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Abstract

If a is a densely defined sectorial form in a Hilbert space which is
possibly not closable, then we associate in a natural way a holomor-
phic semigroup generator with a. This allows us to remove in several
theorems of semigroup theory the assumption that the form is closed
or symmetric. Many examples are provided, ranging from complex
sectorial differential operators, to Dirichlet-to-Neumann operators and
operators with Robin or Wentzell boundary conditions.
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1 Introduction

Form methods are most efficient to solve evolution equations in a Hilbert spaces H. The
theory establishes a correspondence between closable sectorial forms and holomorphic semi-
groups on H which are contractive on a sector (see Kato [Kat], Tanabe [Tan] and Ma–
Röckner [MaR], for example). The aim of this article is to extend the theory in two
directions and apply the new criteria to differential operators. Our first result shows that
the condition of closability can be omitted completely. To be more precise, consider a
sesquilinear form

a:D(a)×D(a) → C

where D(a) is a dense subspace of a Hilbert space H. The form a is called sectorial if
there exist a (closed) sector

Σθ = {r e−α : r ≥ 0, |α| ≤ θ}

with θ ∈ [0, π
2
), and γ ∈ R, such that a(u) − γ ‖u‖2

H ∈ Σθ for all u ∈ D(a), where
a(u) = a(u, u). We shall show that one can define an operator A in H associated with a
as follows. Let x, f ∈ H. Then x ∈ D(A) and Ax = f by definition if and only if there
exists a sequence u1, u2, . . . ∈ D(a) such that (Re a(un))n is bounded, limn→∞ un = x in H
and limn→∞ a(un, v) = (f, v)H for all v ∈ D(a). It is part of the following theorem that f
is independent of the sequence u1, u2, . . ..

Theorem 1.1 (Incomplete case) The operator A is well defined and −A generates a
holomorphic C0-semigroup e−tA on the interior of Σπ

2
−θ.

This is a special case of Theorem 3.2 below, but we give a short proof already in
Section 2. Recall that the form a is called closable if for every Cauchy sequence u1, u2, . . .
in D(a) such that limn→∞ un = 0 in H one has limn→∞ a(un) = 0. Here D(a) carries the
natural norm ‖u‖a = (Re a(u)+(1−γ) ‖u‖2

H)1/2. In Theorem 1.1 we do not assume that a is
closable. Nonetheless, if u1, u2, . . . is a bounded sequence in D(a) such that limn→∞ un = 0
in H and in addition there exists an f ∈ H such that for all v ∈ D(a) one has the limit
limn→∞ a(un, v) = (f, v)H then necessarily f = 0. This is precisely the fact that A is well
defined.

For our second extension of the theorem we consider the complete case, where the
form a is defined on a Hilbert space V . However, we do not assume that V is embedded
inH, but merely that there exists a not necessarily injective operator j from V intoH. This
case is actually the first we consider in Section 2. It is used for the proof of Theorem 1.1
given in Section 2. In Section 3 we give a common extension of both Theorems 1.1 and the
main theorem of Section 2. It turns out that many examples can be treated by our extended
form method and Section 4 is devoted to several applications. Our most substantial results
concern degenerate elliptic differential operators of second order with complex measurable
coefficients on an open set Ω in Rd. If the coefficients satisfy merely a sectoriality condition
(which can be very degenerate including the case where the coefficients are zero on some
part of Ω), then Theorem 1.1 shows right away that the corresponding operator generates
a holomorphic C0-semigroup on L2(Ω). We are able to give quite precise properties of
the associated operator and semigroup. In particular we prove a Davies–Gaffney type
estimate which gives us locality properties and in case of Neumann boundary conditions
and real coefficients, the invariance of the constant functions. This extends results for
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positive symmetric forms on Rd in [ERSZ2] and [ERSZ1]. We also extend the criteria for
closed convex sets due to Ouhabaz [Ouh] to our more general situation and show that the
semigroup is submarkovian if the coefficients are real (but possibly non-symmetric). As a
second application, we present an easy and direct treatment of the Dirichlet-to-Neumann
operator on a Lipschitz domain Ω. Here it is essential to allow non injective j:D(a) → H.
As a result, we obtain submarkovian semigroups on Lp(∂Ω). Most interesting are Robin
boundary conditions which we consider in Subsection 4.3 on an open bounded set Ω of
Rd with the (d− 1)-dimensional Hausdorff measure on ∂Ω. Using Theorem 1.1 we obtain
directly a holomorphic semigroup on L2(Ω). Moreover, for every element in the domain
of the generator there is a unique trace in L2(∂Ω, σ) realising Robin boundary conditions.
Such boundary conditions on rough domains had been considered before by Daners [Dan]
and [ArW]. We also give a new simple proof for the existence of a trace for such general
domains. We use these results on the trace to consider Wentzell boundary conditions
in Subsection 4.5. These boundary conditions obtained much attention recently [FGGR]
[VoV]. By our approach we may allow degenerate coefficients for the elliptic operator and
the boundary condition. Our final application in Subsection 4.2 concerns multiplicative
perturbation of the Laplacian.

Throughout this paper we use the notation and conventions as in [Kat]. Moreover, the
field is C, except if indicated explicitly.

2 Generating theorems for complete forms

The first step in the proof of Theorem 1.1 is the following extension of the ‘French’ approach
to closed sectorial forms (see Dautray–Lions [DaL] Chapter XVIIA Example 3, Tanabe
[Tan] Sections 2.2 and 3.6, and Lions [Lio]). It is a generation theorem for forms with a
complete form domain. It differs from the usual well-known result for closed forms in the
following point. We do not assume that the form domain is a subspace of the given Hilbert
space, but that there exists a linear mapping j from the form domain into the Hilbert
space. Moreover, we do not assume that the mapping is injective. In the injective case,
and also in the general case by restricting j to the orthogonal complement of its kernel,
we could reduce our result to the usual case. It seems to us simpler to give a direct proof,
though, which is adapted from [Tan], Section 3.6, Application 2, treating the usual case.

Let V be a normed space and a:V × V → C a sesquilinear form. Then a is called
continuous if there exists a c > 0 such that

|a(u, v)| ≤ c ‖u‖V ‖v‖V (1)

for all u, v ∈ V . Let H be a Hilbert space and j:V → H be a bounded linear operator.
The sesquilinear form a:V × V → C is called j-elliptic if there exist ω ∈ R and µ > 0
such that

Re a(u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V (2)

for all u ∈ V . The form a is called coercive if (2) is valid with ω = 0.
An operator A:D(A) → H with D(A) ⊂ H is called sectorial if there are γ ∈ R,

called a vertex, and θ ∈ [0, π
2
), called a semi-angle, such that

(Au, u)− γ ‖u‖2
H ∈ Σθ
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for all u ∈ D(A). Moreover, A is called m-sectorial if it is sectorial and (λI − A) is
surjective for some λ ∈ R with λ < γ. Then an operator A on H is m-sectorial if and only
if −A generates a holomorphic C0-semigroup S with St = e−tA, which is quasi-contractive
on some sector, i.e. there exist θ ∈ (0, π

2
) and ω ∈ R such that ‖e−ωzSz‖L(H) ≤ 1 for all

z ∈ Σθ.
A practical theorem is as follows.

Theorem 2.1 Let H, V be Hilbert spaces and j:V → H be a bounded linear operator such
that j(V ) is dense in H. Let a:V × V → C be a continuous sesquilinear form which is
j-elliptic.

(a) There exists a unique operator A in H such that for all x, f ∈ H one has x ∈ D(A)
and Ax = f if and only if

there exists a u ∈ V such that j(u) = x and a(u, v) = (f, j(v))H for all
v ∈ V .

(b) The operator A of Statement (a) is m-sectorial.

We call the operator A in Statement (a) of Theorem 2.1 the operator associated with
(a, j).

This theorem will be a corollary of the next theorem. In the definition of j-elliptic the
assumption is that (2) is valid for all u ∈ V . For a variation of the Dirichlet-to-Neumann
operator in Subsection 4.4 this condition is too strong. One only needs (2) to be valid for
all u in a suitable subspace V (a) of V which we next introduce. Set

DH(a) = {u ∈ V : there exists an f ∈ H such that a(u, v) = (f, j(v))H for all v ∈ V }

and
V (a) = {u ∈ V : a(u, v) = 0 for all v ∈ ker j}.

Clearly DH(a) ⊂ V (a) and V (a) is closed in V .

Theorem 2.2 Let H, V be Hilbert spaces and j:V → H be a bounded linear operator such
that j(V ) is dense in H. Let a:V × V → C be a continuous sesquilinear form. Suppose
that there exist ω ∈ R and µ > 0 such that

Re a(u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V (3)

for all u ∈ V (a). Then one has the following.

(a) There exists a unique operator A in H such that for all x, f ∈ H one has x ∈ D(A)
and Ax = f if and only if

there exists a u ∈ V such that j(u) = x and a(u, v) = (f, j(v))H for all
v ∈ V .

(b) The operator A of Statement (a) is m-sectorial.

(c) The restriction map j|DH(a):DH(a) → H is injective.
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Again we call the operator A in Statement (a) of Theorem 2.2 the operator associated
with (a, j).

Proof The proof consists of several steps.

Step 1 First, we prove that the restriction map j|DH(a):DH(a) → H is injective. Let
u ∈ DH(a) and suppose that j(u) = 0. Let f ∈ H be such that a(u, v) = (f, j(v))H for all
v ∈ V . Then by (3) one deduces that

µ ‖u‖2
V ≤ Re a(u) + ω ‖j(u)‖2

H = Re(f, j(u))H + ω ‖j(u)‖2
H = 0.

So ‖u‖V = 0 and u = 0.

Step 2 Next we prove Statement (a). If u ∈ V then it follows from the density of j(V )
in H that there exists at most one f ∈ H such that a(u, v) = (f, j(v))H for all v ∈ V . But
j|DH(a) is injective. Therefore we can define the operator A by D(A) = j(DH(a)) and

a(u, v) = (Aj(u), j(v))H for all u ∈ DH(a) and v ∈ V. (4)

(We emphasize that (4) is restricted to u ∈ DH(a) and need not to be valid for all u ∈ V
with j(u) ∈ D(A). An example will be given in Example 3.14.)

Step 3 We shall prove that −A generates a holomorphic C0-semigroup. Let λ ∈ C,
u ∈ DH(a) and set f = (λI + A)j(u). Then by (3)

µ ‖u‖2
V ≤ Re a(u) + ω ‖j(u)‖2

H

= Re(Aj(u), j(u))H + ω‖j(u)‖2
H

= Re(f, j(u))H + (ω − Reλ)‖j(u)‖2
H

≤ ‖f‖H ‖j(u)‖H

if Reλ ≥ ω. Moreover,
λ ‖j(u)‖2

H + a(u, u) = (f, j(u))H .

So

|λ| ‖j(u)‖2
H ≤ |(f, j(u))H |+ |a(u, u)|

≤ ‖f‖H ‖j(u)‖H + c ‖u‖2
V

≤
(
1 +

c

µ

)
‖f‖H ‖j(u)‖H ,

where c > 0 is the constant as in (1). Therefore |λ| ‖j(u)‖H ≤ (1 + c
µ
)‖f‖H and λI + A is

injective if in addition λ 6= 0. We claim that the range of λI + A equals H if Reλ > ω.
Let f ∈ H. Then the form b on V with b(u, v) = a(u, v) + λ (j(u), j(v))H is continuous
and coercive. Hence by the Lax–Milgram theorem there exists a unique u ∈ V such that
b(u, v) = (f, j(v))H for all v ∈ V . Therefore j(u) ∈ D(A) and (λI+A)j(u) = f . So λI+A
is invertible and |λ| ‖(λI + A)−1f‖H ≤ (1 + c

µ
)‖f‖H for all f ∈ H. Then D(A) is dense

in H by [ABHN] Proposition 3.3.8. Thus −A generates a holomorphic semigroup on H.
This proves Theorem 2.2 and then also Theorem 2.1. 2
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Although Theorem 1.1 is a special case of Theorem 3.2, a short direct proof can be
given at this stage.

Proof of Theorem 1.1 Denote by V the completion of (D(a), ‖ · ‖a). The injection of
(D(a), ‖ · ‖a) into H is continuous. Hence there exists a j ∈ L(V,H) such that j(u) = u for
all u ∈ D(a). Since a is sectorial, there exists a unique continuous extension ã:V ×V → C.
This extension is continuous and j-elliptic. Let A be the operator associated with (ã, j).
If u1, u2, . . . ∈ D(a) with limn→∞ un convergent in H and Re a(u1),Re a(u2), . . . bounded,
then u1, u2, . . . is bounded in D(a). Therefore it has a weakly convergent subsequence in V .
It follows from the density of D(a) in V that A equals the operator from Theorem 1.1. In
particular, the operator is well defined. Now the result follows from Theorem 2.1. 2

We emphasize that in the Theorem 1.1 we do not assume that the form a is closable.

We return to the situation of Theorem 2.2. One might wonder whether the estimate
(3) valid for all u ∈ V (a) in Theorem 2.2 can be weakened by a condition

Re a(u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V

valid for all u ∈ W , where W is a subspace of V such that V = W ⊕ ker j. The next
example shows that this is not possible.

Example 2.3 Let H be an infinite dimensional Hilbert space and let T be an unbounded
self-adjoint operator in H with T ≥ I. Let V = D(T ) × D(T ) with the graph norm
(u1, u2) 7→ (‖u1‖2

2 + ‖Tu1‖2
2 + ‖u2‖2

2 + ‖Tu2‖2
2)

1/2. Define j:V → H by j(u1, u2) = u1.
Then j(V ) = D(T ) is dense in H. Fix λ1, λ2 ∈ R \ {0}. Define the sesquilinear form
a:V × V → C by

a(u, v) = λ1(Tu1, T v1)H + λ2(Tu2, T v2)H .

Then V (a) = D(T )×{0} and the restriction of j to V (a) is injective. Arguing as in Step 2
of the proof of Theorem 2.2 it follows that one can define in a unique manner an operator A
associated with (a, j).

Let u = (u1, u2) ∈ DH(a), set x = j(u) and f = Ax. Then a(u, v) = (f, j(v))H =
(f, v1)H for all v ∈ V . Let e ∈ D(T ). If v = (e, 0) one deduces that λ1(Tu1, T e)H = (f, e)H .
So u1 ∈ D(T 2) and f = λ1 T

2u1. Moreover, if v = (0, e) then λ2(Tu2, T e)H = 0, so u2 = 0.
Therefore DH(a) = D(T 2)× {0} and Au1 = λ1 T

2u1. We have proved that A = λ1 T
2. It

follows that A is m-sectorial if and only if λ1 > 0.
Next let W = {(u1, u2) ∈ V : u1 = u2} and choose λ1 = −1 and λ2 = 3. Then

V = W ⊕ ker j and Re a(u) + 2‖j(u)‖2
H = ‖u‖2

V for all u ∈ W . But the operator −A does
not generate a holomorphic semigroup. 2

If the form a is j-elliptic and if τ ∈ C then obviously the operator A+ τI is associated
with (b, j), where b is the j-elliptic form b(u, v) = a(u, v) + τ (j(u), j(v))H on V .

Although it is very convenient that we do not assume that the operator j is injective,
the first statement in the next proposition shows that in general one might assume that j
is injective, by considering a different form. The proposition is a kind of uniqueness result.
It determines the dependence of the operator on the choice of V

Proposition 2.4 Suppose the form a is j-elliptic and let A be the operator associated with
(a, j). Then one has the following.
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(a) V (a) = DH(a), where the closure is taken in V . Moreover, j|V (a) is injective and A
equals the operator associated with (a|V (a)×V (a), j|V (a)).

(b) If U is a closed subspace of V such that DH(a) ⊂ U , then A equals the operator
associated with (a|U×U , j|U). If, in addition, the restriction j|U is injective, then
U = DH(a).

(c) If U is a closed subspace of V (a) such that j(U) is dense in H and A is the operator
associated with (a|U×U , j|U), then U = V (a).

Proof Clearly V (a) is closed. If u ∈ V (a) and j(u) = 0 then a(u) = 0. The j-ellipticity
of a then implies that u = 0. So j|V (a) is injective. Moreover, DH(a) ⊂ V (a). Then the
rest of Statement (a) follows from Statement (b).

Proof of Statement (b). Note that j(U) and j(V (a)) both contain j(DH(a)) = D(A).
Therefore j(U) and j(V (a)) are dense inH. Let b1 = a|U×U and b2 = a|V (a)×V (a). Moreover,
let B1 and B2 be the operators associated with (b1, j|U) and (b2, j|V (a)). Then for all
u ∈ DH(a) one deduces that (Aj(u), j(v))H = a(u, v) = b1(u, v) for all v ∈ U . Therefore
u ∈ DH(b1) and B1j(u) = Aj(u). So A ⊂ B1. But both −A and −B1 are semigroup
generators. Therefore B1 = A. Similarly, A = B2. Finally, if j is injective on U then it
follows from the inclusion V (a) ⊂ U and the uniqueness theorem for closed sectorial forms,
[Kat] Theorem VI.2.7 that U = V (a). This proves Statement (b).

Statement (c) follows from Statement (b) with a replaced by aU×U . 2

It is easy to construct examples with V (a) 6= V . Therefore the injectivity condition in
Proposition 2.4(b) is necessary.

The next theorem bridges the current operators associated with (a, j) and the closed
sectorial forms in Kato [Kat] Section VI.2.

Theorem 2.5 Suppose the form a is j-elliptic and let A be the operator associated with
(a, j). Then the following holds.

(a) ker j ⊕ V (a) = V .

(b) Let ac be the form on H defined by

D(ac) = j(V ) and ac(j(u), j(v)) = a(u, v) (u, v ∈ V (a)).

Then ac is the unique closed, sectorial form such that A is associated with ac.

Proof ‘(a)’. Let ω ∈ R and µ > 0 be as in (2). Define the sesquilinear form b with
D(b) = V by b(u, v) = a(u, v) + (ω + 1) (j(u), j(v))H . Then V (a) = V (b). So we can
assume that ω = −1, and the form a is coercive. Denoting the real part of a by h,
then 〈u, v〉 := h(u, v) defines an equivalent scalar product on V . So we may assume that
‖u‖V = ‖u‖h for all u ∈ V . Let V1 = ker j and V2 = (ker j)⊥. Moreover, let π1 and π2 be
the projection from V onto V1 and V2, respectively. Then h(u1, v2) = 0 for all u1 ∈ V1 and
v2 ∈ V2. There exists an invertible operator B ∈ L(V ) such that a(u, v) = h(Bu, v) for all
u, v ∈ V . Let B11 = π1 ◦B|V1 ∈ L(V1) and B12 = π1 ◦B|V2 ∈ L(V2, V1). If (u1, u2) ∈ V1×V2

then u1 + u2 ∈ V (a) if and only if 0 = h(Bu, v1) = h((B11u1 + B12u2), v1) for all v1 ∈ V1.
So

V (a) = {u1 + u2 : (u1, u2) ∈ V1 × V2 and B11u1 +B12u2 = 0}.
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Since

Reh(B11u1, u1) = Reh(π1(Bu1), u1) = Reh(Bu1, u1)

= Re a(u1, u1) ≥ µ ‖u‖2
V = µ (Reh(u1) + ‖u1‖2

H)

for all u1 ∈ V1, it follows from the Lax–Milgram theorem that also B11 is invertible.
Thus for all u2 ∈ V2 there exists a u1 ∈ V1 such that u1 + u2 ∈ V (a). Consequently,
j(V (a)) = j(V2) = j(V ). This implies that ker j + V (a) = V . This sum is direct by
Proposition 2.4(a).

‘(b)’. Define on j(V (a)) the scalar product carried over from V (a) by j. Then the
form ac is clearly continuous and elliptic, which is the same as sectorial and closed (cf.
Lemma 3.1). The operator A is clearly the operator associated with ac. 2

In the sequel we call the form ac in Theorem 2.5 the classical form associated with
(a, j). It equals the classical form associated with the m-sectorial form A. One can decom-
pose the form a = h+ ik in its real and imaginary parts, where h, k:D(a)×D(a) → C are
symmetric sesquilinear forms. We write <a = h and =a = k. The proof of Theorem 2.5
also allows to estimate the real part of the classical form of a by the classical form of the
real part of a.

Proposition 2.6 Suppose the form a is j-elliptic and let A be the operator associated
with (a, j). Suppose ω ≤ −1 in (2). Let h be the real part of a and hc the classical form
associated with (h, j). Then D(ac) = D(hc). Moreover, there exists a constant C > 0 such
that Re ac(x) ≤ C hc(x) for all x ∈ j(V ).

Proof The first statement is obvious since D(ac) = j(V ) = D(hc). We use the notation
introduced in the proof of Theorem 2.5. Moreover, we may assume that the inner product
on V is given by (u, v) 7→ h(u, v). Let u ∈ V (a). Then B11u1+B12u2 = 0, where u1 = π1(u)
and u2 = π2(u). So u1 = −B−1

11 B12u2. Moreover, j(u) = u2 = j(u2) and u2 ∈ V (h). So
ac(j(u)) = a(u) and hc(j(u)) = hc(j(u2)) = h(u2) = ‖u2‖2

V . Since the operators B, B−1
11

and B12 are bounded one estimates

Re ac(j(u)) = Re a(u) = Reh(Bu, u) = Re(Bu, u)V ≤ ‖Bu‖V ‖u‖V ≤ ‖B‖ ‖u‖2
V

= ‖B‖ (‖u1‖2
V + ‖u2‖2

V ) ≤ ‖B‖ (‖B−1
11 ‖2

2‖B12‖2 + 1)‖u2‖2
V = C hc(j(u))

where C = ‖B‖ (‖B−1
11 ‖2

2‖B12‖2 + 1). 2

The next lemma gives a sufficient condition for the resolvents to be compact.

Lemma 2.7 Suppose the form a is j-elliptic and let A be the operator associated with
(a, j). If j is compact then (λI +A)−1 is compact for all λ ∈ C with Reλ > ω, where ω is
as in (2).

Proof By the Lax–Milgram theorem there exists a B ∈ L(H, V ) such that

(f, j(v))H = a(Bf, v) + λ (j(Bf), j(v))H

for all f ∈ H and v ∈ V . Then B(H) ⊂ DH(a) and (A + λI)j(Bf) = f for all f ∈ H.
Therefore (λI + A)−1 = j ◦B is compact. 2
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Remark 2.8 If B is the operator associated with (a∗, j) where a∗ is the j-elliptic form on
V given by a∗(u, v) = a(v, u), then A∗ is an extension of B. But both −A∗ and −B are
generators of semigroups. Therefore A∗ is the operator associated with (a∗, j).

In [Ouh] Theorem 2.2 there is a characterization of closed convex subsets which are
invariant under the semigroup S. Using the two statements of Theorem 2.5, the theorem
of Ouhabaz can be reformulated in the current context. Recall that a sesquilinear form b
is called accretive if Re b(u) ≥ 0 for all u ∈ D(b).

Proposition 2.9 Suppose the form a is j-elliptic, let A be the operator associated with
(a, j) and S the semigroup generated by −A. Moreover, suppose that a is accretive. Let
C ⊂ H be a closed convex set and let P :H → C be the orthogonal projection. Then the
following conditions are equivalent.

(i) StC ⊂ C for all t > 0.

(ii) For all u ∈ V there exists a w ∈ V such that

Pj(u) = j(w) and Re a(w, u− w) ≥ 0.

(iii) For all u ∈ V there exists a w ∈ V such that

Pj(u) = j(w) and Re a(u, u− w) ≥ 0.

(iv) There exists a dense subset D of V such that for all u ∈ D there exists a w ∈ V such
that

Pj(u) = j(w) and Re a(w, u− w) ≥ 0.

Proof ‘(i)⇒(ii)’. Let u ∈ V . By Theorem 2.5 there exists a u′ ∈ V (a) such that
j(u′) = j(u). Then Pj(u′) ∈ D(ac) by [Ouh] Theorem 2.2 1)⇒2). So there exists a
w ∈ V (a) such that Pj(u′) = j(w). Then Re a(w, u′ − w) = Re ac(j(w), j(u′) − j(w)) =
Re ac(Pj(u

′), j(u′)−Pj(u′)) ≥ 0 again by [Ouh] Theorem 2.2 1)⇒2). But a(w, u−u′) = 0
since w ∈ V (a) and u− u′ ∈ ker j. So Re a(w, u− w) ≥ 0.

‘(ii)⇒(iii)’. Trivial, since Re a(u− w, u− w) ≥ 0.
‘(iii)⇒(i)’. Let u ∈ V (a). By assumption there exists a w ∈ V such that Pj(u) = j(w)

and Re a(u, u− w) ≥ 0. Let w′ ∈ V (a) be such that j(w) = j(w′). Then a(u,w − w′) = 0
since u ∈ V (a) and w−w′ ∈ ker j. So Re a(u, u−w′) ≥ 0 and Re ac(j(u), j(u)−Pj(u)) ≥ 0.
Then the implication follows from [Ouh] Theorem 2.2 3)⇒1).

‘(ii)⇒(iv)’. Trivial.
‘(iv)⇒(ii)’. Since a is continuous there exists a c > 0 such that |a(u, v)| ≤ c ‖u‖V ‖v‖V

for all u, v ∈ V . Let u ∈ V . There exists u1, u2, . . . ∈ D such that limun = u in V .
For all n ∈ N there exists by assumption a wn ∈ V such that Pj(un) = j(wn) and
Re a(wn, un − wn) ≥ 0. Let µ and ω be as in (2). Then

µ ‖wn‖2
V ≤ Re a(wn) + ω ‖j(wn)‖2

H

= Re a(wn, un)− Re a(wn, un − wn) + ω ‖j(wn)‖2
H

≤ Re a(wn, un) + ω ‖j(wn)‖2
H

≤ c ‖wn‖V ‖un‖V + ω ‖Pj(un)‖2
H
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for all n ∈ N. Since {un : n ∈ N} is bounded in V and {Pj(un) : n ∈ N} is bounded
in H by continuity of j and P , it follows that the set {wn : n ∈ N} is bounded in V . So
there exist w ∈ V and a subsequence wn1 , wn2 , . . . of w1, w2, . . . such that limk→∞wnk = w
weakly in V . Then limk→∞ Pj(unk) = lim j(wnk) = j(w) weakly in H. Since C is closed
and convex it follows that j(w) ∈ C. Alternatively, the continuity of j and P gives
limn→∞ Pj(un) = Pj(u) strongly in H. So Pj(u) = j(w). Since Re a(wn, un−wn) ≥ 0 one
has Re a(wn) ≤ Re a(wn, un) for all n ∈ N. Moreover, limk→∞ Re a(wnk , unk) = Re a(w, u).
In addition, since a is accretive and j-elliptic it follows that v 7→ (Re a(v) + ε ‖j(v)‖2

H)1/2

is an equivalent norm associated with an inner product on V for all ε > 0. Therefore
Re a(w) ≤ lim infk→∞ Re a(wnk). So Re a(w) ≤ Re a(w, u) and Re a(w, u − w) ≥ 0 as
required. 2

3 Generating theorems in the incomplete case

First we reformulate the complete case.
Let a:D(a)×D(a) → C be a sesquilinear form, H a Hilbert space and j:D(a) → H a

linear map. We say that a is a j-sectorial form if there are γ ∈ R, called a vertex, and
θ ∈ [0, π

2
), called a semi-angle, such that

a(u)− γ ‖j(u)‖2
H ∈ Σθ

for all u ∈ D(a). If a is j-sectorial with vertex γ then we define a seminorm ‖ · ‖a on D(a)
by

‖u‖2
a = Re a(u) + (1− γ) ‖j(u)‖2

H . (5)

Again we do not include the γ in the notation. Then ‖ · ‖a is a norm if and only if
Re a(u) = j(u) = 0 implies u = 0 for all u ∈ D(a). A j-sectorial form a is called closed if
‖ · ‖a is a norm and (D(a), ‖ · ‖a) is a Hilbert space.

The alluded reformulation is as follows.

Lemma 3.1 Let V be a vector space, a:V ×V → C a sesquilinear form, H a Hilbert space
and j:V → H a linear map. Then the following are equivalent.

(i) The form a is j-sectorial and closed.

(ii) There exists a norm ‖ ·‖V on V such that V is a Banach space, the map j is bounded
from (V, ‖ · ‖V ) into H, the form a is j-elliptic and a is continuous.

Moreover, if Condition (ii) is valid, then the norms ‖ · ‖a and ‖ · ‖V are equivalent.

Proof The easy proof is left to the reader. 2

In this section we drop the assumption that (D(a), ‖ · ‖a) is closed. So H is a Hilbert
space, a:D(a) × D(a) → C is a sesquilinear form, j:D(a) → H is a linear map and we
assume that a is merely j-sectorial and j(D(a)) is dense in H. We will again associate
a sectorially bounded holomorphic semigroup generator on H. The next theorem is an
extension of Theorem 1.1. The construction in the proof might seem to be long, but each
step is totally natural. Note that if j is injective, then the quotient map in the construction
is superfluous.
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Theorem 3.2 Let a be a sesquilinear form, H a Hilbert space and j:D(a) → H a linear
map. Assume that a is j-sectorial and j(D(a)) is dense in H. Then one has the following.

(a) There exists a unique operator A in H such that for all x, f ∈ H one has x ∈ D(A)
and Ax = f if and only if there exists a sequence u1, u2, . . . ∈ D(a) such that

(I) limn→∞ j(un) = x in H,

(II) supn∈N Re a(un) <∞, and,

(III) limn→∞ a(un, v) = (f, j(v))H for all v ∈ D(a).

(b) The operator A of Statement (a) is m-sectorial.

In a natural way one can define the notion of Cauchy sequence in a semi-normed vector
space. We will see in the proof of the theorem that for all x ∈ D(A) one can actually find
a Cauchy sequence u1, u2, . . . in D(a) such that (I) and (III) are valid with f = Ax.

Proof of Theorem 3.2 Define

W = {u ∈ D(a) : (u, u)a = 0},

where ( ·, · )a is the semi-inner product defined by

(u, v)a = (<a)(u, v) + (1− γ) (j(u), j(v))H ,

and γ is as in (5). Note that ‖u‖2
a = (u, u)a. Then W is a closed subspace of D(a). Set

V0 = D(a)/W . If q:D(a) → V0 is the quotient map, then ( ·, · )V0 :V0 × V0 → C given by

(q(u), q(v))V0 := (u, v)a

defines an inner product on V0. We denote by V the completion of V0 and consider V0 as
a subspace of V . Note that ‖u‖a = ‖q(u)‖V for all u ∈ D(a). Since j(u) = 0 for all u ∈ W
there exists a unique map j0:V0 → H such that

j0(q(u)) = j(u)

for all u ∈ D(a). Then ‖j0(q(u))‖H = ‖j(u)‖H ≤ ‖u‖a = ‖q(u)‖V0 for all u ∈ D(a). Hence
there exists a unique contraction j̃ ∈ L(V,H) which extends j0. Next, since

|a(u, v)− γ (j(u), j(v))H | ≤ (1 + tan θ)‖u‖a ‖v‖a

for all u, v ∈ D(a), where θ is the semi-angle of a and we used the estimate (1.15) of
Subsection VI.1.2 in [Kat], there exists a unique sesquilinear form a0 on V0 such that

a0(q(u), q(v)) = a(u, v)

for all u, v ∈ D(a). Then

|a0(q(u), q(v))− γ (j0(q(u)), j0(q(v)))H | ≤ (1 + tan θ)‖q(u)‖V0 ‖q(v)‖V0

for all u, v ∈ D(a). Hence a0 is continuous with respect to ‖·‖V0 . Therefore a0 has a unique
continuous extension ã:V × V → C which is j̃-sectorial. Moreover, if u ∈ D(a) then

Re a0(q(u)) + (1− γ)‖j̃(q(u))‖2
H = Re a(u) + (1− γ)‖j(u)‖2

H = ‖u‖2
a = ‖q(u)‖2

V .

By density, this implies that ã is j̃-elliptic. Now let A be the operator associated with
(ã, j̃).

Let x, f ∈ H. We next show that the statements
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(i) x ∈ D(A) and Ax = f ,

(ii) there exists a Cauchy sequence u1, u2, . . . in (D(a), ‖ · ‖a) such that lim j(un) = x
and limn→∞ a(un, v) = (f, j(v))H for all v ∈ D(a), and

(iii) there exists a bounded sequence u1, u2, . . . in (D(a), ‖ · ‖a) such that lim j(un) = x
and limn→∞ a(un, v) = (f, j(v))H for all v ∈ D(a)

are equivalent.
‘(i)⇒(ii)’. It follows from the definition (4) that there exists a ũ ∈ V such that j̃(ũ) = x

and ã(ũ, ṽ) = (f, j̃(ṽ))H for all ṽ ∈ V . Then there exists a sequence u1, u2, . . . ∈ D(a) such
that lim q(un) = ũ in V . Hence u1, u2, . . . is a Cauchy sequence in (D(a), ‖ · ‖a). Moreover,

(f, j(v))H = (f, j̃(q(v)))H = ã(ũ, q(v)) = lim ã(q(un), q(v)) = lim a(un, v)

for all v ∈ D(a) and lim j(un) = lim j̃(q(un)) = j̃(ũ) = x in H.
‘(ii)⇒(iii)’. Trivial.
‘(iii)⇒(i)’. Since q(u1), q(u2), . . . is a bounded sequence in V0 the weak limit ũ =

lim q(un) exists in V after passing to a subsequence, if necessary. Then j̃(ũ) = lim j̃(q(un)) =
lim j(un) = x weakly in H. Moreover,

ã(ũ, q(v)) = lim ã(q(un), q(v)) = lim a(un, v) = (f, j(v))H = (f, j̃(q(v)))H

for all v ∈ D(a). Since q(D(a)) is dense in V one deduces that ã(ũ, ṽ) = (f, j̃(ṽ))H for all
ṽ ∈ V . So x ∈ D(A) and Ax = f as required.

We have proved the existence of the operator A in Statement (a) of the theorem.
The uniqueness is easy, since j(D(a)) is dense in H. Now Statement (b) follows from
Theorem 2.2. 2

We call the operator A in Statement (a) of Theorem 3.2 the operator associated
with (a, j). Note that there is no confusion if D(a) was provided with a Hilbert space
structure such that j is continuous, a is continuous and a is j-elliptic.

Remark 3.3 Let a be a sesquilinear form, H a Hilbert space and j:D(a) → H a linear
map. Suppose that a is j-sectorial. Let D be core of D(a), i.e. a dense subspace of D(a).
Then j(D) is dense in H and the operator associated with (a, j) equals the operator asso-
ciated with (a|D×D, j|D). This follows immediately from the Cauchy-type characterization
in Theorem 3.2(a).

Remark 3.4 Let a be a sesquilinear form, H a Hilbert space and j:D(a) → H a linear
map. Assume that a is j-sectorial and j(D(a)) is dense in H. Then a∗ is j-sectorial.
Moreover, if B is the operator associated with (a∗, j) and A is the operator associated with
(a, j), then B = A∗. In fact, using the notation as in the proof of Theorem 3.2 it follows
that A is the operator associated with (ã, j̃). Starting with a∗ one has (u, v)a∗ = (u, v)a for
all u, v ∈ D(a) = D(a∗). Therefore one obtains the same space W , map j0, inner product
space V0 and completion V . But ã∗ = (ã)∗. So by construction the operator B is associated
with (ã∗, j̃) = ((ã)∗, j̃). Hence B = A∗ by Remark 2.8. In particular, if a is symmetric
then A is self-adjoint.

Remark 3.5 It follows from the construction that the operator λI+A is invertible for all
λ > (−γ) ∨ 0 if A is the operator associated with a j-sectorial form a with vertex γ.
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Example 3.6 Let a be a sesquilinear form with domain D(a). Suppose there exists a
θ ∈ [0, π

2
) such that a(u) ∈ Σθ for all u ∈ D(a). Let H and H ′ be Hilbert spaces and let

M ∈ L(H,H ′) be invertible. Let j:D(a) → H be linear and set j′ = M ◦ j. Then a is
both j-sectorial and j′-sectorial. Moreover, the seminorms u 7→

√
Re a(u) + ‖j(u)‖2

H and

u 7→
√

Re a(u) + ‖j′(u)‖2
H′ on D(a) are equivalent, so they determine the same Cauchy

sequences. Suppose j(D(a)) is dense in H. Let A and A′ be the operators associated with
(a, j) and (a, j′), respectively. Then A = M∗A′M .

Indeed, let x ∈ D(A). Set f = Ax. Then there exists a Cauchy sequence u1, u2, . . . in
D(a) such that lim j(un) = x in H and lim a(un, v) = (f, j(v))H for all v ∈ D(a). Then
lim j′(un) = Mx inH ′ and lim a(un, v) = (f, j(v))H = (f,M−1 j′(v))H = ((M−1)∗f, j′(v))H′

for all v ∈ D(a). So Mx ∈ D(A′) and A′Mx = (M−1)∗f . Therefore M∗A′Mx = Ax and
A ⊂M∗A′M . Similarly A′ ⊂ (M−1)∗AM−1. Hence A = M∗A′M . 2

The next theorem is of the nature of [Kat] Theorem VIII.3.6. If F1, F2, . . . are subsets
of a set F then define lim infn→∞ Fn =

⋃∞
n=1

⋂∞
k=n Fk.

Theorem 3.7 Let a be a sesquilinear form, H a Hilbert space and j:D(a) → H a linear
map. Assume that a is j-sectorial with vertex γ. For all n ∈ N let an be a sesquilinear
form with D(an) ⊂ D(a). Suppose that there exist θ ∈ [0, π

2
) and for all n ∈ N a γn ∈ R

such that
an(u)− a(u)− γn ‖j(u)‖2

H ∈ Σθ (6)

for all u ∈ D(an). Assume that limn→∞ γn = 0. Moreover, suppose that there exists a
core D of D(a) such that D ⊂ lim infn→∞D(an) and limn→∞ Re an(u) = Re a(u) for all
u ∈ D. Finally, suppose that j(D(an)) is dense in H for all n ∈ N. Let A be the operator
associated with (a, j) and for all n ∈ N let An be the operator associated with (an, j|D(an)).
Fix λ > (−γ) ∨ 0. Then

lim
n→∞

(λI + An)
−1f = (λI + A)−1f

for all f ∈ H.

Proof Without loss of generality we may assume that γ = 0. Then an is j-sectorial
with vertex γn and D(an) has the norm ‖u‖2

an = Re an(u) + (1− γn) ‖j(u)‖2
H . We use the

construction as in the proof of Theorem 3.2. For the form a we construct W , q, V0, V , j̃,
ã and for the form an we construct Wn, qn, Vn0, Vn, j̃n, ãn.

Let n ∈ N. It follows from (6) that ‖u‖2
a ≤ ‖u‖2

an for all u ∈ D(an). Therefore Wn ⊂ W
and there exists a unique Φn ∈ L(Vn0, V ) such that Φn(qn(u)) = q(u) for all u ∈ D(an).

Then there exists a unique Φ̃n ∈ L(Vn, V ) such that Φ̃n(qn(u)) = q(u) for all u ∈ D(an).

Therefore j̃n(qn(u)) = j(u) = j̃(q(u)) = j̃(Φ̃n(qn(u))) for all u ∈ D(an) and by density

j̃n = j̃ ◦ Φ̃n. Define the sectorial form bn:D(an)×D(an) → C by

bn(u, v) = an(u, v)− a(u, v)− γn (j(u), j(v))H .

Then |bn(u)| ≤ ‖u‖2
an , so there exists a unique continuous accretive sectorial form b̃n:Vn×

Vn → C such that b̃n(qn(u), qn(v)) = bn(u, v) for all u, v ∈ D(an). Then

ãn(u, v) = ã(Φ̃n(u), Φ̃n(v)) + b̃n(u, v) + γn (j̃(u), j̃(v))H (7)
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first for all u, v ∈ q(D(an)) and then by density for all u, v ∈ Vn.
In order not to duplicate too much of the proof for the current theorem for the proof

of Theorem 3.8 we first prove a little bit more. Let f, f1, f2, . . . ∈ H and suppose that
lim fn = f weakly in H. For all n ∈ N there exists a unique ũn ∈ DH(ãn) such that

j̃n(ũn) = (λI +An)
−1fn. Set un = Φ̃n(ũn) ∈ V . Then j̃(un) = j̃n(ũn). We show that there

exists a subsequence (unk) of (un) and a u ∈ V such that limunk = u weakly in V and
j̃(u) = (λI + A)−1f .

Since ũn ∈ DH(ãn) and λ j̃n(ũn) + Anj̃n(ũn) = fn it follows from (4) that

λ (j̃n(ũn), j̃n(v))H + ãn(ũn, v) = (fn, j̃n(v))H (8)

for all v ∈ Vn. Taking v = ũn in (8) and using (7) we obtain

2λ
3
‖j̃n(ũn)‖2

H + Re ã(un) + Re b̃n(ũn) + (λ
3

+ γn) ‖j̃n(ũn)‖2
H

= Re(fn, j̃n(ũn))H (9)

≤ ‖fn‖H ‖j̃n(ũn)‖H ≤ λ
3
‖j̃n(ũn)‖2

H + 3
λ
‖fn‖2

H .

Since λ
3

+ γn ≥ 0 for large n this implies that the set {j̃(un) : n ∈ N} = {j̃n(ũn) : n ∈} is

bounded in H. Consequently, the two sets {Re ã(un) : n ∈ N} and {Re b̃n(ũn) : n ∈ N} are
bounded. In particular the sequence u1, u2, . . . is bounded in V . Passing to a subsequence,
if necessary, it follows that there exists a u ∈ V such that limun = u weakly in V . Then
lim j̃(un) = j̃(u) weakly in H.

Let n ∈ N. Then b̃n is j̃n-sectorial with vertex 0 and semi-angle θ. Therefore

|b̃n(ũn, v)| ≤ (1 + tan θ)
(

Re b̃n(ũn)
)1/2(

Re b̃n(ṽ)
)1/2

for all v ∈ Vn. Now let v ∈ D. Then limn→∞ Re bn(v) = 0 by assumption. Hence
limn→∞ b̃n(ũn, qn(v)) = 0. It follows from (7) and (8) that

λ (j̃(un), j(v))H + ã(un, q(v)) + b̃n(ũn, qn(v)) + γn (j̃(un), j(v))H = (fn, j(v))H .

Taking the limit n→∞ gives

λ (j̃(u), j(v))H + ã(u, q(v)) = (f, j(v))H (10)

for all v ∈ D. Since D is a core for D(a) one deduces that (10) is valid for all v ∈ D(a)
and then again by density one establishes that

λ (j̃(u), j̃(v))H + ã(u, v) = (f, j̃(v))H (11)

for all v ∈ V . Thus by definition of A, it follows that j̃(u) = (λI + A)−1f .
Now we prove the theorem. Let f ∈ H and apply the above with fn = f for all n ∈ N.

In order to deduce that lim j̃(un) = j̃(u) strongly in H, by Proposition 3.6 in [HiL] it
suffices to show that lim sup ‖j̃(un)‖H ≤ ‖j̃(u)‖H .

Substituting v = un in (11) gives

λ (j̃(u), j̃(un))H + ã(u, un) = (f, j̃(un))H
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for all n ∈ N. Hence by (9) one deduces that

λ‖j̃(un)‖2
H ≤ λ ‖j̃n(ũn)‖2

H + Re b̃n(ũn)

= Re
(
(f, j̃(ũn))H − ã(un)

)
− γn ‖j̃(un)‖2

H

= Re
(
λ (j̃(u), j̃(un))H + ã(u, un)− ã(un)

)
− γn ‖j̃(un)‖2

H

for all n ∈ N. But Re ã(u) ≤ lim inf Re ã(un) by [Kat], Lemma VIII.3.14a. Therefore
lim supλ ‖j̃(un)‖2

H ≤ Reλ ‖j̃(u)‖2
H = λ ‖j̃(u)‖2

H and the strong convergence follows.
We have shown that there exists a subsequence n1, n2, . . . of the sequence 1, 2, . . . such

that limk→∞(λI + Ank)
−1f = (λI + A)−1f . But this implies that

lim
n→∞

(λI + An)
−1f = (λI + A)−1f

and the proof of the theorem is complete. 2

For compact maps one obtains a stronger convergence in Theorem 3.7.

Theorem 3.8 Assume the notation and conditions of Theorem 3.7. Suppose in addition
that the map j:D(a) → H is compact, i.e. it maps bounded subsets of D(a) into totally
bounded subsets of H. If λ > (−γ) ∨ 0 then

lim
n→∞

‖(λI + An)
−1 − (λI + A)−1‖ = 0.

Proof Suppose not. Then there exist ε > 0, n1, n2, . . . ∈ N and f1, f2, . . . ∈ H such that
nk < nk+1, ‖fk‖H ≤ 1 and ‖(λI + Ank)

−1fk − (λI + A)−1fk‖ ≥ ε for all k ∈ N. Passing
to a subsequence, if necessarily, there exists an f ∈ H such that limk→∞ fnk = f weakly
in H. For all k ∈ N there exists a ũk ∈ DH(ãnk) such that j̃nk(uk) = (λI + Ank)

−1fk. Let

uk = Φ̃nk(ũk), where we use the notation as in the proof of Theorem 3.7. Then it follows
from the first part of the proof of Theorem 3.7 that there exists a u ∈ V such that, after
passing to a subsequence if necessarily, limk→∞ uk = u weakly in V and j̃(u) = (λI+A)−1f .
Since j is compact, the map j̃ is compact. Therefore

lim
k→∞

(λI + Ank)
−1fk = lim j̃(uk) = j̃(u) = (λI + A)−1f

strongly in H. Moreover, limk→∞(λI + A)−1fk = (λI + A)−1f by Lemma 2.7. So
limk→∞ ‖(λI + Ank)

−1fk − (λI + A)−1fk‖ = 0. This is a contradiction. 2

Theorem 3.7 has as corollary that under a mild additional condition the operator A can
be viewed as a kind of viscosity operator. If a is symmetric and j is the identity map then
this theorem is a generalization of Corollary 3.9 in [ERS], which followed from [Kat] The-
orem VIII.3.11. Note that [Kat] Theorem VIII.3.11 is a special case of Theorem 3.7. The
point in the following corollary is that the form a is merely j-sectorial, but not necessarily
j-elliptic.

Corollary 3.9 Let V,H be Hilbert spaces and j ∈ L(V,H) with j(V ) dense in H. Let
a:V × V → C be a continuous j-sectorial form with vertex γ. Let b:V × V → C be a
j-elliptic continuous form. Suppose that there exists a θ ∈ [0, π

2
) such that b(u) ∈ Σθ for
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all u ∈ V . For all n ∈ N define an = a+ 1
n
b. Then an is j-elliptic. Let An be the operator

associated with (an, j) and let A be the operator associated with (a, j). Then

lim
n→∞

(λI + An)
−1f = (λI + A)−1f

for all λ > (−γ) ∨ 0 and f ∈ H.

Remark 3.10 The condition limn→∞ γn = 0 is necessary in general in Theorem 3.7. It is
not sufficient to assume that the an are uniformly j-sectorial in the sense that there exist
one γ′ ∈ R and θ ∈ [0, π

2
) such that an(u)− γ′ ‖j(u)‖2

H ∈ Σθ for all n ∈ N and u ∈ D(an),
together with a core condition on D and the condition limn→∞ Re an(u) = Re a(u) for all
u ∈ D. A counter example is if an(u, v) = a(u, v) + i (j(u), j(v))H for all n ∈ N.

We next consider the classical form associated with the m-sectorial form A.

Proposition 3.11 Let a be an accretive sesquilinear form, H a Hilbert space and j:D(a) →
H a linear map. Suppose the form a is j-sectorial and j(D(a)) is dense in H. Let A be
the operator associated with (a, j). Then one has the following.

(a) There exists a unique closable sectorial form ar with form domain j(D(a)) such that
A is associated with ar.

(b) D(ar) = {x ∈ H : there exists a bounded sequence u1, u2, . . . ∈ D(a) such that x =
limn→∞ j(un) in H}.

(c) There exists a c > 0 such that ‖j(u)‖ar ≤ c ‖u‖a for all u ∈ D(a). In particular, if
D is a core for D(a) then j(D) is a core for ar.

(d) Let h be the real part of a and let hr be defined similarly as in Statement (a). Then
D(ar) = D(hr).

Proof ‘(a)’. We use the notation as in the proof of Theorem 3.2. Let b be the closed
sectorial form associated with A, i.e. the classical form associated with (ã, j̃) given in
Theorem 2.5(b) by D(b) = j̃(V ) = j̃(V (ã)) and b(j̃(u), j̃(v)) = ã(u, v) for all u, v ∈
V (ã). Then j(D(a)) = j̃(q(D(a))) ⊂ j̃(V ) = D(b). We show that j(D(a)) is a core
of b. Let x ∈ D(b). There exists a unique u ∈ V (ã) such that j̃(u) = x. There exist
u1, u2, . . . ∈ D(a) such that lim q(un) = u in V . Let π2 be the projection of V onto
V (ã) along the decomposition V = ker j̃ ⊕ V (ã). Clearly π2(u) = u. In addition, π2 is
continuous and j(un) = j̃(q(un)) = j̃(π2(q(un))) for all n ∈ N. Therefore ‖x−j(un)‖D(b) =
‖π2(u) − π2(q(un))‖V (ã) ≤ ‖π2‖ ‖u − q(un)‖V for all n ∈ N, from which one deduces that
lim j(un) = x in D(b). We have shown that D(a) is a core of D(b). Let ar = b|D(a). Then
b = ar. This proves existence of ar. The uniqueness is obvious from [Kat] Theorem VI.2.7.

‘(b)’. ‘⊂’. Let x ∈ D(ar) = D(b). Let u1, u2, . . . ∈ D(a) and u ∈ V (ã) be as in the proof
of Statement (a). Then lim j(un) = x in D(b), therefore also in H. Moreover, lim q(un) = u
in V . So the sequence q(u1), q(u2), . . . is bounded in V . But ‖un‖a = ‖q(un)‖V for all
n ∈ N. Thus the sequence u1, u2, . . . satisfies the requirements.

‘⊃’. Let u1, u2, . . . be a bounded sequence in D(a), x ∈ H and suppose that lim j(un) =
x in H. Then q(u1), q(u2), . . . is a bounded sequence in V . So passing to a subsequence if
necessary, there exists a v ∈ V such that lim q(un) = v weakly in V . Then j̃(v) = lim j(un)
weakly in H. Hence x = j̃(v) ∈ j̃(V ) = D(ar).
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‘(d)’. The construction in the proof of Theorem 3.2 with h instead of a leads to the
same closed space W , then the same normed space V0 and the same Banach space V . Let
h̃:V × V → C be the unique continuous form on V such that h̃(q(u), q(v)) = h(u, v) for
all u, v ∈ V . Then h̃ = <ã, the real part of ã. Let hc be the classical form associated
with (h̃, j̃). Then hc = hr and b = ar by part (a). Then Statement (d) follows from
Proposition 2.6.

‘(c)’. Again by Proposition 2.6 there exists a c ≥ 1 such that Re b(x) ≤ c hc(x) for all
x ∈ j̃(V ). But hc(j̃(u)) ≤ h̃(u) = Re ã(u) for all u ∈ V . So ‖j̃(u)‖b ≤ c ‖u‖ã for all u ∈ V .
Then ‖j(u)‖ar ≤ c ‖q(u)‖ã = c ‖u‖a for all u ∈ D(a). The last assertion in Statement (c)
is an immediate consequence. 2

We call ar the regular and ar the relaxed form of the j-sectorial form a. This termi-
nology coincides with the one employed by Simon [Sim2] in the symmetric case if D(a) ⊂ H
and j is the identity map. If a is positive, i.e. if the numerical range {a(u) : u ∈ D(a)}
is contained in [0,∞), then Simon characterizes the regular part of a as the largest clos-
able form lying below a for the order relation b1 ≤ b2 if and only if D(b2) ⊂ D(b1) and
b1(u) ≤ b2(u) for all u ∈ D(b2). Of course, such an order relation is not possible to de-
fine for sectorial forms. It seems to us, though, that the direct formula in Theorem 1.1
expressing the generator directly in terms of the form a, is frequently more useful than the
computation of ar. For positive a Simon proved Proposition 3.11(b) in [Sim1], Theorem 3.
Note that for general a (but still j the inclusion), the form a is closable if and only if ar
coincides with a on D(a).

Let a be a densely defined sectorial form and A its associated operator, as above. If
the form a is symmetric, then the associated operator A is self-adjoint. But the converse
is not true if the form a not closable. In order to see this, it suffices to consider the form
(1 + i)a where a is the form as in Example 3.14 below.

For general j-sectorial forms we also consider invariance of closed convex subsets.

Proposition 3.12 Let a be an accretive sesquilinear form, H a Hilbert space and j:D(a) →
H a linear map. Suppose the form a is accretive, j-sectorial and j(D(a)) is dense in H.
Let A be the operator associated with (a, j) and S the semigroup generated by −A. Let
C ⊂ H be a closed convex set and let P :H → C be the orthogonal projection. Then the
following are equivalent.

(i) StC ⊂ C for all t > 0.

(ii) for all u ∈ D(a) there exists a Cauchy sequence w1, w2, . . . in (D(a), ‖ · ‖a) such that
limn→∞ j(wn) = Pj(u) in H and limn→∞ Re a(wn, u− wn) ≥ 0.

(iii) for all u ∈ D(a) there exists a bounded sequence w1, w2, . . . in (D(a), ‖ · ‖a) such that
limn→∞ j(wn) = Pj(u) in H and lim supn→∞ Re a(wn, u− wn) ≥ 0.

Proof We use the notation as in the proof of Theorem 3.2. Clearly the form ã is accretive
by continuity and density of V0. We shall prove the equivalence with Condition (iv) in
Proposition 2.9 for D = V0 = q(D(a)), ã and j̃.

‘(i)⇒(ii)’. Let u ∈ D(a). By Proposition 2.9(i)⇒(iv) there exists a w ∈ V such
that j̃(w) = Pj(u) and Re ã(w, q(u) − w) ≥ 0. There are w1, w2, . . . ∈ D(a) such that
lim q(wn) = w in V . Then the sequence w1, w2, . . . satisfies the requirements.

‘(ii)⇒(iii)’. Trivial.
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‘(iii)⇒(i)’. Let u ∈ D(a). By assumption there exists a bounded sequence w1, w2, . . .
in (D(a), ‖ · ‖a) such that lim j(wn) = Pj(u) in H and lim supn→∞ a(wn, u − wn) ≥
0. Then q(w1), q(w2), . . . is a bounded sequence in V , so passing to a subsequence if
necessary, it follows that it is weakly convergent. Let w = limn→∞ q(wn) weakly in
V . Then j̃(w) = lim j(wn) weakly in H, so j̃(w) = Pj(u) = P j̃(q(u)). Moreover,
ã(w, q(u)) = lim ã(q(wn), q(u)) and Re ã(w,w) = <ã(w) ≤ lim inf <ã(q(wn)) by [Kat]
Lemma VIII.3.14a. So Re ã(w, q(u)− w) ≥ lim supn→∞ Re a(wn, u− wn) ≥ 0. Then Con-
dition (i) follows from Proposition 2.9(iv)⇔(i). 2

Remark 3.13 Clearly Condition (ii) in Proposition 3.12 is valid if for all u ∈ D(a) there
exists a w ∈ D(a) such that j(w) = Pj(u) and Re a(w, u− w) ≥ 0.

We end this section with several remarks in the framework of Theorem 1.1. So from
now on we assume that D(a) ⊂ H, the form a is densely defined, sectorial and that j
is the inclusion map. We emphasize that we do not assume that the form a is closable.
Let us give some further comments on the definition of the operator A associated with a.
We might at first associate a minimal operator Amin with a in the following way. For all
u, f ∈ H we say by definition, that u ∈ D(Amin) and Au = f if and only if

a(u, v) = (f, v)H for all v ∈ D(a). (12)

Thus the operator A is an extension of Amin consisting all approximate solutions of the
problem (12). If the form is closed, then Amin = A. The following example shows that the
minimal operator may be trivial in the sense that Amin = {0} even if the form is definite
in the sense that a(u) = 0 implies that u = 0.

Example 3.14 Let H = L2(0, 1), D(a) = C[0, 1] and

a(u, v) =
∞∑
n=1

2−n u(qn) v(qn)

where {qn : n ∈ N} = [0, 1] ∩Q with qn 6= qm for all n,m ∈ N with n 6= m.
Now let u ∈ D(Amin) and set f = Au. Then a(u, v) = (f, v)H for all v ∈ D(a), so

∞∑
n=1

2−n u(qn) v(qn) =

∫ 1

0

f(t) v(t) dt

for all v ∈ C[0, 1]. Since on the left hand side we apply a discrete measure and on the right
hand side a continuous measure to v, it follows that f = 0 and u(qn) = 0 for all n ∈ N.
Hence u = 0. We have shown that D(Amin) = {0}.

In this example one can calculate the operator A associated with a. We use the notation
as introduced in the proof of Theorem 1.1. First we characterize the completion of D(a).
Note that

‖u‖2
a =

∫ 1

0

|u|2 dx+
∞∑
n=1

2−n |u(qn)|2.

We claim that the completion V of D(a) is the space L2(0, 1) ⊕K, where K is the Hilbert
space

K = {ξ ∈ CN :
∞∑
n=1

2−n |ξn|2 <∞}.
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Clearly the mapping Φ:D(a) → L2(0, 1) ⊕K given by Φ(u) = (u, (u(qn))n∈N) is an isom-
etry. Let F = Φ(D(a)). We shall show that F = L2(0, 1) ⊕ K. Let m ∈ N and
em = (0, . . . , 0, 1, 0 . . . , 0, . . .). We aim to show that (0, em) ∈ F . For all k ∈ N let
uk ∈ C[0, 1] be such that 0 ≤ uk ≤ 1, uk(qm) = 1 and suppuk ⊂ (qm − 1

k
, qm + 1

k
). Then

limk→∞ uk = 0 in L2(0, 1). We show that (uk(qn))n∈N converges to em in K as k →∞. Let
ε > 0. There exists an N > m such that

∑∞
n=N 2−n ≤ ε. Next, there exists a k0 ∈ N such

that 1
k0
< |qn−qm| for all n ∈ {1, . . . , N}\{m}. Then ‖(uk(qn)n∈N)−em‖2

K ≤
∑

n≥N 2−n ≤ ε
for all k ∈ N with k ≥ k0. This proves that (0, em) ∈ F . Hence (0, ξ) ∈ F for all ξ ∈ K.
Let u ∈ C[0, 1]. Then (u, 0) = (u, (u(qn))n∈N)− (0, (u(qn))n∈N) ∈ F . Since C[0, 1] is dense
in L2(0, 1), it follows that L2(0, 1)⊕ {0} ⊂ F . This shows that F = L2(0, 1)⊕K.

So V = L2(0, 1)⊕K. Then the map j ∈ L(V,H) is given by j(u, ξ)) = u. The extension
ã of a to V × V is given by

ã((u, ξ), (v, η)) =
∞∑
n=1

2−n ξn ηn.

Let A be the operator associated with (ã, j). Let (u, ξ) ∈ DH(ã) and set f = Aj(u, ξ).
Then

(f, v)L2 = (f, j(v, η))L2 = ã((u, ξ), (v, η)) =
∞∑
n=1

2−n ξn ηn

for all (v, η) ∈ V . Choose v = 0 and η = ξ. Then it follows that ξ = 0. Hence
(f, v)L2 = 0 for all v ∈ L2(0, 1). Thus f = 0. It follows that Au = A(j(u, ξ)) = 0 and
DH(ã) ⊂ L2(0, 1)× {0}. Conversely, let u ∈ L2(0, 1). Then (u, 0) ∈ V and (0, j(v, η))L2 =
0 = ã((u, 0), (v, η)) for all (v, η) ∈ V . Thus (u, 0) ∈ DH(ã) and DH(ã) = L2(0, 1) × {0}.
The operator A associated with (ã, j) is 0.

Finally, let (u, ξ) ∈ V . If ξ 6= 0 then j(u, ξ) ∈ D(A) but

ã((u, ξ), (v, η)) 6= 0 = (A(j(u, ξ), j(v, η)))

if (v, η) = (u, ξ). This is an example which shows that in general (4) is restricted to
u ∈ DH(ã). 2

The form in the example is not closable. But even if the form a is closable, the domain
D(Amin) of Amin is not a core of A, in general. We give an example

Example 3.15 Let H = L2(Ω) where Ω is a bounded open set in Rd and let D(a) = D(Ω)
be the space of all test functions. Define a(u, v) =

∫
Ω
∇u · ∇v for all u, v ∈ D(Ω). Then

D(Amin) = D(Ω) and Aminu = −∆u. The associated operator A is the Dirichlet Laplacian
which has domain D(A) = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)}. Both the Dirichlet as the
Neumann Laplacian are extensions of −Amin. Therefore D(Ω) = D(Amin) is not a core of
the associated operator A. 2

Proposition 3.12 has several consequences which will be useful for differential operators
in the next section. If (X,B,m) is a measure space and a is a sesquilinear form in L2(X),
then we call a real if Reu ∈ D(a) and a(Re u) ∈ R for all u ∈ D(a).

Corollary 3.16 Let (X,B,m) be a measure space and let a be a densely defined sectorial
form in L2(X). Let A be the operator associated with a as in Theorem 1.1 and let S be the
semigroup generated by the operator −A.
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(a) If a is real then StL2(X,R) ⊂ L2(X,R) for all t > 0.

(b) If a is real, u+ ∈ D(a) and a(u+, u−) ≤ 0 for all u ∈ D(a) ∩ L2(X,R), then S is
positive. In particular, |Stu| ≤ St|u| for all t > 0 and u ∈ L2(X).

(c) If a is accretive, real, u ∧ 1 ∈ D(a) and a(u ∧ 1, (u − 1)+) ≥ 0 for all u ∈ D(a) ∩
L2(X,R), then S is submarkovian, i.e., ‖Stu‖∞ ≤ ‖u‖∞ for all u ∈ L2(X) ∩
L∞(X).

(d) If a is accretive, real, u ∧ 1 ∈ D(a) and a((u − 1)+, u ∧ 1) ≥ 0 for all u ∈ D(a) ∩
L2(X,R), then ‖Stu‖1 ≤ ‖u‖1 for all u ∈ L1(X) ∩ L2(X).

Proof ‘(a)’. Replacing a by (u, v) 7→ a(u, v)+γ (u, v)H we may assume that a is accretive.
Let u ∈ D(a). Set w = Reu. Then w ∈ D(a) and Re a(w, u − w) = Re a(Re u, i Imu) =
Im a(Re u, Imu) = 0. So by Proposition 3.12 the set L2(X,R) is invariant under S. (See
also Remark 3.13.)

‘(b)’. Again we may assume that a is accretive. Let C = {(Re u)+ : u ∈ L2(X)}. Then
C is closed and convex. Let P be the projection of L2(X) onto C. Let u ∈ D(a). Then
Pu = (Reu)+ ∈ D(a). Moreover, Re a(Pu, u− Pu) = Re a((Reu)+,−(Re u)− + i Imu) =
−a((Reu)+, (Re u)−) ≥ 0. So by Proposition 3.12 the set C is invariant under S.

‘(c)’. Let C = {u ∈ L2(X,R) : u ≤ 1}. Then C is closed and convex in L2(X).
The projection P :L2(X) → C is given by Pu = (Reu) ∧ 1. It follows by assumption
and Proposition 3.12 that the set C is invariant under S. By linearity one deduces that
|Stu| ≤ 1 for all t > 0 and u ∈ L2(X,R) with |u| ≤ 1. Next, let t > 0, u ∈ L2(X,R) and
assume u ≤ 0. If n ∈ N then nu ∈ C, so nStu ∈ C and Stu ≤ 1

n
1. Therefore Stu ≤ 0

and S is a positive semigroup. Finally, let u ∈ L2(X) and assume that |u| ≤ 1. Then
|Stu| ≤ St|u| ≤ 1 by Statement (b) and the above applied to |u|.

‘(d)’. This follows by duality from Statement (c) and Remark 3.4. 2

4 Examples

We illustrate the theorems of the previous sections by several examples.

4.1 Sectorial differential operators

First we consider differential operators on open sets in Rd. We emphasize that the operators
do not have to be symmetric and may have complex coefficients.

Lemma 4.1 Let Ω ⊂ Rd be open. For all i, j ∈ {1, . . . , d} let aij ∈ L1,loc(Ω). Let D(a) be
a subspace of L2(Ω) with C∞

c (Ω) ⊂ D(a). Assume that ∂iu ∈ L1,loc(Ω) as distribution and∫
Ω

|(∂iu) aij ∂jv| <∞

for all u, v ∈ D(a) and i, j ∈ {1, . . . , d}. Define the form a:D(a)×D(a) → C by

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv.

Let θ ∈ [0, π
2
). Then the following are equivalent.
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(i) The form a is sectorial with semi-angle θ.

(ii) The form a is sectorial with vertex 0 and semi-angle θ.

(iii)
∑d

i,j=1 aij(x) ξi ξj ∈ Σθ for all ξ ∈ Cd and a.e. x ∈ Ω.

Proof The implications (iii)⇒(ii)⇒(i) are trivial. Conversely, suppose there exists a
γ ∈ R such that a(u) − γ ‖u‖2

2 ∈ Σθ for all u ∈ C∞
c (Ω). Let ξ ∈ Cd and τ ∈ C∞

c (Ω). For
all λ ∈ R define uλ ∈ C∞

c (Ω) by uλ(x) = eiλx·ξ τ(x). Then

d∑
i,j=1

∫
Ω

aij |τ |2 ξi ξj = lim
λ→∞

λ−2 a(uλ) ∈ Σθ.

Therefore (iii) follows. 2

If one of the equivalent conditions of Lemma 4.1 is valid then we can apply Theorem 1.1
and we call the operator A associated with a a sectorial differential operator. Then
−A generates a holomorphic semigroup.

The assumptions on the domain D(a) and the coefficients aij are very general. For
example one can choose D(a) = C∞

c (Ω) together with the condition aij ∈ L1,loc(Ω), or
alternatively one can choose D(a) = H1

loc(Ω) together with aij ∈ L∞,loc(Ω). Or if aij ∈
L∞(Ω) one can choose for D(a) any subspace of H1(Ω) with C∞

c (Ω) ⊂ D(a).
In order to avoid too many cases we will not consider unbounded coefficients in this

paper. We shall frequently use the approximation by strongly elliptic forms and operators.
Let Ω ⊂ Rd be open. For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω). Let θ ∈ [0, π

2
). Suppose∑d

i,j=1 aij(x) ξi ξj ∈ Σθ for all ξ ∈ Cd and a.e. x ∈ Ω. Define the form a:D(a)×D(a) → C
by

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv,

where D(a) is a subspace of H1(Ω) with C∞
c (Ω) ⊂ D(a). Let l:D(a) × D(a) → C be

defined by l(u, v) =
∑d

i=1

∫
Ω
∂iu ∂iv. For all n ∈ N let a(n) = a+ 1

n
l. Then a(n) is strongly

elliptic, i.e. there exists a µ > 0 such that Re
∑d

i,j=1 aij(x) ξi ξj ≥ µ |ξ|d for all ξ ∈ Cd and

a.e. x ∈ Ω. If A, An, S and S(n) are the associated operators and semigroups then the
conditions of Theorem 3.7 are satisfied. In particular the An converge to A strongly in the
resolvent sense and therefore S

(n)
t converges strongly to St for all t > 0. Note that An is a

kind of viscosity operator for A.
We next show that under a mild condition on the form domain D(a) the semigroup

associated with a sectorial differential operator satisfies Davies–Gaffney bounds. If F and
G are two non-empty subsets of Rd then d(F,G) denotes the Euclidean distance. The value
of M can be improved significantly if the coefficients are real. (See [ERSZ2] Proposition
3.1.) In this paper the following version for complex coefficients suffices.

Theorem 4.2 Let Ω ⊂ Rd be open. For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω). Let

θ ∈ [0, π
2
). Suppose

∑d
i,j=1 aij(x) ξi ξj ∈ Σθ for all ξ ∈ Cd and a.e. x ∈ Ω. Define the form

a:D(a)×D(a) → C by

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv,
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where D(a) is a subspace of H1(Ω) with C∞
c (Ω) ⊂ D(a). Suppose eρψu ∈ D(a) for all

u ∈ D(a), ρ ∈ R and ψ ∈ W∞
∞ (Rd,R). Let S be the semigroup associated with a. Then

|(Stu, v)| ≤ e−
d(Ω1,Ω2)2

4Mt ‖u‖2 ‖v‖2 (13)

for all non-empty open Ω1,Ω2 ⊂ Ω, u ∈ L2(Ω1), v ∈ L2(Ω2) and t > 0, where M =
3(1 + tan θ)2(1 +

∑d
i,j=1 ‖aij‖∞).

Proof First suppose that the (aij) are strongly elliptic. Let ρ > 0 and ψ ∈ W∞
∞ (Rd,R)

with ‖∇ψ‖∞ ≤ 1. Define the form aρ:D(a)×D(a) → C by

aρ(u, v) =
d∑

i,j=1

∫
Ω

(∂iu+ ρψi u) aij ∂jv − ρψj v,

where ψi = ∂iψ for all i ∈ {1, . . . , d}. Then

Re aρ(u) = Re a(u) + ρ Re

∫
Ω

d∑
i,j=1

ψi u aij ∂ju− ρ Re

∫
Ω

d∑
i,j=1

(∂iu) aij ψj u

− ρ2 Re

∫
Ω

d∑
i,j=1

ψi aij ψj |u|2 (14)

for all u ∈ D(a). It follows from the estimate (1.15) of Subsection VI.1.2 in [Kat] that

∣∣∣ d∑
i,j=1

aij(x) ξi ηj

∣∣∣ ≤ (1 + tan θ)
(

Re
d∑

i,j=1

aij(x) ξi ξj

)1/2(
Re

d∑
i,j=1

aij(x) ηi ηj

)1/2

≤ εRe
d∑

i,j=1

aij(x) ξi ξj +
(1 + tan θ)2

4ε
Re

d∑
i,j=1

aij(x) ηi ηj

for all ξ, η ∈ Cd, ε > 0 and a.e. x ∈ Ω. Choosing ξi = (∂iu)(x), ηi = (ψi u)(x) and ε = 1
4ρ

it follows that

ρ
∣∣∣ ∫

Ω

d∑
i,j=1

(∂iu) aij ψj u
∣∣∣ ≤ 1

4
Re a(u) + (1 + tan θ)2 ρ2 Re

∫
Ω

d∑
i,j=1

ψi aij ψj |u|2.

Similarly the second term in (14) can be estimated. Hence

Re aρ(u) ≥ 1
2
Re a(u)−

(
1 + 2(1 + tan θ)2

)
ρ2 Re

∫
Ω

d∑
i,j=1

ψi aij ψj |u|2

≥ 1
2
Re a(u)−M ρ2 ‖u‖2

2. (15)

Define U±ρ:L2(Ω) → L2(Ω) by U±ρv = e±ρψv. Then U±ρD(a) ⊂ D(a). Moreover,
aρ(u, v) = a(Uρu, U−ρv) for all u, v ∈ D(a). Since the (aij) are strongly elliptic, the
forms a and aρ are sectorial. Let A and Aρ be the associated operators and let S(ρ) be the
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semigroup generated by −Aρ. Then Aρ = U−ρAUρ and S
(ρ)
t = U−ρ St Uρ for all t > 0. It

follows from (15) that

‖S(ρ)
t ‖2→2 ≤ eM ρ2 t (16)

for all t > 0. Then

|(Stu, v)| = |(S(ρ)
t U−ρu, Uρv)| ≤ ‖S(ρ)

t ‖2→2 ‖U−ρu‖2 ‖Uρv‖2 ≤ eM ρ2 t e−ρ dψ(Ω1,Ω2) ‖u‖2 ‖v‖2

for all u ∈ L2(Ω1) and v ∈ L2(Ω2), where dψ(Ω1,Ω2) = infx∈Ω1 ψ(x) − supx∈Ω2
ψ(x).

Minimizing over all ψ ∈ W∞
∞ (Rd) with ‖∇ψ‖∞ ≤ 1 gives

|(Stu, v)| ≤ eM ρ2 t e−ρ d(Ω1,Ω2) ‖u‖2 ‖v‖2

and choosing ρ = d(Ω1,Ω2)
2Mt

gives

|(Stu, v)| ≤ e−
d(Ω1,Ω2)2

4Mt ‖u‖2 ‖v‖2

uniformly for all u ∈ L2(Ω1), v ∈ L2(Ω2) and t > 0.
Finally we drop the assumption that the (aij) are strongly elliptic. For all n ∈ N define

a
(n)
ij = aij + 1

n
δij. Then (a

(n)
ij ) is strongly elliptic. If S(n) is the associated semigroup then

limn→∞ S
(n)
t = St strongly for all t > 0 by Theorem 3.7. Hence the theorem follows. 2

We next consider locality properties of the relaxed form ar of the sectorial form a.

Corollary 4.3 Assume the notation and assumptions of Theorem 4.2. Then ar(u, v) = 0
for all u, v ∈ D(ar) with compact disjoint support.

Proof There exist open non-empty Ω1,Ω2 ⊂ Rd such that suppu ⊂ Ω1, supp v ⊂ Ω2

and d(Ω1,Ω2) > 0. Then it follows from Theorem 4.2 that there exists a b > 0 such that

|((I − St)u, v)| = |(Stu, v)| ≤ e−bt
−1‖u‖2 ‖v‖2

uniformly for all t > 0. Hence by [Ouh] Lemma 1.56 one deduces that

|ar(u, v)| = lim
t↓0

t−1|((I − St)u, v)| ≤ lim
t↓0

t−1e−bt
−1‖u‖2 ‖v‖2 = 0

as required. 2

If Ω ⊂ Rd define

L2,c(Ω) = {u ∈ L2(Ω) : suppu is compact}.

Another corollary of Theorem 4.2 is that St maps L2,c(Ω) into L1(Ω). This is a special case
of the following lemma.

For all R > 0 let BR denote the open ball in Rd with centre 0 and radius R. Set
χR = 1BR .
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Lemma 4.4 Let d ∈ N. There exists a constant cd > 0 such that the following holds. Let
Ω ⊂ Rd be open and T ∈ L(L2(Ω)). Let c,N > 0 and suppose that

|(Tu, v)| ≤ c e−
d(Ω1,Ω2)2

N ‖u‖2 ‖v‖2

for all non-empty open Ω1,Ω2 ⊂ Ω, u ∈ L2(Ω1) and v ∈ L2(Ω2). Then TL2,c(Ω) ⊂ L1(Ω)
and

‖(1− χ2R)Tu‖1 ≤ c cdR
−1N

d+2
4 e−

R2

2N ‖u‖2

uniformly for all R > 0 and u ∈ L2(Ω) with suppu ⊂ BR.

Proof Since χ2R Tu ∈ L2(Ω ∩ B2R) ⊂ L1(Ω) it suffices to show the estimate. Let
ϕ ∈ Cc(Ω). Then

|((1− χ2R)Tu, ϕ)| = |(Tu, (1− χ2R)ϕ)|

≤
∞∑
n=1

|(Tu, (χ(n+2)R − χ(n+1)R)ϕ)|

≤
∞∑
n=1

c e−
n2R2

N ‖u‖2 ‖(χ(n+2)R − χ(n+1)R)ϕ‖2

≤
∞∑
n=1

c e−
n2R2

N ((n+ 2)R)d/2 |B1|1/2 ‖u‖2 ‖ϕ‖∞

≤ 3d/2|B1|1/2 c e−
R2

2N ‖u‖2 ‖ϕ‖∞
∞∑
n=1

e−
n2R2

2N (nR)d/2.

Let c′ > 0 be such that xd/4 ≤ c′ex uniformly for all x > 0. Then c′ can be chosen to
depend only on d. Note that

∑∞
n=1 e

−an2 ≤
∫∞

0
e−ax

2
dx =

√
π
4a

for all a > 0. Therefore

∞∑
n=1

e−
n2R2

2N (nR)d/2 = (4N)d/4
∞∑
n=1

e−
n2R2

2N

(n2R2

4N

)d/4
≤ c′ (4N)d/4

∞∑
n=1

e−
n2R2

4N ≤ c′ (4N)d/4
(π N
R2

)1/2

.

Then the lemma follows by taking the supremum over all ϕ with ‖ϕ‖∞ ≤ 1. 2

As a consequence one deduces L1-convergence of the viscosity semigroups on L2,c(Ω).
Recall that the coefficients in Theorem 4.2 are complex.

Lemma 4.5 Assume the notation and assumptions of Theorem 4.2. For all n ∈ N let
a(n) = a+ 1

n
l, where l is the form with D(l) = D(a) and l(u, v) =

∑d
i=1

∫
Ω
∂iu ∂iv. Let S(n)

be the semigroup associated with a(n). Then limn→∞ S
(n)
t u = Stu in L1(Ω) for all t > 0 and

u ∈ L2,c(Ω).
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Proof It follows from Theorem 4.2 that there exists an M > 0 such that

|(Stu, v)| ∨ |(S(n)
t u, v)| ≤ e−

d(Ω1,Ω2)2

4Mt ‖u‖2 ‖v‖2

uniformly for all n ∈ N, non-empty open Ω1,Ω2 ⊂ Ω, u ∈ L2(Ω1), v ∈ L2(Ω2) and t > 0,
Let cd > 0 be as in Lemma 4.4. Let u ∈ L2,c(Ω) and t > 0. Then

‖(1− χ2R)S
(n)
t u‖1 ≤ cdR

−1(4Mt)
d+2
4 e−

R2

8Mt ‖u‖2

uniformly for all n ∈ N and R > 0 with suppu ⊂ BR. So limR→∞(1 − χ2R)S
(n)
t u = 0

in L1(Ω) uniformly in n ∈ N. Similarly, limR→∞(1 − χ2R)Stu = 0 in L1(Ω). So it

suffices to prove that limn→∞ χ2R(S
(n)
t u − Stu) = 0 for large R > 0. Since ‖χ2R(S

(n)
t u −

Stu‖1 ≤ |B2R|1/2 ‖S(n)
t u−Stu‖2 for all n ∈ N and R > 0, it follows from Theorem 3.7 that

limn→∞ χ2R(S
(n)
t u− Stu) = 0 in L1(Ω) for all R > 0. 2

For strongly elliptic operators one can strengthen the conclusions of Theorem 4.2.

Lemma 4.6 Assume the notation and assumptions of Theorem 4.2. In addition suppose
that the operator is strongly elliptic, i.e. there exists a µ > 0 such that

Re
d∑

i,j=1

aij(x) ξi ξj ≥ µ |ξ|2

for all ξ ∈ Cd and a.e. x ∈ Ω. Then one has the following.

(a) StL2(Ω) ⊂ H1(Ω) for all t > 0.

(b) There exist c,M ′ > 0 such that

|(∂iStu, v)| ≤ c e−
d(Ω1,Ω2)2

M′t ‖u‖2 ‖v‖2

for all non-empty open Ω1,Ω2 ⊂ Ω, u ∈ L2(Ω1), v ∈ L2(Ω2) and t > 0.

(c) If u ∈ L2,c(Ω) then Stu, ∂iStu ∈ L1(Ω) for all t > 0 and i ∈ {1, . . . , d}. Moreover,
t 7→ ‖∂iStu‖1 is locally bounded.

Proof Statement (a) follows from strong ellipticity and Statement (c) is a consequence
of Lemma 4.4 and the estimates of Theorem 4.2 and Statement (b). Therefore it remains
to prove Statement (b).

We use the notation as in the proof of Theorem 4.2. Fix θ′ ∈ (θ, π
2
). For all ϕ ∈ R with

|ϕ| < θ′ − θ define a
[ϕ]
ij = eiϕ aij for all i, j ∈ {1, . . . , d}. Then

∑d
i,j=1 a

[ϕ]
ij (x) ξi ξj ∈ Σθ′ for

all ξ ∈ Cd and a.e. x ∈ Ω. Let a[ϕ] be the corresponding form with form domain D(a). For

all ρ > 0 let a
[ϕ]
ρ , A[ϕ], A

[ϕ]
ρ , S[ϕ] and S[ϕ] ρ be the form, operators and semigroups defined

naturally as in the proof of Theorem 4.2. Then it follows from (16) that

‖S[ϕ] ρ‖2→2 ≤ eM1 ρ2 t

for all ρ, t > 0 and |ϕ| < θ′ − θ, where M1 = 3(1 + tan θ′)2(1 +
∑d

i,j=1 ‖aij‖∞). But

S
[ϕ] ρ
t = e−te

iϕAρ = Sρ
teiϕ

. So ‖Sρ
teiϕ
‖2→2 ≤ eM1 ρ2 t for all t, ρ > 0 and |ϕ| < θ′ − θ. Since Sρ

is a holomorphic semigroup on the interior of Σπ
2
−θ′ it follows that

Sρt =
1

2πi

∫
Γr(t)

1

z − t
Sρz dz
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for all t > 0, where Γr(t) is the circle centred at t and radius r = c t and c = sin 1
2
(π

2
− θ′).

Therefore

‖AρSρt ‖2→2 ≤
1

2π

∫
Γr(t)

1

|z − t|2
‖Sρz‖2→2 d|z| ≤

1

c t
eM2ρ2t

for all ρ, t > 0, where M2 = M1(1 + c). It then follows from (15) that

1
2
µ

d∑
i=1

‖∂i Sρt u‖2
2 ≤ Re aρ(S

ρ
t u, S

ρ
t u) +Mρ2 ‖Sρt u‖2

2

≤ ‖Aρ Sρt u‖2 ‖Sρt u‖2 +Mρ2 ‖Sρt u‖2
2

≤ 1

c t
eM2 ρ2 t eM ρ2 t‖u‖2

2 +Mρ2 e2M ρ2 t‖u‖2
2.

Hence there exist c3,M3 > 0 such that

‖∂i Sρt ‖2→2 ≤ c3 t
−1/2 eM3 ρ2 t

uniformly for all i ∈ {1, . . . , d} and ρ, t > 0. Since

‖U−ρ ∂i St Uρ‖2→2 = ‖(∂i + ρψi)S
ρ
t ‖2→2 ≤ ‖∂i Sρt ‖2→2 + |ρψi| ‖Sρt ‖2→2 ≤ c4 t

−1/2 eM4 ρ2 t

for suitable c4,M4 > 0, Statement (b) follows as at the end of the proof of Theorem 4.2.2

The conditions on the form domain in Theorem 4.2 are satisfied in case of Neumann
boundary conditions, i.e. if D(a) = H1(Ω). We next show that if D(a) = H1(Ω) then a
strong locality property is valid. We start with a lemma for (complex) strongly elliptic
operators.

Lemma 4.7 Let Ω ⊂ Rd be open. For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω). Suppose there

exists a µ > 0 such that Re
∑d

i,j=1 aij(x) ξi ξj ≥ µ |ξ|2 for all ξ ∈ Cd and a.e. x ∈ Ω. Define

a:H1(Ω)×H1(Ω) → C by

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv.

Let S be the semigroup associated with a. Then (Stu, 1) = (u, 1) for all u ∈ L2,c(Ω) and
t > 0.

Proof Fix τ ∈ C∞
c (Rd) such that τ |B1 = 1. For all n ∈ N define τn ∈ C∞

c (Rd) by
τn(x) = τ(n−1x). For all n ∈ N define fn: (0,∞) → C by fn(t) = (Stu, τn 1Ω). Note that
τn 1Ω ∈ H1(Ω) = D(a) for all n ∈ N. Therefore

f ′n(t) = −a(Stu, τn 1Ω) = −
d∑

i,j=1

(∂i Stu, aij ∂j(τn 1Ω)) = −
d∑

i,j=1

(∂i Stu, aij (∂jτn) 1Ω)

and

|f ′n(t)| ≤
d∑

i,j=1

‖∂i Stu‖1 ‖aij‖∞ n−1 ‖∂jτ‖∞

25



for all n ∈ N and t > 0, where we used that ∂i Stu ∈ L1(Ω) by Lemma 4.6(c). So
limn→∞ f ′n(t) = 0 locally uniform on (0,∞). In addition, limn→∞ fn(t) = (Stu, 1) for all
t ∈ (0,∞). Therefore t 7→ (Stu, 1) is constant. Since limt↓0(Stu, 1) = (u, 1) the lemma
follows. 2

We are now able to prove strong locality for Neumann sectorial differential operators.
Note that our conditions allow that the coefficients are 0 on part or even the entire domain.

Proposition 4.8 Let Ω ⊂ Rd open. For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω). Let

θ ∈ [0, π
2
). Suppose

∑d
i,j=1 aij(x) ξi ξj ∈ Σθ for all ξ ∈ Cd and a.e. x ∈ Ω. Define the form

a with form domain D(a) = H1(Ω) by

a(u, v) =
d∑

i,j=1

∫
Rd

(∂iu) aij ∂jv.

Then one has the following.

(a) ar(u, v) = 0 for all u, v ∈ D(ar) with compact support such that v is constant on a
neighbourhood of the support of u.

(b) If S is the semigroup associated with a then (Stu, 1) = (u, 1) for all t > 0 and
u ∈ L2,c(Ω).

Proof We first prove Statement (b). For all n ∈ N let a(n) = a+ 1
n
l, where l is the form

with D(l) = H1(Ω) and l(u, v) =
∑d

i=1

∫
Ω
∂iu ∂iv. Let S(n) be the semigroup associated

with a(n). Then (Stu, 1) = limn→∞(S
(n)
t u, 1) = (u, 1) for all t > 0 and u ∈ L2,c(Ω) by

Lemmas 4.5 and 4.7.
Next let u, v ∈ D(ar) with compact support such that v is constant on a neighbourhood

of the support of u. Then there exists an open set U and a λ ∈ C such that suppu ⊂ U
and v(x) = λ for all x ∈ U . Therefore (u, v) = λ (u, 1) = λ (Stu, 1) for all t > 0.

Let cd > 0 be the constant in Lemma 4.4, which depends only on d. Moreover, set

M = 3(1 + tan θ)2(1 +
d∑

i,j=1

‖aij‖∞).

Fix R > 0 such that suppu ⊂ BR.
Now let t > 0. Then

((I − St)u, v) = λ (Stu, 1)− (Stu, v)

= λ (Stu, 1− χ2R) + (Stu, λ χ2R − v).

We estimate the terms separate. First, S satisfies the Davies–Gaffney bounds (13) of
Theorem 4.2. So one estimates

|(Stu, 1− χ2R)| ≤ ‖(1− χ2R)Stu‖1 ≤ cdR
−1(4M t)

d+2
4 e−

R2

8Mt ‖u‖2

by Lemma 4.4. Next, let D > 0 be the distance between suppu and U c. Then it follows
from Theorem 4.2 that

|(Stu, λ χ2R − v)| ≤ e−
D2

4Mt ‖u‖2 ‖λχ2R − v‖2

≤ (|λ| (2R)d/2 |B1|1/2 + ‖v‖2) e
− D2

4Mt ‖u‖2.
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Therefore

t−1|((I − St)u, v)| ≤ |λ| cdR−1t−1(4M t)
d+2
4 e−

R2

8Mt ‖u‖2

+ (|λ| (2R)d/2 |B1|1/2 + ‖v‖2) t
−1e−

D2

4Mt ‖u‖2

for all t > 0. Since ar(u, v) = limt↓0 t
−1((I − St)u, v) the proposition follows. 2

Up to now the coefficients were allowed to be complex in this section. If the coef-
ficients are real, but possibly not symmetric, then one has the following application of
Corollary 3.16 and Proposition 4.8.

Corollary 4.9 Let Ω ⊂ Rd be open. For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω,R). Let

θ ∈ [0, π
2
). Suppose

∑d
i,j=1 aij(x) ξi ξj ∈ Σθ for all ξ ∈ Cd and a.e. x ∈ Ω. Define the form

a:D(a)×D(a) → C by

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv,

where D(a) = H1(Ω) or D(a) = H1
0 (Ω). Let S be the semigroup associated with a. Then S

is real, positive and S extends consistently to a continuous contraction semigroup on Lp(Ω)
for all p ∈ [1,∞]. Moreover, if D(a) = H1(Ω) then St1Ω = 1Ω for all t > 0.

Proof Only the last statement needs comments. Since L2,c(Ω) is dense in L1(Ω) one
deduces from Proposition 4.8(b) that (Stu, 1) = (u, 1) for all u ∈ L1(Ω). Then the claim
follows by duality and Remark 3.4. 2

Thus for real coefficients and Neumann boundary conditions one has conservation of
probability.

4.2 Multiplicative perturbation

We perturb the Dirichlet Laplacian by choosing a special function j. Let Ω ⊂ Rd be open
and bounded. Then we obtain a possibly degenerate operator as follows.

Proposition 4.10 Let m: Ω → (0,∞) be such that 1
m
∈ L2,loc(Ω). Define the operator,

formally denoted by (m∆m) on L2(Ω) by the following. Let w, f ∈ L2(Ω). Then we define
w ∈ D((m∆m)) and (m∆m)w = f if and only if mw ∈ H1

0 (Ω) and ∆(mw) = f
m

in D(Ω)′.
Then the operator (m∆m) is self-adjoint and (m∆m) generates a positive semigroup S.

Moreover, the set
C = {f ∈ L2(Ω,R) : f ≤ 1

m
}

is invariant under S.

Proof Let V = H1
0 (Ω) ∩ L2(Ω,

1
m2 dx) and define j ∈ L(V, L2(Ω)) by j(u) = u

m
. Define

a:V × V → C by a(u, v) =
∫

Ω
∇u∇v. Then a is continuous and symmetric. Since Ω is

bounded it follows from the (Dirichlet type) Poincaré inequality that the norm

u 7→
∫

Ω

|∇u|2 +

∫
Ω

|u|2

m2
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is an equivalent norm on V . Therefore the form a is j-elliptic. Let A be the operator
associated with (a, j). We shall show that A = −(m∆m).

Let w ∈ D(A) and write f = Aw. Then there exists a u ∈ V such that w = j(u) = u
m

and
∫

Ω
∇u∇v =

∫
Ω
f v
m

for all v ∈ V . Observe that f
m
∈ L1,loc(Ω). Taking v ∈ D(Ω) one

deduces that −∆u = f
m

in D(Ω)′. Thus w ∈ D((m∆m)) and −(m∆m)w = f .
Conversely, let w ∈ D((m∆m)) and write f = −(m∆m)w. Set u = mw ∈ H1

0 (Ω).
Then

a(u, v) =

∫
Ω

∇u∇v = −〈∆u, v〉 = 〈 f
m
, v〉 =

∫
Ω

f
v

m
=

∫
Ω

f j(v)

for all v ∈ D(Ω). Since D(Ω) is dense in V by [ArC], Proposition 3.2 it follows that
a(u, v) =

∫
Ω
f j(v) for all v ∈ V . Thus w = j(u) ∈ D(A). This proves that A = −(m∆m).

The operator A is self-adjoint since a is symmetric. It remains to show the invariance of
the set C. The set C is closed and convex in L2(Ω). Define P :L2(Ω) → C by Pf = (Re f)∧
1
m

. Let u ∈ V . Define w = (Re u) ∧ 1 ∈ V . Then Pj(u) = j(w) and Re a(w, u − w) = 0.
Hence it follows from Proposition 2.9 that the set C is invariant under S. Since f ≤ 0 if
and only if nf ∈ C for all n ∈ N the invariance of C also implies that the semigroup is
positive. 2

By a similarity transform we obtain two further kinds of multiplicative perturbations.

Proposition 4.11 Let ρ: Ω → (0,∞) be such that 1
ρ
∈ L1,loc(Ω). Define the operator,

formally denoted by (ρ∆) on L2(Ω,
1
ρ
dx) by the following. Let w, f ∈ L2(Ω,

1
ρ
dx). Then

we define w ∈ D((ρ∆)) and (ρ∆)w = f if and only if w ∈ L2(Ω,
1
ρ
dx) ∩ H1

0 (Ω) and

∆w = f
ρ

in D(Ω)′.

Then the operator (ρ∆) is self-adjoint and generates a submarkovian semigroup.

Proof Let m =
√
ρ. Then 1

m
∈ L2,loc(Ω). Define U :L2(Ω,

1
ρ
dx) → L2(Ω) by Uf = f

m
.

Then U is unitary and it is straightforward to verify that (ρ∆) = U−1(m∆m)U . Therefore
the operator (ρ∆) is self-adjoint and generates a semigroup S. Let T be the semigroup
generated by (m∆m) on L2(Ω). Then St = U−1TtU for all t > 0. Let C1 = {f ∈
L2(Ω,

1
ρ
dx) : f ≤ 1}. Then UC1 = C, where C is as in Proposition 4.10. Since T leaves C

invariant, it follows that S leaves C1 invariant and S is submarkovian. 2

Proposition 4.12 Let ρ: Ω → (0,∞) be such that 1
ρ
∈ L1,loc(Ω). Define the operator,

formally denoted by (∆ρ) on L2(Ω, ρ dx) by the following. Let w, f ∈ L2(Ω, ρ dx). Then
w ∈ D((∆ρ)) and (∆ρ)w = f if and only if ρw ∈ H1

0 (Ω) and ∆(ρw) = f in D(Ω)′.
Then the operator (∆ρ) is self-adjoint and generates a submarkovian semigroup.

Note that L2(Ω, ρ dx) ⊂ L1,loc(Ω) ⊂ D(Ω)′.
Proof If m =

√
ρ then the map U :L2(Ω, ρ dx) → L2(Ω) given by U = mf is unitary

and U−1(m∆m)U = (∆ρ). The rest is as in the proof of Proposition 4.11 2

4.3 Robin boundary conditions

Let Ω ⊂ Rd be an open set with arbitrary boundary Γ. At first we consider an arbitrary
Borel measure on Γ and then specialize to the (d− 1)-dimensional Hausdorff measure.
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For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω,C). Let θ ∈ [0, π
2
). Suppose

∑d
i,j=1 aij(x) ξi ξj ∈

Σθ for all ξ ∈ Cd and a.e. x ∈ Ω. Let µ be a (positive) Borel measure on Γ such that
µ(K) <∞ for every compact K ⊂ Γ. Define the form a by

D(a) = {u ∈ H1(Ω) ∩ C(Ω) :

∫
Γ

|u|2 dµ <∞}

and

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv +

∫
Γ

u v dµ.

Then C∞
c (Ω) ⊂ D(a) ⊂ L2(Ω) and a is sectorial. In order to characterize the associated

operator A we need to introduce two concepts and one more condition. First, define the
Neumann form aN by D(aN) = H1(Ω) and

aN(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv.

Throughout this subsection we suppose the form aN is closable. Here we are more interested
in the degeneracy caused by µ. If u ∈ D(aN) and f ∈ L2(Ω) then we say that Au = f
weakly on Ω if

aN(u, v) =

∫
Ω

f v

for all v ∈ C∞
c (Ω). If u ∈ D(aN) then we say that Au ∈ L2(Ω) weakly on Ω if there exists

an f ∈ L2(Ω) such that Au = f weakly on Ω. Clearly such a function f is unique, if it
exists. Secondly, if u ∈ D(aN) and ϕ ∈ L2(Γ, µ) then we say that ϕ is an a, µ-trace of u,
or shortly, a trace of u, if there exists a sequence u1, u2, . . . ∈ D(a) such that limun = u
in D(aN) and limun|Γ = ϕ in L2(Γ, µ). Moreover, let H1

a,µ(Ω) be the set of all u ∈ D(aN)
for which there exists a ϕ ∈ L2(Γ, µ) such that ϕ is a trace of u. We emphasize that ϕ
is not unique (almost everywhere) in general. Clearly D(a) ⊂ H1

a,µ(Ω). With the help of
these definitions we can describe the operator A as follows.

Proposition 4.13 Let u, f ∈ L2(Ω). Then u ∈ D(A) and Au = f if and only if u ∈
H1
a,µ(Ω), Au = f weakly on Ω and there exists a ϕ ∈ L2(Γ, µ) such that ϕ is a trace of u

and

aN(u, v)−
∫

Ω

(Au) v = −
∫

Γ

ϕv dµ (17)

for all v ∈ D(a).
If the conditions are valid, then the function ϕ is unique.

Proof ‘⇒’. There exists a Cauchy sequence u1, u2, . . . in D(a) such that limun = u in
L2(Ω) and lim a(un, v) = (f, v)H for all v ∈ D(a). Then u1, u2, . . . is a Cauchy sequence
in D(aN). Therefore u ∈ D(aN) and limun = u in D(aN). Moreover, u1|Γ, u2|Γ, . . . is a
Cauchy sequence in L2(Γ, µ). Therefore ϕ := limun|Γ exists in L2(Γ, µ). Then ϕ is a trace
of u. Let v ∈ D(a). Then

aN(u, v) +

∫
Γ

ϕv dµ = lim a(un, v) = (f, v)H =

∫
Ω

f v.
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Therefore if v ∈ C∞
c (Ω) then

aN(u, v) =

∫
Ω

f v,

so Au = f weakly on Ω. Moreover,

aN(u, v) +

∫
Γ

ϕv dµ =

∫
Ω

(Au) v

for all v ∈ D(a).
If also ϕ′ ∈ L2(Γ, µ) satisfies (17) then

∫
Γ
(ϕ − ϕ′) v dµ = 0 for all v ∈ D(a). But the

space {v|Γ : v ∈ H1(Ω) ∩ Cc(Ω)} is a ∗-algebra which separates the points of Γ. Therefore
it is dense in C0(Γ) and then it is also dense in L2(Γ, µ). So ϕ′ = ϕ.

‘⇐’. There exist ϕ ∈ L2(Γ, µ) and a sequence u1, u2, . . . ∈ D(a) such that limun = u
in D(aN), limun|Γ = ϕ in L2(Γ, µ) and (17) is valid for all v ∈ D(a). Then u1, u2, . . . is a
Cauchy sequence in D(a) and

lim
n→∞

a(un, v) = aN(u, v) +

∫
Γ

ϕv dµ =

∫
Ω

(Au) v =

∫
Ω

f v

for all v ∈ D(a). So u ∈ D(A) and Au = f . 2

This proposition shows how our general results can be easily applied. It is worthwhile
to consider closer the associated closed form since this is intimately related to the problem
to define a trace in L2(Γ, µ) of suitable functions in H1(Ω).

Let
W = {(u, u|Γ) : u ∈ D(a)}

where the closure is in D(aN) ⊕ L2(Γ, µ). Then the map u 7→ (u, u|Γ) from D(a) into
W is an isometry and therefore it extends to a unitary map from the completion of D(a)
onto W . The form a closable if and only if the map j:W → L2(Ω) defined by j(u, ϕ) = u
is injective. This is not always the case, even if µ is the (d − 1)-dimensional Hausdorff
measure (see [ArW], Example 4.2). Note that if ϕ ∈ L2(Γ, µ) then (0, ϕ) ∈ W if and only
if ϕ is a trace of 0.

The following lemma is due to Daners [Dan] Proposition 3.3 in the strongly elliptic
case, but our proof is different.

Lemma 4.14 There exists a Borel set Γa,µ ⊂ Γ such that

{ϕ ∈ L2(Γ, µ) : ϕ is a trace of 0} = L2(Γ \ Γa,µ, µ).

Proof Set F = {ϕ ∈ L2(Γ, µ) : (0, ϕ) ∈ W}. Then F is a closed subspace of L2(Γ, µ).
First we show that uψ ∈ F for all ψ ∈ F and u ∈ D(a) ∩ W 1

∞(Rd). Since ψ ∈ F
there exists a sequence u1, u2, . . . ∈ D(a) such that limun = 0 in D(aN) and limun|Γ = ψ
in L2(Γ, µ). Then uun ∈ D(a) for all n ∈ N and lim(uun)|Γ = uψ in L2(Γ, µ). By the
Leibniz rule one deduces that

(<aN)(uun)
1/2 ≤ ‖un‖2

( ∑ ∥∥∥ |aij + aji
2

| |∂iu| |∂ju|
∥∥∥
∞

)1/2

+ ‖u‖∞ (<aN)(un)
1/2

for all n ∈ N and limuun = 0 in D(aN). So uψ ∈ F .
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Secondly, let P :L2(Γ, µ) → F be the orthogonal projection. Let ϕ ∈ L2(Γ, µ) and
suppose that µ([ϕ 6= 0]) < ∞. We shall prove that Pϕ = 0 a.e. on [ϕ = 0]. Let
A = [ϕ 6= 0]. Since {u|Γ : u ∈ H1(Ω)∩C∞

c (Rd)} is dense in L2(Γ, µ) there exist u1, u2, . . . ∈
H1(Ω)∩C∞

c (Rd) such that limun|Γ = 1A in L2(Γ, µ). Then also lim(0∨Reun ∧ 1)|Γ = 1A

in L2(Γ, µ), so we may assume that un ∈ D(a) ∩W 1
∞(Rd) and 0 ≤ un ≤ 1 for all n ∈ N.

Passing to a subsequence if necessary we may assume that limun|Γ = 1A a.e. Therefore
limun Pϕ = 1A Pϕ in L2(Γ, µ). Since un Pϕ ∈ F for all n ∈ N one deduces that 1A Pϕ ∈
F . Then

‖ϕ− 1A Pϕ‖L2(Γ,µ) = ‖1A(ϕ− Pϕ)‖L2(Γ,µ) ≤ ‖ϕ− Pϕ‖L2(Γ,µ).

So 1A Pϕ = Pϕ and Pϕ = 0 a.e. on Ac = [ϕ = 0]. Now the lemma easily follows from
Zaanen’s theorem [ArT] Proposition 1.7. 2

Obvious the set Γa,µ in Lemma 4.14 is unique in the sense that µ(Γa,µ∆Γ′) = 0 whenever
Γ′ ⊂ Γ is another Borel set with this property. It is clear from the construction of Γa,µ
and definition of H1

a,µ(Ω) that there exists a unique map Tr a,µ:H
1
a,µ(Ω) → L2(Γa,µ, µ) in

a natural way, which we call trace. Note that if u ∈ H1
a,µ(Ω) then Tr a,µu is the unique

ϕ ∈ L2(Γa,µ, µ) such that ϕ is an a, µ-trace of u. In general, however, the map Tr a,µ is
not continuous from (H1

a,µ(Ω), ‖ · ‖aN ) into L2(Γa,µ, µ). A counter example is in [Dan],
Remark 3.5(f).

The map u 7→ (u,Tr a,µu) from H1
a,µ(Ω) into D(aN)⊕L2(Γa,µ, µ) is injective. Therefore

one can define a norm on H1
a,µ(Ω) by

‖u‖2
H1
a,µ(Ω) = ‖u‖2

D(aN ) + ‖Tr a,µu‖2
L2(Γa,µ,µ).

It is easy to verify that H1
a,µ(Ω) is a Hilbert space. Moreover, the map Tr a,µ:H

1
a,µ(Ω) →

L2(Γa,µ, µ) is a continuous linear operator with dense range.
It is now possible to reconsider the element ϕ ∈ L2(Γ, µ) in Proposition 4.13.

Proposition 4.15 Let u, f ∈ L2(Ω). Then u ∈ D(A) and Au = f if and only if u ∈
H1
a,µ(Ω), Au = f weakly on Ω and

aN(u, v)−
∫

Ω

(Au) v = −
∫

Γ

Tr a,µu v dµ

for all v ∈ D(a).

Proof Let u ∈ D(A) and ϕ ∈ L2(Γ, µ) be the corresponding unique element as in
Proposition 4.13. If ψ ∈ L2(Γ \ Γa,µ, µ) = F then there exists a sequence v1, v2, . . . ∈ D(a)
such that lim vn = 0 in D(aN) and lim vn|Γ = ψ in L2(Γ, µ). Substituting v = vn in (17)
and taking the limit n → ∞ one deduces that

∫
Γ
ϕψ dµ = 0. So ϕ ∈ L2(Γa,µ, µ) and

ϕ = Tr a,µu. 2

We now consider the case where µ is the (d− 1)-dimensional Hausdorff measure, which
we denote by σ. In particular, we assume that σ(K) < ∞ for every compact K ⊂ Γ.
Moreover, we write Γa = Γa,σ and Tr a = Tr a,σ. The measure σ coincides with the usual
surface measure if Ω is C1. We continue to consider, however, the case where Ω is an
arbitrary bounded open set. The only assumption that we make is that σ(K) < ∞ for
every compact K ⊂ Γ. If Ω has a Lipschitz continuous boundary and the form a equals
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the Laplacian form l then Γl = Γa = Ω by the trace theorem (see [Neč] Théorème 2.4.2).
By [ArW] Proposition 5.5 it follows that σ(Γl) > 0 if Ω is bounded, without any regularity
condition on the boundary. (Note, however, that there exists an open connected subset
Ω ⊂ R3 such that σ(Γ \ Γl) > 0, see [ArW], Example 4.3). The embedding of H1

l,σ(Ω)
into L2(Ω) is compact if Ω has finite measure, by [ArW] Corollary 5.2. This surprising
phenomenon is a consequence of Maz’ya’s inequality. It was Daners [Dan] who was the
first to exploit this inequality to establish results for Robin boundary conditions on rough
domains. Further results were given in [ArW] Section 5.

We conclude our remarks by considering µ = β σ, where β ∈ L∞(Γ,R) and β ≥ 0 a.e.
We define the weak normal derivative with respect to the matrix (aij). Let ϕ ∈ L2(Γ, µ),
u ∈ D(aN) and suppose that Au ∈ L2(Ω) weakly on Ω. Then we say that ϕ is the
(aij)-normal derivative of u if

aN(u, v)−
∫

Ω

(Au) v =

∫
Γ

ϕv dσ

for all v ∈ D(a). If Ω is of class C1, µ is the (d − 1)-dimensional Hausdorff measure
and u ∈ C1(Ω) then our weak definition coincides with the classical definition by Green’s
theorem. We reformulate Proposition 4.13.

Proposition 4.16 Let u, f ∈ L2(Ω). Then u ∈ D(A) and Au = f if and only if u ∈
H1
a,β σ(Ω), Au = f weakly on Ω and −β Tr a,β σu is the (aij)-normal derivative of u.

Note that if the matrix (aij) of coefficients if strongly elliptic and if u ∈ D(A) and
Au = f then u ∈ H1(Ω), Au = f weakly on Ω, u has a trace Tru and ν · a∇u = −βTru
weakly. Thus one recovers the classical statement.

4.4 The Dirichlet-to-Neumann operator

Let Ω be a bounded open subset of Rd with Lipschitz boundary Γ, provided with the
(d − 1)-dimensional Hausdorff measure. Let Tr :H1(Ω) → L2(Γ) be the trace map. We
denote by ∆D the Dirichlet Laplacian on Ω. If ϕ ∈ L2(Γ), u ∈ H1(Ω) and ∆u ∈ L2(Ω)
weakly on Ω then we say that ∂u

∂ν
= ϕ weakly if ϕ is the (aij)-normal derivative of u, where

aij = δij.
Let λ ∈ R and suppose that λ 6∈ σ(−∆D). The Dirichlet-to-Neumann operator

Dλ on L2(Γ) is defined as follows. Let ϕ, ψ ∈ L2(Γ). Then we define ϕ ∈ D(Dλ) and
Dλϕ = ψ if there exists a u ∈ H1(Ω) such that −∆u = λu weakly on Ω, Tru = ϕ and
∂u
∂ν

= ψ weakly. We next show that the Dirichlet-to-Neumann operator is an example of
the m-sectorial operators obtained in Theorem 2.2.

Define the sesquilinear form a:H1(Ω)×H1(Ω) → C by

a(u, v) =

∫
Ω

∇u∇v − λ

∫
Ω

u v.

Moreover, define j:H1(Ω) → L2(Γ) by j(u) = Tru. Clearly the form a is continuous, the
map j is bounded and j(H1(Ω)) is dense in L2(Γ). Using the definitions one deduces that

V (a) = {u ∈ H1(Ω) : −∆u = λu weakly on Ω}.
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It follows from Step 1 in the proof of Proposition 3.3 in [ArM] that there exist ω ∈ R and
µ > 0 such that

Re a(u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V

for all u ∈ V (a). So the conditions of Theorem 2.2 are satisfied.
Note that if λ1 is the lowest eigenvalue of the operator −∆D on Ω and u ∈ H1

0 (Ω) is an
eigenfunction with eigenvalue λ1, then (2) is not valid if λ > λ1. Therefore Theorem 2.1 is
not applicable and this example is the reason why we used the space V (a) in Theorem 2.2.

Let A be the operator associated with (a, j). We next show that A = Dλ. Let ϕ, ψ ∈
L2(Γ). Suppose ϕ ∈ D(A) and Aϕ = ψ. Then there is a u ∈ H1(Ω) such that Tru = ϕ
and a(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ H1(Ω). For all v ∈ H1

0 (Ω) one has∫
Ω

∇u∇v − λ

∫
Ω

u v = a(u, v) = 0,

so −∆u = λu weakly on Ω. Then∫
Ω

∇u∇v +

∫
Ω

(∆u) v = a(u, v) = (ψ,Tr v)L2(Γ)

for all v ∈ H1(Ω). So ∂u
∂ν

= ψ weakly. Therefore ϕ ∈ D(Dλ) and Dλϕ = ψ. Conversely,
suppose ϕ ∈ D(Dλ) and Dλϕ = ψ. By definition there exists a u ∈ H1(Ω) such that
−∆u = λu weakly on Ω, Tru = ϕ and ∂u

∂ν
= ψ weakly. Then

a(u, v) =

∫
Ω

∇u∇v − λ

∫
Ω

u v =

∫
Ω

∇u∇v +

∫
Ω

(∆u) v =

∫
Γ

∂u

∂ν
Tr v = (ψ,Tr v)L2(Γ)

for all v ∈ H1(Ω). So ϕ = j(u) ∈ D(A) and ψ = Aj(u) = Aϕ. Thus Dλ = A is the
operator associated with (a, j).

If S is the semigroup generated by −Dλ then it follows as in the proof of Corollary 4.9
that S is real and positive. Moreover, if λ ≤ 0 then S extends consistently to a continuous
contraction semigroup on Lp(Ω) for all p ∈ [1,∞].

4.5 Wentzell boundary conditions

Let again Ω be an open subset of Rd with arbitrary boundary Γ and let σ be the (d− 1)-
dimensional Hausdorff measure on Γ. We assume that σ(K) <∞ for every compactK ⊂ Γ.
All Lp spaces on Γ are with respect to the measure σ, expect if written different explicitly.

For all i, j ∈ {1, . . . , d} let aij ∈ L∞(Ω). Let θ ∈ [0, π
2
). Suppose

∑d
i,j=1 aij(x) ξi ξj ∈ Σθ

for all ξ ∈ Cd and a.e. x ∈ Ω. Define the form b by

D(b) = {u ∈ H1(Ω) ∩ C(Ω) :

∫
Γ

|u|2 dσ <∞}

and

b(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv +

∫
Γ

u v dσ.

As in Subsection 4.3 we define the Neumann form bN by D(bN) = H1(Ω) and

bN(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv.
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Throughout this subsection we assume that the form bN is closable. Set Γ̃ = Γb,σ and

Tr = Tr b,σ. Moreover, we assume that the map Tr : (H1
b,σ(Ω), ‖·‖bN ) → L2(Γ̃) is continuous.

Fix α ∈ L∞(Γ̃) and B ∈ L(L2(Γ̃)). Throughout this subsection we assume that there
exists an ω > 0 such that

ω ‖Bϕ‖2
L2(eΓ)

+

∫
eΓ Reα |ϕ|2 ≥ 0 (18)

for all ϕ ∈ L2(Γ̃). In particular, if β ∈ L∞(Γ) and B is the multiplication operator with β
then we assume that

ω |β|2 + Reα ≥ 0

for some ω > 0.
Define the form a by

D(a) = H1
b,σ(Ω)

and

a(u, v) =
d∑

i,j=1

∫
Ω

(∂iu) aij ∂jv +

∫
eΓ TruTr v α dσ.

Let H be the closure of the space {(u,B(Tru)) : u ∈ H1
b,σ(Ω)} in the space L2(Ω)⊕ L2(Γ̃)

with induced norm. Define the injective map j:H1
b,σ(Ω) → H by

j(u) = (u,B(Tru)).

If B has dense range, then H = L2(Ω) ⊕ L2(Γ̃) since the space {(u,Tru) : u ∈ H1
b,σ(Ω)}

is dense in L2(Ω) ⊕ L2(Γ̃) by Step a) in the proof of Theorem 2.3 in [AMPR]. Then the
claim follows by the range condition on B. Note that the condition (18) together with the

assumed continuity of Tr : (H1
b,σ(Ω), ‖ · ‖bN ) → L2(Γ̃) imply that a is j-sectorial. Let A be

the operator associated with (a, j).

Proposition 4.17 Let x, y ∈ H. Then x ∈ D(A) and Ax = y if and only if there

exist u ∈ H1
b,σ(Ω) and ψ ∈ L2(Γ̃) such that x = (u,B(Tru)), Au ∈ L2(Ω) weakly on Ω,

(B∗ψ − αTru) is the (aij)-normal derivative of u and y = (Au, ψ).

Proof ‘⇒’. There exists a u ∈ H1
b,σ(Ω) such that x = j(u). Write y = (f, ψ) ∈ H. Then

bN(u, v) +

∫
eΓ TruTr v α dσ = (y, j(v))H =

∫
Ω

f v +

∫
eΓ ψB(Tr v) dσ

for all v ∈ H1
b,σ(Ω). Taking only v ∈ C∞

c (Ω) one deduces that Au = f weakly on Ω. In
particular, y = (f, ψ) = (Au, ψ). Moreover,

bN(u, v)−
∫

Ω

(Au) v =

∫
eΓ(B∗ψ − αTru) Tr v dσ

for all v ∈ H1
b,σ(Ω), which implies that (B∗ψ − αTru) is the (aij)-normal derivative of u.

‘⇐’. Let u ∈ H1
b,σ(Ω) and ψ ∈ L2(Γ̃) be such that x = (u,B(Tru)), Au ∈ L2(Ω) weakly

on Ω, (B∗ψ − αTru) is the (aij)-normal derivative of u and y = (Au, ψ). Then x = j(u).
Since (B∗ψ − αTru) is the (aij)-normal derivative of u one deduces that

bN(u, v)−
∫

eΓ(Au) v =

∫
eΓ(B∗ψ − αTru) Tr v dσ
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for all v ∈ H1
b,σ(Ω). So

a(u, v) = bN(u, v) +

∫
eΓ TruTr v α dσ

=

∫
Ω

(Au) v +

∫
eΓ ψB(Tr v) dσ = (y, j(v))H

for all v ∈ H1
b,σ(Ω). Therefore x ∈ D(A) and Ax = y. 2

Suppose that B has dense range. Then H is isomorphic with L2(Ω t Γ̃) in a natural

way. We use this isomorphism to identify H with L2(Ω t Γ̃). It is easy to verify as in the

proof of Corollary 3.16(a) that S leaves L2(Ω,R) ⊕ L2(Γ̃,R) invariant if the form bN is

real, α is real valued and B maps L2(Γ̃;R) into itself. We next characterize positivity of S.

Proposition 4.18 Suppose the form bN is real, α is real valued and B maps L2(Γ̃;R)
densely into itself.

(a) The map B is a lattice homomorphism if and only if the semigroup S is positive.

(b) If σ(Γ̃) <∞, the map B is a lattice homomorphism, α ≥ 0 and there exists a c ≥ 1
such that 1

c
1 ≤ B1 ≤ c 1, then S extends continuously to a bounded semigroup on

L∞(Ω t Γ̃).

Proof ‘(a)’. Let C = {(u, ϕ) ∈ H : u ≥ 0 and ϕ ≥ 0}. Then C is closed and convex in H.
Define P :H → C by P (u, ϕ) = ((Reu)+, (Reϕ)+). Then P is the orthogonal projection
onto C.

‘⇒’. Let u ∈ H1
b,σ(Ω). Then (Reu)+ ∈ H1

b,σ(Ω) and

j((Reu)+) = ((Reu)+, B(Tr ((Reu)+))) = ((Reu)+, (ReB(Tru))+) = Pj(u)

since B is a lattice homomorphism. Moreover,

Re a((Reu)+, u− (Re u)+) = a((Reu)+,−(Re u)−) = 0.

So C is invariant under S by Proposition 2.9.
‘⇐’. If S is positive then C is invariant under S. Let u ∈ H1

b,σ(Ω). It follows
from Proposition 2.9 that there exists a w ∈ H1

b,σ(Ω) such that Pj(u) = j(w). Then
((Reu)+, (ReB(Tru))+) = Pj(u) = j(w) = (w,B(Trw)). Therefore w = (Reu)+ and

(ReB(Tru))+ = B(Trw) = B(Tr ((Reu)+)) = B((Re Tru)+).

This is for all u ∈ H1
b,σ(Ω). Since TrH1

b,σ(Ω) is dense in L2(Γ̃) one deduces that (Bϕ)+ =

B(ϕ+) for all ϕ ∈ L2(Γ̃,R). So B is a lattice homomorphism.
‘(b)’. Let C = {(u, ϕ) ∈ H : u ≤ 1 and ϕ ≤ B1}. Then C is closed and convex.

Define P :H → C by P (u, ϕ) = ((Re u) ∧ 1, (Reϕ) ∧ B1). Then P is the projection of
H onto C. Let u ∈ H1

b,σ(Ω). Define w = (Re u) ∧ 1. Then w ∈ H1
b,σ(Ω) and Pj(u) =

((Reu) ∧ 1, (ReB(Tru)) ∧B1) = ((Reu) ∧ 1, B(Tr ((Reu) ∧ 1))) = j(w). Moreover,

Re a(w, u− w) = Re a((Reu) ∧ 1, i Imu+ (Reu− 1)+) = a((Reu) ∧ 1, (Re u− 1)+)

=

∫
eΓ αTr ((Reu) ∧ 1) Tr ((Reu− 1)+) =

∫
eΓ αTr ((Reu− 1)+) ≥ 0
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So by Proposition 2.9 the set C is invariant under S.
Finally, let (u, ϕ) ∈ H and suppose that u ≤ 1 and ϕ ≤ 1. Then 1

c
ϕ ≤ B1 and

1
c
(u, ϕ) ∈ C. Let t > 0 and write (v, ψ) = St(u, ϕ). Then 1

c
(v, ψ) ∈ C. Hence v ≤ c 1 and

ψ ≤ cB1 ≤ c2 1. So S extends to a continuous semigroup on L∞ and ‖St‖∞→∞ ≤ c2 for
all t > 0. 2

Using the operator A one can define another semigroup generator which looks different.
If u ∈ D(bN) then we say that Au ∈ H1

b,σ(Ω) weakly on Ω if there exists an f ∈ H1
b,σ(Ω)

such that Au = f weakly on Ω. In the next proposition the part A1 of A in the Sobolev
space is a realization of the elliptic operator with Wentzell boundary conditions. This is
another approach than the one used in [FGGR].

Proposition 4.19 Define the operator A1 on H1
b,σ(Ω) by taking as domain D(A1) the set

of all u ∈ H1
b,σ(Ω) such that Au ∈ H1

b,σ(Ω) weakly on Ω and (B∗B(TrAu)− αTru) is the
(aij)-normal derivative of u; and letting A1u = Au for all u ∈ D(A1). Then −A1 generates
a holomorphic semigroup on H1

b,σ(Ω).

Proof Let ac be the classical form associated with (a, j) (see Theorem 2.5). Then A
is associated with the closed sectorial form ac. Define the operator A0 in H by D(A0) =
{w ∈ D(A) : Aw ∈ D(ac)} and A0w = Aw for all w ∈ D(A0). Then −A0 generates a
holomorphic semigroup in the Hilbert space (D(ac), ‖ · ‖ac). The map j:H1

b,σ(Ω) → D(ac)
is a isomorphism of normed spaces. Hence the operator −j−1A0j generates a holomorphic
semigroup on H1

b,σ(Ω). Therefore it suffices to show that A1 = j−1A0j.
Let u ∈ D(j−1A0j). Then j(u) ∈ D(A), Aj(u) ∈ j(H1

b,σ(Ω)) and A0j(u) = Aj(u). It

follows from Proposition 4.17 that Au ∈ L2(Ω) weakly on Ω and there exists a ψ ∈ L2(Γ̃)
such that (B∗ψ − αTru) is the (aij)-normal derivative of u and Aj(u) = (Au, ψ). Since
Aj(u) ∈ j(H1

b,σ(Ω)) one deduces that Au ∈ H1
b,σ(Ω) and j(Au) = (Au, ψ) = Aj(u). In

particular, ψ = B(TrAu). Therefore (B∗B(TrAu)− αTru) is the (aij)-normal derivative
of u and u ∈ D(A1). Then A1u = Au = j−1A0j(u). Conversely, suppose that u ∈ D(A1).
Then j(u) ∈ D(ac) and it follows from Proposition 4.17 that j(u) ∈ D(A) with Aj(u) =
(Au,BTrAu) = j(Au). So j(u) ∈ D(A0) and u ∈ D(j−1A0j). 2
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