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ABSTRACT

In this paper, we introduce a new estimator for curve length based on the number of intersections of an
anisotropic test system of parallel lines with the curve. The estimator is similar to a Horvitz-Thompson
estimator since the outcome of the experiment is weighted bythe probability of the realization of the random
angle of the test system. It is shown how the directional distribution of the angle of the sampling grid can be
chosen in order to minimize the variance of this estimator ifa-priori information of the directional distribution
of the curve is known. For special curves the variance is calculated and it is shown that the variance of our
estimator is smaller than the variance of the usual estimator based on an isotropic grid.

Keywords: stereology, length estimation, surface area estimation, anisotropic sampling grid, directional
distribution.

INTRODUCTION

Classical stereological estimators are based on the
intersection of an uniform random test system and an
object. For estimating the length and surface area of an
object, the test system must additionally be isotropic,
see Baddeley and Jensen (2005). These estimators
are unbiased due to the sampling procedure. They
do not, however, use any a-priori knowledge of the
object of interest. These isotropic uniform random test
systems are used since decades for the estimation of
curve length in stereology. By counting the number of
intersection points with the test system and multiplying
this number with a constant one gets an unbiased
estimator for curve length. This constant depends
only on the mean length per unit area of the test
system. However, if the curve from which the length is
estimated is extremely anisotropic, then this estimator
has very high variance. This is due to the isotropic
rotation, as both very small and very high numbers of
intersections are equally likely and hence the variation
in the intersection counts is very high.

There are several spatial structures which are
highly anisotropic. Examples are nerve fibres in
skin tissue or surface area in rolled steel. The a-
priori information concerning the anisotropy of the
objects can be used to construct anisotropic sampling
grids which lead to considerably reduced estimation
variance compared to the classical isotropic sampling
grids, as it is better to choose the random rotation of
the test system in a way such that situations with a
high number of intersections are more likely since then
more information is used. Non-uniform systematic
sampling was studied in Dorph-Petersenet al. (2000)

and based on a-priori knowledge of the object under
study, more efficient estimators than the classical ones
were constructed. In this paper, we also propose to
use a-priori information of the object in order to get
more efficient estimators than the classical ones. Here,
we consider objects where the directional distribution
of the boundary is known. The directional distribution
of a curve is the distribution of the tangent angle at a
uniform random point on the curve.

In the following, we will construct an unbiased
estimator for anisotropic uniform random test systems
if the directional distribution has a probability density.
Later we will show how to choose this density in an
optimal way if the directional distribution of the curve
is known.
Optimal here means that we have minimal variance for
a given test system if only the directional distribution
of the test system can be chosen but the test system is
uniform random and the distance between the lines is
fixed. Although we are only considering test systems
of parallel lines in this paper, the ideas can also be
extended to other test systems, see the discussion
section.

PRELIMINARIES

The problem considered in this paper is the
estimation of the lengthν1(Y) of a curve Y ⊂
R

2. To estimate this length we intersect the curve
with a random test systemΛz,t . We will consider
both isotropic and anisotropic uniform random test
systemsΛz,t of parallel lines a distanceh apart. The
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construction of such a test system goes as follows
(Cruz-Orive (2002); Baddeley and Jensen (2005)).
First we construct two independent random variables,
z, uniformly distributed in the interval[0,h), and t,
distributed according to a probability densityf on
[0,π). Here, it is assumed that

f : [0,π) → (0,∞) and f (φ) > 0 ∀φ ∈ [0,π)
(1)

Let L1(z, t) denote a line with directiont and translated
by z. Further, let L⊥

1 (0, t) denote the orthogonal
complement of the lineL1(0, t) with angle t going
through the origin. We identifyL⊥

1 (0, t) with R and
assume thatz∈ L⊥

1 (0, t). Then

Λz,t =
⋃

k∈Z

L1(t,z+k ·h) (2)

If f ≡ 1/π we have an isotropic uniform random
(IUR) test system, otherwise we call the test system
anisotropic uniform random (AUR). For IUR test
systemsΛz,t we get the classical unbiased estimator
ν̂1(Y) for ν1(Y) with

ν̂1(Y) :=
π
2

hν0(Y∩Λz,t) (3)

Here,ν0(Y∩Λz,t) denotes the number of intersection
points. In the next section we will introduce a
generalization of this estimator for AUR test systems.

THE ESTIMATOR

Here, we consider a uniform random test system
with random orientationt distributed according to a
probability densityf on [0,π) with f (t) > 0 for all t ∈
[0,π). Then we get the following unbiased estimator
for the length of a curve.

Proposition 1 Let f(t) be the rotation density of
the test systemΛz,t , where z is a uniform random
translation. Then

ν̂1(Y, f ) :=
h

2 f (t)
ν0(Y∩Λz,t) (4)

is an unbiased estimator ofν1(Y) for a curve Y .

Proof: It holds that

Eν̂1(Y, f ) =
h
2

π∫

0

h∫

0

ν0(Y∩Λz,t)

f (t)
f (t)

dz
h

dt

=
1
2

π∫

0

h∫

0

ν0(Y∩Λz,t)dzdt

The unbiasedness of the estimator can now be proven
in the same way as for the isotropic estimator. �

Note that the estimator based on an AUR test system
can be interpreted as a continuous version of a Horvitz-
Thompson estimator where we divide by the sampling
probability which here is given by the density function
f (t).
The next proposition states a formula for the second
moment of the estimator.

Proposition 2 The second moment of the estimator in
(4) is given by

E
(
ν̂2

1(Y, f )
)

=
1
4

π∫

0

1
f (t)

Ez
(
h2ν2

0(Y∩Λz,t)
)

dt,

where the inner expectation is with respect to z
uniformly distributed in[0,h).

Proof: This follows directly from

E
(
ν̂2

1(Y, f )
)

= Et
[
E

(
ν̂2

1(Y, f )|t
)]

and

E
(
ν̂2

1(Y, f )|t
)

= Ez
(
ν̂2

1(Y, f )
)

=
1

4 · f (t)2Ez
(
h2ν2

0(Y∩Λz,t)
)

Here,Et( ·),Ez( ·) are expectations with respect tot,z,
respectively. �

As an example, we will now consider two special cases
of curves, convex curves and line segments.

Proposition 3 If Y is a convex curve, or the boundary
of a convex object, the second moment of the estimator
in (4) is given by

E
(
ν̂2

1(Y, f )
)

(5)

=

π∫

0

1
f (t)

Varzν̂1(Y
′
t )dt+

π∫

0

1
f (t)

ν2
1(Y′

t )dt

If Y is a line segment, we get

E
(
ν̂2

1(Y, f )
)

(6)

=
1
4




π∫

0

1
f (t)

Varzν̂1(Y
′
t )dt+

π∫

0

1
f (t)

ν2
1(Y′

t )dt




Here, Y′t is the orthogonal projection of Y onto the
orthogonal complement of the test system andν̂1(Y′

t )
is the estimator of the length of Y inR1 based on a
uniform random point grid.
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Proof: Let us first consider the case whereY is the
boundary of a convex object. Then, almost surely, the
number of intersections of a line from the test system
andY is 0 or 2. It is 2 if the translation of the line lies
in the projection ofY onto the orthogonal complement
of the line. This gives

E
(
ν̂2

1(Y, f )
)

=
1
4

π∫

0

1
f (t)

Ez
(
h2ν2

0(Y∩Λz,t)
)

dt

=

π∫

0

1
f (t)

(
Varz ν̂1(Y

′
t )+

(
Ezν̂1(Y

′
t )

)2
)

dt

=

π∫

0

1
f (t)

Varz ν̂1(Y
′

t )dt+

π∫

0

1
f (t)

ν2
1(Y′

t )dt

If Y is a line segment, then the number of intersections
is almost surely 0 or 1 and we get the result in the same
way as above. �

The result of Proposition 3 can be easily generalized to
arbitrary curves if the total projection is used instead of
the orthogonal projection.

OPTIMAL CHOICE OF THE
DIRECTIONAL DISTRIBUTION

The results for the second moments given in the
previous section correspond to the decomposition of
the variance into two parts, where one part is due to
the projection and the other due to the estimation of
the projection by point counting. For a convex curve
Y, that is

Varν̂1(Y, f )=VarE(ν̂1(Y, f )|t)+EVar

(
1

f (t)
ν̂1(Y

′
t )|t

)

(7)
For non-convex curvesY instead ofY′

t the half total
projection ontoL⊥

1 (0, t) has to be used here and in the
rest of the section, but the results are still valid. In the
following we will assume that the position of the curve
Y is unknown. Furthermore the distanceh between the
lines is fixed. Under this assumptions it is reasonable
to try to minimize the variance due to projection only
since the variance due to point counting is unknown.
If the densityg of the directional distribution ofY is
known, the densityf should be chosen to minimize
the variance due to projection. That is, we want to find
a probability densityf ∗ with the property

VarE(ν̂1(Y, f ∗)|t) = min
f∈F

VarE(ν̂1(Y, f )|t)

whereF is the set of all probability densities on[0,π).
The variance of a random variableX is 0 if and
only if X is constant almost surely. In our case this
corresponds to

E(ν̂1(Y, f )|t) = Ez

(
h
2

ν0(Y∩Λz,t)

f (t)

)

=
1

f (t)
ν1(Y

′
t )

!
≡ const

That is, we should choosef ∗ such that

f ∗(t) ∝ ν1(Y
′
t ) =

ν1(Y)

2

π∫

0

g(s)|sin(s− t)|ds

By normalizing the right hand side, we get

f ∗(t) =
1
2

π∫

0

g(s)|sin(s− t)|ds (8)

Figure 1 shows the minimizing densityf ∗ if the
densityg is a von Mises distribution. The von Mises
distribution plays the role of the normal distribution for
circular distributions (Mardia (1972)). Its probability
density is

g(t) =
1

Cκ
exp(−κ ·cos(2 · (t−φ))) (9)

where κ is the concentration parameter,Cκ is a
normalization constant andφ the preferred direction.

Von Mises density for k=2
Minimizing density f

 

0
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0.4
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0.8

1

0.5 1 1.5 2 2.5 3

x

Fig. 1.The density g for a von Mises distribution and
the minimizing density f∗.

A closer look at the definition off ∗ reveals that
it is given by a convolution ofg with sin, so it is a
smoothened version ofg. This can be seen is Figure 1,
where we see thatf ∗ is more equally distributed over
[0,π) thang. This seems to be a good property since
we have to divide byf ∗(t) in the estimator̂ν1(Y, f ∗).
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CONVEX CURVES FOR A GIVEN
DIRECTIONAL DISTRIBUTION

In order to calculate the second moments in
Proposition 3 we need parametric equations of curves
for a given density of the directional distribution.
Suppose the directional distribution is given by a
probability densityg on [0,π). We assume thatg(t +
π) = g(t), i.e. that g is periodic onR with period
π. Then we can construct a convex curveY with the
following parametric equation:

x(t) :=




t∫

0
g(s)cossds

t∫

0
g(s)sinsds


 , t ∈ [0,2π]

This curve is closed sincex(2π) = x(0) and the length
is 2 since

2π∫

0

‖ x′(t) ‖ dt =

2π∫

0

f (t)dt = 2

Furthermore, at pointt the tangent ofx(t) is equal to
t modπ since

x′(t) = g(t)

(
cost
sint

)

For an interval[a,b) ⊂ [0,π), the probability that the
tangent of a uniform random point ofY is in [a,b) can
be calculated,

P(Tan[Y,x] ∈ [a,b))

=
1
2

2π∫

0

‖ x′(t) ‖ 1I(t ∈ [a,b)∪ [a+π,b+π))dt

=
1
2




b∫

a

g(t)dt+

b+π∫

a+π

g(t)dt


 =

b∫

a

g(t)dt

Here, we use the periodicity ofg. Since this holds for
all intervals[a,b), the two measures have to coincide
on the Borel-σ -algebra on[0,π). This means that if
Y is given by the parametric equationx(t), we have a
convex curve with directional distribution according to
the densityg. By multiplying x(t) by 1/2 · ν1(Ỹ), we
get a curvẽY of lengthν1(Ỹ) with the same directional
distribution. This representation of a convex curve will
be used in the next section to calculate the variance in
some examples.

EXAMPLES

CONVEX CURVE INTERSECTED BY AN
AUR TEST SYSTEM

Now we will calculate the second moment for
our estimator for a convex curveY with distribution
densityg. We assume that the curveY is given in the
parametric form explained in the preceding section. An
example of such a curve with von Mises directional
distribution is shown in Figure 2.

Fig. 2.Anisotropic curve intersected by a test system.

The parametrization ofY is given by

x(t) :=
ν1(Y)

2




t∫

0
g(s)cossds

t∫

0
g(s)sinsds


 , t ∈ [0,2π]

The lengthν1(Y′
t ) of the orthogonal projection ofY for

a givent is

ν1(Y
′
t ) =

ν1(Y)

2

π∫

0

g(s)|sin(s− t)|ds

We can use the representation of the second moment
from Proposition 3, i.e.

E
(
ν̂2

1(Y, f )
)

(10)

=

π∫

0

1
f (t)

Varzν̂1(Y
′
t )dt+

π∫

0

1
f (t)

ν2
1(Y′

t )dt

In the rest of this section we will consider densitiesf1
and f ∗ defined by

f1(t) :=
1
π

f ∗(t) :=
1
2

π∫

0

g(s)|sin(s− t)|ds
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Let us first consider the second integral in (10). Then
we get on the one hand

π∫

0

1
f1(t)

ν2
1(Y′

t )dt

=
π
4

ν2
1(Y)

π∫

0




π∫

0

g(s)|sin(s− t)|ds




2

dt

and on the other hand

π∫

0

1
f ∗(t)

ν2
1(Y′

t )dt = ν2
1(Y)

π∫

0

f ∗(t)dt = ν2
1(Y)

which is obvious due to the selection off ∗. If g is
von-Mises distributed, we get forf1 by numerical
integration

π∫

0

1
f1(t)

ν2
1(Y′

t )dt ≈






1.412π
4ν2

1(Y) , if κ = 2

1.504π
4ν2

1(Y) , if κ = 5

1.536π
4ν2

1(Y) , if κ = 10

Now we consider the first integral in (10). There we
have to calculate the variance due to estimation of
the length of the projection by a point grid. This is
(Baddeley and Jensen (2005))

Varzν̂1(Y
′
t )

= h2
(

p(⌊
ν1(Y′

t )

h
⌋+1)2+(1− p)(⌊

ν1(Y′
t )

h
⌋)2

)

−ν2
1(Y′

t )

where

p =
ν1(Y′

t )

h
−⌊

ν1(Y′
t )

h
⌋

With this the integral can be calculated numerically
for f1 and f ∗ to get the exact variance including the
usual fluctuation of the variance of estimators based
on systematic sampling (also called ’Zitterbewegung’).
We can use the following approximation formula
(Cruz-Orive (1989; 2002))

Varzν̂1(Y
′
t ) ≈ 0.1667h2

This is independent ofν1(Y′
t ), so we only have to

calculate

π∫

0

1
f1(t)

dt = π2

and

π∫

0

1
f ∗(t)

dt ≈






11.272 , if κ = 2

13.082 , if κ = 5

14.441 , if κ = 10

Here we thus get

π∫

0

1
f1(t)

dt ≤

π∫

0

1
f ∗(t)

dt

but with the factor h2 in the approximation this
contribution to the variance tends to zero ash tends to
zero whereas the contribution due to the projection is
constant. The variances for both estimators are plotted
with respect toh in Figures 3 and 4 for a von Mises
distributed convex curve with parameterκ = 2 and
κ = 5 respectively. One can see that the variance for
f ∗ is always lower.

Isotropic test system
Anisotropic test system
Approximation for anisotropic test system
Approximation for isotropic test system

 

Variance for an anisotropic curve
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Fig. 3.Variance forκ = 2 for a curve of length1.

Isotropic test system
Anisotropic test system
Approximation for anisotropic test system
Approximation for isotropic test system

 

Variance for an anisotropic curve
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Fig. 4.Variance forκ = 5 for a curve of length1.
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Let us now we assume that we use the ’wrong’
anisotropic test system. In Figure 5, we have plotted
the variance for a von Mises distributed convex curve
with Parameterκ = 5 for the estimator fitted toκ = 2
and the estimator fitted toκ = 10.

Isotropic test system
For k = 5 fitted anisotropic test system
Approximation for anisotropic test system
Approximation for isotropic test system
For k = 2 fitted anisotropic test system
For k = 10 fitted anisotropic test system

 

Variance for an von Mises distributed curve with k = 5
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0.5
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0.1 0.2 0.3 0.4 0.5

Distance h between the lines

Fig. 5. Variance for κ = 5 for a curve of length1
including wrong fitted test systems.

The estimators with the anisotropic test systems
behave very similar for smallh, even if the test system
is not fitted to the right distribution. It seems very
robust to the wrong directional distribution. In Figure
6 the densitiesf ∗ for κ = 2,5,10 are plotted with the
densities ofg for these parameters. There is no great
difference for f ∗ for different parameters, although
there is a big difference forg.

Von Mises density for k = 2
Von Mises density for k = 5
Von Mises density for k = 10
Minimizing density for k = 2
Minimizing density for k = 5
Minimizing density for k = 10
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x

Fig. 6.Densities for different parameters.

We can go further and assume that we fit the
density f ∗ to the wrong direction. This is plotted in
figure 7. There we assumed that the direction is chosen
with an error of 0.3.

Isotropic test system
For k = 5 fitted anisotropic test system
For k = 5 fitted anisotropic test system to wrong direction
For k = 2 fitted anisotropic test system to wrong direction
For k = 10 fitted anisotropic test system to wrong direction

 

Variance for an von Mises distributed curve with k = 5

0

0.2

0.4

0.6

Variance

0.1 0.2 0.3 0.4 0.5

Distance h between the lines

Fig. 7. Variance for κ = 5 for a curve of length
1 including wrong fitted test systems with wrong
directions.

There we see that even for the wrong direction the
anisotropic estimators are better for realistic values of
h. Note thatν1(Y) = 1, i.e. the maximal diameter is
less than 1/2. The considered densities are plotted in
figure 8 to get an idea of the error.

True density for k = 5
Density for k = 2 with wrong direction
Density for k = 5 with wrong direction
Density for k = 10 with wrong direction
Minimizing density for k = 5
Minimizing density for k = 2 with wrong direction
Minimizing density for k = 5 with wrong direction
Minimizing density for k = 10 with wrong direction
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Fig. 8.Densities for different parameters in figure 7.

One could also consider a random processes of
such a curveY. Assume that we want to estimate the
mean length per unit area of such a process. If we have
a Boolean model (Stoyanet al. (1995)) ofY we get
similar results for the variance since the objects are
independent of each other.

RANDOMLY ORIENTATED LINE
SEGMENTS

Now we consider the variance for a line segment
Ys with direction s which is random and distributed
according to the densityg. We use the same densities
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f1 and f ∗ as in the preceding example. Proposition 3
yields

E
(
ν̂2

1(Y, f )
)

=
1
4

π∫

0

π∫

0

g(s)
f (t)

Varz ν̂1(Y
′
s,t)dt ds

+
1
4

π∫

0

π∫

0

g(s)
f (t)

ν2
1(Y′

s,t)dt ds

The length of the orthogonal projection is in this
caseν1(Y′

s,t) = ν1(Y)|sin(t − s)|. With this the second
integral can be calculated as before. The first integral
can also be calculated by numerical integration in
the same way as for a convex curve and the same
approximation formula can be considered. The results
are plotted in Figure 9 for a von Mises distributed line
segment with parameterκ = 5.

Isotropic test system
Anisotropic test system
Approximation for isotropic test system
Approximation for anisotropic test system

 

Variance for an anisotropic line segment
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Fig. 9. The variance forκ = 5 for a line segment of
length1.

For other values ofκ the results are similar. Again,
Boolean models could also be considered.

DISCUSSION

We have introduced an unbiased estimator based
on anisotropic uniform random sampling grids. This
is a generalization of the existing estimators for curve
length in R

2 since these are included as special
cases. It is also shown how to choose the directional
distribution of the test system such that the variance
is minimized if the directional distribution of the
curve is known. For two special cases, namely a
deterministic bounded closed curve with von Mises
distributed tangents and a line segment with von Mises
distributed orientation, the variance was calculated and
it was shown that the variance of the estimator based
on the anisotropic test system is less than the variance

of the isotropic test system, even if the density of the
directional distribution of the test system is fitted to a
wrong directional distribution of the curve. It seems
that our estimator is robust against such errors in the a-
priori assumption, but it seems that it is more sensitive
to errors in the choice of the preferred direction than in
the shape of the distribution.
The ideas of this paper can also be generalized
to estimators based on lines or planes inR

3 for
curve length and surface area estimation. It is also
possible to generalize these ideas to estimators based
on uniform random test systems not consisting of
lines but of 1-dimensional probes with directional
distribution according to our variance minimizing
density f ∗ similar to the cycloid arcs, see Baddeley
et al. (1986). Then each individual intersection point
hast to be weighted with the value 1/ f (φ), whereφ
is the angle of the tangent at the intersection point of
the test system. We have done simulation studies for
this problem, but there no unique statements for the
variance can be done since the variance also depends
on the position of the probes with respect to each other.
In many examples, however, the anisotropic estimator
gives a better estimate than the isotropic estimator.
Additionally, these ideas could be extended to the
estimators from local stereology, see Jensen (1998).
To conclude, we have shown that using a-priori
information of a curve can reduce the variance of
curve length estimation significantly and it is our belief
that these estimators can easily be applied if a-priori
information of the preferred direction and distribution
of the object of interest is available.
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