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ABSTRACT

In this paper, we introduce a new estimator for curve lengtbedd on the number of intersections of an
anisotropic test system of parallel lines with the curve.e Hstimator is similar to a Horvitz-Thompson
estimator since the outcome of the experiment is weightetidprobability of the realization of the random
angle of the test system. It is shown how the directionatitistion of the angle of the sampling grid can be
chosen in order to minimize the variance of this estimatarjfriori information of the directional distribution
of the curve is known. For special curves the variance isutalled and it is shown that the variance of our
estimator is smaller than the variance of the usual estintet®ed on an isotropic grid.

Keywords: stereology, length estimation, surface areiBmatibn, anisotropic sampling grid, directional
distribution.

INTRODUCTION and based on a-priori knowledge of the object under

study, more efficient estimators than the classical ones

Classical stereological estimators are based on thgere constructed. In this paper, we also propose to
intersection of an uniform random test system and agse a-priori information of the object in order to get

object. For estimating the length and surface area of afiore efficient estimators than the classical ones. Here,
object, the test system must additionally be isotropicwe consider objects where the directional distribution
see Baddeley and Jensen (2005). These estimat@fthe boundary is known. The directional distribution

are unbiased due to the sampling procedure. Theyf a curve is the distribution of the tangent angle at a
do not, however, use any a-priori knowledge of theyniform random point on the curve.

object of interest. These isotropic uniform random test ] ) )
systems are used since decades for the estimation of N the following, we will construct an unbiased
curve length in stereology. By counting the number ofeStimator for anisotropic uniform random test systems
intersection points with the test system and multiplyingf the directional distribution has a probability density.
this number with a constant one gets an unbiase@ter we will show how to choose this density in an
estimator for curve length. This constant dependgptimal way if the directional distribution of the curve
only on the mean length per unit area of the tests known.

system. However, if the curve from which the length isOptimal here means that we have minimal variance for
estimated is extremely anisotropic, then this estimato® given test system if only the directional distribution
has very high variance. This is due to the isotropi®f the test system can be chosen but the test system is
rotation, as both very small and very high numbers ofiniform random and the distance between the lines is
intersections are equally likely and hence the variatiofixed. Although we are only considering test systems
in the intersection counts is very high. of parallel lines in this paper, the ideas can also be

. . extended to other test systems, see the discussion
There are several spatial structures which ar€ o ction

highly anisotropic. Examples are nerve fibres in

skin tissue or surface area in rolled steel. The a-

priori information concerning the anisotropy of the

objects can be used to construct anisotropic sampling PRELIMINARIES

grids which lead to considerably reduced estimation

variance compared to the classical isotropic sampling The problem considered in this paper is the
grids, as it is better to choose the random rotation oéstimation of the lengthvi(Y) of a curveY C
the test system in a way such that situations with &2. To estimate this length we intersect the curve
high number of intersections are more likely since themvith a random test system,;. We will consider
more information is used. Non-uniform systematicboth isotropic and anisotropic uniform random test
sampling was studied in Dorph-Petersaral. (2000) systemsA;; of parallel lines a distanck apart. The
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construction of such a test system goes as follow¥he unbiasedness of the estimator can now be proven

(Cruz-Orive (2002); Baddeley and Jensen (2005))in the same way as for the isotropic estimator. [

First we construct two independent random variables,

z, uniformly distributed in the interval0,h), andt,  Note that the estimator based on an AUR test system

distributed according to a probability densify on  can be interpreted as a continuous version of a Horvitz-

[0,77). Here, it is assumed that Thompson estimator where we divide by the sampling
f:[0,7) — (0,0) and f(@)>0 Yoe[0,m pf)E?)babiIity which here is given by the density function

(1) ' i

LetL;(zt) denote a line with directionand translated Lzemr;?\)t(to?;zgoessl?i?nnats c’:?tes a formula for the second

by z Further, letL;i(0,t) denote the orthogonal '

complement of the lind;(0,t) with anglet going

through the origin. We identify.{ (0,t) with R and

assume that € L1 (0,t). Then

Azt = | La(t,z+k-h) @  EVAY,f) =
keZ

Proposition 2 The second moment of the estimator in
(4) is given by

i

T
/flt)Ez(hzvg(Yﬂ/\z’t)) dt,
0

If f =1/m we have an isotropic uniform random \\here the inner expectation is with respect to z
(IUR) test system, otherwise we call the test SySte”ﬂmiforme distributed 0, h)

anisotropic uniform random (AUR). For IUR test
systemsAz; we get the classical unbiased estimatoip. .- This follows directly from
V1(Y) for vi(Y) with

—

B (2(Y, ) = B [E (Y, D))

~ m
vi(Y) = zhvo(Y NAzt) (3)
2 and
Here,vo(Y N/Azt) denotes the number of intersection E(GZ(Y f)]t) - E (GZ(Y f))
points. In the next section we will introduce a 1 z 11 ’
generalization of this estimator for AUR test systems. _ mEz(hzvg(Yﬂ/\;t))
Here,E:(-),E,(-) are expectations with respecttta,

Here, we consider a uniform random test syste
with random orientatiort distributed according to a
probability densityf on [0, ) with f(t) > O for allt €
[0, ). Then we get the following unbiased estimator
for the length of a curve.

s an example, we will now consider two special cases
of curves, convex curves and line segments.

Proposition 3 If Y is a convex curve, or the boundary
of a convex object, the second moment of the estimator

Proposition 1 Let f(t) be the rotation density of " (4) is given by

the test systemi\;t, where z is a uniform random E(Qf(y,f)) (5)
translation. Then - -
1 1
- h _ / ——_Var, 0y (Y) dt + / (Y dt
Y, f) = YNA 4 zV1lh 1\
is an unbiased estimator of (Y) for a curve Y. IfY is aline segment, we get
E (VA(Y, )) (6)
Proof: It holds that (71 T
_ - - G ! = 2!
- h (YA L dz =3 |/ fgvermaas [ g viona
EvL(Y,f) — E//T)’f(t)ﬁdt 0 0
00 Here, Y is the orthogonal projection of Y onto the
1 7 h orthogonal complement of the test system an@;’)
= —//vo(Ym/\th)dzdt is the estimator of the length of Y &' based on a
20 5 uniform random point grid.
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Proof: Let us first consider the case whefeis the whereF is the set of all probability densities d@, 7).
boundary of a convex object. Then, almost surely, th&he variance of a random variabk is 0 if and
number of intersections of a line from the test systenonly if X is constant almost surely. In our case this
andY is 0 or 2. It is 2 if the translation of the line lies corresponds to

in the projection oY onto the orthogonal complement

of the line. This gives S _ hvo(YNAz)
E (Vl (Y, f)) 1 , |
p = Wvl(Yt) = const
1/ 1 5 o
= - E; (hv (Yﬂ/\ .t) dt
4 / f(t) 2(Tvo z)) That is, we should choosé such that
n 1 T
_ S o/ = ) 2 N vi(Y .
: O/W (Varzvl(Yt )+ (EVa(Y)) ) dt () Dva(Y) = 1é )/g(s)\sm(s—t)\ds
™ ™ ’
:/%Varzﬁl(Yt’)dtJr/%Vf(Y{)dt By normalizing the right hand side, we get
0 0

F*(t) = 5 [ 9(s)[sin(s—t)|ds (8)

If Y is a line segment, then the number of intersections
is almost surely 0 or 1 and we get the resultin the same

way as above. U Figure 1 shows the minimizing density* if the
N ) ) densityg is a von Mises distribution. The von Mises
The result of Proposition 3 can be easily generalized tgjstribution plays the role of the normal distribution for

arbitrary curves if the total projection is used instead ofjrcular distributions (Mardia (1972)). Its probability
the orthogonal projection. density is

NI =
O\:

1
OPTIMAL CHOICE OF THE 9(t) = g ek cos2:(t=9)) ()
DIRECTIONAL DISTRIBUTION where k is the concentration parametet, is a

normalization constant angthe preferred direction.

The results for the second moments given in the

previous section correspond to the decomposition of

the variance into two parts, where one part is due to

the projection and the other due to the estimation of

the projection by point counting. For a convex curve
Y, that is

Varvy (Y, f)=VarE (v (Y, f)|t) +EVar (ﬁlt)ol(Y‘/)’t)

For non-convex curve¥ instead ofY the half total

projection ontd_; (0,t) has to be used here and in the
rest of the section, but the results are still valid. In the
following we will assume that the position of the curve

Von Mises density for k=2

Y is unknown. Furthermore the distarttbetweenthe - Minimizing density

lines is fixed. Under this assumptions it is reasonable ) ] o

since the variance due to point counting is unknownth€ minimizing densityf

If the densityg of the directional distribution oY is A closer look at the definition of* reveals that
knOWﬂ, the denSityr should be chosen to minimize it is given by a convolution og with Sin1 so itis a
the variance due to prOjeCtion. That iS, we want to ﬁnq;moothened version gf This can be seen is Figure 1,
a probability densityf* with the property where we see that* is more equally distributed over
[0, 1) thang. This seems to be a good property since

VarlE (Va(Y, *)[t) = minVark (vy(Y, f)[t) we have to divide by *(t) in the estimatowy (Y, f*).
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CONVEX CURVES FOR A GIVEN EXAMPLES

DIRECTIONAL DISTRIBUTION
CONVEX CURVE INTERSECTED BY AN

In order to calculate the second moments in AURTEST SYSTEM
Proposition 3 we need parametric equations of curves Now we will calculate the second moment for
for a given density of the directional distribution. our estimator for a convex curé with distribution
Suppose the directional distribution is given by adensityg. We assume that the curYeis given in the
probability densityg on [0, 7). We assume thaj(t+  parametric form explained in the preceding section. An
m = g(t), i.e. thatg is periodic onR with period example of such a curve with von Mises directional
1. Then we can construct a convex cuivavith the  distribution is shown in Figure 2.
following parametric equation:

X(t) = , tel0,2m

g(s)sinsds

o O — ~

This curve is closed sincé2m) = x(0) and the length
is 2 since

g(s)cossds /

27.1 2n
[ X(t) || dt= [ f(t)dt=2
[rroree]

Furthermore, at poirit the tangent ok(t) is equal to

t modrrsince Fig. 2. Anisotropic curve intersected by a test system.
cost The parametrization of is given by
() Jo(s)cossds
For an intervala,b) [0, ), the probability that the ~ X(t) := ——— % _ , tel0,2m]
tangent of a uniform random point ¥fis in [a,b) can Ja(s)sinsds
0

be calculated,
The lengthv; (/') of the orthogonal projection &f for

P(TanY, x| € [a,b)) agivent is

vi(Y)

= %/ | X (t) || 2(t € [a,b) U[a+ b+ m))dt vi(Y) = /g(s)\sin(s—t)yds
0

brm b We can use the representation of the second moment
/9 )dt+ / gt /9 from Proposition 3, i.e.

a+T

E (VA(Y, 1)) (10)

T T
He_re, we use the periodicity gf Since this holds_ fo_r _ / ivarz/\;l(Yt,)dt—F/in(Yt,)dt
all intervals|a,b), the two measures have to coincide f(t) f(t)

on the Borelg-algebra on[0, ). This means that if 0

Y is given by the parametric equatiatt), we have a In the rest of this section we will consider densitigs
convex curve with directional distribution according toand f* defined by
the densityg. By multiplying x(t) by 1/2- vi(Y), we _
geta curveY of Iengthvl( Y) with the same directional fi(t) =
distribution. This representation of a convex curve will n
be used in the next section to calculate the variance in f*t) = /g(s)\sin(s—t)]ds
some examples. 24

=R

| =
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Let us first consider the second integral in (10). Therand

we get on the one hand .
11272 |, ifk=2

T T
1 )2 / 1 .
—vi(Y) dt~<¢ 13082 , ifk=5
O/fl(t vi(¥) ) f(t)
. 2 14441 | if k =10
m ,
=220 [ { [as)lsinis=ids] dt  Here we thus get
0 \oO
T T
and on the other hand /idtg/ !
fa(t) fx
T 1 T 0 0
/ Vl Yt /1:>.< ) . 2 . . . .
f*(t) but with the factorh® in the approximation this
0 0

contribution to the variance tends to zeranaends to
zero whereas the contribution due to the projection is
constant. The variances for both estimators are plotted
with respect tch in Figures 3 and 4 for a von Mises

which is obvious due to the selection 6f. If g is
von-Mises distributed, we get fof; by numerical

Integration distributed convex curve with parameter= 2 and
1.412%\/12(\() Cifk=2 K*:_ 5 respectively. One can see that the variance for
o f* is always lower.
1 .
/— dt~ ¢ 1.5047vi(Y) , ifk=5
fi(t)
0 Variance for an anisotropic curve
1.536JvZ(Y) , if k=10
Now we consider the first integral in (10). There we '027
have to calculate the variance due to estimation of
the length of the projection by a point grid. This is 015
(Baddeley and Jensen (2005)) 01] S
Varz/\;]_(Yt/) 0.05 _ =
Vl (Y/) Vl(Y/) 0 0.05 01 0.15 0.2 0.25 0.3 0.35
= h2 <p(\;TtJ + 1)2+ (1_ p)('~ ht J)Z Distance h between the lines
V200 SR
where Fig. 3.Variance fork = 2 for a curve of lengti.
_vi(W) ()
== n bl
With this the integral can be calculated numerically 04 yenancelerenansorepiccune
for f; and f* to get the exact variance including the
usual fluctuation of the variance of estimators based 03]

on systematic sampling (also called 'Zitterbewegung’).
We can use the following approximation formula variance g2
(Cruz-Orive (1989; 2002))

0.1

Var,V1(Y,) ~ 0.1667h?

This is independent of1(Y/), so we only have to O oL ods 02 ok ook
Cal Cu I ate Isotropic test system
———  Anisotropic test system
Approximation for anisotropic test system
TT s Approximation for isotropic test system
/ l
5 fl(t Fig. 4. Variance fork = 5 for a curve of lengti.
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Let us now we assume that we use the 'wrong’
anisotropic test system. In Figure 5, we have plotted
the variance for a von Mises distributed convex curve
with Parametek = 5 for the estimator fitted tat = 2
and the estimator fitted to = 10.

Variance for an von Mises distributed curve with k =5

0.6

Variance 0.44

Variance for an von Mises distributed curve with k = 5 0.2 o

-
0.6 / L
0.51 / /;/
7 0 0.1 0.2 03 0.4 05
0] /// Distance h between the lines
//// _— Eg:rlggl%‘fsi’t?‘egyasr‘\iesrglropic test system
Variance L7 m e For k = 5 fitted anisotropic test system to wrong direction
037 —_— For k = 2 fitted anisotropic test system to wrong direction
7 —_— For k = 10 fitted anisotropic test system to wrong direction
0.2 ///
oal = Fig. 7. Variance fork = 5 for a curve of length
g 1 including wrong fitted test systems with wrong
o 0.1 0.2 03 04 0.5 directions
Distance h between the lines '
S ';ppk“%mdyf”tp tet s There we see that even for the wrong direction the
R aeenon e sy, anisotropic estimators are better for realistic values of

—_— For k = 10 fitted anisotropic test system

h. Note thatv,(Y) = 1, i.e. the maximal diameter is

_ , less than 12. The considered densities are plotted in
Fig. 5. Variance fork = 5 for a curve of lengthl figure 8 to get an idea of the error.

including wrong fitted test systems.

The estimators with the anisotropic test systems
behave very similar for smali, even if the test system
is not fitted to the right distribution. It seems very 2]
robust to the wrong directional distribution. In Figure
6 the densitied* for k = 2,5,10 are plotted with the 15
densities ofg for these parameters. There is no great
difference for f* for different parameters, although
there is a big difference fag.

0.5+

True density fork =5

Density for k = 2 with wrong direction

Density for k = 5 with wrong direction

Density for k = 10 with wrong direction
fffffffff Minimizing density for k =5

fffffffff Minimizing density for k = 2 with wrong direction
fffffffff Minimizing density for k = 5 with wrong direction
fffffffff Minimizing density for k = 10 with wrong direction

Fig. 8.Densities for different parameters in figure 7.

One could also consider a random processes of
such a curveY. Assume that we want to estimate the
mean length per unit area of such a process. If we have

a Boolean model (Stoyaet al. (1995)) ofY we get
Von Mies densiy for k=& similar results for the variance since the objects are
Minimizing densiy for k- 5 independent of each other.

fffffffff Minimizing density for k = 10

Von Mises density for k = 2
Von Mises density for k =5

Fig. 6. Densities for different parameters. RANDOMLY ORIENTATED LINE

We can go further and assume that we fit the SEGMENTS
density f* to the wrong direction. This is plotted in Now we consider the variance for a line segment
figure 7. There we assumed that the direction is choseyy with directions which is random and distributed
with an error of 03. according to the density. We use the same densities
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f; and f* as in the preceding example. Proposition 3of the isotropic test system, even if the density of the

yields directional distribution of the test system is fitted to a
wrong directional distribution of the curve. It seems
m Tt . . . .
> 1 [g(s o that our estimator is robust against such errors in the a-
E(Vi(Y,f)) = Z// WVarzvl(YS’t)dtds priori assumption, but it seems that it is more sensitive
00 to errors in the choice of the preferred direction than in

1 n ng(s) the shape of the distribution.
+Z//Wv12(Y&’t)dtds The ideas of this paper can also be generalized
00 ®) to estimators based on lines or planesR®d for
curve length and surface area estimation. It is also

The length of the orthogonal projection is in this possible to generalize these ideas to estimators based
casevy(Yg;) = va(Y)|sin(t —s)|. With this the second on uniform random test systems not consisting of
integral can be calculated as before. The first integraines but of 1-dimensional probes with directional
can also be calculated by numerical integration inyjistribution according to our variance minimizing
the same way as for a convex curve and the saMgnsity f* similar to the cycloid arcs, see Baddeley
approximation formula can be considered. The resultg; 5| (1986). Then each individual intersection point
are pIotted'ln Figure 9 for a von Mises distributed linep, ¢t 1o pe weighted with the valug fl( ), where@
segment with parameter= 5. is the angle of the tangent at the intersection point of
the test system. We have done simulation studies for
this problem, but there no unique statements for the
variance can be done since the variance also depends
on the position of the probes with respect to each other.
In many examples, however, the anisotropic estimator
gives a better estimate than the isotropic estimator.
Additionally, these ideas could be extended to the
estimators from local stereology, see Jensen (1998).
To conclude, we have shown that using a-priori
information of a curve can reduce the variance of
curve length estimation significantly and it is our belief

Variance for an anisotropic line segment

0.51

0.
Variance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Disanos h between the s that these estimators can easily be applied if a-priori
A information of the preferred direction and distribution
ffffffffff Approximation for anisotropic test system Of the ObJeCt Of Intel’eSt |S avallable_
Fig. 9. The variance fork = 5 for a line segment of
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