation to the solution that converges asymptotically to the true solution and yields
a safe genuine (biased high) upper bound at the pre-limiting level. Our method is widely ap-
plicable, numerically efficient, and eventually requires only simple least squares Monte Carlo
regression techniques. Our method may be generalized to encompass multiple stopping prob-
lems, which we intend to consider in future research.

A Appendix: Proofs

Proof of Eqns. (3.1)–(3.2) and Proposition 6: By time-consistency of U , a property that
is preserved with respect to stopping times, i.e., for any stopping time τ with 0 ≤ t ≤ τ ≤ T
(by backward induction),

Ut = Ut ◦ Uτ ,

we have
sup
τ∈T

U0(Hτ ) = sup
τ∈T

U0(Uτ (Hτ )) = sup
τ∈T

U0(H̃τ ),

where H̃t := Ut(Ht) for t ∈ [0, T ]. Hence, the optimal stopping problem (2.4) with non-
adapted rewards (Ht)t∈T can be transformed into an (equivalent) optimal stopping problem
with adapted rewards (H̃t)t∈T . Therefore, the existence of an optimal stopping time in (3.1)
follows, upon continuous embedding, as a consequence of Theorem 3.2 in Krätschmer and
Schoenmakers [57]. Furthermore, upon continuous embedding, (3.2) follows as a consequence
of Theorem 3.4 in [57] and Proposition 6 is a consequence of Theorem 5.4 in the same [57].

Proof of Theorem 8: For a square-integrable H that is FT -adapted and t ∈ [0, T ], let us
consider

Uht = inf
(q,λ)∈C

EQ

H +
∑
t≤tj

h(tj , Xtj )|Ft

+ ct(Q)

 , (A.1)

where (for the first part of the proof) H = 0. Of course, Uhtj = Uhtj+ + h(tj , Xtj ) and by
time-consistency, for t ∈ (tj , tj+1],

Uht = inf
(q,λ)∈C

{
EQ

[
Uhtj+1

|Ft
]

+ ct(Q)
}
. (A.2)

The first part of (a) would follow if we could show that there exists a predictable, square-
integrable (Z, Z̃) such that

dUht = −g(t, Zt, Z̃t)dt+ ZtdWt + Z̃tdÑt, for t ∈ (tj , tj+1], (A.3)
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with j = 0, . . . , L− 1. Let t ∈ (tj , tj+1]. Notice that an adapted process, say Y , satisfying the
RHS of (A.3) may be seen as a solution to a BSDE. To be more precise, by Tang and Li [81],
there exists a unique triple of processes, say (Yt, Zt, Z̃t)t∈[tj ,tj+1] ∈ S2×L2(dP×ds)×L2(dP×ds),
satisfying

dYt = −g(t, Zt, Z̃t)dt+ ZtdWt + Z̃tdÑt, and Ytj+1 = Uhtj+1
,

where we denote by S2 the space of all processes for which the maximum is square-integrable.
We need to show that Uht = Yt for t ∈ (tj , tj+1]. Let Q ∈ Q. We write

Yt = EQ[Yt|Ft]

= EQ

[
Uhtj+1

+

∫ tj+1

t
g(s, Zs, Z̃s)ds−

∫ tj+1

t
ZsdWs −

∫ tj+1

t
Z̃sdÑs | Ft

]
= EQ

[
Uhtj+1

+

∫ tj+1

t

[
− qsZs − Z̃s(λs − λP ) + g(s, Zs, Z̃s)

]
ds

+

∫ tj+1

t
ZsdW

Q
s +

∫ tj+1

t
Z̃sdÑ

Q
s | Ft

]
= EQ

[
Uhtj+1

+

∫ tj+1

t

[
− qsZs − Z̃s(λs − λP ) + g(s, Zs, Z̃s)

]
ds | Ft

]
≤ EQ

[
Uhtj+1

+

∫ tj+1

t
r(s, qs, λs − λP )ds | Ft

]
, (A.4)

where we used in the first equality that Yt is Ft-measurable. Note that the conditional expec-
tation in the first equality is well-defined by the inequality of Cauchy-Schwarz, as (q, λ) take
values in a compact set and Y is square-integrable under P . The third and fourth equalities
hold because

∫ t
tj
ZsdW

Q
s and

∫ t
tj
Z̃sÑ

Q
s are well-defined martingales, since for any Q with (q, λ)

in a compact bounded set we have, again by Cauchy-Schwarz,

EQ

[√∫ tj+1

tj

|Zs|2ds

]
= E

[
dQ

dP

√∫ tj+1

tj

|Zs|2ds

]
≤

√
E

[(dQ
dP

)2
]√√√√E

[∫ tj+1

tj

|Zs|2ds

]
<∞,

and a similar argument holds for Z̃. It follows from (A.4) and the fact that we can restrict the
infimum in (A.2) to Q ∈ C that Yt ≤ Uht .

Next, by a measurable selection theorem (see e.g., Benes [8]), choose predictable (qs, λs −
λP ) ∈ ∂g(s, Zs, Z̃s). Then, q and λ induce an equivalent probability measure, Qg, with Radon-
Nikodym derivative given by (2.5). Proceeding as in (A.4) with q, λ and Qg (where the in-
equality in (A.4) becomes an equality) yields

Yt = EQg

[
Uhtj+1

+

∫ tj+1

t
r(s, qs, λs − λP )ds | Ft

]
. (A.5)

Thus, by the definition of Uht in (A.2), we get Yt ≥ Uht . Therefore, indeed Yt = Uht for all
t ∈ (tj , tj+1]. This shows (3.9). (3.10) is seen similarly by setting h = 0 in (A.1). This proves
part (a) of the theorem.

To see part (b), note that by part (a), there exist square-integrable (Z∗, Z̃∗) such that (3.11)
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holds. Hence,

V ∗tj+1
− Utj

(
V ∗tj+1

)
= M∗,gtj+1

−A∗,gtj+1
− Utj (M

∗,g
tj+1

+A∗,gtj+1
)

= M∗,gtj+1
−M∗,gtj

=

∫ tj+1

tj

Z∗sdWs +

∫ tj+1

tj

Z̃∗sdÑs −
∫ tj+1

tj

g(s, Z∗s , Z̃
∗
s )ds.

From (3.4), part (b) follows.

Proof of Eqn. (6.16): We now show that our approximation scheme converges. Suppose
that equations (6.1)–(6.7) hold with a square-integrable p-dimensional Markov process, X , and
an arbitrary function (driver) g : [0, T ]× Rd × Rk → R that is uniformly Lipschitz continuous
in (z, z̃). The following theorem establishes convergence of our approximation scheme:

Theorem 16 We have that

lim
π→0

lim
M→∞

lim
N→∞

Y π,M,N
T0

→ YT0 in L2,

lim
π→0

lim
M→∞

lim
N→∞

Zπ,M,N → Z in L2(dP × ds,Ω× [0, T ]),

lim
π→0

lim
M→∞

lim
N→∞

Z̃π,M,N → Z̃ in L2(dP × ds,Ω× [0, T ]).

Proof It follows from Bouchard and Elie [15] that Y π
t converges to Yt in L2. From this and

Lemma 17 below we may conclude that it is sufficient to prove that Y π,M,N
T0

converges to Y π,M
T0

in L2, which would follow if
lim
N→∞

Y π,M,N
T0

→ Y π,M
T0

in L2.

And this follows from Lemma 18 below. The proof for Zπ,M,N and Z̃π,M,N is similar.

Lemma 17 For every t ∈ [T0, T1] and for fixed π, we have that Y π,M
t → Y π

t , Zπ,Mt → Zπt and

Z̃π,Mt → Z̃πt in L2 as M tends to infinity.

Proof The lemma would follow if we could show by a backward induction that, for every sjp,

we have Y π,M
sjp → Y π

sjp , Z
π,M
sjp → Zπsjp and Z̃π,Msjp → Z̃πsjp in L2

1, L2
d and L2

k, respectively. Since our

basis functions span the entire space, L2
1(Fsjp), the lemma clearly holds for sjp = T . (Without

loss of generality we may set Zπ,MT1
= ZπT1

and Z̃π,MT1
= Z̃πT1

.) It will be useful to consider

the projection onto the span of ψM (sjp,X πsjp) and ψ̃M (sjp,X πsjp), say P̂ π,M and
˜̂
P π,M , respec-

tively, instead of the projection onto the span of ψM (sjp,X πsjp)∆Wjp and ψ̃M (sjp,X πsjp)∆Ñjp,
respectively. We write

γπ,Msjp ψM (sjp,X πsjp) = P̂ π,M (YM
sj(p+1)

∆Wjp)/E
[
∆2Wjp

]
= P̂ π,M

(
Ejp[Y

π,M
sj(p+1)

∆Wjp]
)
/E
[
∆2Wjp

]
M→∞→ Ejp[Y

π
sj(p+1)

∆Wjp]/E
[
∆2Wjp

]
= Zπsjp ,
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in L2, where we used (6.2) and (6.4) in the first equality. The convergence then follows since, by

the induction assumption, we have that Ejp

[
Y π,M
sj(p+1)

∆Wjp

]
converges in L2 to Ejp

[
Y π
sj(p+1)

∆Wjp

]
as M tends to infinity. Similarly,

γ̃π,Msjp ψ̃M (sjp,X πsjp) = ˆ̃P π,M (YM
sj(p+1)

∆Ñjp)/E
[
∆2Ñjp

]
= ˆ̃P π,M

(
Ejp[Y

π,M
sj(p+1)

∆Ñjp]
)
/E
[
∆2Ñjp

]
M→∞→ Ejp[Y

π
sj(p+1)

∆Ñjp]/E
[
∆2Ñjp

]
= Z̃πsjp ,

in L2, where we used (6.3) and (6.5) in the first equality. The lemma is now a consequence of
(6.1) and (6.6).

Lemma 18 For all j, we have that απ,M,N
sjp → απ,Msjp , γπ,M,N

sjp → γπ,Msjp and γ̃π,M,N
sjp → γ̃π,Msjp as

N tends to infinity.

Proof By the Law of Large Numbers (LLN), we have that (Aπ,M,N
sjp ), (Āπ,M,N

sjp ) and (Ãπ,M,N
sjp )

converge to (Aπ,Msjp ), (Āπ,Msjp ) and (Ãπ,Msjp ), respectively. We prove the claim by a backward
induction. For α, γ, γ̃ ∈ RM and x ∈ Rd set

F (T1, α, γ, γ̃, x) : = w(x)

F (sjp, α, γ, γ̃, x) : = αmM (sjp, x) + g(sjp, γψ
M (sjp, x), γ̃ψ̃M (sjp, x))∆jp for sjp < T1.

Furthermore, for every j, p, F (sjp, ·) is continuous in x and Lipschitz continuous in (α, γ, γ̃).
Moreover, by the LLN we have that

1

N

N∑
n=1

F (sj(p+1), α
π,M
sj(p+1)

, γπ,Msj(p+1)
, γ̃π,Msj(p+1)

,X π,nsj(p+1)
)mM (sjp,X π,nsjp )

N→∞→ E[F (sj(p+1), α
π,M
sj(p+1)

, γπ,Msj(p+1)
, γ̃π,Msj(p+1)

,X πsj(p+1)
)mM (sjp,X πsjp)].

Since, by Lipschitz continuity of g and the induction assumption, we have that

1

N

N∑
n=1

(F (sj(p+1), α
π,M,N
sj(p+1)

, γπ,M,N
sj(p+1)

, γ̃π,M,N
sj(p+1)

,X π,nsj(p+1)
)

− F (sj(p+1), α
π,M
sj(p+1)

, γπ,Msj(p+1)
, γ̃π,Msj(p+1)

,X π,nsj(p+1)
))mM (sjp,X π,nsjp )

≤
(
|απ,M,N
sj(p+1)

− απ,Msj(p+1)
|+ |γπ,M,N

sj(p+1)
− γπ,Msj(p+1)

|+ |γ̃π,M,N
sj(p+1)

− γ̃π,Msj(p+1)
|
)

× 1

N

N∑
n=1

mM (sjp,X π,nsjp )
N→∞→ 0,

it follows that

1

N

N∑
n=1

F (sj(p+1), α
π,M,N
sj(p+1)

, γπ,M,N
sj(p+1)

, γ̃π,M,N
sj(p+1)

,X π,nsj(p+1)
)mM (sjp,X π,nsjp )

N→∞→ E[F (sj(p+1), α
π,M
sj(p+1)

, γπ,Msj(p+1)
, γ̃π,Msj(p+1)

,X πsj(p+1)
)]mM (sjp,X πsjp).
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Therefore,

απ,M,N
sjp = (Aπ,M,N

sjp )−1 1

N

N∑
n=1

Y π,M,N
sj(p+1)

mM (sjp,X π,nsjp )

= (Aπ,M,N
sjp )−1 1

N

N∑
n=1

F (sj(p+1), α
π,M,N
sj(p+1)

, γπ,M,N
sj(p+1)

, γ̃π,M,N
sj(p+1)

,X n,πsj(p+1)
)mM (sjp,X π,nsjp )

→ (Aπ,Msjp )−1E
[
F (sj(p+1), α

π,M
sj(p+1)

, γπ,Msj(p+1)
, γ̃π,Msj(p+1)

,X πsj(p+1)
)mM (sjp,X πsjp)

]
= (Aπ,Msjp )−1E

[
Y π,M
sj(p+1)

mM (sjp,X πsjp)
]

= απ,Msjp .

By replacing απ,M,N
sjp by γπ,M,N

sjp , Aπ,Mj by Āπ,Msjp , and mM (sjp,X π,nsjp ) by ψM (sjp,X π,nsjp ), it follows

similarly that γπ,M,N
sjp converges to γπ,Msjp . Also, by replacing απ,M,N

sjp by γ̃π,M,N
sjp , Ãπ,Msjp by ˜̄Aπ,Msjp ,

and mM (sjp,X π,nsjp ) by ψ̃M (sjp,X π,nsjp ), it follows similarly that γ̃π,M,N
sjp converges to γ̃π,Msjp . This

proves the induction.
Then, applying Theorem 16 above three times completes the proof of (6.16).

Proof of Proposition 13: This follows from (A.5) in the proof of Theorem 8(a).

Proof of Theorem 15: The stated convergence results follow as a consequence of our con-
vergence results for BS∆Es (see the proof of (6.16)). Next, choose a fixed n ∈ {1, . . . , N3}. To
show the biased high property, we then write

E
[
Ṽ upp,N3

0

]
= E

[
dQg,π,M,N2,n

dP
E

[
max

tj∈{0,...,T}

(
Π(tj , X

n
tj ) + Uupper,h,π,M,N3,n

tj
+Mg,π,M,N1,n

T −Mg,π,M,N1,n
tj

)
+
∑
j,p

∫ sj(p+1)

sjp

r(s, qπ,M,N2,n
sjp , λπ,M,N2,n

sjp − λP )ds∣∣∣∣Wn′
sjp , N

n′
sjp , X

n′
sjp , p = 1, . . . , P, j = 1, . . . , L, n′ = 1, . . . , N3

]]
≥ E

[
dQg,π,M,N2,n

dP

[
max

tj∈{0,...,T}

(
Π(tj , X

n
tj ) + uhtj (X

n
tj ) +Mg,π,M,N1,n

T −Mg,π,M,N1,n
tj

)
+
∑
j,p

∫ sj(p+1)

sjp

r(s, qπ,M,N2,n
sjp , λπ,M,N2,n

sjp − λP )ds

]]
≥ U0

(
max

tj∈{0,...,T}

(
Π(tj , X

n
tj ) + uhtj (X

n
tj ) +Mg,π,M,N1,n

T −Mg,π,M,N1,n
tj

))
≥ U0

(
max

tj∈{0,...,T}

(
Π(tj , X

n
tj ) + uhtj (X

n
tj ) +Mg∗,n

T −Mg∗,n
tj

))
= V ∗0 ,

where we have used Proposition 14 and Jensen’s inequality in the first inequality, (6.14) in the
second inequality, and Proposition 6 in the last inequality and also in the last equality.
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